
Computational Mechanics (2021) 68:1205–1221
https://doi.org/10.1007/s00466-021-02065-7

ORIG INAL PAPER

Subdivision-based isogeometric analysis for second order partial
differential equations on surfaces

Qing Pan1 · Timon Rabczuk2 · Xiaofeng Yang3

Received: 20 December 2020 / Accepted: 9 July 2021 / Published online: 2 August 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
We investigate the isogeometric analysis approach based on the extended Catmull–Clark subdivision for solving the PDEs on
surfaces. As a compatible technique of NURBS, subdivision surfaces are capable of the refinability of B-spline techniques,
and overcome the major difficulties of the interior parameterization encountered by the isogeometric analysis. The surface is
accurately represented as the limit form of the extended Catmull–Clark subdivision, and remains unchanged throughout the h-
refinement process. The solving of the PDEs on surfaces is processed on the space spanned by the Catmull–Clark subdivision
basis functions. In this work, we establish the interpolation error estimates for the limit form of the extended Catmull–Clark
subdivision function space on surfaces. We apply the results to develop the approximation estimates for solving multiple
second-order PDEs on surfaces, which are the Laplace–Beltrami equation, the Laplace–Beltrami eigenvalue equation and
the time-dependent Cahn–Allen equation. Numerical experiments confirm the theoretical results and are compared with the
classical linear finite element method to demonstrate the performance of the proposed method.

Keywords Isogeometric analysis · Extended Catmull–Clark subdivision · A priori error estimates · Laplace–Beltrami
equation · Laplace–Beltrami eigenvalue equation · Cahn–Allen equation

1 Introduction

A wide variety of partial differential equations (PDEs)
defined on surfaces have been described as mathematical
models of physical engineering phenomena. It is essential to
study the numerical method of solving the Laplace–Beltrami
equation, which is the main component of some physical
models, such as the problems of the Navier–Stokes types [1]
which are coupled with atmosphere/ocean models to study
the long-term earth climate change. The eigenvalue prob-
lem based on the Laplace–Beltrami operator [2] is widely
used not only in scientific computing but also in the fields
of engineering and physics (such as quantum mechanics,
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laser, etc.). The Allen–Cahn equation was originally intro-
duced by Allen–Cahn [3] to describe the motion of antiphase
boundaries in crystalline solids. It is proposed as a simple
(non-conservative) model for the phase separation process
of binary alloys at a fixed temperature.

We recall that there exist numerous numerical methods
for these PDEs on surfaces using the finite-difference meth-
ods [4] and spectral methods [5,6], which are applicable to
simple surfaces. In practical engineering, there is an urgent
need for a more geometrically flexible method. Finite ele-
ment analysis has become a widely accepted method (cf. a
good review of various finite element methods on surfaces
in [7]). As we all know, the finite element method involves
the approximation of the differential geometric quantities of
surfaces, which may increase the error of numerical approxi-
mation. This is because the variation of the Laplace–Beltrami
operator needs to integrate the derivative product on the sur-
face. Moreover, the traditional finite element method solves
the problem through expensive and time-consuming manual
intervention, and difficulties are encountered in the refining
process (especially for complex geometries).

The isogeometric analysis (IGA), introduced byHughes et
al. [8,9], can use non-uniform Rational B-Splines (NURBS)
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[10,11] or T-splines [12–14] instead of standard finite ele-
ments. The concept of IGA shows great potential in the
development of seamless integration between computer-
aided design (CAD) and finite elementmethod (FEM),which
has higher accuracy than standard FEM. The h-refinement,
p-refinement and even k-refinement can be easily achieved
by knot insertion and/or order elevation, thereby improving
the accuracy without changing the geometry, which elimi-
nates the subsequent communication with the CAD system.

Solving the equations is an important issue in IGA.
Discretization with single-patch NURBS-based IGA and
implicit backward differentiation formula schemes was pro-
posed to solve mean curvature (2nd order) andWillmore (4th
order) flows in [15]. NURBS-based IGA was considered to
numerically solve benchmark Laplace–Beltrami problems
of the fourth and sixth order, as well as the corresponding
eigenvalue problems, Cahn–Hilliard and crystal equations in
[16]. The second-order PDEs on surfaces with IGA were
considered in [17] where a priori error estimates under h-
refinement in the general case of second order PDEs was
proposed. A general theory and isogeometric finite element
implementation based on structured NURBS and unstruc-
tured spline spaces for studying two coupled fourth-order
nonlinear PDEs that live on an evolving two-dimensional
manifold was presented in [18]. Toshniwal et al. [19] pro-
posed the construction of a separate, smooth spline on
unstructured quadrilateral meshes while ensuring isogeo-
metric compatibility-requiring the geometric models to be
members of the analysis-suitable spaces. Analysis-suitable
T-splines (ASTS) including both extraordinary points and T-
junctions were used to solve Kirchhoff-Love shell problems,
where C1-continuous non-negative spline basis functions
were constructed near extraordinary points to obtain optimal
convergence rates in [20].

As a compatible technique of NURBS, subdivision sur-
faces are capable of the refinability of B-spline techniques.
Surface subdivision is a powerful technology originated
from computer graphics, which provides a simple and effi-
cient recursive refinement to construct smooth surfaces from
arbitrary meshes [21–23]. Constructing surfaces through
subdivision elegantly addresses some issues faced by com-
puter graphics and CAD practitioners, where they need to
handle control meshes of arbitrary topology, while main-
taining surface smoothness and visual quality automatically.
Subdivision surfaces easily admit multi-resolution exten-
sions, thus enabling efficient hierarchical representations of
complex surfaces. Subdivision technology not only can be
easily used to treat the complex geometries but also preserve
the features around boundaries by simple extensions, such as
concave corners, convex corners, sharp creases and smooth
creases etc.

Since subdivision algorithms can be used to define the
basis on any mesh domain, they naturally become candidates

for higher-order finite element calculations in engineering
applications (see [24–30]). Recently, there have been some
works on the application of the IGA approach based on the
subdivision. Volumetric IGA based on Catmull–Clark solids
was investigated in [31] where the boundary of the solid
modelwas aCatmull–Clark surfacewith optional corners and
creases to support the modeling phase. The use of Powell-
Sabin splines in the context of IGA for the numerical solution
of advection-diffusion-reaction equations was represented in
[32], which focused on the accurate detection of internal
and boundary layers. Truncated hierarchical Catmull–Clark
subdivision [33] was developed to support local refinement
and generalize truncated hierarchical B-splines to arbitrary
topology. In the recent years, the subdivision-based IGA
was studied in [34,35], which was applied to solve lin-
ear and nonlinear PDEs on plane. The subdivision weights
were optimised by minimising short-wavelength surface
oscillations around extraordinary vertices to minimise finite
element discretisation errors in [36]. A subdivision scheme
for unstructured quadrilateral meshes with improved conver-
gence rates in extraordinary regions for IGAwas presented in
[37]. A new non-uniform subdivision surface was introduced
to generalize bi-cubic NURBS to arbitrary topology and was
proved to be G1 -continuous for any valence extraordinary
points in [38]. A new tuned hybrid subdivision surface with
globally G1-continuous was introduced as a basis in IGA in
[39].

In this work, we develop the isogeometric analysis based
on Catmull–Clark subdivision (IGA-CC) method to approx-
imate the PDEs on surfaces. The precise surface is patch-
wisely represented by the limited form of the extended
Catmull–Clark subdivision mesh, which has the flexibil-
ity of dealing with any topological structure, and remains
unchanged, along with its parameterization, throughout
the subdivision process equivalent to the h-refinement of
NURBS. The solution space of the PDEs on surfaces is
spanned by the extended Catmull–Clark subdivision basis
functions. The convergence of the interpolation errors is
studied in detail where we use the unique solvability of
the interpolation problem on the support extension. We
apply the theoretical results to several problems includ-
ing the Laplace–Beltrami equation, the Laplace–Beltrami
eigenvalue equation, and the time-dependent Allen–Cahn
equation. The numerical results are completely consistent
with the theoretical estimates. By comparing with the clas-
sical linear element finite element method, the convergence
is studied in detail. The proposed IGA-CC method has the
ability to accurately represent the surface geometries and
improves the accuracy of the approximate PDE solutions on
surfaces through the h refining process.

We organize the rest of this article in the following way.
The required preliminaries and the extended Catmull–Clark
subdivision are introduced in Sect. 2. In Sect. 3, we introduce
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three PDEs on surfaces that all involve the Laplace–Beltrami
operator. In Sect. 4, we introduce spatial discretization based
on the IGA-CCmethod. In Sect. 5, we study the interpolation
error estimates for the limit form of the extended Catmull–
Clark subdivision function space on surfaces, and a priori
error estimates corresponding to the PDEs on surfaces. In
Sect. 6, we present the numerical experiments. Some con-
clusions are given in Sect. 7.

2 Notations and preliminaries

In this section we firstly review in an abstract framework the
surface parameterization and some surface differential oper-
ators. Then we briefly introduce the extended Catmull–Clark
subdivision surface which is used to represent the physical
domains. We also select these subdivision basis functions for
numerically solving the PDEs on surfaces.

2.1 Surface parameterization and surface
differential operators

Let S := {x(u1, u2) ∈ R
3 : (u1, u2) ∈ D ⊂ R

2} be
a parametric surface. Assume that the surface S is suffi-
ciently smooth and orientable. Let gαβ = 〈xuα , xuβ 〉 and
bαβ = 〈n, xuαuβ 〉 be the coefficients of the first and the sec-
ond fundamental forms of S with

xuα = ∂x
∂uα

, xuαuβ = ∂2x
∂uα∂uβ

, α, β = 1, 2,

n = (xu1 × xu2)/‖xu1 × xu2‖,

where 〈·, ·〉, ‖ · ‖ and · × · stand for the usual inner product,
Euclidean norm and cross product inR3 respectively. In what
follows, we will make use of the following notations

[gαβ ] = [gαβ ]−1, g = det[gαβ ], [bαβ ] = [bαβ ]−1,

b = det[bαβ ].

The matrix form of Weingarten map is denoted as

S = [bαβ ][gαβ ] = 1

g

[
b11g22 − b12g12 b12g11 − b11g12
b12g22 − b22g12 b22g11 − b12g12

]
,

which is a self-adjoint linear map on the tangent space
TxS := span{xu1 , xu2}. Then the eigenvalues k1 and k2 of
S are the principal curvatures of S, whose arithmetic aver-
age and product are the mean curvature H and the Gaussian
curvature K , namely,

H = k1 + k2
2

= tr(S)

2
= b11g22 − 2b12g12 + b22g11

2g
,

K = k1k2 = det(S) = b11b22 − b212
g

,

respectively. Let H = Hn, which is referred to the mean
curvature normal.

Nowwe introduce several geometric differential operators
of interest.

Tangential gradient operator. Suppose that f ∈ C1(S),
where C1(S) stands for a function space consisting of C1

smooth functions on S, then the tangential gradient operator
∇s acting on f is defined as

∇s f = [xu1 , xu2 ][gαβ ][ fu1, fu2 ]T ∈ R
3. (1)

For a vector-valued function f = [ f1, . . . , fk]T ∈ C1(S)k ,
the gradient ∇s acting on f is defined as

∇sf = [∇s f1, . . . ,∇s fk] ∈ R
3×k .

Divergence operator. Let v ∈ [C1(S)]3 be a smooth vec-
tor field on surface S. Then the divergence operator divs
acting on v is defined as

divs(v) = 1√
g

[
∂

∂u1
,

∂

∂u2

] [√
g[gαβ ][xu1 , xu2 ]T v

]
. (2)

Laplace–Beltrami operator. Let f ∈ C2(S). Then the
Laplace–Beltrami operator (LBO) �s acting on f is defined
as

�s f = divs(∇s f ).

With the definitions of �s and divs , we derive

�s f = 1

g
(g22 f11 + g11 f22 − 2g12 f12), (3)

where fαβ = fuαuβ −(∇s f )Txuαuβ , α, β = 1, 2. Obviously,
�s is a second order differential operator, which relates to
the mean curvature vector via the formula �sx = 2H.

Theorem 2.1 (Green formula for LBO) Let S be an ori-
entable surface, and � be a subregion of S with a piecewise
smooth boundary ∂�. Let nc be the outward unit normal
along the boundary ∂�. Then for a given smooth vector field
v ∈ C1(�), we have

∫
�

〈v,∇s f 〉 + f divs(v)dA =
∫

∂�

f 〈v,nc〉ds. (4)

2.2 Extended Catmull–Clark subdivision surfaces

In this section we review the extended Catmull–Clark subdi-
vision. It is a generalization of bicubic B-spline subdivision,
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Fig. 1 A control mesh for extended Catmull–Clark subdivision rules.
Vertices are classified into 3 categories. Edges are classified into 3 cat-
egories and patches are classified into 3 categories

which eliminates the rigid restriction on the topology of
the control mesh, and can treat boundary features, such as
concave/convex corners, and sharp/smooth creases. It can
generate a smooth surface from a control mesh of arbitrary
topologybyusing iterative refinement procedure. The control
vertices of the refined meshes are generated from the control
vertices of the previous step by a portfolio of weight coef-
ficients, which is described in Fig. 2 ( [40]). This process
subdivides each quadrilateral into four sub-quadrilaterals,
where this sequence of meshes converges to a C1 smooth
limit surface composed of quadrilateral patches. For more
clarity, the extended Catmull–Clark subdivision scheme is
described as follows.
Vertex Schemes. The vertices can be separated into three
types: corner vertex, boundary vertex and interior vertex. For
different type of vertex, the refined strategy is given as (see
Fig. 1)

1. Interior vertex with N face valence: It is updated as
the combination of its previous position with weight
1 − 7/(4N ), the sum of all adjacent vertices with weight
3/(2N 2), and all the remaining1-ringverticeswithweight
1/(4N 2) (see Fig. 2a).

2. Boundary vertex: It is updated as the sum of its own
previous position with weight 3/4 and the two adjacent
boundary vertices with weight 1/8 (see Fig. 2b).

3. Corner vertex: It needs to be interpolated, meaning they
are fixed.

Edge Schemes. The edges can be divided into boundary
edge, sub-boundary edge and interior edge. The boundary
edges lie on the boundaries, which are the features of control
mesh in general. The sub-boundary edges are not boundary
edges but adjacent to the boundary vertices. The rest are the
interior edges. For the different type of edges, the refinement
is performed as (see Fig. 1))

1. Sub-boundary edge: The newly added vertex on a sub-
boundary edge is the combination of the boundary vertex
with weight 3

4 − γ , another endpoint of this edge with
weightγ , and the sumof the fourwingvertices of this edge
with weight 1/16, where γ = 3/8− 1/4cosθk , θk = π/k
for a boundary vertex, and θk = α/k for a convex corner
vertex, θk = (2π−α)/k for a concave corner vertex. Here
k denotes the face valence of the boundary vertex, α is the
angle of the two boundary edges incident to the boundary
vertex (see Fig. 2c).

2. Interior edges: Use the subdivision rule for the sub-
boundary edge only by choosing γ = 3/8 (see Fig. 2d).

3. Boundary edge: The newly added vertex on a boundary
edge is the average of its adjacent boundary vertices (see
Fig. 2e).

Face Schemes. Insert a vertex at the centroid of each face
(see Fig. 2f).

Each quadrilateral patch of the control mesh can be
regarded as a parametric domain, which corresponds to only
one quadrilateral patch of the limit surface. We divide the
control mesh into interior patches, sub-boundary and bound-
ary patches. The patches containing boundary vertices are
named as boundary patches, the ones adjacent to bound-
ary patches are called sub-boundary patches, and all others
are called interior ones (see Fig. 1). For the two cases of
boundary and sub-boundary patches , it is not difficult to find
that several more subdivision times can change them into the
calculable interior patches, where we described their compu-
tation in Section 4.3. Here we simply describe the evaluation
method for the interior cases. If the four control vertices of an
interior patch have valence four, the resulting surface patch
is called regular. The regular patch can be exactly described
by a bicubic B-spline, which is formulated by

x(ξ, η) =
16∑
i=1

Bi (ξ, η)xi , (5)

where (ξ, η) are the barycentric coordinates of the unit square
T = {(ξ, η) ∈ R

2 : 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1}, and the index
i refers to the local sorting of 16 control vertices shown in
Fig. 3a.

If an interior patch is irregular, i.e., at least one of its ver-
tices has a valence other than four, the resulting surface patch
cannot be represented by a bicubic B-spline. We assume
extraordinary vertices are isolated; that is, there is no edge
in the interior patch such that both of its vertices are extraor-
dinary. This assumption could be fulfilled by subdividing
the mesh once. Under this assumption, any irregular interior
patch has only one extraordinary vertex. For evaluating irreg-
ular patches, themesh needs to be subdivided repeatedly until
the parameter values of interest are interior to a regular patch.
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Fig. 2 a and b are the vertex recomputation rules. c, d and e are the edge insertion point rules. f shows the face insertion point rule

Fig. 3 a A regular patch with its 16 control vertices. b An irregular patch over the shaded quadrilateral with an extraordinary vertex labeled ’1’
whose valence is 5. c Subdividing this irregular patch once generates 3 sub-patches which can be evaluated

Hence, the basis functions given in (5) can be used to repre-
sent the geometry exactly. Each subdivision of an irregular
patch produces three regular sub-patches and one irregular
sub-patch (see Fig. 3b, c), then repeated subdivision of the
irregular patch produces a sequence of regular sub-patches
defined as

T k
1 = {(ξ, η) : ξ ∈ [2−k, 2−k+1], η ∈ [0, 2−k]},

T k
2 = {(ξ, η) : ξ ∈ [2−k, 2−k+1], η ∈ [2−k, 2−k+1]},

T k
3 = {(ξ, η) : ξ ∈ [0, 2−k], η ∈ [2−k, 2−k+1]},

(6)

with the subdivision level k = floor(min(−log2(ξ),

−log2(η))). Obviously, these sub-patches can be mapped
onto the unit square T through the transform

t1,k(ξ, η) = (2kξ − 1, 2kη), (ξ, η) ∈ T k
1 ,

t2,k(ξ, η) = (2k ξ − 1, 2kη − 1), (ξ, η) ∈ T k
2 ,

t3,k(ξ, η) = (2k ξ, 2kη − 1), (ξ, η) ∈ T k
3 .

Hence the patch is defined by its restriction to each quadri-
lateral

x(ξ, η)|T k
j

=
16∑
i=1

Bi (t j,k(ξ, η))x j,k
i ,

j = 1, 2, 3; k = 1, 2, . . . , (7)

where x j,k
i are properly chosen from the control vertices

x̄k = [xk1, . . . , xk2N+17]T . x̄k+1 = ĀAkx0 where A and Ā are
the subdivision matrices at corresponding subdivision steps.
Stam [23] used the Jordan canonical form A = SJ S−1 where
S and J have explicit forms so that the computation of Ak

is simplified to the computation of J k . It makes computing
cost nearly independent of k and hence very efficient.

3 PDEs on surfaces

We introduce three second-order PDEs defined on surfaces
containing the Laplace–Beltrami operator. We also give their
corresponding weak forms for the following numerical dis-
cretization.

3.1 Sobolev spaces on surfaces

Assume that S is a sufficiently smooth surface. For a given
constant k and a function f ∈ C∞(S), denote ∇k f the k-th
order covariant derivative of function f , with the convention
∇0 f = f . Let

Ck(S) =
{
f ∈ C∞(S) :

∫
s
|∇ j f |2dA ≤ ∞ for j = 0, . . . , k

}
.

We have the following definition of Sobolev space Hk(S).
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Definition 3.1 Let S be a compact surface with at least k-th
order smoothness. Sobolev space Hk(S) is the completion
of Ck(S) in the sense of norm

‖ f ‖Hk (S) :=
⎛
⎝ k∑

j=0

∫
s
|∇ j f |2dA

⎞
⎠

1
2

. (8)

For the compact surface S, we have

Ck(S) = C∞(S) ⊂ Ck(S) ⊂ Hk(S).

For the sake of simplicity, we need introduce the following
forms

(u, v) =
∫
s
uvdA, and (∇su,∇sv) =

∫
s
∇su · ∇svdA.

3.2 Laplace–Beltrami equation

TheLaplace–Beltrami equationwith thehomogenousDirich-
let boundary condition is written as

{−�su = f , in S,

u = 0, on ∂S,
(9)

where �s is the Laplace–Beltrami operator. S ∈ R
3 is a

bounded surface with piecewise smooth boundary ∂S. Let
H1
0 (S) = {u ∈ H1(S), u = 0 on ∂S }. The weak form of

the problem (9) is given as follows:

{
Find u ∈ H1

0 (S) such that

(∇su,∇sv) = ( f , v), ∀v ∈ H1
0 (S).

(10)

3.3 Laplace–Beltrami eigenvalue equation

The Laplace–Beltrami eigenvalue problem defined on a
closed surface S is described as

−�su = λu, in S, (11)

where the parameter λ is unknown. The weak form of the
problem (11) is given as follows:

{
Find u ∈ H1

0 (S) and λ ∈ R such that

(∇su,∇sv) = λ(u, v), ∀v ∈ H1
0 (S).

(12)

Due to the symmetry andpositive definiteness of the problem,
all the eigenvalues λ are real values and non negative, i.e.
λ ∈ R, λ ≥ 0.

3.4 Time-dependent Allen–Cahn equation

In this work, we consider the Allen–Cahn equation with the
homogeneous Dirichlet boundary condition (13), which is
the simplest special case of a more complicated phase field
model for solidification of a pure material, that is

⎧⎪⎨
⎪⎩
ut − �su + 1

ε2
f (u) = g, (x, t) ∈ S × [0, T ],

∇su · n = 0, (x, t) ∈ ∂S × [0, T ],
u(x, 0) = u0(x), x ∈ S,

(13)

where ∇s denote the tangent gradient operator on surface,
and n is the unit outward normal of S along the boundary
∂S. The time T is fixed as a constant parameter. The term
f (u) = F ′(u) for some double well potential density func-
tion F , which takes its global minimum value 0 at u = ±1.
Here we choose the following widely used quartic density
function F(u) = 1

4 (u
2 − 1)2. Here the function u(t) repre-

sents the concentration of one of the twometallic components
of the alloy. The parameter ε is an ’interaction length’, which
is small compared to the characteristic dimensions on the lab-
oratory scale. Then the weak form of the problem (13) reads:
for all t ∈ (0, T ),

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Find u(t) ∈ H1
0 (S) such that

(∂u(t)

∂t
, v

) + (∇su,∇sv) + 1

ε2
( f (u), v)

= (g, v), ∀v ∈ H1
0 (S),

u(x, 0) = u0(x).

(14)

4 IGA-CC discrertization

In this section we proceed the IGA-CC discretization for the
three problems introduced in Sect. 3.We describe the approx-
imation in a uniform form for the three problemswhich are all
second-order equations. For the time-dependent Allen–Cahn
equation we focus on discussing its spatial discretization
where the generalized-α method in the time direction dis-
cretization can be seen in a lot of references.

4.1 Function spaces

As described in Sect. 2.2, starting from an initial quadrilateral
control mesh M0

h which serves as the control mesh of the
extended Catmull–Clark subdivision, the vertex positions of
the refinedmeshMk+1

h are computed as theweighted average
of the vertex positions of the unrefined mesh Mk

h through
x̂k+1 = Ax̂k, k = 0, 1, . . ., where the subdivision matrix A
describes the subdivision rules. Taking the infinite number
of these subdivision process yields its limit representation
denoted as S. The limit surface S converges at extraordinary
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control vertices. The limit position for each control vertex
can be found explicitly, which is described as Lemma 4.1 (
[40]).

Lemma 4.1 Let x̂00 be a vertex with valence n of the initial

control mesh M (0)
h . Mark its 1-ring adjacent edgepoints with

subscript p and 1-ring facepoints with subscript r , then all
these vertices converge to a single position

x0 := n

n + 5
x̂00 + 4

n(n + 5)

n∑
j=1

x̂0p j

+ 1

n(n + 5)

n∑
j=1

x̂0r j , (15)

as the subdivision step goes to infinity.

We employ the function space defined by the limit of the
extended Catmull–Clark subdivision for describing the com-
putation domain and performing the numerical simulation to
arrive at a unified discretization of our problems which is C1

continuous everywhere. We use Sh to denote the discretized
representation of the limit form S where the discretization
parameter h usually denotes the mesh size. The discretized
form Sh = ⋃k

α=1 eα, e̊α

⋂
e̊β = ∅ for α �= β, where e̊α is

the interior of the quadrilateral patch eα . Each patch eα can
be parameterized as

xα : e → eα; (ξ, η) �→ xα(ξ, η),

where the unit reference square e = {(ξ, η) ∈ R
2 : 0 ≤ ξ ≤

1, 0 ≤ η ≤ 1}, and (ξ, η) are the barycentric coordinates
on it. The domain of each patch eα on the quadrilaterization
Sh can always be locally represented as an explicit bicubic
B-spline according to the formula (7). Let the mesh Sh with
control vertices {x j }nj=1, we associate a basis function φ j for
every vertex x j , which is the corresponding basis function
induced by the limit of the extended Catmull–Clark subdivi-
sion. Our finite element space is spanned by the set of basis
functions φ1, . . . , φn , then the limit surface S is exactly rep-
resented with the extended subdivision patches,

S = x(ξ, η) = x(x(ξ, η), y(ξ, η), z(ξ, η))

=
n∑
j=1

φ j (ξ, η)x j . (16)

The boundaries of the surfaces are represented as the cubic
B-spline curves which are preserved as the subdivision pro-
ceeds. Therefore Catmull–Clark subdivision elements can
exactly represent geometries in the same way which is con-
sistent with the concept of isogeometric strategy.

4.2 Applications to PDEs on surfaces

Let {x1, . . . , xn0} be the set of interior control vertices, and
{xn0+1, . . . , xn} be the set of boundary control vertices. By
means of the set of the basis functions φ j ∈ H2(Sh) induced
by the limit form of the extended Catmull–Clark subdivision,
we have the basis description for the unknowns uh to be
determined

uh =
n0∑
j=1

φ j u
h
j +

n∑
j=n0+1

φ j u
h
j . (17)

The finite element approximation for the Laplace–Beltrami
equation (10) reads as

{
Find uh ∈ H1

0 (Sh) such that

(∇suh,∇sv) = ( f , v), ∀v ∈ H1
0 (Sh).

(18)

Applying (17) to (18), and taking the test functions v =
φi , i = 1, . . . , n0, it follows that

n∑
j=1

uhj (∇sφ j ,∇sφi ) = ( f , φi ) i = 1, . . . , n0,

with the zero boundary conditions. Denote the stiffness
matrix K = [(∇sφ j ,∇sφi )]n0×n0 , and the right-hand side
term vector b = [( f , φ1), . . . , ( f , φn0)]T, it yields a linear
system

Ku = b (19)

where u = [uh1, . . . , uhn0 ]T is the unknown vector.
We proceed in a similar manner for the Laplace–Beltrami

eigenvalue equation (12) as follows:

{
Find uh ∈ H1

0 (Sh) and λh ∈ R such that

(∇suh,∇sv) = λh(uh, v), ∀v ∈ H1
0 (Sh).

(20)

Applying (17) to (20), and taking the test functions v =
φi , i = 1, . . . , n, we have

n∑
j=1

uhj (∇sφ j ,∇sφi ) = λh( f , φi ) i = 1, . . . , n.

The eigenvalues λh are real since the bilinear forms are sym-
metric. It yields a linear system

Ku = λhb, (21)

where u = [uh1, . . . , uhn]T is the unknown vector, the stiffness
matrix K = [(∇sφ j ,∇sφi )]n×n and the load vector b =
[( f , φ1), . . . , ( f , φn)]T.
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For the semi-discrete form of the Allen–Cahn equation
(14), we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Find uh(t) ∈ H1
0 (Sh) such that

(∂uh(t)

∂t
, v

) + (∇su
h(t),∇sv)

+ 1
ε2

( f (uh(t)), v) = (g, v), ∀v ∈ H1
0 (Sh).

(22)

Applying (17) to (22), and taking the test functions v =
φi , i = 1, . . . , n, it follows that

n0∑
j=1

∂uhj (t)

∂t
(φ j , φi ) + uhj (t)(∇sφ j ,∇sφi )

+ 1

ε2
( f (uhj (t)), φi ) = (g, φi ) i = 1, . . . , n0,

with the homogenous Dirichlet boundary conditions. Denote
the mass matrix M = [(φ j , φi )]n0×n0 , the stiffness matrix
K = [(∇sφ j ,∇sφi )]n0×n0 , the matrix F = 1

ε2
[( f , φ1),

. . . , ( f , φn0)]T, and thematrixG = [(g, φ1), . . . , (g, φn0)]T,
it yields a linear system

M
∂u(t)

∂t
+ Ku(t) + F = G, (23)

where u(t) = [uh1(t), . . . , uhn0(t)]T is the unknown vector.

4.3 Precomputing the basis functions

The related basis functions and their derivatives need to be
precomputed for each control patch of Sh before solving the
linear systems. These computations of IGA-CC are not intu-
itive in comparison with standard linear elements since the
required two-ring neighbors around each patch have arbi-
trary topological structure, and additional geometric data
are reflected in the subdivision schemes around boundaries.
However, the framework of these computations is the same
standard process as the classical FEM.Weclassify the control
mesh into interior patches, sub-boundary patches, andbound-
ary patches. The patches containing boundary vertices are
named as boundary patches. The patches adjacent to bound-
ary patches are called sub-boundary patches. As described in
Sect. 2.2, Stam’s fast algorithm is just applied to the interior
patches, however it is obvious that the sub-boundary patches
can be subdivided into four interior sub-patches by one time
subdivision, and the boundary patches can be subdivided
repeatedly till their sub-patches belong to the sub-boundary
case. Therefore, the actual final calculation makes the region
of interest fall into the standard bi-cubic spline patch.

The Stam’s fast evaluation scheme is always suitable for
interior patches with only one extraordinary vertex. There-
fore, it is necessary to first subdivide once each patch of
the initial mesh. The evaluation of basis functions over their

support elements uses general Gaussian integration, which
just needs a few subdivision steps to bring Gaussian quadra-
ture knots into a bi-cubic spline patch. The integrations for
computing the matrix elements are computed by a 16-point
Gaussian quadrature rule. That is, each quadrilateral is sub-
divided into four sub-quadrilaterals and a 4-point Gaussian
quadrature rule is employedon eachof the sub-quadrilaterals.
The 4-point Gaussian quadrature rule has error bound O(h3),
where h is the maximal edge length. We adopt the adaptive
numerical method developed in our former work [35].

5 Error estimates

In this section we study the error estimation for the Laplace–
Beltrami equation, the Laplace–Beltrami eigenvalue equa-
tion and the time-dependent Cahn–Allen equation. With the
aim, we need provide the interpolation error estimate for the
IGA-CC function space on surfaces.

5.1 Interpolation error estimate

Next we can formulate the interpolation problem. Let x̂i be
the i-th control vertex of the control meshMh of the extended
Catmull–Clark subdivision, and xi is the i-th vertex on the
limit form Sh of the extended Catmull–Clark subdivision
surface, where i = 1, . . . , n. Denote u(xi ) is the i-th interpo-
lation function value, v(x̂i ) is the i-th control function value,
and φi is the i-th basis function, where i = 1, . . . , n. For
the given function values {u(xi )}n1, find the control function
values {v(x̂i )}n1 such that

n∑
i=1

v(x̂i )φi (x j ) = u(xi ), j = 1, . . . , n. (24)

The interpolation problem (24) always has a unique solution.
It follows from (15) that equation (24) is equivalent to the
following Lemma 5.1 (see [35] for details).

Lemma 5.1 Given a vertex x̂i of the control mesh Mh, with
the valence ni , let x̂p j ( j = 1, 2, . . . , ni ) be its 1-ring edge-
points on Mh, and x̂r j ( j = 1, 2, . . . , ni ) be its 1-ring
facepoints on Mh. Denote xi be the i-th control vertex of
the discrete representation Sh for the limit surface S, u(xi )
is the i-th interpolation function value, and v(x̂i ) is the i-th
control function value. The system

ni
ni + 5

v(x̂i ) + 4

ni (ni + 5)

ni∑
j=1

v(x̂p j )

+ 1

ni (ni + 5)

ni∑
j=1

v(x̂r j ) = u(xi ), i = 1, . . . , n, (25)
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is always solvable uniquely.

Let � be a unit square parameter region of the physical
domain S. The geometric mapping G is sufficiently smooth
and invertible, then denote

S = G(�), � = G−1(S).

It provides a parameterization for the limit representation S
of the extended Catmull–Clark subdivision surface. There-
fore, each patch e ∈ Sh is mapped onto a unit square e ∈ �.
We associate the domain set ẽ ∈ � as the support of ewhich
is a unit of 1-ring neighbors of e on�. Analogously, the sup-
port ẽ is mapped onto ẽ = G(ẽ), where ẽ is the set of 1-ring
neighbors of e on the quadrangularization Sh . The following
lemma provides us the estimates for the projection change of
the function variables between the parameter region and the
physical domain.

Lemma 5.2 Let the indexes m = 0, 1, 2, and given e ∈ Sh

and its corresponding support extension ẽ, we have for the
function u ∈ H2(e) and its projection û ∈ H2(e) on the
parameter domain,

|u(x)|Hm (e) ≤ C |JG |1/2L∞(e)|∇G−1|mL∞(e)
m∑
i=0

|û(x̂)|Hi (e), (26)

and

|û(x̂)|Hm(e) ≤ C |JG−1 |1/2L∞(e)
m∑
i=0

|∇G|iL∞(e)|u(x)|Hi (e). (27)

Proof. We start proving the result (26). Observe that

u = û ◦ G−1, û = u ◦ G,

and x = G(x̂), x̂ = G−1(x), (28)

and the definition of the norm on the surface (3.1). For the
case m = 0,

|u(x)|H0(e) =
∫
e
|u(x)|dx =

∫
e
|û ◦ G−1(x)|dx

=
∫
e
|JG |1/2 · |û(x̂)|dx̂ ≤ C |JG |1/2L∞(e) · |û(x̂)|H0(e).

For the case m = 1, note that |∇su(x)| ≤ |∇G−1|L∞(e) ·
|∇û(x̂)|, from which we obtain

|u(x)|H1(e) =
∫
e
|∇su(x)|dx ≤ C |∇G−1|L∞(e)

·
∫
e
|∇û(x̂)|dx

≤ C |JG |1/2L∞(e) · |∇G−1|L∞(e)|û(x̂)|H1(e).

We can similarly proceed the case m = 2. Next we consider
the inequality (27). For m = 0, we deduce that

|û(x̂)|H0(e) =
∫
e
|û(x̂)|dx̂

=
∫
e
|u ◦ G(x̂)|dx̂

=
∫
e
|JG−1 |1/2 · |u(x)|dx

≤ C |JG−1 |1/2L∞(e) · |u(x)|H0(e).

and for m = 1 we have that

|û(x̂)|H1(e) =
∫
e
|∇û(x̂)|dx̂

≤ C |∇G|L∞(e) ·
∫
e
|∇su(x)|dx̂

≤ C |JG−1 |1/2L∞(e) · |∇G|L∞(e)|u(x)|H1(e).

We can similarly proceed the case m = 2. It completes the
proof.

Based on Lemma 5.1 and Lemma 26, we can achieve
the interpolation error estimates for the extended Catmull–
Clark function space on surfaces according to the same proof
routine as the classical finite element method. Here we just
represent the result as the following Theorem 5.3.

Theorem 5.3 Let the indexes m = 0, 1, and given the mesh
element e ∈ Sh and its corresponding support extension ẽ.
For u ∈ H2(ẽ)∩L2(S), the interpolation error estimates for
the limit form of the extended Catmull–Clark function space
on surfaces read as

|u − �su|Hm (e) ≤ Ch2−m
e

2∑
i=1

|u|Hi (ẽ), (29)

where he is the size of themesh element he = max{he′e′ ∈ ẽ},
and C is a positive constant independent of he.

5.2 A priori error estimates

In this section we present the priori error results for the three
equations introduced in Sect. 3. In what follows, assume that
the limit surface S of the extended Catmull–Clark subdivi-
sion is convex, and its mesh h-refinement is quasi-uniform
where the size of the mesh elements he � h, ∀e ∈ Sh . For
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Fig. 4 Laplace–Beltrami problem on a quarter of a cylinder. a, b and c are three progressive h-refinement control meshes. The corresponding
distribution of the errors u − uh resulting from the FEM-Linear and the IGA-CC is respectively shown in a’, b’, and c’ of the second row, and a”,
b”, and c” of the third row
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Fig. 5 Laplace–Beltrami eigenvalue problem on a sphere. a, b and c are three progressive h-refinement control meshes. The corresponding
distribution of the errors u3 − uh3 resulting from the FEM-Linear and the IGA-CC is respectively shown in a’, b’, and c’ of the second row, and a”,
b”, and c” of the third row

the Laplace–Beltrami problem (10), the well-posedness is
guaranteed with the boundedness of the bilinear form

|(∇su,∇sv)| ≤ C‖u‖H1(S)‖v‖H1(S), ∀u, v ∈ H1(S),

whereC is a positive constant independent of h, and its coer-
civity

(∇su,∇su) ≥ ν‖u‖2H1(S)
, ∀u ∈ H1

0 (S),

where ν is a positive constant independent of h. The prob-
lem (9) leads to the linear system (18), where the number

of equations is equal to the number of unknowns, therefore
there exists a unique solution uh ∈ H1

0 (Sh) for (18). Recall-
ing the interpolation error results of Theorem 5.3, we get
its H1 norm error estimate, then its L2 norm error estimate
using the standard Aubin-Niestche arguments as follows:

Theorem 5.4 Let u be a sufficiently smooth solution of the
Laplace–Beltrami problem (9), and uh be its discrete solution
obtained by the IGA-CC method, we have

|u − uh |Hm (S) ≤ Ch2−m, m = 0, 1, (30)
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Fig. 6 Convergence of u − uh for the IGA-CC and the FEM-Linear
method. a Laplace–Beltrami problem on a quarter of a cylinder. b
Laplace–Beltrami eigenvalue problem on a sphere. h along x-axis cor-

responds to themesh sizes of the examples in Figs. 4 and 5. The triangles
describe the H0-norm convergence order, where O(h2) can be observed
for both methods

where C is a positive constant independent of h.

As for the Laplace–Beltrami eigenvalue problem (20), we
need consider the errors of its eigenvalues |λn − λhn | where
λn, n = 1, 2, . . . , indicates the n-th exact eigenvalue and
λhn is its corresponding approximate value obtained from the
IGA-CCmethod. The eigenvalues λn are real values and non
negative where we denote λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · . With
the method presented in [41] and Theorem 5.3, we similarly
obtain the following error estimates:

Theorem 5.5 Let λn be the n-th eigenvalue of the problem
(11), and λhn be its discrete solution obtained by the IGA-CC
method, we have

|λn − λhn | ≤ Ch2, ∀n ≥ 1, (31)

where C is a positive constant independent of h.

In order to analyze the spatial approximation errors of
the Allen–Cahn equation (22), we need find the convergence
results of its corresponding elliptic projection. It means we
consider the following approximate solutions of the elliptic
equation with the Dirichlet boundary conditions

{−�su + u = g, in S,

u = 0, on ∂S.
(32)

Note that the error estimates of the problem (32) are not
essential different from the Laplace–Beltrami problem (20),
here we omit the details of the proofs. For the semi-discrete
form (22) of the Allen–Cahn equation (13), on the basis of
Theorem 5.4, we have the following L2 norm estimate:

Theorem 5.6 Let u be a sufficiently smooth solution of
the problem (13), and uh be its spatially discrete solution
obtained by the IGA-CC method. Assume that the initial dis-
crete data uh(0) satisfies

‖uh(0) − u0‖L2(S) ≤ Ch2,

then the following error estimate holds, for t ≤ T ,

‖uh(t) − u(t)‖L2(S) ≤ Ch2, (33)

where the constant C is a positive constant independent of h
and t.

6 Numerical examples

In this section, we represent some numerical experiments
of solving the Laplace–Beltrami problem, the Laplace–
Beltrami eigenvalue problem and the Cahn–Allen problem
on different domain surfaces. We numerically approximate
these problems by means of the IGA-CC method, and the
linear finite element (FEM-Linear) method is also adopted
in these examples.

6.1 Laplace–Beltrami equation

We firstly consider the Laplace–Beltrami equation

{−�su = f , in S,

u = 0, on ∂S,
(34)
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Fig. 7 Allen–Cahn problem on a cylinder. a, b and c are three progressive h-refinement control meshes. The corresponding distribution of the
errors u − uh resulting from the FEM-Linear and the IGA-CC is respectively shown in a’, b’, and c’ of the second row, and a”, b”, and c” of the
third row

on a quarter of a cylinder with radius 1 and height 2, i.e.,
S1 = {(x, y, z) : x2 + y2 = 1 & x ≥ 0 & y ≥ 0 & 0 ≤ z ≤
2}. The exact solution is given as u = (1− x)(1− y)sin(π z)
with the calculated f .

The computational domain is discretized by five progres-
sive h-refinement meshes with the Catmull–Clark subdivi-
sion elements, where we show the first three discretization

examples in Fig. 4. The total numbers of vertices/patches
are 317/288, 1209/1152, and 4721/4608 in Fig. 4a–c respec-
tively, where the maximum value for the vertex valence
arrives at 8. They have the same limit surface S1. Figure
4 also plots the error distribution indicated by u − uh for
the two numerical methods, where we can observe that the
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Fig. 8 Allen–Cahn problem on a hemisphere. a, b and c are three progressive h-refinement control meshes. The corresponding distribution of the
errors u − uh resulting from the FEM-Linear and the IGA-CC is respectively shown in a’, b’, and (c′) of the second row, and a”, b”, and c” of the
third row

error fluctuation of the FEM-Linear method is bigger that the
IGA-CC method.

The convergence rates of the errors versus different mesh
sizes for bothmethods are depicted in Fig. 6a, fromwhichwe
can see that the H0-norm convergence rate of both methods
is approximately 2. The test data are consistent with the theo-
retical results. As demonstrated in this figure, as for the same
level of the mesh h-refinement, the approximation errors of
the FEM-Linear discretization are approximately 2.0 times
more than that of the IGA-CC discretization. It means that
the IGA-CC approximation only requires a smaller number

of degree of freedoms than the FEM-Linear to achieve the
same accuracy.

6.2 Laplace–Beltrami eigenvalue equation

We consider the Laplace–Beltrami eigenvalue problem on a
closed sphere with radius 1, i.e., S2 = {(x, y, z) : x2 + y2 +
z2 = 1} as the second example, that is

−�su = λu, in S. (35)
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Fig. 9 Convergence of u − uh for the IGA-CC and the FEM-Linear
method. a Allen–Cahn problem on a cylinder. b Allen–Cahn problem
on a hemisphere. h along x-axis corresponds to the mesh sizes of the

examples in Figs. 7 and 8. The triangles describe the H0-norm conver-
gence order, where O(h2) can be observed for both methods

The exact values of the eigenvalues λn = n(n + 1), each
withmultiplicity 2n+1, n = 0, 1, . . . ,∞, which correspond
to the eigenfunctions uhn ( [2]). We show the discrete solu-
tions of the eigenfunction uh3 corresponding to the eigenvalue
λ3 = 12 where the sphere is discretized by five progressive
h-refinement meshes with the Catmull–Clark subdivision
elements. We show the first three discretization examples
in Fig. 5. The total numbers of vertices/patches are 898/896,
3586/3584, and14338/14336 inFig. 5a–c respectively,where
the maximum value for the vertex valence arrives at 6. Figure
5 also reports the error distribution indicated by u3 − uh3 for
the two numerical methods. It is observed that the accuracy
of the IGA-CC is higher than that of the FEM-Linear by the
profile of the error distribution.

The convergence rates of the errors λ − λh3 versus dif-
ferent mesh sizes for both methods are reported in Fig. 6b.
Both methods exhibit a perfect accuracy of O(h2). The con-
vergence rates obtained by both methods for the numerical
solutions are in agreement with the theoretical results. We
observe that the approximation errors of the FEM-Linear dis-
cretization are about 2.0 times more than that of the IGA-CC
discretization. The IGA-CC method obtains the same level
of accuracy more efficiently than the FEM-Linear method.

6.3 Allen–Cahn equation

In this problem, we consider the Allen–Cahn equation with
the homogeneous Dirichlet boundary condition on two dif-

ferent domain surfaces, that is

⎧⎪⎨
⎪⎩
ut − �su + 1

ε2
f (u) = g(x, t), (x, t) ∈ S × [0, T ],

u(x, t) = 0, (x, t) ∈ ∂S × [0, T ],
u(x, 0) = u0(x), x ∈ S,

(36)

where we take ε = 0.1.We focus on the spatial discretization
for this problem. One example of the Allen–Cahn problem
is considered a cylinder with radius 1 and height 2, i.e., S3 =
{(x, y, z) : x2 + y2 = 1, 0 ≤ z ≤ 2}. The exact solution
is taken as u(x, y, z, t) = et sin2(x)cos2(y)sin(π z/2) with
the calculated g, and u0 is given by the exact solution. As
the other example, we consider a hemisphere with radius
1, i.e., S4 = {(x, y, z) : x2 + y2 + z2 = 1, z ≥ 0} as
the computational domain. The exact solution is taken as
u(x, y, z, t) = et+sinx+cosy(esinz − 1) with the calculated g,
and u0 is given by the exact solution. The results of both
cases are computed at the fixed time T = 0.02.

In both examples, we numerically solve this problem
using five progressive h-refinement meshes, then we get
similar results. For the cylinder case, the limit surface S3

is discretized using 1152, 4608 and 18432 Catmull–Clark
subdivision elements depicted respectively in Fig. 7a–c. The
corresponding data for the number of control vertices are
317, 1209 and 4721 whose maximum valence is 8. For the
hemisphere case, the limit surfaceS4 is discretized using 448,
1792 and 7168 Catmull–Clark subdivision elements respec-
tively depicted in Fig. 8a–c. The corresponding data for the
number of control vertices are 489, 1873 and 7329 whose
maximum valence is 6. We report the error states between
the exact and the numerical solutions also in these two fig-
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ures, from which a bigger error fluctuation is introduced by
the FEM-Linear contrast to the IGA-CC.

The H0 norm errors at the fixed time T = 0.02 are plot-
ted against the mesh sizes in Fig. 9. The convergence rates of
O(h2) are observed in both cases, which are accordance with
the predicted priori error estimates. The same convergence
rates are reported for the FEM-Linear method. A similar
phenomena can be found that the approximation errors of
the FEM-Linear discretization are approximately 2.0 times
more than that of the IGA-CC discretization. It means that
the IGA-CC discretization is potentially more efficient. The
approximation error is added by the discretization of the sur-
face geometries using the linear finite elements, instead, exact
representation of the surfaces can be achieved by means of
the IGA-CC.

7 Conclusions

In this work, we present the capability of the IGA-CC
method for the numerical approximation of PDEs defined
on surfaces. We consider three problems including the
Laplace–Beltrami harmonic equation, the Laplace–Beltrami
eigenvalue equation and the time-dependent Allen–Cahn
equation on different domain surfaces. These problems all
involve the Laplace–Beltrami operator. The surfaces are
accurately represented as the extended form of the Catmull–
Clark subdivision patches. The finite element discretization
for these PDEs is also induced from the extended Catmull–
Clark subdivision function space on surfaces. Moreover, we
develop corresponding interpolation error estimates, which
are used to obtain a priori error estimates for these PDEs.
We present numerous numerical examples consistent with
the theoretical results and show the performance of IGA-CC
by comparing with the standard linear finite elements.
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