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Abstract
This work explores a continuum-mechanical model for a body simultaneously undergoing finite deformation and surface
growth/resorption. This is accomplished by defining the kinematics as well as the set of material points that constitute the
domain of a physical body at a given time in terms of an evolving reference configuration. The implications of spatial
and temporal discretization are discussed, and an extension of the Arbitrary Lagrangian–Eulerian finite element method
is proposed to enforce the resulting balance laws on the grown/resorbed body in two spatial dimensions. Representative
numerical examples are presented to highlight the predictive capabilities of the model and the numerical properties of the
proposed solution method.

Keywords Surface growth and resorption · Finite elements · Arbitrary Lagrangian–Eulerian method · Front-tracking
algorithm
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1 Introduction

Surface growth and resorption occur in biological processes,
such as the accretion of seashells and animal horns [26,27],
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the motility of certain classes of cells [14], the erosion of
tissue [9], aswell as engineering processes, such as electrode-
position [1], epitaxial growth of thin films [30], construction
of built-up systems [7], metal solidification [24], and additive
manufacturing [31]. In contrast to volumetric growth, where
addition of mass is manifested through a global balance law
that modifies the density of material points, surface accretion
or resorption uniquely defines the evolution of the boundary
in terms of the addition or removal of layers of mass [12].

Unlike elastically loaded bodies, the stresses and deforma-
tions that a growing body experiences are inherently tied to
themanner in whichmaterial is deposited. In one of the earli-
est works to examine this dependence [5], where the authors
analyzed the stress and displacements of a linearly elastic
sphere subjected to an incrementally increasing self-weight
as material is added onto its surface. The history-dependence
of the fields on the accreted sphere is a feature which inher-
ently arises when attaching layers of material which must
equilibrate with the previously loaded body without intro-
ducing any material gaps or overlaps. The fact that material
continuity is maintained throughout the accretion process
implies that the unloaded sphere contains residual stresses,
as schematically illustrated in Fig. 1.

To extend the notion of surface growth/resorption to bod-
ies undergoing finite deformation, the concept of a mapping
between a material and spatial configuration must be re-
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Fig. 1 Residual stresses resulting from the self-gravitation of an accret-
ing sphere

interpreted since here material constantly enters or exits the
body through the exterior boundary. A local reference state
is defined in [18] for each deposited material point based on
its initial time of existence and coordinates of attachment.
Therefore, the growth surface is a collection of points that
each have a unique spatio-temporal marker which identifies
its initial state. The concept of a reference configuration for
a growing body is extended in [19] by defining an asso-
ciated manifold as an arbitrary abstract representation of
both grown and ungrown material at any given time in the
three-dimensional Euclidean point space. The motion of the
growing anddeformingbody is thus characterized by a home-
omorphic transformationwhichmaps points in the associated
manifold to the physical space. In [3], the notion of a one-
to-one mapping between a deforming body and multiple
generations of unique reference configurations is formulated
and used to simulate interstitial growth of biological tis-
sues. Similarly, in [15] the deformation of a growing body is
described relative to evolving “natural” configurations which
are defined for a given point by a locally stress-free state. An
intermediate configuration is introduced in [13] by way of
a surface growth/resorption transformation which generates
or removes material from a deformed configuration. A sep-
arate mapping relates material points from a given reference
state with an associated reference time onto the intermediate
configuration at the current time. In this setting, the deforma-
tion and surface/growth are effectively decoupled between
these two times. Recent works [16,17] formalize the notion
of an evolving material manifold based on a non-Euclidean
material connection. In the same spirit, a material manifold
is introduced in [28,29] endowed with a growth-dependent
metric tensor that characterizes the coupling between surface
accretion and deformation.

Although a a computationally tractable kinematic descrip-
tion of surface growth/resorption for deformable bodies
remains largely elusive, numerous recent works have
attempted to address the computational challenges in track-
ing material and its history as it enters or leaves the body.
In [1,25,30], numerical methods are developed that utilize
an Eulerian grid to solve a global set of boundary-value
problems while tracking the growth and resorption front
using level-set methods. Other notable works that address
different aspects of the computational modeling of sur-
face growth/resorption include [2,7–11,22,28]. Of particular
importance to the method developed in this paper is the
work in [13], which introduces a kinematic description of
discrete accretion and resorption increments on the surface
of deformable bodies based on the Arbitrary Lagrangian–
Eulerian (ALE) finite element method, as described, e.g., in
[6]. This technique is implemented in [14,23] to simulate a
one-dimensional treadmilling cell. A critical advantage of
ALE is that it involves a finite element mesh with fixed con-
nectivity whose boundary can naturally define the interface
of the growing/resorpting domain. Consequently, ALE does
not require additional algorithmic infrastructure to track a
moving interface on a fixed background grid such as node
activation/deactivation, and the interpolation of boundary
conditions between elements.

In the formulation and implementation presented here,
“spurts” of growth/resorption are applied instantaneously in
time onto the deforming body at prescribed intervals. The
deformation of the body at a given time is tracked relative
to an updated configuration (akin to the updated Lagrangian
finite element method) which contains the set of material
points existing after the prior growth/resorption spurt. Impos-
ing balance of linear momentum thus requires keeping track
of the displacement relative to this updated configuration,
rather than tracking the material displacement of each point
relative to its undeformed state. Within this framework, an
ALE-like method is introduced to accommodate the bound-
arymotion inducedby surface growth/resorption on a domain
without the need to constantly remesh. Interior elements
deform based on a separate balance law irrespective of loca-
tions of prior growth interfaces, thus eliminating restrictions
on the geometry of the domain that exist in the prior imple-
mentations [13,14]. This allows for numerical modeling of
arbitrarily complex surface growth/resorption in conjunction
with a Lagrangian description of a body undergoing finite
deformation.

In summary, the primary focus of this paper is threefold:
(a) to formulate a general kinematic description of a body
undergoing concurrent surface growth/resorption and finite
deformation, (b) to introduce a discretization strategy that
obtains approximate solutions to the physical balance laws
for a two-dimensional body, and, (c) to quantify the effect
of surface growth/resorption on the numerical accuracy and

123



Computational Mechanics (2021) 68:759–774 761

robustness for the proposed algorithm. The organization of
the article is as follows: In Sect. 2, the governing balance laws
are derived considering an arbitrary growth/resorption incre-
ment. The space and time discretization of the balance laws
are presented in Sect. 3, while the numerical implementa-
tion of discrete surface growth and resorption is introduced
in Sect. 4. Algorithmic and physical properties of discrete
growth/resorption are explored by means of two examples in
Sect. 5. Lastly, concluding remarks are presented in Sect. 6.

2 Kinematics and balance laws

2.1 Kinematic description

In conventional continuum mechanics, the Lagrangian
description of a deformable body is rooted in the notion
of an isomorphism between an initial configuration and
the current configuration. The definitions of these config-
urations give meaning to kinematic quantities, such as the
deformation gradient, used to determine the stress for, say,
hyperelastic materials or, more generally, simple materials
in the sense of Noll [20]. For a deforming body undergo-
ing surface growth/resorption, the conventional definition
of an initial configuration must be reinterpreted since new
material may enter or existing material may exit through
its boundary. In this work, the kinematics is presented for
a body undergoing “spurts” of surface growth/resorption
(applied instantaneously at discrete times) while continu-
ously deforming.

Consider the domain Rt0 of a body B embedded in the
three-dimensional Euclidean point space E3 at some fixed
initial time t0. In the present setting, it is assumed, for simplic-
ity, that this body is entirely stress-free and deformation-free
at t0. Suppose the body deforms continuously in time while
undergoing a series of surface growth and resorption spurts.
These spurts occur simultaneously across the entire bound-
ary at discrete times ti , i = 1, 2, . . . Any subsequent growth
occurs on top of the outermost layer of current growth
regions, hence there is no interior (volumetric) growth. Let
the domain of the body at the current time t be denoted Rt .
It is assumed that the body is in existence throughout the
time interval [t0, t] to exclude the possibility that it “grows
out of nothing” or that it is fully resorbed to where no mate-
rial exists. Explicit reference to the initial time t0 is typically
omitted hereafter for brevity, with the assumption that all
elapsed times are expressed with respect to t0.

2.1.1 Description of growth/resorption

Consider the i-th growth/resorption spurt occurring at some
elapsed time ti . The domain of the body just before the spurt
at ti is denotedRti , with boundary ∂Rti . The transformation
of the boundary relative to a fixed frame of reference at the

instant thatmaterial is grown or resorbed at ti is characterized
by the bijectivemappingχ

ti
g : ∂Rti �→ ∂R̃ti , as in Fig. 2. The

new surface ∂R̃ti encloses a volume R̃ti termed the updated
configuration at time ti . The primary purpose of this updated
configuration is to track the set of material points existing
after the application of surface growth/resorption at ti .

The parts of the boundary ∂Rti that undergo surface
growth and resorption are denoted �

ti
g and �

ti
a , respectively.

In addition, the part of the boundary undergoing no surface
growth/resorption is denoted �ti . Since this last part of the
boundary remains unchanged by the spurt at ti , χ

ti
g maps

points on this surface to their identical positions. It is assumed
here that�ti

a and�
ti
g are both smooth and have a unique orien-

tation at each point. In view of the preceding definitions, the

boundary at ti is formally defined as ∂Rti = �
ti
g � �

ti
a � �ti ,

where � denotes disjoint union.
As a consequence of the surface transformation, the inte-

rior of the updated configuration at ti contains a subset of
material points that did not exist in Rti , which constitute
the domain of the growth region Gti , see Fig. 2. The sub-
set of points that were contained within the interior of Rti

and are now outside the boundary of R̃ti defines the resorp-
tion domainAti . Also, the part ofRti that remains unaltered
byχ

ti
g is denotedMti . The surface�

ti
g separates the unaltered

domain Mti from the growth domain Gti . The new growth
and resorption boundaries generated by χ

ti
g are denoted �̃

ti
g

and �̃
ti
a , respectively. The portion of the boundary which

remains unaltered is simply denoted �̃ti . Hence, the updated
configuration at ti is formally defined as

R̃ti = Gti �Mti ��ti
g , (1)

χti
g

χti
g

Mti

Ati

Gti
Γti
a

Γ̃ti
g

R̃ti

Γti
a

Γ̃ti
a

Γti
g

Γti
g

Rti

Fig. 2 Kinematics of surface growth/resorption
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and its boundary is defined as

∂R̃ti = �̃
ti
g��̃

ti
a ��̃ti . (2)

The transformation χ
ti
g can be determined by the imposed

growth and resorption displacements utig and utia (respec-
tively) of the boundaries �̃

ti
g and �̃

ti
a relative to their positions

just prior to the i-th spurt as

χ ti
g =

{
ug(Xti , ti ) + Xti on �

ti
g

ua(xti , ti ) + xti on �
ti
a

, (3)

where Xti and xti represent the initial and current position
vector of a given material point (respectively) relative to a
fixed basis. Growth and resorption can be formally defined
by placing the conditions on the displacements of �ti

g and �
ti
a{

utig · n∂Rti > 0 for Xti ∈ �
ti
g

utia · n∂Rti < 0 for xti ∈ �
ti
a

, (4)

where n∂Rti is the unit outward-facing normal on ∂Rti .

2.1.2 Description of deformation andmaterial motion

The configuration Rti contains regions which may have
undergone deformation prior to the addition/removal of
material at ti . However, the subsequent accretion on the
boundary of Rti will always result in a continuous body
which is free of gaps and/or material overlaps. Suppose each
material point in the newly grown body (which is represented
as the updated configuration R̃ti ) can be uniquely mapped to
a configurationRti which is free of deformation and stress .
This configuration will contain regions which are geometri-
cally incompatible at the growth interface�

ti
g , aswell as other

prior growth interfaces. It is reasonable to assume that each
subregion within Rti contains material as it appears when it
initially attaches to the body. Therefore, Rti is defined as

Rti = �i
j=0Gt j ;ti , (5)

where Gt j ;ti denotes the part of Gt j which continues to be in
existence at time ti (≥ t j ). Also, by definition, Gt0;ti repre-
sents the portion of the original body that remains in existence
at ti . The subscript j will be used hereafter to index each
growth spurt at or prior to the i-th spurt.

The existence of these subregions which have geomet-
rically incompatible deformation-free initial configurations
arises as a direct consequence of the fact that accretion is dis-
continuous in time. Therefore, material which is attached in
spurts along the boundary of a continuously deforming body
will depend only on position of the boundary at the instant
of accretion. This essentially means that material points can

have initial positions which overlap or have gaps in space,
yet are distinguished by the different times at which they are
grown onto the body. The geometric incompatibility between
each of the accreting layers leads to residual stresses, as will
be illustrated in the examples of Sect. 5.

Next, define the total deformation of the j-th growth incre-

ment at time t ∈ [ti , ti+1) as amappingχ
t j ;t
d : Gt j ;ti �→ Rt j ;t

where Rt j ;t ⊂ Rt is the image of the initially stress-free
domain of material which came into existence at t j mapped
onto the continuous and deformed body Rt in its current

state, as shown in Fig. 3. The two-term superscript in χ
t j ;t
d

and Rt j ;t is intended to emphasize the dependence of this
transformation and subregion at its current state t on its
initial configuration at the time of attachment t j . It can be
reasonably assumed that this mapping is bijective since the
configurations Gt j ;ti andRt j ;t are both occupied at different
times and share the same material points.

The deformation mapping χ
t j ;t
d ensures that the body

remain free of gaps and overlaps. This constraint of mate-
rial continuity takes the form,

�χ
t j ;t
d � = 0 on �

t j
g , (6)

where �� denotes the difference between the value of χd on
either side of the interface �

t j
g . This constraint applies for all

points on �
t j
g and for all times at or after t j .

The total material displacement at t ∈ [ti , ti+1) is defined
for the j-th growth increment as

ut j ;t = χ
t j ;t
d − Xt j in Gt j ;ti . (7)

In Eq. (7), the initial positions Xt j are assumed to be fixed
in time once the material comes into existence at that loca-
tion. The total material displacement as defined in Eq. (7) is
discontinuous across each growth interface when the body
deforms between growth spurts due to the fact that its ini-
tial configuration has gaps and/or overlaps. The fact that
each growth spurt has an initial configuration which is not
continuously connected to any other spurt has important con-
sequences when solving the fully discretized set of balance
laws on the growing/resorbing body, which is discussed in
Sect. 4.

The total deformation gradient relative to Gt j ;ti for time
t ∈ [ti , ti+1) is the two-point tensor which maps tangent
vectors in Gt j ;ti to tangent vectors in Rt j ;t , that is, Ft j ;t :
TXt j Gt j ;ti �→ T

χ
t j ;t
d (Xt j )

Rt j ;t and takes the form

Ft j ;t = ∂χ
t j ;t
d

∂Xt j
. (8)

Note that there are no continuity requirements on the gradient

of χ
t j ;t
d , and thus, the deformation gradient can be discon-
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Fig. 3 Schematic of the
geometrically incompatible
stress- and deformation-free
configurations Rt2 (each
subdomain’s time slab shown at
bottom inset) and the simply
connected current body in its
deformed state Rt for a
two-dimensional hollow ellipse
after undergoing two accretion
spurts

E2

time E2
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d
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d
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g
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g
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g

tinuous along each growth interface. Such a scenario will be
explored in Sect. 5.2.

The material velocity at time t ∈ [ti , ti+1) is defined for a
given material point accreting at t j as

Vt j ;t = d jχ
t j ;t
d

dt
in Rt j

, (9)

where d j/dt denotes the material time derivative (that is,
keeping Xt j fixed). It is assumed that the velocity is contin-
uous along each growth interface, namely,

�Vt j ;t� = 0 on �
t j
g . (10)

An alternative kinematic description of the deformed body
at the current time t can be constructed based on the updated
configuration at ti , assuming that both Rt and R̃ti share the
same material points. To this end, the incremental deforma-
tion is defined as the transformationχ

ti ;t
d : R̃ti �→ Rt , which

implies that the incremental material displacement �uti ;t
from ti to t ∈ [ti , ti+1) is

�uti ;t = χ
ti ;t
d − x̃ti in R̃ti , (11)

where x̃ti are the coordinates in the updated configuration at
ti . The kinematic constraints on the incremental deformation
are expressed as

�χ ti ;t
d � = 0 on �̃ti

g . (12)

Additionally, the incremental velocity defined as

ṽti ;t = di χ̃
ti ;t
d

dt
in R̃ti , (13)

is continuous along the i-th growth interface, i.e.,

�ṽti ;t� = 0 on �̃ti
g . (14)

The incremental deformation gradient is defined for the
entire updated configuration at ti as the mapping �Fti ;t :
Tx̃ti R̃ti �→ T

χ
ti ;t
d (x̃ti )

Rt . This two-point tensor can be com-

puted based on the preceding incremental displacements as

�Fti ;t = I + ∂�uti ;t

∂ x̃ti
, (15)

where I is the two-point identity tensor. Assuming the j-
th growth increment is deformed at ti , the total deformation
gradient for some time t ∈ [ti , ti+1) is expressed in terms of
the incremental deformation gradient above as

Ft j ;t = (
�Fti ;t)Ft j ;ti . (16)

This incremental approach defined above closely resembles
the updated Lagrangian finite element method [4] and will
be used here to simulate surface growth/resorption.

To summarize, the kinematics of body undergoing finite
deformation and spurts of surface growth/resorption can be
described with respect to either its individual deformation-
and stress-free subregions which together comprise the body
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as a whole as in Eqs. (7) and (8) (akin to a total Lagrangian
approach), or to an updated configuration containing all of
the material points existing at a given time as in Eqs. (11)
and (15) (akin to an updated Lagrangian approach). The for-
mer approach is useful in characterizing the growing body
relative to the multiple geometrically incompatible reference
configurations of each accreted layer, which ultimately leads
to residual stress. The latter approach is useful as a tool to
simplify the tracking of each growth/resorption interface in
computation.

The relevant transformations and domains of interest
described in this section are succinctly summarized in
Tables 1 and 2 below.

Table 1 Description of various domains of the grown/resorbed and
deformed body

Domain Description

Rti The configuration of the body at time ti just prior to the
application of the i-th growth/resorption increment

∂Rti The boundary of the body at time ti just prior to the appli-
cation of the i-th growth/resorption increment

R̃ti The updated configuration at the i-th growth/resorption
increment which connects the deformed and resorbed
body as it appears at ti (Mti ) to the grown region Gti

∂R̃ti The boundary of the updated configuration at the i-th
growth/resorption increment which includes the newly
generated surface upon instantaneous growth/resorption
(�̃ti

g and �̃
ti
a respectively), as well as the portion of the

boundary which does not grow or resorb (�ti )

Rti The set of geometrically incompatible stress- and
deformation-free configurations just after the i-th
growth/resorption increment (equivalent to the disjoint
union of Gt j ;ti for j = 0 to i) which together define all
the material existing at ti

Rt The configuration of the body at time t , which for i prior
growth increments, consists of the union ofRt j ;t for j =
0 to i

�
ti
a The i-th resorption surface on Rti

�
ti
g The i-th growth surface on Rti

�̃
ti
a The i-th resorption surface on the updated configuration

R̃ti

�̃
ti
g The i-th growth surface on the updated configuration R̃ti

Ati The resorbed domain at the i-th resorption increment

Gti The grown domain at the i-th growth increment

Gt j ;ti The portion of the j-th growth increment remaining at ti
in its initial configuration

Rt j ;t The image of Gt j ;ti in its deformed configuration, for t ∈
[ti , ti+1)

Mti The subdomain of R̃ti which contains material existing
prior to ti

Table 2 Description of kinematic and growth/resorption transforma-
tions

Transformation Description

χ
ti
g Generates the i-th growth/resorption domain by

mapping the boundary ∂Rti to the updated con-
figuration boundary ∂R̃ti

χ
t j ;t
d Defines the deformation of the j-th growth incre-

ment in its occupied subregion of the current
configurationRt j ;t relative to its deformation- and
stress-free state Gt j (assuming j ≤ i for i growth
increments)

χ
ti ;t
d Defines the deformation of the i-th growth incre-

ment in the current configurationRt relative to the
updated configuration R̃ti

2.2 Balance laws

The body described in Sect. 2.1 is composed of subregions,
each of which comes into existence at different times. The
subregions themselves are constrained to form a continu-
ous body pieced together along each of the discrete growth
interfaces. In addition to these continuity constraints, each
subregion is individually subject to physical balance laws as
described below.

The mass density ρ
t j
0 is defined as a local measure at a

given initial position Xt j for a given stress-free region Gt j ;ti
through the limit

ρ
t j
0 = lim

δ→0

m
(Lt j

δ

)
vol

(P t j
δ

) , (17)

where m(Lt j
δ ) is the mass of the open region Lt j

δ ⊂ Gt j ;ti
defined as

m
(Lt j

δ

) =
∫
Lt j

δ

dm =
∫
Lt j

δ

ρ
t j
0 dV , (18)

and vol(P t j
δ ) is the volume of material enclosed by the

sphere P t j
δ ⊂ E3 centered at Xt j with radius δ > 0. The

mass density in Eq. (17) characterizes the mass per initial
volume of a given material point in Gt j ;ti . Note that ρt j

0 is not

well-defined on the growth boundary �
t j
g since its value can

be discontinuous along this interface.
Mass is conserved in each individual subregion after it

attaches onto the body, hence

ρ J t j ;t = ρ
t j
0 , (19)

where ρ is the mass density in the current configuration
and J t j ;t = det(Ft j ;t ). The total mass gained/lost due to
the i-th growth/resorption spurt is expressed as
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�Mti =
∫
Gti

ρ
ti
0 dV −

∫
Ati

ρ dv. (20)

Assuming quasi-static loading conditions, the point-wise
equilibriumequation is expressed in the current configuration
at t ∈ [ti , ti+1) as

divT t j ;t + ρb = 0 for all Rt j ;t ⊂ Rt , (21)

subject to boundary conditions

{
�uti ;ta = �ūa(xt , t) on �t

ua

T ti ;t
ab ntb = t̄a(xt , t) on �t

ta

. (22)

In Eqs. (22) and (21), T t j ;t is the Cauchy stress tensor and b
is the body force per unit mass. Also, the divergence operator
in (21) is taken with respect to the coordinates of the body in
its current/spatial configuration. Additionally, the a-th com-
ponent of the displacement or traction is prescribed on �ta
and �ub , respectively. These subdomains satisfy the classical
requirements

⎧⎪⎨
⎪⎩

�t
t =

3⋃
a=1

�t
ta ; �t

u =
3⋃

a=1
�t
ua

�t
ta ∩ �t

ua = ∅
. (23)

In addition, the constraint

(
T t j ;t − T t j−1;t

)
n

�
t j
g

= 0 on �
t j
g (24)

enforces equilibrium on each of the growth interfaces (with
j = 1, 2, . . . , i). The kinematic conditions (12) on the
deformation and (14) on material velocity, together with
the continuity-of-traction condition (24), are the three con-
straints on each growth interface required to achieve a unique
and well-posed incremental displacement field that satisfies
the equilibrium equations (21) with the proper boundary con-
ditions in Eq. (22).

It is assumed that angular momentum holds at a given
material point which implies symmetry of the Cauchy stress
tensor, i.e.,

T t j ;t = (T t j ;t )T . (25)

Moreover, energy balance under purely mechanical condi-
tions leads to a relation between the Cauchy stress T t j ;t and
the internal energy density ε at time t , which is stated as

T t j ;t ·Dt j ;t = ρ
d jε

dt
, Dt j ;t = sym

[
d j Ft j ;t

dt
(Ft j ;t )−1

]
.

(26)

For a hyperelastic material, Eq. (26) reduces to the familiar
relation between theCauchy stress and deformation gradient,

T t j ;t = ρ
∂ε

∂Ft j ;t (F
t j ;t )T . (27)

In addition to the balance laws and boundary/initial con-
ditions in Eqs. (21) to (23) and (26) to (22), the surface
growth/resorption displacement is imposed on the portions
of the boundary where material enters or leaves the domain,
according to Eq. (3) for the most recent growth increment
at time ti . Material which accretes at ti must have a pre-
scribed initial state on the entire growth domain Gti when it
first comes into existence. Here, it is assumed for simplic-
ity that the accreting material does not inherit any history of
stress/deformation, hence the conditions

uti0 = 0 , Fti
0 = I , T ti

0 = 0 (28)

hold for all material points in Gti . The subscript “0” empha-
sizes the initial values of the displacement, deformation gra-
dient, and Cauchy stress in Eq. (28), and not their values once
the accreting material equilibrates with the existing body. It
is assumed for simplicity that the growth/resorption surfaces
remain disjoint to the Neumann and Dirichlet boundaries.
This condition can be expressed as �g � �a ∩ �u � �t = ∅.

The formal initial/boundary-value problem for a deform-
ing body undergoing surface/growth resorption thus consists
of finding the incremental material displacement �uti ;t
which satisfies equilibrium as stated in Eq. (21), the bound-
ary conditions in Eq. (22), and the constraints given by
Eqs. (12), (14) and (24) given a constitutive law for the
Cauchy stress which satisfies Eqs. (27) and (25), an imposed
growth/resorption displacement as in Eq. (3), and growth
extensions satisfying Eq. (28).

3 Finite element approximation

In this section, the discretized weak forms of the governing
balance laws are presented in two spatial dimensions. To
this end, let the closure of the current configuration Rt be
approximated by finite elements with domains �t,e, such
that

Rt .=
⋃
e

�t,e, (29)

where the superscript e denotes a single two-dimensional
element subdomain. At any time t ∈ [ti , ti+1), the classical
Bubnov–Galerkin approximation for the incremental mate-
rial displacement �uti ;t,eh of Eq. (11) and its corresponding
test function ξ eh are defined for a given finite element �t,e as
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�uti ;t,eh (x, t) =
nen∑
n=1

Ne
n (x)�uti ;t,en (t)

= [Ne]�ûti ;t,e; ξ
ti ;t,e
h (x, t)

=
nen∑
n=1

Ne
n (x)ξ

ti ;t,e
n = [Ne]ξ̂ ti ;t,e ,

(30)

where nen denotes the number of nodes per element. In
addition,�ûti ;t,e and ξ̂

e
are the nodal values of the respective

fields ordered in vector form.
Also, the element interpolation matrix is classically

defined as

[Ne] =
[
Ne
1 0 Ne

2 0 . . . Ne
nen 0

0 Ne
1 0 Ne

1 . . . 0 Ne
nen

]
,

(31)

in terms of the standard element interpolation functions
Ne
n (x), n = 1, 2, . . . ,nen.
The spaces of admissible functions are

Uh =
{
�uti ;t,eh ∈ H1(�t,e) | �uti ;t,ea

= �ūti ;t,ea on ∂�t,e ∩ �ua , a = 1, 2
}
,

Xh =
{
ξ
ti ;t,e
h ∈ H1(�t,e) | ξ ti ;t,ea

= 0 on ∂�t,e ∩ �ua , a = 1, 2
}
.

(32)

In Eq. (32), H1(�t,e) denotes the Sobolev space of order 1
over all two-dimensional vectors functions in�t,e. Using the
interpolated variables, the discrete weak form of the equilib-
rium equations for element e is

[Fe
int (�ûti ;t,e)] − [Fe

ext ] = 0, (33)

where [Fe
int ] and [Fe

ext ] are defined as

[Fe
int ] =

∫
�t,e

[Be]T T̂ dv,

[Fe
ext ] =

∫
∂�t,e∩�t

t

[Ne]T t̄ da +
∫

∂�t,e\�t
t

[Ne]T t da.

(34)

Additionally, T̂ denotes the Cauchy stress in standard vector
form, and Be is a gradient operator defined as

[Be] =

⎡
⎢⎢⎣

dNe
1

dx1
0 . . .

dNe
nen

dx1
0

0
dNe

1
dx2

. . . 0 dNe
nen

dx2
dNe

1
dx2

dNe
1

dx1
. . .

dNe
nen

dx2
dNe

nen
dx1

⎤
⎥⎥⎦ . (35)

The global counterpart of Eq. (34) is computed by the stan-
dard assembly procedure.

4 Discretization of surface growth and
resorption

Consider a representative time ti at which growth/resorption
takes place across the boundary. It is assumed here, without
substantial loss of generality that the incremental displace-
ment fields are computed at this time relative to the configu-
ration at time ti−1 using Eq. (11), such that they satisfy the
global counterpart of the equilibrium equations (33). These
are used to define the deformation gradient andCauchy stress
according to Eqs. (15) and (27), respectively. The incremen-
tal displacements, deformation gradient, and Cauchy stress
at ti pertain to the deformed body �ti just before the i-th
growth/resorption spurt takes place.

To effect growth/resorption at time ti , the regions Gti

and Ati are first created based respectively on the surface
growth/resorption displacements ug and ua of Eq. (3), as
sampled at ti . In particular, the nodal points lying on the
original boundary are placed at the positions of the newly
grown/resorbed boundary, while the placement of interior
nodal points is optimized to maintain a desirable quality.
This optimization consists of solving the discretized equi-
librium Eq. (33) for the incremental mesh displacements
�um rather than the incremental material displacements. In
this setting, the boundary mesh displaces by its prescribed
growth/resorption (the portion of the boundary not undergo-
ing surface growth/resorption remains fixed along its normal
direction), while the interior mesh deforms as an imaginary
solid with an assumed constitutive law and user-specified
mesh material parameters (in this setting, linear elasticity),
as shown in Fig. 4. Thismeshmotion implementation closely
resembles procedures commonly used in production codes,
e.g., [21]. The mesh optimization strategy does not con-
strain element edges to align with prior growth interfaces,
thus allowing the element size and shape to be independent
of the growth/resorption rate and time increment between
spurts. Nodes that are “flagged” for lying in the growth
region Gti are initialized with a zero-valued incremental
material displacement. Additionally, integration points that
lie inside Gti are assigned a deformation gradient equal to
the identity tensor [according to Eq. (28)]. On the other
hand, the deformation gradient in Mti is initialized based
on its known values at ti prior to growth/resorption. This is
accomplished through a global L2-projection which maps
each component of the deformation gradient from the mesh
defining Rti onto the subdomain Mti of the newly meshed
and updated configuration R̃ti . The Cauchy stress is com-
puted and stored for the updated configuration R̃ti , based on
the constitutive law in Eqs. (25) and (27) as well as the initial
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Fig. 4 Schematic of the boundary-value problem used to determine the mesh motion �utim based on the imposed surface growth and resorption
displacement at time ti

condition (28) in the growth region. The procedure high-
lighted above is related to the arbitrary Lagrangian–Eulerian
(ALE)finite elementmethod [6],whereby themeshmotion is
prescribed rather than deforming with the body at each point
(Lagrangian) or being fixed (Eulerian). However, unlike tra-
ditional ALE methods the mesh boundary moves along the
growth/resorption front, thus defining a constantly chang-
ing physical domain of material. Themethodology described
above is summarized in Algorithm 1.

Algorithm 1 Surface growth/resorption algorithm for quasi-
static (non-inertial) bodies with no body forces
1: Initialize t0 and Rt0

2: Set solver parameters i termax , tol � max nonlinear iterations and
residual tolerance

3: Set i = 1
4: while i ≤ n_steps do � Begin time loop
5: Set time step �ti
6: ti ← ti−1 + �ti � Update current time

7: Initialize displacement increment �ûti−1;ti
0

8: Set k = 0
9: while k ≤ i termax and ||resid||2 ≥ tol do � Solve Eq. (33)

using Newton-Raphson

10: Use displacement increments �ûti−1;ti
k to deform mesh

11: Update Cauchy stress and deformation gradient
12: Compute residual and tangent based on Eq. (33)

13: Solve for trial increment: �ûti−1;ti
k+1 ← Compute �ûti−1;ti

k
14: k ← k + 1
15: end while
16: Update current positions based on �ûti−1;ti . � Update

displacements
17: Compute utig and utia
18: Convect mesh based on Eq. (3) � Update growth/resorption
19: Project fields in Mti onto new mesh
20: Generate growth initial fields in Gti based on Eq. (28)
21: i ← i + 1 � Update simulation step
22: end while

In the approach described here, the choice ismade to solve
for the incremental material displacement in Eq. (11), which
tracksmaterialmotion relative to the updated configuration at

ti rather than the total material displacement [Eq. (7)] which
accounts for the entire motion of each growth spurt relative
to its undeformed state. In this regard, the proposed method
is also related to the classical updated Lagrangian formula-
tion [4]. The dependence on the updated configuration rather
than a globally deformation-free (geometrically incompati-
ble) configuration only requires knowledge of themost recent
growth/resorption interface. This eliminates the need to store
and update the locations of all prior growth interfaces as they
deform with the body. Additionally, the placement of the
newest accretion increment onto the deformed body forming
the updated configuration at a given time ti naturally results
in a fully continuous body, hence Eqs. (12) and (14) are
automatically satisfied as long the subsequent incremental
deformation and incremental velocity after ti are continuous.
By extension, Eqs. (6) and (10) are also satisfied.

The realignment of element edges after each growth/
resorption spurt occurs independently of prior edge loca-
tions. Therefore, discontinuities in the material displacement
and deformation gradient at prior growth interfaces must
be approximated as piecewise polynomials constrained by
the newly aligned element edges, as shown in Fig. 5. The
examples presented in the following section illustrate that
the errors associated with this smearing process decrease as
the element size and the time-step are reduced.

5 Representative simulations

In this section, two idealized examples are presented under
the assumption of plane strain. These examples demonstrate
the numerical consistency and spatial/temporal convergence
of the proposed surface growth/resorption algorithm. The
first concerns an ellipsoidal cylinder undergoing simultane-
ous surface growth/resorption and rigid body motion, while
the second involves a hollow elliptical cylinder simultane-
ously undergoingfinite elastic deformationdue to an imposed
time-dependent traction on its inner boundary and surface
growth/resorption on its outer boundary.
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Fig. 5 Discretization of surface growth/resorption: Growth interface cutting through element, with nodes/integration points of the newly grown
and pre-existing portion of the element shown in green and blue, respectively
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x
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Fig. 6 Surface growth/resorption under rigid-body motion: discretized
ellipse in its initial state

The material response is assumed compressible neo-
Hookean, such that for a given material point which comes
to existence at time t j , the Cauchy stress at time t ∈ [ti , ti+1)

is expressed as

T t j ;t = μ

J t j ;t
(
Bt j ;t − i

) + λ
log J t j ;t

J t j ;t
i, (36)

where Bt j ;t = Ft j ;t (Ft j ;t )T is the left Cauchy-Green tensor,
i is the spatial rank-two identity tensor, and λ,μ are material
parameters akin to the Lamé constants of linear elasticity
with values selected as 7.1E+02 MPa and 1.8E+02 MPa,
respectively, as is typical for various plastics. With these
parameters, the material is compressible. All of the meshes
used in these examples consist of bilinear quadrilaterals, and
numerical integration of the weak forms is performed using
standard 2 × 2 Gauss–Legendre quadrature.

5.1 Surface growth and resorption under rigid-body
motion

The initial domain in this example is an ellipsewith diameters
of 80 mm on the major axis and 40 mm on the minor axis.
The discretized domain consists of 1044 elements, as shown
in Fig. 6.

Two cases are examined with imposed growth/resorption
and incrementalmaterial displacements, as depicted in Fig. 8.
For both cases, growth spurts are assumed to occur every
�t = 1 s for t ∈ (0, 20] s. In Case 1, a time-dependent

Fig. 7 Mesh motion of the ellipsoidal geometry for Case 1 (left) and Case 2 (right) at t = t3. Initial and newly grown/resorpted mesh are shown in
gray and black, respectively (the motion due to growth/resorption is scaled for clarity)
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Fig. 8 Surface growth/resorption under rigid-body motions: temporal
evolution of growth/resorption and incremental material displacements
and maximum Frobenius-norm of the Cauchy stress for Case 1 (left)

and Case 2 (right), and the corresponding surface positions (shown in
2 s intervals with bold line indicating initial and final positions)

uniform normal growth/resorption displacement is imposed,
such that for the i-th growth spurt,

utig/a · n = 5.2e−4 ti − 7.8e−5 t2i + 2.6e−6 t3i m. (37)

Case 2 involves constant growth utigy = 1.0e−3 m on the top
boundary and, likewise, constant resorption utiay = 1.0e−3m
on the bottom boundary for each spurt, as well as a con-
stant incremental material displacement �uy = 5.0e−4 m.
In this setting, the assumed boundary displacements due to
growth/resorption preserve the initial geometry of the ellipse,
resulting in a rigid “treadmilling” motion.

In both cases, the elliptical cylinder experiences addition
or removal of material without experiencing deformation.
In the first case, the domain expands and contracts as the
surface first grows and subsequently resorbs. In the second
case, material is deposited onto the top-half of the bound-
ary and simultaneously removed from the bottom-half, while

the body is treadmilling with a constant velocity in the y-
direction. The Lamé constants used to solve for the mesh
motion are λ = μ = 1.0E+8 MPa. This motion is illus-
trated at a sample time in Fig. 7. In both cases, the entire
body remains stress-free for the duration of the simulation,
as highlighted in Fig. 8. These simple test cases confirm
that for an initially unstressed body experiencing surface
growth/resorption, elastic deformation is solely dependent
on externally applied forces, and is not generated by stress-
free surface growth or resorption alone. In this regard, these
two casesmay be thought of as providing a test of consistency
for the algorithmic implementation.

5.2 Growth and resorption of elliptical cylinder
undergoing finite deformation

Here, results are presented for a hollow elliptical cylin-
der experiencing a series of constant-magnitude normal
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symmetry bc

growth/resorption surface

applied pressure, p(t)

symmetry bc x

y

Fig. 9 Hollow elliptical cylinder: loading and growth/resorption con-
figuration (graded mesh used in simulation is shown for upper right
quadrant)

growth/resorption spurts along its outer boundary and a tem-
porally increasing pressure along its inner boundary. In the
reference configuration, the cross-section of the cylinder
shows outer major and minor axes of 2 m and 3 m, respec-
tively, and an inner radius of 1.5 m.

The pressure is prescribed along the inner radius as
p(t) = 107t Pa, within the range t = (0, 1.0] s, while the
outer surface remains traction-free. Two cases are consid-
ered with regard to growth. In Case 1, the body undergoes
surface growth , while in Case 2, it experiences resorption.
The geometry and loading for the two cases are shown in
Fig. 9. Appealing to double symmetry, only one quadrant of
an ellipse is modeled . The mesh consists of 28,441 elements
and is gradually refined near the outer surface exposed to
growth or resorption. Additionally, a constant �t = 0.025 s
is used in the analysis and the prescribed normal growth
and resorption displacements for the i-th spurt are 0.5�t m
(Case 1) and −0.1�t m (Case 2).

Fig. 10 Hollow elliptical cylinder: contours of the pressure (left), and von Mises stress (right) for surface growth (top) and resorption (bottom) at
the final simulation time t = 1
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The effects of surface growth and resorption on the final
state of the deformation and stress are highlighted in Fig. 10
at the end-time t = 1 s . The accretion of material leads
to an lower overall von Mises stress and absolute pressure
defined as |p| = 1/3|tr(T )|. The results in Fig. 10 also
indicate that the majority of the internal force is sustained
by the original material with relatively little redistribution
in the growth region. The abrupt change in the von Mises
stress and pressure is most pronounced along the minor radii,
where steep gradients between the original boundary and the
accreted regions exist. No material is added to the cylinder
in the second case where it only undergoes resorption. The
points of maximum and minimum stress therefore remain
on the outer major and minor axes (respectively) throughout
the resorption process. The spike in the von Mises stress and
absolute pressure for both the grown and resorbed cylinder
occurs at the top/bottom since these are the thinnest regions
of the body.

The material is assumed to be deposited at each discrete
timeof the analysis, hence the time-step size dictates themag-
nitude of the growth displacement. Unsurprisingly, selecting
a coarser step-size, here �t = 0.1 s, leads to visibly dis-
crete stress discontinuity. This is illustrated in Fig. 11 for the
circumferential, radial, and longitudinal components of the
Cauchy stress along a vertical and horizontal section of the
ellipse at t = 1 s. The observed “stair-stepping” pattern in
the stress occurs due to the large differences in certain com-
ponents of stress and deformation between the pre-existing
and newly added material stress or deformation.
Note that these discontinuities are effectively “smeared”
between element edges when prior growth interfaces cut
through elements, thus resulting in a steep (continuous)
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Fig. 11 Hollow elliptical cylinder: normal components of the Cauchy
stress along theminor radius (top) andmajor radius (bottom) for surface
growth using a time step �t = 0.1 s

change in the value of the stress and deformation gradient.
These gradients are more pronounced in the circumferen-
tial and longitudinal directions than in the radial direction.
In contrast, the radial stress is zero along the outer sur-
face due to the traction free boundary conditions, hence it
maintains a smooth profile. Therefore, once each finite layer
attaches to the cylinder, it primarily resists subsequent load-
ing by deforming along the circumferential and longitudinal
direction. Note that the mismatch in stresses between the
grown and ungrown regions is more prominent along the
minor rather than the major axis, since the circumferential
stresses are greatest in the former region. In addition to the
discontinuity at each growth increment, the slope of the cir-
cumferential stresswithin the oldest growth increment nearly
matches the region near the original boundary at t = 0 s
whereas the newer increments consist of sequentially lower
slopes. Here, the slope is the change in a component of
stress per distance for a given growth region, discounting the
“smoothed” discontinuities. The outer-most layer of material
exhibits near-zero slope in the circumferential component
of the stress due to the assumed stress-free initial condition
applied uniformly within the newly grown material. These
trends highlight that the slopes of the circumferential and
longitudinal stress across the growth interface nearly match,
despite the fact that the stresses themselves are discontinu-
ous.

As a consequenceof thehistory-dependent surfacegrowth/
resorption process, the cylinder maintains residual stresses
upon unloading, as highlighted in Fig. 12. These fields are
obtained by removing the traction in a single load step and
solving Eq. (33) for the incremental material displacements.
The inner and outer surface are both traction-free once the
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Fig. 12 Hollow elliptical cylinder: normal components of the Cauchy
stress along the minor radius (top) and major radius (bottom) for
unloaded grown cylinder using a time step �t = 0.1 s
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Fig. 13 Hollow elliptical cylinder: temporal refinement of von Mises
stress along the minor radius for surface growth and resorption
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Fig. 14 Hollow elliptical cylinder: temporal refinement of pressure
along the minor radius for surface growth and resorption

body is unloaded, thus requiring the radial stress to be zero on
these surfaces. However, the radial component of the Cauchy
stress increases quadratically through the thickness of the
cylinder cross-section, reaching a maximum near the center
of the section thickness. The circumferential and longitudinal
stresses are tensile along the inner surface and compressive
at the outer surface thus implying that the unloaded section
along the radius has the tendency to bend.

The numerical results presented in [13] highlighted a simi-
lar stair-stepping effect to the one exhibited in Figs. 11 and 12
for one-dimensional spatial domains with the distinction that
each growth interface align precisely with element bound-
aries. In this setting, the sharp discontinuities that appear at
each growth interface are exactly captured. Although this
distinction enhances the overall accuracy of the solution,
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Fig. 15 Hollow elliptical cylinder: spatial refinement convergence rates
for surface growth and resorption using average element length
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Fig. 16 Hollow elliptical cylinder: element length scale metrics for
meshes used for surface growth (top) and resorption (bottom) to deter-
mine spatial refinement convergence rates. Plotted values are averaged
over all time steps (�t = 0.1, �t = 0.05, and �t = 0.025) for clarity

the method in [13] does not readily extend to a general
two-dimensional body.With the assumption that the disconti-
nuities are approximated by steep gradients, themeshmotion
is performed irrespective of prior locations of the growth
interface. In this setting, it is assumed that the fields near
each growth interface can be accurately represented as the
mesh element size approaches zero.

Although the choice of time step affects the size of the
growth increments and character of the solution, the disconti-
nuities lose prominence and the solution converges to a single
smooth curve as the size of the growth increments become
infinitesimal relative to the scale of the physical domain. This
convergence is highlighted in Figs. 13 and 14 for three time
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Table 3 Hollow elliptical cylinder: Spatial refinement convergence
rates based on element length scale metric

�t = 0.1 �t = 0.05 �t = 0.025

(a) surface growth

minimum element length 0.31 0.39 0.67

average element length 0.56 0.70 1.22

volume-averaged element length 0.65 0.82 1.43

maximum element length 0.92 1.14 2.02

(b) surface resorption

minimum element length 0.56 0.56 0.57

average element length 1.02 1.03 1.05

volume-averaged element length 1.16 .18 1.20

maximum element length 1.62 1.64 1.68

steps: 0.1 s, 0.05 s, and 0.025 s. The fields of the resorbing
body corresponding to Case 2 are shown in dashed lines, and
are also temporally convergent.

Uniform h-refinement of themesh leads to a spatially con-
vergent solution in the norm of the stored elastic energy of
the error, as shown in Fig. 15. Solutions from six meshes
were obtained with 741, 1711, 3081, 4851, 7021, and 28441
elements. The errors are taken relative to the solution of the
finest mesh for each corresponding time step, and are com-
puted based on the difference in displacement gradients. As
expected, the spatial convergence rates are higher at smaller
time steps (smaller growth increments) for the growncylinder
since the deformation gradient and stress become smoother
as the time step decreases. In contrast, the resorpted cylinder
exhibits nearly equal errors for a given mesh regardless of
time step, thus indicating that temporal discretization does
not play a significant role in the spatial convergence rate for
the case of surface resorption. Note that in the case of resorp-
tion, the error for a givenmesh size is nearly identical for each
of the selected time-step sizes, therefore only the errors for a
single time-step size are visible in Fig. 15. The convergence
rate for surface growth increases with a decrease in time-step
size, which is likely higher than expected since the errors are
taken with respect to the fields computed on a slightly finer
mesh (as opposed to an exact analytical solution which may
be more accurate, though this is non-trivial to obtain).

The convergence rates for the mesh used in these simu-
lations (Fig. 9) depends on the metrics used to characterize
the level of refinement of the spatial discretization. Table 3
contains a comparison of the convergence rates of the grown
cylinder using four element size metrics: minimum, average,
volume-averaged, and maximum element lengths. The rele-
vant values of the element size metrics are shown in Fig. 16.
All length scales are taken from the deformed mesh at the
final simulation time. The average element length is approx-

imated as

havg =̇
√

1

nel
At f , (38)

where At f is the area of the meshed ellipse at the final simu-
lation time t f . The volume-averaged element length is taken
as

hvol_avg =
∫
�
t f he dv∫
�
t f dv

, (39)

where he is the average element length. The difference in
the norm of the stored energy of a neo-Hookean material
asymptotically approaches that of a linear elastic material
(also referred to as the energy norm) when the deformations
are considered infinitesimal. Therefore, the theoretical con-
vergence rate for a uniform grid and bilinear elements is
linear. In an average sense, the convergence rates shown in
Table 3 tend to the theoretical value as the time discretization
is refined.

6 Conclusion

This article demonstrates that suitably adapted Lagrangian
methods can be used to describe the surface growth and
resorption of solids within the framework of classical con-
tinuum mechanics. This is enabled by the introduction of
discrete time-evolving spurts which create the updated ref-
erence configuration relative to which one may describe
the kinematics and balance laws. The resulting computa-
tional problem is tackled readily by an ALE-like method
which circumvents the need for constant remeshing. The
mesh motion is determined independently of locations of
prior growth increments, which prevents significant mesh
distortion. As a consequence, elements can contain material
that has come into existence at different times. Numerical
examples of a rigidly growing and resorbing ellipse and a
growing/resorbing elliptical cylinder undergoingfinite defor-
mation demonstrate that the proposed algorithm is both
robust and convergent. An extension to three-dimensional
geometries is feasible and will be pursued in the future.
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