
Computational Mechanics (2021) 68:211–227
https://doi.org/10.1007/s00466-021-02027-z

ORIG INAL PAPER

An engineering interpretation of Nesterov’s convex minimization
algorithm and time integration: application to optimal fiber
orientation

P. Areias1,2 · T. Rabczuk3

Received: 15 January 2021 / Accepted: 29 April 2021 / Published online: 19 May 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Nesterov’s 1983 first-order minimization algorithm is equivalent to the numerical solution of a second-order ODE with
non-constant damping. It is known that the algorithm can be obtained by time discretization with asynchronous damping, a
long-standing technique in computational explicit dynamics. We extend the solution of the ODE to other time discretization
algorithms, analyze their properties and provide an engineering interpretation of the process as well as a prototype implemen-
tation, addressing the estimation of the relevant parameters in the computational mechanics context. The main result is that a
standard Newmark-type time-integration finite element code can be adopted to perform classical optimization in mechanics.
Standard FE analysis, sensitivity analysis and optimization are performed in sequence using a typical FE framework. Geo-
metric nonlinearities in the conservative case are addressed by the adjoint-variable method and examples of optimal fiber
orientation are shown, exhibiting remarkable advantages with respect to more traditional optimization algorithms.

Keywords First-order optimization · Nesterov’s algorithm · Time-integration · Optimal fiber orientation · Geometrically
nonlinear

1 Introduction

1.1 Context

It is accepted that optimal gradient algorithms for smooth
convex minimization were inaugurated by Yurii Nesterov in
1983 [1] as a version of the momentum algorithm by Polyak
[2], see also [3]. The wordmomentum indicates the presence
of underlying equations of motion. This is known [4] and
has been explored before in applied convex optimization.
It is worth mentioning that a unification of the conjugate-
gradient method, i.e. Hestenes and Stiefel [5], was proposed
byKarimi et al. [6], with a state-of-the-art paper on first-order

B P. Areias
pedro.areias@tecnico.ulisboa.pt

1 DEM - Mechanical Engineering Department, Instituto
Superior Técnico, University of Lisbon, Avenida Rovisco
Pais, 1049-001 Lisbon, Portugal

2 IDMEC, Lisbon, Portugal

3 Institute of Structural Mechanics, Bauhaus-University
Weimar, Marienstraße 15, 99423 Weimar, Germany

methods published in 2020, cf. Drori and Taylor [7] pointing
out to a unification of the first-order algorithms.

Numerous versions of Nesterov’s algorithm have been
successful in the machine-learning community [8] with
reported advantages with respect to momentum (or heavy
ball) algorithms. In computational mechanics, few applica-
tions were published, and none achieved by explicit New-
mark time integration. Carlon et al. [9] adopted Donoghue
and Candès [10] adaptive restart technique for Nesterov’s
algorithm in the context of optimal experimental design, but
without the time-integration equivalence shown here. In the
context of computational homogenization, Schneider [11]
made use of the original asynchronous integrator presented
bySu,BoydandCandès [4].ConvergenceofNesterov’s algo-
rithm in [9,11] shows the same behavior we observe in this
work and the same advantages with respect to the steepest
descent method were reported. However, marked differences
exist, as no attempt was made toward the use of a damping-
insensitive time integrator.

The presentwork introduces this simple and efficient tech-
nique using established time-stepping algorithms to achieve
convergence. The fact that a time-stepping algorithm such as
Newmark [12] is shown to be equivalent to the application

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-021-02027-z&domain=pdf
http://orcid.org/0000-0001-6865-1326

212 Computational Mechanics (2021) 68:211–227

of Nesterov’s algorithm, allows the use of standard dynamic
finite element codes to perform the optimization step.

Beyond the original algorithm, we discuss new time
integration methods, the line-search scheme and the restart-
ing program. Applications to fiber orientation optimization
(DMO), see Stegmann and Lund [13] are performed in both
linear and nonlinear regime, with the complete sensitivity
analysis being described in detail for the conservative case.

The paper is organized as follows: Sect. 2 presents Nes-
terov’s algorithm cast as an ordinary differential equation
and provides further insights concerning the convergence and
solution properties. In Sect. 3 time-integrators are discussed
and stability regions are analyzed and the final optimiza-
tion algorithm is described. In Sect. 4, the adjoint-variable
method is described in detail, for both linear and nonlinear
cases, with discretization-equivalent formulas and special-
ization for the strain-energy function. The equations for fiber
optimization are introduced in the same section with a par-
ticular DMO-like [13–15] parametrization. Validation with
More’s functions [16] is presented in Sect. 5.2 and Engineer-
ing applications of fiber optimization are also presented. The
geometrically nonlinear case is also tested, with a simplified
hyperelastic constitutive law. Comparisons between the new
and existing algorithms are performed. Finally, in Sect. 6
conclusions are drawn concerning this work and its results.

1.2 The original algorithm

We are here concernedwith convex unconstrainedminimiza-
tion.Weonly address functionswhich are l−strongly convex,
twice continuously differentiable and with a L−Lipschitz-
continuous gradient on R

n φ (q) ∈ S2,1
L,l (Rn) [3]. Here,

q ∈ R
n are the design-variables and φ (q) is the objective

function. The problem consists in

min
q∈Rn

φ (q) (1)

using information on value φ (q) and gradient ∇qφ (q) for
q ∈ R

n . From the aforementioned conditions, the Hessian of
φ (q) is eigenvalue-bounded by l and L

L I � ∇2
qqφ (q) � l I (2)

Conditions with the function images are easily interpreted:

φ
(
q′) ≤ φ (q) + [∇qφ (q)

] · (q′ − q
)+ L

2
‖q − q′‖2 (3)

φ
(
q′) ≥ φ (q) + [∇qφ (q)

] · (q′ − q
)+ l

2
‖q − q′‖2 (4)

hence, our S2,1
L,l -function is enveloped by two quadratic mod-

els. For first-order methods, the lower complexity bound [3]

is given by

‖qk+1 − qsol‖
‖q0 − qsol‖

≥
(

χ
1/2 − 1

χ 1/2 + 1

)2k

(5)

where qsol is theminimizer, k is the iteration (or step) number
and χ is the condition number of the Hessian, satisfying the
equality χ = L/l.

Nesterov’s algorithm (see [3,4]) makes use of an auxil-
iary variable p, see [4,10], to obtain the requiredmomentum.
Startingwith the initial conditionq0 and p0 = q0, Nesterov’s
algorithm with step-size h (see [3,4]) is based on the follow-
ing recurrence formula, k = 1, 2, . . . is the step number:

qk = pk−1 − h∇qφ
(
pk−1

)
(6)

pk = qk + k − 1

k + 2

(
qk − qk−1

)
(7)

It achieves the lower bound (5) for h = 1/L (the corre-
sponding proof is provided on pages 72–77 of [3]). For
computational mechanics applications, the difficulty is the
estimation of L . Dedicated iterative algorithms [17] exist for
estimating L but this is a problem by itself and inconvenient
in the computationalmechanics context. The rationale for our
approach is the following: since an equivalent ODE can be
established for (6–7), it can be solved by an alternative form
which is compatible with computational mechanics codes,
specifically Finite-Element packages, see [18]. We develop
a time-stepping algorithm appropriate for optimization and
integration in standard Finite-Element packages. Only the
unconstrained case is herein treated, but constrained prob-
lems can be solved using an extension of this algorithm. For
example SUMT [19] can be used for computational mechan-
ics where elements or cliques are used.

2 Equivalent differential equation and
insight on Nesterov’s algorithm

Proof of equivalence between Nesterov’s algorithm and the
solution of an ODE is provided by Su, Boyd and Candès
[4]. For the sake of description, we consider a the scalar
case, n = 1. The final n-dimensional ODE is decoupled and
therefore no loss of generality occurs due to this procedure.
Let us then consider the following scalar ODEwhere t ∈ R

�+
and c ∈ N:

t q̈ (t) + cq̇ (t) + tq (t) − t = 0

lim
t→0+ q (t) = q0+ (8)

123

Computational Mechanics (2021) 68:211–227 213

Table 1 Time for first solution (qsol = 1) and verification of conver-
gence rate

tsol limt→+∞ t2q2(t)

c = 1 2.4048 unbounded

c = 3 3.8317 qsol
c = 5 5.1356 qsol
c = 7 6.3802 qsol
c = 9 7.5883 qsol

(note that q̇ (0) = 0). Solution of (8) is written introducing
the constant α:

q (t, c) = 1 + α! (q0+ − 1)

2−α

Jα (t)

tα

with α = (c−1)/2 (9)

where Jα (t) is the Bessel function of the first kind and α =
(c−1)/2. This is an adaptation of a result given byApostol [20].
To avoid fractional factorials, in (9) we adopt odd values of
c so that α is a non-negative integer. Invariance under time-
scaling requires a constant c in (8), see [4]. The solution at the
limit is one, i.e. qsol = limt→+∞ q(t, c) = 1. Of course, this
limit is insufficient to assess convergence to the equilibrium
point, we require two additional quantities. By shifting q(t)
as q(t) = q(t) − 1 (which implies that qsol = qsol − 1 = 0),
wedetermine time for thefirst root and the limit of the product
t2q2(t), limt→+∞ t2q2(t). The time for first intersection and
the convergence rate are shown in Table 1. The following
conclusions are drawn from Table 1:

• Convergence to the exact solution requires that cmust be
greater or equal than 3.

• The optimal time to obtain the exact solution for the first
time is tsol = 3.8317 and it is reached for c = 3.

Arguments of time-scaling invariance and optimality for
c = 3 are key in understanding Nesterov’s idea. We point
out that (6–7) is an application of an asynchronous explicit
integrator (see, e.g. [21]) to the ODE in (8). The algorithm
is not stationary, in the sense that in general q̇(tsol) �= 0. A
depiction of the solution (9) is presented in Fig. 1 both in the
time-domain and in state space.

We now introduce the following linear variable transfor-
mations, where a > 0 and b are new parameters, to be
discussed later:

t = √
at� (10)

and

q (t�) = (a/b) r (t�) (11)

20 40 60 80 100

10–12

10–8

10–4

1

104

t

t2
q2
(t
)

c = 1
c = 3
c = 5
c = 7

(a) t2q2(t)

0.2 0.4 0.6 0.8 1.0 1.2 1.4

- 0.2

0.2

0.4

0.6

q(t)
q̇(

t)

c = 1
c = 3

c = 7
c = 5

(b) Convergence to the solution, state space

q(t) − q̇(t). q0 = 0 and t ∈ [0, 50]

Fig. 1 Behavior of Nesterov ODE for c = 1, 3, 5 and 7

With these transformations, the ODE becomes:

t�
��
r (t�) + c

�
r (t�) + t�ar (t�) − t�b = 0 (12)

where now a can be identified as “stiffness” and b as the
constant “force”. Equation (12) has the following solution:

r (t�, c) = b

a

[

1 + α! (ab r0+ − 1
)

2−α

Jα
(√

at�
)

(√
at�
)α

]

with α = (c−1)/2 (13)

where the limit of r(t�, c) is now limt�→+∞ r(t�, c) = b/a =
rsol.We note that further time-scaling is possible for the same
limit by modifying simultaneously a and b :

r (t�, c) = rsol

[

1 + α!
(r0+
rsol

−1
)

2−α

Jα(
√
at�)

(
√
at�)

α

]

with α = (c−1)/2 (14)

With (14), we can clearly source term ar (t�) − b affects the
time scale maintaining the solution at the limit. Since damp-
ing is inversely proportional to time, scaling of the source

123

214 Computational Mechanics (2021) 68:211–227

term is in fact scaling of damping. Returning to the original
notation, the n-degree-of-freedom case is obtained by

t q̈ (t) + cq̇ (t) + t A · q (t) − tb = 0 (15)

with q (t) ∈ R
n . In (15), A is a symmetric positive-definite

n × n matrix and b is a n-dimensional vector. By spectral
decomposition of A, we have

A =
n∑

i=1

λi X̂ i (16)

where λi are the eigenvalues of A and X̂ i are the correspond-
ing normalized eigenvectors, with λi ≤ λi+1.

Modal transformation (see, e.g. [22]) is performed as

q (t) = X̂ · η (t) with X̂
T · X̂ = I with I being the iden-

tity matrix. New unknowns η(t) are defined from q(t) by
inverting matrix X̂ . Matrix X̂ contains the normalized eigen-
vectors X̂ i disposed by column. This is a standard technique
in n-dof vibration [22] and structural dynamics [23]. Classi-
cal textbook derivations [22] results in the following modal
solution:

q j (t, c) = X̂ jiωi

λi

[

1 − α!
2−α

Jα
(√

λi t
)

(√
λi t
)α

]

with α = (c−1)/2 (17)

Since the solution converges to q =A−1 · b, which is the
static limit for a damped system, it is also the solution of the
following quadratic minimization problem

min
q∈Rn

[
φ (q)

]
where (18a)

φ (q) = 1

2
qT · A · q − q · b (18b)

The relevant contribution of thisODE is that we can obtain
the solution of the linear system A ·q = b by solely using the
product A · q. Generalizing for the condition ∇qφ(q) = 0,
the ODE for the optimization problem becomes:

t q̈ (t) + cq̇ (t) + t∇qφ (q) = 0 (19)

Using principal components and introducing the new
unknown θi , reduction to a first-order system reads:

θi = η̇i (20)
{

θ̇i
η̇i

}
=
[− c

t −λi
1 0

]
·
{

θi
ηi

}
+
{

ωi

0

}
(21)

Corresponding eigenvalues are given by:

χ i
1,2 = −√λi

[
ξi (t) ±

√
ξi (t)2 − 1

]
(22)

with ξi (t) = c
2t

√
λi

being a time-dependent damping ratio
(see, e.g. Meirovitch [22] for this nomenclature). We note
that the solution changes from overdamped to underdamped
at transition time

t itransition = c

2
√

λi

This actually establishes a one-to-one relation between ξi
and time for each decoupled mode. A global damping scale
(replacing the time scale) can also be established, with three
regions (all ξi < 1, at least one ξi < 1 and all ξi > 1). This
property will be further explored in the following sections.

3 Algorithm

Concerning the properties of the problem, we ensure that
the explicit numerical integrator is stable for all damping
ratios, ξ ∈]0,+∞[. Three integrator families are assessed:
the Runge–Kutta (RK) of orders 1 up to 4, the central dif-
ference explicit integrator, which is a particular case of the
Newmark-β and the asyncronous explicit integrator. Intro-
ducing the scaled step h̃i = h

√
λi , amplification matrices

and stability regions are shown in Table 4 and Fig. 2, respec-
tively. Specializing for the Nesterov algorithm, for the first
step we have q1 = q0−h2∇qφ

(
qk
)
and withk ≥ 1 we have:

1. Explicit Newmark: qk+1 = qk + 2−hceq(k)
2+hceq(k)

(
qk − qk−1

)−
2h2

[2+hceq(k)]∇qφ
(
qk
)

2. Explicit Newmark with predictor/corrector: q̃k = qk +
2−hceq(k)
2+hceq(k)

(
qk − qk−1

)

qk+1 = q̃k − 2h2

[2+hceq(k)]∇qφ
(
q̃k
)

3. Explicit asyncronous: qk+1 = qk + [
1 − hceq (k)

]
(
qk − qk−1

)− h2∇qφ
(
qk
)

4. Explicit asyncronous with predictor/corrector: q̃k = qk +[
1 − hceq (k)

] (
qk − qk−1

)

qk+1 = q̃k − h2∇qφ
(
q̃k
)

Figure 2 shows that only the explicit Newmark integrator
is immune to the stability region shrinking in overdamped
systems. In terms of stability, predictor versions are also not
advantageous. Runge–Kutta (RK) integrators are not appro-
priate for this application, although RK of orders 3 and 4
could be satisfactory in underdamped systems. The corre-
sponding amplification matrices C (see, Hughes [24] page
492 for the term “amplification matrix” in this context) are
shown in Table 4.

A physical interpretation of the previous ODE integrators,
which provides a straightforward estimation of h and ceq (t)
is possible. Given a characteristic number for the elements of
the Hessian of φ

(
qk
)
, a “stiffness” χ , the step size is given

123

Computational Mechanics (2021) 68:211–227 215

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

2

4

6

8

˜h

Iteration

RK1

RK4

RK3

RK2

ξ(
t)

(a) Runge-Kutta, ˜h − ξ (t) stability regions

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

2

4

6

8

˜h

ξ(
t)

With predictor

Iteration

Asynchronous

(b) Asynchronous damping, ˜h − ξ (t) stability re-
gions

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

2

4

6

8

ξ(
t)

˜h

Newmark

Iteration predictor
With

(c) Explicit Newmark, ˜h − ξ (t) stability regions

Fig. 2 Stability region in the h̃ − ξ (t) domain for various time-step
integrators

Fig. 3 Algorithmic flowchart for the time-integration based on Nes-
terov’s algorithm

by:

h = s (2χ)
−1/2 (23)

where s is a step-scaling, typically a function of the condition
number of the Hessian of φ

(
qk
)
. Of course, “time” t is now

the product of time step h by k: t = hk. This results in
the following recurrence formula for the explicit Newmark
algorithm:

qk+1 = qk + 2k − c

2k + c

(
qk − qk−1

)− ks2

χ (2k + c)
∇qφ

(
qk
)

k ≥ 1

(24)

From which a direction dk = qk+1 − qk can be extracted. A
few remarks are in order with respect to this direction:

123

216 Computational Mechanics (2021) 68:211–227

1. Nesterov’s choice c = 3 is clear in (24) as negative
momentum would be present otherwise for the first c/2

steps.
2. Stationarity at the solution is not satisfied, but a more

favorable direction is obtained when compared with the
original algorithm.

3. Not all directions are descent. If
(
qk − qk−1

)·∇qφ
(
qk
)

>

0 the descent condition
(
qk+1 − qk

) · ∇qφ
(
qk
)

< 0 is
only conditionally satisfied for k ≥ 2 by

s >

√√√√χ (2k − c)
(
qk − qk−1

) · ∇qφ
(
qk
)

k
[∇qφ

(
qk
)]2 (25)

The constant χ can be replaced by an estimate of the gradient
Lipschitz constant L . A value of χ can be also required in the
context of constrained minimization, as part of the penalty
term calculations. We now introduce two essential ingredi-
ents: conditional restart and line-search procedures. We reset
the equivalent damping ceq (k) when one of the following
descent conditions occurs:

• k − k� ≥ 2 and
(
qk+1 − qk−1

) · ∇qφ
(
qk
)

> 0 or(
qk+1 − qk

) · ∇qφ
(
qk
)

> 0
• ceq (k) = c

k−k�
where k� is the last step which failed

the aforementioned conditions, which it is initialized as
k� = 1 .

A version with a two-step descent condition was introduced
by Donoghue and Candès [10] who related the interval
between restarts with the condition number of a quadratic
function as �k�

∼= (π+3/2)
√

L/l. The ratio s2/χ is here
replaced by 2h, where h is the step size:

s2/χ = 2h2 (26)

The value of h2 is determined by the sufficient decrease rule,
see [25,26]:

φ
(
qk
)− csh

2∇φ2
k ≥ φ

(
qk − h2∇φk

)
(27)

by the usual backtracking algorithm. A fixed value of cs =
1×10−4 is adopted. In addition, the Dai-Yuan [27] extension
of the Barzilai–Borwein method [28] is adopted to calculate
h for steps other than the first:

h2 = �qk−1 · �qk−1

2
[
φ
(
qk−1

)− φ
(
qk
)+ ∇qφ

(
qk
) · �qk−1

] (28)

where �qk−1 = qk − qk−1. We therefore employ the min-
imum step from equations (27–28). The recalculation of h
within an explicit integration algorithm such as ours is a
delicate operation and cannot be performed too frequently

[21] since there is a destabilization effect. As an algorithmic
policy, we only update the step at each conditional restart.
This ensures that each complete Nesterov iteration is per-
formed with the same s. The Algorithm is shown in Fig. 3.
The complete code, including all line-search variants and
restart policies is public-domain at Github [29].

4 Adjoint variable method and application
to fiber-reinforced laminae

When the optimization problem statement contains one
function and multiple design variables, the adjoint variable
method is the more efficient sensitivity technique to adopt
(for the first work in control theory, see [30]). We consider
x to be the state solution, a list of degrees-of-freedom corre-
sponding to displacements. In addition, the design variables
are, as previously introduced, arranged in an array q. Let
us consider one function � (x,q) which is here identified as
the objective function.Weuse a one-to-onemapping between
φ (q) and � (x,q) as:

φ (q) = �
[
x̂ (q) ,q

]
(29)

where an implicit relation between x and q exists, in this case
formalized as x̂ (q). To materialize the alternating minimiza-
tion algorithm, the total derivative with respect to q follows
the analysis stage where x satisfies equilibrium. Two cases
are considered: Case I where state is linear in x and Case II
where state is nonlinear in x.

4.1 Case I: state is linear in x

A linear governing state equation is assumed, A(q)·x = b(q)

with b(q) being the load vector and A(q) the stiffnessmatrix.
Both are for now considered to be functions of q. Sensitivity
of � (x,q) is defined as:

d�(x,q)

dq j
= ∂�(x,q)

dq j
+ ∂� (x,q)

∂xk

dxk
dq j

(30)

Using the state equation in terms of components, we obtain:

dxi
dq j

=
[
A−1 (q)

]

ik

(
dbk (q)

dq j
− ∂Akl (q)

∂q j
xl

)
(31)

Bypre-multiplyingboth sides by ∂�(x,q)
∂xi

, the following result
is achieved:

∂� (x,q)

∂xi

dxi
dq j

= ∂� (x,q)

∂xi

[
A−1 (q)

]

ik

×
(
dbk (q)

dq j
− ∂Akl (q)

∂q j
xl

)
(32)

123

Computational Mechanics (2021) 68:211–227 217

Therefore, we solve the following adjoint linear system for
λ:

A (q)T · λ = ∂� (x,q)

∂x
(33)

From this solution for λ, the final sensitivity obtained from
(32) is given by:

d�(x,q)

dq j
= ∂�(x,q)

∂q j
+
(
dbk
dq j

− ∂Akl (q)

∂q j
xl

)
λk (34)

4.2 Case II: state is nonlinear in x

In this case, the discrete form of equilibrium is written as:

f (x,q) = 0 (35)

where f is typically identified as the residual. In mechani-
cal engineering circles, it is common to define the residual
f (x,q) as the difference between the internal i(x, q) and
external forces e(q):

f (x,q) = i(x,q) − e(q) (36)

Newton iteration to solve (35) for x is obtained as:

A
(
x(i),q

) · (x(i+1) − x(i)
) = − f

(
x(i),q

)
(37)

with

A(x(i),q) = ∂ f (x,q)

∂x

∣∣
∣∣
x=x(i)

(38)

Matrix A(x,q), which is the Jacobian of f (x,q) with
respect to x is often called the � stiffness � matrix. This
iteration (37) continues until ‖ f (xi ,q)‖ ∼= 0. After this
condition is satisfied, the solution of (35) for x is typically
performed by Newton iteration:

A(x,q) · dx
dq

= −∂ f (x,q)

∂q
if f (x,q) = 0

Component-wise, the sensitivity of �(x, q) is written as:

d�(x,q)

dq j
= ∂�(x,q)

dq j
+ ∂� (x,q)

∂xk

dxk
dq j

Repeating the process used for the linear case, we obtain

A (q)T · λ = ∂� (x,q)

∂x
(39)

Therefore, the final formula for the sensitivity is given by:

d�(x,q)

dq j
= ∂�(x,q)

∂q j
− d fk (x,q)

dq j
λk (40)

4.3 Discretization and specialization to compliance

We now use the FE discretization to calculate the second
term. If �(x,q) is defined at the element level as a sum over
ne elements, we can write its sensitivity as:

d�(x,q)

dq j
=

ne∑

e=1

∂�e(x,q)

∂qej
−

ne∑

e=1

∂ f ek (x,q)

∂qej
λek (41)

with

AT · λ = ∂� (x,q)

∂x

where element summation applies:

AT =
ne∑

e=1

AT
e (42)

∂� (x,q)

∂x
=

ne∑

e=1

∂�e (x,q)

∂x
(43)

The three steps of our algorithm are summarized in
Table 2. A formalization of similar algorithms is presented
by Byrne [31] with technical details not explored here.

4.4 Specialization for the strain energy function

We now consider the strain energy to be adopted for� (x,q)

and assume that the external forces are independent of q,
e (q) ≡ e. The objective function is written as:

�(x,q) =
ne∑

e=1

�e (x,q) =
ne∑

e=1

∫

�e

ψ
[
C (x),q

]
dV (44)

where �e is the element integration domain, C (x) is the
right Cauchy-Green tensor andψ is the strain energy density
function (see, e.g.Wriggers [32]) for this nomenclature. This
results as follows:

∂� (x,q)

∂q
=

ne∑

e=1

∂�e (x,q)

∂q
=

ne∑

e=1

∫

�e

∂ψ
[
C (x) ,q

]

∂q
dV

(45)

∂� (x,q)

∂x
= i (x,q) =

ne∑

e=1

∫

�e

∂ψ
[
C (x) ,q

]

∂x
dV (46)

123

218 Computational Mechanics (2021) 68:211–227

Table 2 Optimization substeps
in the nonlinear case I - Solution for the state x

Iterate for x A(x(i),q) · (x(i+1) − x(i)
) = − f (x(i),q)

II - Sensitivity analysis

(1) Determine specific sensitivities ∂�(x,q)
∂q ,

∂�(x,q)
∂x and ∂ f (x,q)

∂q

(2) Determine ∂�(x,q)/∂x and solve for λ λ = A−T ·
[

∂�(x,q)
∂x

]

(3) Determine d�(x,q)
dq

∑ne
e=1

[
∂�e(x,q)

∂qe − λe · d f e(x,q)
dqe

]

III - Optimization

Update p q(j+1)

[
q(j),q(j−1), �(x,q),

∂�(x,q)
∂q

]

�

Table 3 Number of function evaluations for the test problems (see [16])

Problem Function CG Nesterov/Newmark
Func+grad Grad Func+grad Grad

1 Rosenbrock 925 229 167 127

2 Freudenstein and Roth 1016 233 286 198

3 Beale 410 94 84 56

4 Powell singular 867 200 133 102

5 Wood 1609 370 446 335

6 Brown and Dennis (m = 4) 233 55 150 129

7 Biggs EXP6 (m = 6) 842 195 187 145

8 Trigonometric function (m = 6) 169 39 67 34

Details concerning the test functions
Problem φ(q) n = #q0

1 100(q2 − q21)2 + (1 − q1)2 q0 = {−1.2, 1}
2 {−13 + q1 + [(5 − q2)q2 − 2]q2}2+ q0 = {0.5,−2}

{−29 + q1 + [(q2 + 1)q2 − 14]q2}2
3 [1.5 − q1(1 − q2)]2 + [2.25 − q1(1 − q22)]2 q0 = {1, 1}

+[2.625 − q1(1 − q32)]2
4 (q1 + 10q2)2 + 5(q3 − q4)2 q0 = {3,−1, 0, 1}

+(q2 − 2q3)4 + 10(q1 − q4)4

5 100(q2 − q21) + (1 − q1)2 q0 = {−3,−1,−3,−1}
+90(q4 − q23)2 + (1 − q3)2

+10(q2 + q4 − 2)2 + 0.1(q2 − q4)2

6
∑4

i=1{[q1 + iq2/5 − exp(i/5)]2 + [q3 + q4 sin(i/5) − cos(i/5)]2}2 q0 = {25, 5,−5,−1}
7

∑6
i=1{q3 exp(−iq1/10) − q4 exp(−iq2/10) + q6 exp(−iq5) − exp(−i/10) + 5 exp(−i) − 3 exp(−2i/5)}2 q0 = {1, 2, 1, 1, 1, 1}

8
∑6

i=1[6 + i(1 − cos qi) − sin qi −∑6
j=1 cos q j]2 q0 = 1

6 {1, 1, 1, 1, 1, 1}

∂2� (x,q)

∂x2
= A (x,q) =

ne∑

e=1

∫

�e

∂2ψ
[
C (x) ,q

]

∂x2
dV (47)

∂2� (x,q)

∂x∂q
= ∂ i (x,q)

∂q
=

ne∑

e=1

∫

�e

∂2ψ
[
C (x) ,q

]

∂x∂q
dV

(48)

These operations are performed in SimPlas [18] resorting to
Wolfram Mathematica [33] and Acegen [34].

4.5 Application to fiber-reinforced laminae

Discretematerial optimization (DMO)was pioneered bySig-
mund and Torquato [35] and further formalized by Stegmann
and Lund [13,36]. We consider a fiber-reinforced mate-
rial which has a single angle of orientation. For a given
finite element e we consider the optimization variables qe
which are here adopted to represent an interpolated quan-

123

Computational Mechanics (2021) 68:211–227 219

1.0000e-08

1.0000e-06

1.0000e-04

1.0000e-02

1.0000e+00

1.0000e+02

1.0000e+04

0 50 100 150 200 250 300 350

φ
k

k

φ evolution, problems #1 − #4

Problem #1, CG

Problem #1, Current

Problem #2, CG

Problem #2, Current

Problem #3, CG

Problem #3, Current

Problem #4, CG

Problem #4, Current

(a) φk for problems #1 − #4

1.0000e-08

1.0000e-06

1.0000e-04

1.0000e-02

1.0000e+00

1.0000e+02

1.0000e+04

0 100 200 300 400 500 600

φ
k

k

φ evolution, problems #5 − #8

Problem #5, CG

Problem #5, Current

Problem #6, CG

Problem #6, Current

Problem #7, CG

Problem #7, Current

Problem #8, CG

Problem #8, Current

(b) φk for problems #5 − #8

Fig. 4 Evolution of φk with k for the benchmark functions of Table 3

1.0000e-04

1.0000e-03

1.0000e-02

1.0000e-01

1.0000e+00

1.0000e+01

1.0000e+02

1.0000e+03

1.0000e+04

0 50 100 150 200 250 300 350

∇ k

k

‖∇‖ evolution, problems #1 − #4

Problem #1, CG

Problem #1, Current

Problem #2, CG

Problem #2, Current

Problem #3, CG

Problem #3, Current

Problem #4, CG

Problem #4, Current

(a) ‖∇φk‖ for problems #1 − #4

1.0000e-04

1.0000e-03

1.0000e-02

1.0000e-01

1.0000e+00

1.0000e+01

1.0000e+02

1.0000e+03

1.0000e+04

0 100 200 300 400 500 600

∇ k

k

‖∇‖ evolution, problems #5 − #8

Problem #5, CG

Problem #5, Current

Problem #6, CG

Problem #6, Current

Problem #7, CG

Problem #7, Current

Problem #8, CG

Problem #8, Current

(b) ‖∇φk‖ for problems #5 − #8

Fig. 5 Evolution of φk and ‖∇φk‖ with k for the benchmark functions of Table 3

1.0000e-08

1.0000e-06

1.0000e-04

1.0000e-02

1.0000e+00

1.0000e+02

1.0000e+04

0 50 100 150 200 250 300 350

φ
k

k

φ evolution

c = 2

c = 3

c = 5

c = 7

(a) Evolution of φk

1.0000e-04

1.0000e-03

1.0000e-02

1.0000e-01

1.0000e+00

1.0000e+01

1.0000e+02

1.0000e+03

1.0000e+04

0 50 100 150 200 250 300 350

∇ k

k

‖∇‖ evolution

c = 2

c = 3

c = 5

c = 7

(b) Evolution of ‖∇φk‖

Fig. 6 Evolution of φk and ‖∇φk‖ with k for the Rosenbrock problem with c = 2, 3, 5 and 7.

123

220 Computational Mechanics (2021) 68:211–227

1.0000e-08

1.0000e-06

1.0000e-04

1.0000e-02

1.0000e+00

1.0000e+02

1.0000e+04

0 50 100 150 200 250 300 350

φ
k

k

φ evolution

Algorithm 1

Algorithm 2

Algorithm 3

Algorithm 4

(a) Evolution of φk

1.0000e-04

1.0000e-03

1.0000e-02

1.0000e-01

1.0000e+00

1.0000e+01

1.0000e+02

1.0000e+03

1.0000e+04

0 50 100 150 200 250 300 350

∇ k

k

‖∇‖ evolution

Algorithm 1

Algorithm 2

Algorithm 3

Algorithm 4

(b) Evolution of ‖∇φk‖

Fig. 7 Evolution of φk and ‖∇φk‖ with k for the Rosenbrock problem with c = 2, 3, 5 and 7.

1

3Stegmann and Lund

Biased mesh:

Crossed-triangle mesh:

(Consistent Units)

q = 1

E1 = 54

E2 = 18

G12 = 9

ν = 0.25

θ0 = π/4

Orthotropic properties:

Fig. 8 Cantilever beam from Stegmann and Lund [13]

tity we ∈] − 1, 1[. With that goal, we use the parent-domain
coordinates ξ and obtain we as:

we (ξ) = tanh
[
N (ξ) · qe

]
(49)

where N (ξ) is the traditional shape-function vector and ξ are
the parent-domain coordinates. With this notation, we write
the following interpolation:

C(we) =
7∑

k=1

Lk (we) Cαk (50)

withαk = −π
2 +[k−1

6

]
π . In (50), Lk (we)with k = 1, . . . , 7

are Lagrange shape function polynomials and Cαk is given in
plane-stress by:

Cαk = T T
ε (αk)

⎡

⎣
1/E1 −ν12/E1 0

−ν12/E1 1/E2 0
0 0 1/G12

⎤

⎦

−1

T ε(αk) (51)

with T ε (αk) being the strain transformation matrix in Voigt
form:

T ε (αk) =
⎡

⎣
cos2(αk) sin2(αk) cos(αk) sin(αk)

sin2(αk) cos2(αk) − cos(αk) sin(αk)

− sin(2αk) sin(2αk) cos(2αk)

⎤

⎦

(52)

As a side note, Tσ (αk) = [T ε (αk)]−T = [T ε (−αk)]T .
Lagrange shape functions in (50) correspond to a 6−th degree
polynomial:

L (we) =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

1
80 (we − 1)we(3we − 2)(3we − 1)(3we + 1)(3we + 2)
− 9

40 (we − 1)we(we + 1)(3we − 2)(3we − 1)(3we + 1)
9
16 (we − 1)we(we + 1)(3we − 2)(3we − 1)(3we + 2)

1
4

(
4 − w2

e

(
7 − 9w2

e

)2)

9
16 (we − 1)we(we + 1)(3we − 2)(3we + 1)(3we + 2)

− 9
40 (we − 1)we(we + 1)(3we − 1)(3we + 1)(3we + 2)

1
80we(we + 1)(3we − 2)(3we − 1)(3we + 1)(3we + 2)

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

(53)

123

Computational Mechanics (2021) 68:211–227 221

0

1e-06

2e-06

3e-06

4e-06

5e-06

6e-06

7e-06

8e-06

0 20 40 60 80 100

St
ra
in

en
er
gy

[-]

Step number

Cantilever optimization, biased mesh

Gradient, ceq = 0, h2 = 0.025

Heavy ball, ceq = 0.9, h2 = 0.025

Nesterov, c = 3, h2 = 0.025

Nesterov, c = 3, h2 = 0.050

Nesterov, c = 3, h2 = 0.100

(a) Cantilever beam: biased mesh

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

N
or
m
al
iz
ed

st
ra
in

en
er
gy

[-]

Step number

Cantilever optimization, crossed mesh

Gradient, ceq = 0, h2 = 0.025

Heavy ball, ceq = 0.9, h2 = 0.025

Nesterov, c = 3, h2 = 0.025

Nesterov, c = 3, h2 = 0.050

Nesterov, c = 3, h2 = 0.100

(b) Cantilever beam: crossed mesh

Fig. 9 Compliance evolution as a function of the step number

h = 50 mm

p = 1 × 10−4 Nmm−2

h
=
10
00

m
m

h = 1000 mm

E1 = 54 × 103 MPa

E2 = 18 × 103 MPa

E3 = E2

ν = 0.25
G12 = G23 = G13 = 9 × 103 MPa

Lund and Stegmann

F = 1 × 10−3 N (case II)

(case I)

Fig. 10 Square plate: relevant data and results fromLund andStegmann
[36]

This is inserted in the framework discussed above into our
code [18].We omit the finite element technology involved, as
several papers by our group have been published discussing
the details. Note that the derivatives are determined by using
Wolfram Mathematica [33] with the Acegen add-on [34].

5 Numerical testing

5.1 Benchmark test functions

For comparison, we use the Polak–Ribière version [37] of the
nonlinear conjugate-gradient method [25,26] with the same
line-search algorithm adopted in this work. Tolerance for
the gradient norm is here tol = 1 × 10−3 in both meth-
ods. Table 3 shows the number of function evaluations for
8 benchmark problems reported in [16]. In Table 3, the best
values are highlighted in bold. We can observe that our algo-
rithm makes use of fewer function and gradient evaluations

in all problems except problem #6 where much fewer itera-
tions (and hence gradient evaluations) are performed by the
conjugate-gradient method.

The evolution of φk for the 8 problems is shown in Fig. 4
and for ‖∇φk‖ is shown in Fig. 5. We conclude that behav-
ior is clearly excellent for the last part of iteration process,
whereas CG tends to perform better in the beginning. An
exception is problem 6, where CG outperforms the Nes-
terov/Newmark algorithm. For the Rosenbrock problem, we
inspect the effect of c and the integrator. Figure 6 confirms
the advantage of c = 3 with respect to other choices. In addi-
tion, the superiority of the Newmark integrator is confirmed
in Fig. 7, even with respect to the asynchronous original pro-
posal by Nesterov. An advantage of the Nesterov/Newmark
integration algorithm is that line-search is used infrequently,
only at the first iteration and when restarting is flagged. This
is particularly useful for Finite Element analysis, since the
cost of the objective function evaluation can be nearly as high
as the gradient.

5.2 Verification examples: optimization of fiber
orientations

We first assess the robustness of the algorithm using solely
fiber orientations. The first test is the cantilever beam by
Stegmann and Lund [13]. Orthotropic properties and plane-
stress conditions are considered, with the relevant properties
shown in Fig. 8. In this figure we also show the results from
Stegmann and Lund for comparison.

Figure 9 shows the results for the evolution of the strain
energy as a function of the step number. Stegmann and
Lund mention 100 iterations for convergence, and it can be
observed that much fewer steps/iterations are required in our
algorithm. We can conclude the following:

123

222 Computational Mechanics (2021) 68:211–227

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z X

Y

Z

80 × 80 × 1 elements

20 × 20 × 1 elements

40 × 40 × 1 elements

Simply supported Clamped

Uniform load

Fig. 11 Square plate under uniform pressure: orientation results as a function of mesh density

• The heavy ball version with c = 0.9 presents faster con-
vergence than the standard gradient-based optimization.

• Nesterov implementation always outperforms the other
two algorithms.We note that with h2 = 0.1 only 20 steps
are sufficient for a converged solution, in contrast with
the 100 steps reported in [13].

Using a square plate, see Fig. 10, we inspect the effect
of the algorithm for the clamped boundary (represented
in Fig. 10) and the simply-supported boundary for the
two load cases represented in Fig. 10. This example is
described in [15,36]. For simplicity, we here adopt the stan-
dard displacement-based H8 hexahedron element, which is
known to lock in shear. However, thickness is here 5% of the
plate width, which is favorable for our analysis. We test both
linear and nonlinear versions of this problem.

One-quarter of the plate is adopted, with up to 80×80×1
elements, which produces much higher resolution than in
Lund and Stegmann [36]. For the two load cases and the two
boundary conditions, the fibers are shown in Fig. 11 for the
uniform pressure and in Fig. 12 for the point load. Conver-
gence of the strain energy is shown in Fig. 13. The heavy ball
algorithmclearly outperforms the standardgradient approach
and Nesterov’s algorithm converges much faster, even with
small values of h2. In addition, lower values of the strain
energy are reached, with slightly different solutions near the
center of the plate.

For the clamped with uniform pressure, we assess the
effect of nonlinearities in thefiber distribution. For that objec-
tive we use a Kirchhoff/Saint-Venant (orthotropic) strain
energy density function, ψ(u,q) = 1/2ET ·Cαk · E where E
is the Green-Lagrange strain. In addition, only one load-step

123

Computational Mechanics (2021) 68:211–227 223

X

Y

Z X

Y

Z

X

Y

Z X

Y

Z

X

Y

Z X

Y

Z

Simply supported Clamped

Point load

20 × 20 × 1 elements

80 × 80 × 1 elements

40 × 40 × 1 elements

Fig. 12 Square plate under point load: orientation results as a function of mesh density

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 100 200 300 400 500

N
or
m
al
iz
ed

st
ra
in

en
er
gy

[-]

Step number

Square plate, simply supoorted, point load

Gradient, ceq = 0, h2 = 0.100

Heavy ball, ceq = 0.9, h2 = 0.100

Nesterov, c = 3, h2 = 0.050

Nesterov, c = 3, h2 = 0.100

(a) Simply supported plate, point load.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 100 200 300 400 500

N
or
m
al
iz
ed

st
ra
in

en
er
gy

[-]

Step number

Square plate, clamped, point load

Gradient, ceq = 0, h2 = 0.100

Heavy ball, ceq = 0.9, h2 = 0.100

Nesterov, c = 3, h2 = 0.050

Nesterov, c = 3, h2 = 0.100

(b) Clamped plate, point load.

Fig. 13 Strain energy evolution as a function of the step number. Plate under point load

123

224 Computational Mechanics (2021) 68:211–227

X Y

Z

X Y

Z

X Y

Z

X Y

Z

p = 1 N/mm2
p = 10 N/mm2

p = 100 N/mm2 p = 1000 N/mm2

Fig. 14 Geometrically nonlinear fiber distribution. Unmagnified configurations

0.00000001

0.00000010

0.00000100

0.00001000

0.00010000

0.00100000

0.01000000

0.10000000

1.00000000

10.00000000

0 50 100 150 200

N
or
m
al
iz
ed

st
ra
in

en
er
gy

[-]

Step number

Square plate, clamped, uniform pressure

p = 1 N/mm2

p = 10 N/mm2

p = 100 N/mm2

p = 1000 N/mm2

Fig. 15 Geometrically nonlinear case: Normalized strain energy evo-
lution as a function of the optimization step number and the imposed
pressure

is employed. The configurations of fiber distributions using
the deformed mesh are shown in Fig. 14. Upper and lower
fiber orientations are distinct sincemembrane strains are now
significant. We normalized the strain energy sensitivity to
allow for changes in each state solution stage. This allows
for very fast convergence, as depicted in Fig. 15. Higher val-
ues of pressure result in higher stiffening effect and stronger
decrease in strain energy.

We now present a generalization to shells. With the goal
of exhibiting the capability of our time-integration algorithm
in this case, a pressure vessel is considered. Dimensions and
constitutive properties are presented in Fig. 16. Tensor trans-

formation is adopted to orient the directions to be tangent to
the outer surface.Optimizedfiber orientation can be observed
in the same Figure. A concentric distribution of fibers can
be observed in the shell end cap (head) and in the cylin-
drical surface a crossed pattern is obtained. Near the cap,
a transition zone is observed where the fibers become lon-
gitudinally aligned. For this problem, two values of h2 are
adopted: h2 = 0.5, 1. From the observation of Fig. 17a, we
can conclude that the Nesterov’s algorithm converges much
faster, even with small values of h2. Attempts to match the
performance of Nesterov’s algorithm by the gradient or the
heavy ball algorithms with higher values of h2 result in insta-
bility, see Fig. 17b.

6 Conclusions

In this work, we proposed a time-step integration based on
an explicit Newmark method for the application of Nes-
terov’s minimization algorithm in engineering applications.
This allows the use of time-integration in a classical FE code
to perform optimization. Stability analysis, benchmark test
functions and careful assessment of all options were per-
formed. Optimization of fiber orientations was carried out
with this alternative method, including the geometrically
nonlinear case. For that, a variant of DMO ([13,36]) design
variable definitionwas used.A complete assessmentwas pre-
sented and the new method consistently outperformed the

123

Computational Mechanics (2021) 68:211–227 225

Fig. 16 Cylinder under
pressure: geometry, relevant
elastic properties and boundary
conditions

Y

Z X

Y

Z X

(only one-quarter of the shell is modeled)

Fiber orientation obtained by time-stepping

E1 = 54 × 103 MPa
E2 = 18 × 103 MPa
E3 = E2
ν = 0.25
G12 = G23 = G13 = 9 × 103 MPa

p

R = 0.25

0.0125

0.025

0.
8

(m)

7.5000e-01

8.0000e-01

8.5000e-01

9.0000e-01

9.5000e-01

1.0000e+00

1.0500e+00

0 100 200 300 400 500

N
or
m
al
iz
ed

st
ra
in

en
er
gy

[-]

Step number

Cylinder under pressure

Gradient, ceq = 0, h2 = 0.500

Gradient, ceq = 0, h2 = 1.000

Heavy ball, ceq = 0.9, h2 = 0.500

Heavy ball, ceq = 0.9, h2 = 1.000

Nesterov, ceq = 3, h2 = 0.500

Nesterov, ceq = 3, h2 = 1.000

(a) Comparison between gradient method, heavy ball and
Nesterov

7.0000e-01

8.0000e-01

9.0000e-01

1.0000e+00

1.1000e+00

1.2000e+00

1.3000e+00

1.4000e+00

0 100 200 300 400 500

N
or
m
al
iz
ed

st
ra
in

en
er
gy

[-]

Step number

Cylinder under pressure

Nesterov, ceq = 3, h2 = 1.000

Gradient, ceq = 0, h2 = 8.000

Heavy ball, ceq = 0.9, h2 = 8.000

(b) Attempt to match Nesterov descent performance with
large values of h2 in classical methods

Fig. 17 Strain energy evolution as a function of the step number for three methods (gradient, heavy ball and Nesterov). Cylinder under pressure

existing gradient, heavy ball and vanilla conjugate-gradient
methods in classical benchmarks and converges faster than
gradient and heavy ball methods in the fiber optimization
application. Source code for the benchmark tests is available
in Github [29].

Acknowledgements Thefirst author acknowledges the support of FCT,
through IDMEC, under LAETA, Project UIDB/50022/2020. The first

author would like to thank Professor Leonel Fernandes at IST for the
outstanding insight concerning time integration algorithms.

Appendix

See Table 4.

123

226 Computational Mechanics (2021) 68:211–227

Table 4 First order amplification matrices (using Hughes terminology [24]) for four ODE explicit integrators

Algorithm Amplification matrix C

Explicit Newmark:

[
1 − h̃2

2 h̃ − h̃2ξ
h̃
(̃
h2−4

)

4h̃ξ+4
(h̃−2)(̃hξ−1)

2h̃ξ+2

]

Explicit Newmark with predictor:

⎡

⎣
2h̃(ξ−h̃)+2

−h̃2+(h̃2+2)ξ h̃+2

2h̃
(̃
h2−ξ h̃−1

)
(̃hξ−1)

−h̃2+(h̃2+2)ξ h̃+2
h̃
(̃
h2−1

)

−h̃2+(h̃2+2)ξ h̃+2
− h̃

2h̃ξ+2
− 2

(̃
h2−1

)(̃
h2−ξ h̃−1

)
(̃hξ−1)

(̃hξ+1)(−h̃2+(h̃2+2)ξ h̃+2)

⎤

⎦

Explicit asynchronous:

[
1 − 2h̃ξ −h̃
h̃ − 2h̃2ξ 1 − h̃2

]

Explicit asynchronous with predictor:

[
2ξ h̃3 − h̃2 − 2ξ h̃ + 1 −h̃
2ξ h̃4 − h̃3 − 2ξ h̃2 + h̃ 1 − h̃2

]

References

1. Nesterov Y (1983) A method of solving a convex program-
ming problem with convergence rate ©(1/k2). Sov Math Dokl
27(2):372–376

2. Polyak BT (1964) Some methods of speeding up the convergence
of iteration methods. USSR Comput Math Math Phys 4(5):1–17

3. NesterovY (2004) Introductory lectures on convex optimization. A
basic course, Applied optimization. Kluwer Academic Publishers,
Boston

4. Su W, Boyd S, Candès EJ (2016) A differential equation for mod-
eling Nesterov’s accelerated gradient method: theory and insights.
J Mach Learn Res 17:1–43

5. Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for
solving linear systems. J Res Natl Bureau Stand 49:409–436

6. Karimi S, Vavasis SA (2016) A unified convergence bound for
conjugate gradient and accelerated gradient

7. Drori Y, Taylor AB (2020) Efficient first-order methods for con-
vex minimization: a constructive approach. Math Programm Ser A
184:183–220

8. Sutskever I,Martens J, Dahl G, HintonG (2013) On the importance
of initialization andmomentum in deep learning. In: ICML’13 pro-
ceedings of the 30th international conference on machine learning,
volume 28, pp III-1139–III-1147

9. Carlon AG, Dia BM, Espath L, Lopez RH, Tempone R (2020)
Nesterov-aided stochastic gradient methods using Laplace approx-
imation for Bayesian design optimization. Comput Method Appl
Mech Eng 363:112909

10. Donoghue BO, Candès E (2015) Adaptive restart for accelerated
gradient schemes. Found Comput Math 15:715–732

11. Schneider M (2017) An fft-based fast gradient method for elastic
and inelastic unit cell homogenization problems. Comput Method
Appl Mech Eng 315:846–866

12. Newmark NM (1959) A method of computation for structural
dynamics. J Eng Mech Div 85(EM3):67–94

13. Stegmann J, Lund E (2005) Discrete material optimization of
general composite shell structures. Int J Numer Methods Eng
62:2009–2027

14. Lund E (2018) Discrete material and thickness optimization of
laminated composite structures including failure criteria. Strut
Multidisc Optim 57:2357–2375

15. Hvejsel CF, Lund E, Stolpe M (2011) Optimization strategies
for discrete multi-material stiffness optimization. Strut Multidisc
Optim 44:149–163

16. Moré JJ, Garbow BS, Hillstrom KE (1981) Testing unconstrained
optimization software. ACM Trans Math 7(1):17–41

17. Fazlyab M, Robey A, Hassani H, Morari M, Pappas G (2019) Effi-
cient and accurate estimation of Lipschitz constants for deep neural
networks. In: Wallach H, Larochelle H, Beygelzimer A, dAlché F,
Fox E, Garnett R (eds) Advances in neural information processing
systems. Curran Associates, Red Hook, pp 11427–11438

18. Areias P. Simplas. http://www.simplassoftware.com. Portuguese
Software Association (ASSOFT) registry number 2281/D/17

19. Fiacco AV, McCormick GP (1968) Nonlinear programming:
sequential unconstrained minimization techniques. Wiley, New
York. Reprinted by SIAM Publications in 1990

20. Apostol TM (1967) Calculus, vol 1, 2nd edn. Wiley, New York, p
443

21. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements
for continua and structures. Wiley, New York

22. Meirovitch L (2001) Fundamentals of vibrations.Mechanical engi-
neering series. McGraw-Hill International, New York, NY

23. Clough RW, Penzien J (2003) Dynamics of structures, 3rd edn.
Computers & Structures Inc, Berkeley, CA

24. HughesTJR (2000)Thefinite elementmethod.Dover Publications.
Reprint of Prentice-Hall edition 1987

25. Gilbert JC, Nocedal J (1992) Global convergence properties of
conjugate gradient methods for optimization. SIAM J Optim
2(1):21–42

26. Nocedal J, Wright S (2006) Numerical optimization. Series oper-
ations research. Springer, Berlin

27. Dai Y, Yuan J, Yuan Y-X (2002)Modified two-point stepsize gradi-
ent methods for unconstrained optimization. Comput Optim Appl
22:103–109

28. Barzilai J, Borwein JM (1988) Two-point step size gradient meth-
ods. IMA J Numer Anal 8:141–148

29. Areias P (2020) Nesterov/Newmark optimizer at IST. https://
github.com/PedroAreiasIST/NesterovNewmark

30. Gavrilovic M, Petrovic R, Siljak D (1963) Adjoint method in sen-
sitivity analysis of optimal systems. J Frankl Inst Eng Appl Math
276(1):26

31. Byrne CL (2013) Alternating minimization as sequential uncon-
strainedminimization: a survey. JOptimTheoryAppl 156:554–566

32. Wriggers P (2008) Nonlinear finite element methods. Springer,
Berlin

33. WolframResearch, Inc., Mathematica, Version 9.0, Champaign, IL
(2012)

34. Korelc J (2002) Multi-language and multi-environment generation
of nonlinear finite element codes. Eng Comput 18(4):312–327

35. Sigmund O, Torquato S (1997) Design of materials with extreme
thermal expansion using a three-phase topology optimization
method. J Mech Phys Solids 45(6):1037–1067

123

http://www.simplassoftware.com
https://github.com/PedroAreiasIST/NesterovNewmark
https://github.com/PedroAreiasIST/NesterovNewmark

Computational Mechanics (2021) 68:211–227 227

36. LundE,Stegmann J (2005)On structural optimizationof composite
shell structures using a discrete constitutive parametrization. Wind
Energy 8:109–124

37. Polak E, Ribière G (1969) Note sur la convergence de méthodes de
directions conjuguées. Rev Française Informat Recherche Opéra-
tionelle 1(3):35–43

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	An engineering interpretation of Nesterov's convex minimization algorithm and time integration: application to optimal fiber orientation
	Abstract
	1 Introduction
	1.1 Context
	1.2 The original algorithm

	2 Equivalent differential equation and insight on Nesterov's algorithm
	3 Algorithm
	4 Adjoint variable method and application to fiber-reinforced laminae
	4.1 Case I: state is linear in x
	4.2 Case II: state is nonlinear in x
	4.3 Discretization and specialization to compliance
	4.4 Specialization for the strain energy function
	4.5 Application to fiber-reinforced laminae

	5 Numerical testing
	5.1 Benchmark test functions
	5.2 Verification examples: optimization of fiber orientations

	6 Conclusions
	Acknowledgements
	Appendix
	References

