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Abstract
The identification of nonhomogeneous elastic property distributions has been traditionally achieved with well acknowledged 
optimization based inverse approaches, but when full-field displacement measurements are available, the virtual fields method 
(VFM) can be computationally more efficient by converting the large-scale optimization problem into multiple small-scale 
optimization problems. A possible downside of the VFM so far was not to take into account prior knowledge, which is often 
available and needed when there is a very large number of unknowns and the inverse problem is ill-posed. In this work, 
different approaches are proposed for introducing regularization into the VFM, aiming to penalize the local variations of 
identified stiffness properties in order to reduce the effects of uncertainty in the inverse problem resolution. The feasibility 
and accuracy of the regularized VFM are tested through several numerical and experimental datasets. It is shown that the 
main advantage of the novel VFM approaches is the low computational cost, as large-scale inverse problems with 10,000 
unknown parameters can be solved within several seconds using a standard personal computer. Although the regularized 
VFM can successfully detect a stiff inclusion in a soft solid with high accuracy, regularization also introduces unexpected 
spurious effects in the results, blurring the interface between soft and stiff regions. We also observed that the regularization 
did not improve the smoothness significantly due to local effects of the small-scale optimization problem introduced in the 
proposed VFM method. Therefore, traditional regularization, which penalizes local variations of identified stiffness prop-
erties, can be combined with the VFM to solve inverse problems with a high computational efficiency, but supplemental 
regularization conditions will need to be adapted in the future to better delineate soft-stiff interfaces with this methodology.

Keywords  Nonhomogeneous elastic property distribution reconstruction · Virtual fields methods (VFM) · Regularization · 
Inverse problem

1  Introduction

The advancement of full-field measurement techniques in 
solid mechanics is a source of numerous inverse problems 
arising from the identification of material properties and of 

their spatial variations [1–4]. A robust way to solve inverse 
problems in elasticity is to introduce constrained optimiza-
tion problems based on the deviation between measurements 
and model predictions, and solve them iteratively [5–10]. 
In this case, there are a large number of parameters to be 
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identified in the inverse problem. The total number of the 
optimization parameters is correlated with the mesh of the 
discretized problem domain. Due to the large number of the 
optimization parameters, the computational cost of optimi-
zation-based inverse problems is considerable. To identify 
the nonhomogeneous linear elastic property distribution of 
solids, an alternative is to explicitly express the linear elastic 
property in terms of the stress and strain and directly solve 
elastic properties of every element [11, 12]. Similar to the 
iterative inverse solvers, the computational cost of direct 
resolution methods depends on the number of unknown 
material properties defined in the discretization.

In 1989, a novel parameter identification method was pro-
posed, referred to as the virtual fields method (VFM) [13]. 
This approach is based on the principle of the virtual work 
or principle of virtual power. Compared to the optimization-
based approaches, the VFM does not require solving the 
inverse problem iteratively but relies on the selection of vir-
tual fields to establish a system of equations involving the 
unknown material properties. Therefore, the computational 
cost can be significantly reduced. Due to this merit, the VFM 
has been applied to the characterization of a wide range of 
constitutive behaviors, including linear elasticity [14, 15], 
hyperelasticity [16, 17] or plasticity [18, 19]. Besides, the 
VFM has also been used to estimate the nonhomogeneous 
distribution of material properties in solids [20–23]. In [23], 
the authors proposed novel types of virtual fields to estimate 
the shear moduli of nonhomogeneous, incompressible linear 
elastic solids assuming that every nonhomogeneous region 
is known as a priori. In [20], the authors approximated the 
nonhomogeneous shear modulus distribution by the Fou-
rier series and successfully estimated the shear modulus 
distribution. However, when there is a very large number 
of unknowns and the inverse problem becomes ill-posed, it 
may be needed to take into account prior knowledge about 
the material properties. For instance, it can be assumed that 
material properties remain within a given bounded interval 
or that the spatial variations of material properties cannot 
induce gradients larger than a given threshold. The downside 
of the VFM so far was not to take into account this prior 
knowledge. Regularization was always achieved by decreas-
ing the number of unknowns, for instance, by tuning the 
degree of Fourier polynomials in [20].

In this work, novel inverse approaches introducing regu-
larization methods into the VFM are proposed in order to 
ensure the uniqueness and convergence of the inverse prob-
lem resolution. This paper is organized as follows: In the 
Methods Section, we present the mathematical aspects of the 
proposed regularized VFM. In the Results Section, several 
simulated and experimental displacement datasets of nonho-
mogeneous elastic solids are used to test the feasibility of the 
proposed method. Subsequently, the proposed method and 
identification results are discussed in the Discussion Section. 

Finally, a summary of the salient results and of future direc-
tions is provided in the Conclusion Section.

2 � Methods

2.1 � Identification of spatially varying stiffness 
properties with the VFM

For a domain of interest Ω across a solid at equilibrium in 
a quasi-static state, the principle of virtual work neglecting 
the body force may be written as:

for any kinematically admissible u* where � is the actual 
stress tensor computed related to the strain tensor � through 
constitutive equations. The strain components are calculated 
from gradients of the measured displacement field � and � 
is the traction vector field applied on the traction bound-
ary �Ωt . �∗ and �∗ are the kinematically admissible virtual 
displacement field and the associated virtual strain field, 
respectively.

For the sake of simplicity in developing the first version 
of the regularized VFM, we consider 2D solids in plane 
strain, but the method can easily extend to 3D. In plane 
strain, the linear elastic constitutive equations may be writ-
ten such as:

for any kinematically admissible u* where E is the Young’s 
modulus and � the Poisson’s ratio. It is generally assumed 
that the Poisson’s ratio v is known a priori [20–23], which 
significantly simplifies further derivations. This simpli-
fication is especially admitted for nearly incompressible 
materials.

To identify the nonhomogeneous distribution of the 
Young’s modulus E, the domain of interest is discretized 
with a finite-element mesh and it is assumed that E is con-
stant across each element as shown in Fig. 1.

For any arbitrary element in the discretized domain 
(Fig. 1), equilibrium can be represented through the free 
body diagram (Fig. 1b). For a single element, the principle 
of virtual work may be written such as,

where Ωe and �Ωe
t
 are the area and the contour of the ele-

ment, respectively. In this case, � are the reaction forces 
from neighboring elements, which are unknown. A classical 

(1)−∫Ω

� ∶ �
∗dV + ∫

�Ωt

� ⋅ �
∗dS = 0

(2)� =
E

(1 + �)
� +

E�

(1 + �)(1 − 2�)
tr(�)�

(3)−∫Ωe

� ∶ �
∗dS + ∫

�Ωe
t

� ⋅ �
∗dl = 0
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approach in the VFM is to cancel out these unknown reac-
tion forces by satisfying the following equation:

However, this automatically zeroes the external virtual 
work, and so does the internal virtual work, Eq. (3) being 
reduced to:

It is not possible to estimate the Young’s modulus in this 
case since Eq. (5) holds for any value of Young’s modulus.

To avoid this caveat, we can consider equilibrium across 

a domain defined by two neighboring elements, as shown 
in Fig. 1c and apply the principle of virtual work with the 
following virtual displacement field:

(4)�
∗= � on �Ωe

(5)∫Ωe

(
E

(1 + �)
� +

E�

(1 + �)(1 − 2�)
tr(�)�

)
∶ �

∗dS = 0

The proposed virtual displacement field vanishes all 
the unknown tractions on the entire boundary of these two 
neighboring elements. Furthermore, this virtual displace-
ment field yields the following the virtual strain field:

Therefore, Eq. (3) can be reduced to:

Eventually, the relationship between the Young’s mod-
uli of the two elements can be written as:

(6)

{
u∗
x
= 0

u∗
y
= (x − xa)(x − xb)(y − ya)(y − yb)

(7)

𝜀
⋆

xx
= 0

𝜀
⋆

yy
= (x − xa)(x − xb)(2y − ya − yb)

𝜀
⋆

xy
= (y − ya)(y − yb)(2x − xa − xb)∕2

(8)∫Ω1

�22(x − xa)(x − xb)(2y − ya − yb)dxdy + ∫Ω1

�12(y − ya)(y − yb)(2x − xa − xb)dxdy+

∫Ω2

�22(x − xa)(x − xb)(2y − ya − yb)dxdy + ∫Ω2

�12(y − ya)(y − yb)(2x − xa − xb)dxdy = 0

Fig. 1   a Discretization of the 
domain of interest across which 
the inverse problem is defined; 
b–d are the free body diagrams 
of the elements in the discre-
tized domain

Fig. 2   A illustration of two neighbouring elements
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If the Young’s modulus value is known for one element, 
the Young’s modulus value of the other element can be 
directly derived. This principle can be applied sequen-
tially to each pair of elements, starting from the bound-
ary. Scanning towards the interior enables the sequential 
identification of all the unknown moduli. For the sake of 
convenience, the direct VFM method is called the “DI” 
method in the following.

Remark 1  In Eq. (6), ux rather than uy  is set to zero every-
where in Ω1 ∪ Ω2 . This is due to the fact that compression is 
applied in the y direction, as shown in Fig. 1a. This induces 
that the normal stress component in x direction is almost 
zero. If uy was also zero, both the numerator and denomina-
tor in Eq. (9) would be almost zero.

2.2 � Identification of spatially varying stiffness 
properties with the VFM using “local” 
regularization

The VFM approach introduced in the previous subsection 
is equivalent to a double differentiation of the original dis-
placement data along the y direction. Since noise always 
exists in the measurements, it can be dramatically amplified 
through this approach. In order to overcome this issue, we 
introduce a regularization term by defining the following 
cost function:

(9)E2 = −E1

∫
Ω1

[(
�yy

1+�
+

�(�xx+�yy)
(1+�)(1−2�)

)
(x − xa)(x − xb)(2y − ya − yb) +

�xy

1+�
(y − ya)(y − yb)(2x − xa − xb)

]
dxdy

∫
Ω2

[(
�yy

1+�
+

�xx+�yy

(1+�)(1−2�)

)
(x − xa)(x − xb)(2y − ya − yb) +

�xy

1+�
(y − ya)(y − yb)(2x − xa − xb)

]
dxdy

where the second term, i.e. the regularization term, is sup-
posed to reduce the spurious effects mentioned previously, 
and l12 is the length of the interface between two neighboring 
elements as presented in Fig. 2.

In Eq. (10), we adopt the total variation diminishing 
(TVD) regularization approach. Unlike [7, 24], the TVD 
regularization is a discrete form since material properties 
are assumed to be constant across each element and discon-
tinuous at the interface between neighboring elements. The 
detailed derivation of the discrete TVD regularization can 
be found in "Appendix".� is the regularization factor con-
trolling the significance of the regularization. The larger the 
regularization factor, the smoother the identification results. 
As the regularization factor for each small-scale optimiza-
tion problem will not make significant influence on the final 
reconstructed material property map, we always sought 
for optimal regularization factors within a range of small 
values (0–0.1) and determined the optimal regularization 
factor based on the standard deviation of the reconstructed 
Young’s modulus distribution in a subregion of the back-
ground. For the sake of convenience, this regularized VFM 
method solved by the optimization method is called “OP” 
method in the following.

Since material properties can be explicitly expressed 
by the stress and strain for the linear elastic model, we can 
rewrite the cost function (10) such as:

where a is the integral at the denominator in Eq. (9) and b is 
the associated integral at the numerator. To find the global 
minima, we have d�∕dE2 = 0 yielding:

Thus, this identification problem can be solved by the 
explicit method even in the presence of the regularization 
term in the cost function. For the sake of convenience, this 
method is called “EX” method in the following.

(10)�
�
E2

�
=

⎛⎜⎜⎝∫Ω1

�ij�
∗
ij
dS + ∫

Ω2

�ij�
∗
ij
dS

⎞⎟⎟⎠

2

+ �l12
��E2 − E1

��

(11)�
(
E2

)
=
(
aE2 + bE1

)2
+�l12

||E2 − E1
||

(12)
E2 = −

b

a
E1 −

𝛼l12

2a2
if E2 ≥ E1

E2 = −
b

a
E1 +

𝛼l12

2a2
if E2 < E1

Fig. 3   The flow chart of numerical testing for the proposed VFM 
approach
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Remark 2  Though the EX method is derived from the cost 
function (10), EX and OP methods are not equivalent since 
the global minima can be acquired in EX method. In the OP 
method, the global minima might not be ensured by the opti-
mization scheme. Besides, in OP method, the bound of the 
optimization parameters can be easily set to ensure that the 
Young’s modulus can be varied within a reasonable range, 
while EX method is an unbounded method.

2.3 � Identification of material properties 
on the boundary

To identify the Young’s modulus on the boundary (see 
Fig. 1d), we can adopt special virtual field written such as:

where �Ωe
t
 is the boundary of the element where tractions 

are applied. For instance, if we choose an element on the 

(13)�
∗= � on �Ωe��Ωe

t

Fig. 4   The reconstructed 
Young’s modulus distribution 
of the layered structure with 
different noise levels using the 
DI method

Fig. 5   The reconstructed 
Young’s modulus distribution 
of the layered structure with 
different noise levels using the 
OP method
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traction boundary as shown Fig. 1d, the prescribed virtual 
field can be chosen as

Substituting Eq. (14) into Eq. (3), the Young’s modulus 
can be obtained by:

Thereby, the Young’s moduli of each element on the 
traction boundary can be estimated by Eq. (15). For the OP 
method, the cost function of the element on the traction 
boundary is given by:

With the obtained Young’s moduli of the element on the 
traction boundary, we can scan from the boundary to the 
interior and identify sequentially all the unknown moduli.

2.4 � Effect of unknown boundary conditions

For many biomedical imaging techniques, it is almost 
impossible to obtain the non-zero traction or force boundary 
information. In this case, the material property can merely 
be mapped relatively up to a multiplicative factor. For the 
proposed inverse approach, we can set the Young’s modulus 
of one element to be equal to one, start to solve the relative 
Young’s moduli of its neighboring elements and keep this 

(14)

{
u∗
x
= 0

u∗
y
= (x − xa)(x − xb)(y − yb)

(15)E =
∫
�Ωe tiu

∗
i
dl

∫
Ωe �ij(E = 1)�∗

ij
dS

(16)�(E)=

(
∫Ω1

�ij�
∗
ij
dS − ∫

�Ωe

tiu
∗
i
dl

)2

Fig. 6   The reconstructed 
Young’s modulus distribution 
of the layered structure with 
different noise levels using the 
EX method

Table 1   Relative error in the identified Young’s moduli of the three 
layers in Fig. 4

Note that the relative error is defined as ����Ne∑
i=1

(E − Etarget)2

�
Ne∑
i=1

(Etarget)2 × 100% where E is the recovered 

Young’s modulus value, Etarget is the target Young’s modulus value 
and Ne is the total number of elements.

Relative error (%) 0% noise 0.1% noise 0.3% noise 0.5% noise

Top layer 1.21 1.74 4.42 7.35
Middle layer 9.11 15.68 57.96 78.74
Bottom layer 7.72 41.69 83.02 84.93

Table 2   Relative error in the identified Young’s moduli of the three 
layers in Fig. 5

Relative error (%) 0% noise 0.1% noise 0.3% noise 0.5% noise

Layer1 1.10 0.00 0.00 4.27
Layer2 8.99 21.06 79.20 76.62
Layer3 7.60 38.99 79.84 85.03

Table 3   Relative error in the identified Young’s moduli of the three 
layers in Fig. 6

Relative error (%) 0%noise 0.1%noise 0.3%noise 0.5%noise

Layer1 1.21 1.74 4.42 7.34
Layer2 9.11 15.68 61.59 81.83
Layer3 7.72 41.69 78.07 83.80
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procedure until the Young’s moduli of all the elements are 
obtained. To this end, the elastic property distribution can be 
recovered relatively to an unknown multiplicative constant.

Remark 3  It can be seen that the proposed iterative inverse 
method converts a large-scale optimization problem into 
multiple small-scale optimization problems. Thus, the solu-
tion to the inverse problem becomes unique, and the compu-
tational time is significantly reduced. Moreover, since there 
are merely several optimization parameters in each small-
scale optimization problem, the convergence can be remark-
ably improved.

Remark 4  It should be noted that the proposed VFM method 
merely satisfies the local equilibrium, but it does not rigor-
ously satisfy the global equilibrium. However, the obtained 
stress fields deviate of less than 10% from the target stress 
fields, demonstrating only small deviations from the global 
equilibrium.

To test the feasibility and performance of the proposed 
method, we will first utilize simulated data to test the pro-
posed inverse approach. The flow chart of the testing proce-
dure is shown in Fig. 3. Subsequently, we utilize the experi-
mental data to test the feasibility of the proposed method. 

Fig. 7   The reconstructed 
Young’s modulus distribution of 
the structure with different noise 
levels using the DI method

Fig. 8   The reconstructed 
Young’s modulus distribution of 
the structure with different noise 
levels using the OP method
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For the simulated testing, we add noise into the simulated 
displacement data. The noise level is defined as:

(17)noise level =

����
∑NN

i=1

�
ui − ui

�2
∑NN

i=1
u
2

i

× 100%

where  u
i
 and ui are the noisy and exact nodal displacements, 

respectively. NN is the total number of nodes in the discre-
tized domain.

3 � Results

3.1 � Synthetic data

3.1.1 � Reconstruction of a three‑layered structure

In the first example, we attempt to identify the elastic prop-
erty distribution of a layered structure. The layered structure 
consists of three layers with different material properties. 
The Young’s moduli of each layer are 1 MPa, 3 MPa and 
6 MPa from the top layer to the bottom layer, respectively. 
The Poisson’s ratio is set to 0.3 throughout the domain of 
interest and we assume it is known. The measured displace-
ment is acquired by finite element simulation. The domain 
of interest is discretized by 100 by 100 elements with 10,000 
unknown elastic parameters. In the forward problem used 
to generate the simulated displacement field, we applied 
traction on the top edge to induce 1% compression and 
restricted the vertical motion of the bottom edge. To avoid 
rigid body motion, we fixed the center point on the bottom 
edge. In the inverse problem, we scan the shear moduli from 
the elements on the top boundary to those on the bottom. 
The associated reconstructed results are shown in Fig. 4. 
We firstly employ the DI method. From the reconstructed 
results shown in Fig. 4, we observe that when there is no 
noise in the dataset, the DI method is capable of yielding 

Fig. 9   The reconstructed 
Young’s modulus distribution of 
the structure with different noise 
levels using the EX method

Table 4   Relative error in the identified Young’s moduli of the inclu-
sions in Fig. 7

Relative error (%) 0% noise 0.1% noise 0.3% noise 0.5% noise

Left inclusion 20.90 26.48 75.23 82.46
Right inclusion 20.90 24.42 65.75 80.87

Table 5   Relative error in the identified Young’s moduli of the inclu-
sions in Fig. 8

Relative error (%) 0% noise 0.1% noise 0.3% noise 0.5% noise

Left inclusion 20.84% 25.69% 75.11% 82.89%
Right inclusion 20.83% 18.56% 65.68% 80.63%

Table 6   Relative error in the identified Young’s moduli of the inclu-
sions in Fig. 9

Relative error (%) 0%noise 0.1%noise 0.3%noise 0.5%noise

Left inclusion 20.74 26.34 75.94 82.18
Right inclusion 20.74 24.30 65.75 80.85
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the exact distribution. The slight artifacts at the corner of the 
layers are due to the numerical noise when computing the 
strain field. When we add noise into the displacement data, 
we observe that the strong artifacts occur in the middle and 
bottom layers. Nevertheless, we are still capable of delimit-
ing each layer and estimating the thickness of each layer with 
high accuracy when the noise level is less than 0.5%. When 
the noise level is 0.5%, the interface between the middle and 
bottom layers is not very clear.

Sequentially, we utilize the OP method and the cor-
responding reconstructed elastic property distribu-
tion is presented in Fig.  5. In this case, the BFGS 

(Broyden–Fletcher–Goldfarb–Shanno) method, a quasi-
Newton method, was employed in the optimization scheme 
and the bounds of the optimized Young’s modulus were 
[0.1 MPa, 12 MPa]. The same setting was also utilized in 
the following numerical examples in the OP method. It can 
be seen that the reconstructed elastic property distribution 
is mapped well when the noise level is not larger than 0.1%. 
However, the interfaces between the middle and bottom lay-
ers are poorly identified in the presence of higher than 0.1% 
noise.

Finally, we utilize the EX method to solve the same prob-
lem. The regularization factor utilized in this case is very 

Fig. 10   The reconstructed 
Young’s modulus distribution of 
the structure with different noise 
levels using the DI method

Fig. 11   The reconstructed 
Young’s modulus distribution of 
the structure with different noise 
levels using the OP method
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small. Similar to the previous two methods, the modulus 
distribution is mapped well when the noise level is less than 
0.1% (see Fig. 6). When the noise level increases, the top 
two layers can still be delimitated clearly, while the bottom 
two layers are not.

From all the reconstructed results for the layered structure 
and relative error tables from Tables 1, 2 and 3, we observed 
that the top layer was generally reconstructed better than the 

other two layers. This was probably related to the fact that 
we scanned from top to bottom. The error in the recovered 
Young’s moduli accumulated from the top elements to the 
bottom ones.

3.1.2 � Reconstruction of the structure with inclusions

In the second example, we tested the feasibility and perfor-
mance of the proposed inverse approach by a case where 
there were inclusions embedded in the problem domain. We 
first tested a case with two circular inclusions in the domain 
as shown in Fig. 7a. In this case, we assumed the target 
Young’s modulus was 5 MPa and the Poisson’s ratio was 
0.3 throughout the domain of interest. We still assumed that 
the Poisson’s ratio was known a priori. Similar to the previ-
ous case, we applied the uniform compression on the top 
surface, and restricted the motion in the vertical direction of 
the bottom edge. To prevent the rigid body motion, we fixed 
the middle point of the bottom edge. The domain of interest 
was discretized by 100 × 100 elements.

The reconstructed results (see Fig. 7) with the DI method 
indicate that with small noise level (less than 0.1% noise), 
the inclusion can be mapped well in both the shape and the 
shear modulus value, though the mapped Young’s modulus 
value in the inclusion is still less than the target even when 
no noise is introduced. If the noise level becomes larger, the 
inclusion can still be observed in the reconstructed elastic 
property distribution. However, there are strong artifacts in 
the material property reconstruction. We also obverse that 
the artifacts are much stronger in the lower region of the 
domain since we start to map the shear moduli from the top 
surface to the bottom surface. Consequently, the error in 

Fig. 12   The reconstructed 
Young’s modulus distribution of 
the structure with different noise 
levels using the EX method

Table 7   Relative error in the identified Young’s moduli of the inclu-
sions in Fig. 10

Relative error (%) 0%noise 0.1%noise 0.3%noise 0.5%noise

Left inclusion 15.15% 14.41% 25.64% 59.78%
Right inclusion 5.27% 26.07% 74.92% 83.76%

Table 8   Relative error in the identified Young’s moduli of the inclu-
sions in Fig. 11

Relative error (%) 0%noise 0.1%noise 0.3%noise 0.5%noise

Left inclusion 3.59% 8.82% 25.53% 59.57%
Right inclusion 1.46% 26.00% 74.92% 83.75%

Table 9   Relative error in the identified Young’s moduli of the inclu-
sions in Fig. 12

Relative error (%) 0%noise 0.1%noise 0.3%noise 0.5%noise

Left inclusion 15.15 14.41 25.62 59.37
Right inclusion 5.27 26.07 67.86 81.64
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the measured data accumulates from the top to the bottom, 
leading to strong artifacts on the lower region.

Using the OP method, it can be seen that the recon-
structed results become slightly worse compared with the 
results acquired by the DI method (see Fig. 7) when the 
noise level is higher than 0.1%. Although the inclusions can 
be detected in Fig. 8d, e, the shape of the inclusions are not 
clearly recovered. The EX method yields better reconstruc-
tion quality than the OP method (see Fig. 9). Even in the 
presence of 0.5% noise, the two inclusions can be recovered 
well in the shape. In Tables 4, 5 and 6, we report the relative 
error within two circular inclusions, and we observe that the 
relative error of the identified Young’s moduli of the inclu-
sions by the three methods are very close.

We also present a case with one circular inclusion and 
one elliptical inclusion as shown in Fig. 10a. In this case, 
the Young’s moduli of the circular and elliptical inclusions 
are 5 MPa and 10 MPa, respectively. The domain of inter-
est is discretized by 100 × 100 elements. Similar to the pre-
vious case, we apply the uniform compression on the top 
and restrict the vertical motion of the bottom edge. The DI 
method performs well in mapping the inclusions even with 
0.5% noise. This is probably due to the fact that the two 
inclusions are very close to the top edge, hence less influ-
enced by the accumulated error.

For the OP method, we observe that the reconstructed 
inclusions are well preserved both in the shape and Young’s 
modulus values with the low noise introduced (see Fig. 11b, 
c). However, when the noise level is higher than 0.3%, the 
elliptic inclusion cannot be clearly observed in the domain. 
It seems that the reconstructed results are still worse than 
that acquired by the DI method. For the EX method (see 
Fig. 12), the identified Young’s modulus distribution is well 
recovered compared to the OP method. The relative error 
(see Tables 7, 8, 9) of the elliptic inclusion is larger than that 
of the circular inclusion in presence of noise.

3.1.3 � Influence of the virtual fields on the reconstruction

We also chose different virtual fields to investigate the sen-
sitivity of the virtual fields to the reconstruction results. For 
comparison, we introduced the two following additional vir-
tual displacement fields:

(18)

2nd VF

{
ux = (x − xa)(x − xb)(y − ya)(y − yb)

uy = (x − xa)(x − xb)(y − ya)(y − yb)

3rd VF

{
ux = 0

uy = [(x − xa)(x − xb)(y − ya)(y − yb)]
2

Fig. 13   The reconstructed 
Young’s modulus distribution 
using different virtual fields 
when the noise level is 0%. Note 
that the 1st virtual displacement 
field was the one we used previ-
ously (Eq. (6))
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The reconstructed Young’s modulus distribution by the 
OP method are shown in Figs. 13 and 14. It can be seen 
than the influence of the virtual fields on the reconstruction 
is marginal, no matter if the displacement method is exact 
or noise. This can also be verified with the relative error 
reported in Tables 10 and 11.

3.1.4 � Influence of the noise filter on the reconstruction 
of Young’s modulus distribution

Since the VFM method requires the strain field which is 
usually much noisier than the displacement fields, we con-
sidered two noise filtering approaches to smoothen the 
displacement fields: the Gaussian filter [25, 26] and the 
Median filter [27]. The reconstructed results (see Figs. 15, 
16 and 17) demonstrate that noise filtering can smooth 

Fig. 14   The reconstructed 
Young’s modulus distribution 
using different virtual fields 
when the noise level is 0.5%. 
Note that the 1st virtual dis-
placement field was the one we 
used previously (Eq. (6))

Table 10   Relative error in the identified Young’s moduli of each 
layer or inclusion in Fig. 13

1st VF 2nd VF 3rd VF

Layered structure Relative error (%)
Top layer 1.10% 1.14% 1.10%
Middle layer 8.99% 9.03% 8.99%
Bottom layer 7.60% 7.65% 7.60%
Two circular inclusions Relative error (%)
Left inclusion 20.84% 20.85% 20.84%
Right inclusion 20.83% 20.89% 20.83%
One circular, one elliptic Relative error (%)
Circular inclusion 15.15% 14.69% 15.15%
Elliptic inclusion 5.33% 4.71% 5.33%

Table 11   Relative error in the identified Young’s moduli of each 
layer or inclusion in Fig. 14

1st VF 2nd VF 3rd VF

Layered structure Relative error (%)
Top layer 7.35% 7.63% 7.35%
Middle layer 78.74% 84.25% 78.74%
Bottom layer 84.93% 85.35% 84.93%
Two circular inclusions Relative error (%)
Left inclusion 82.46% 82.46% 82.46%
Right inclusion 80.87% 81.20% 80.87%
One circular, one elliptic Relative error (%)
Circular inclusion 59.78% 61.30% 59.78%
Elliptic inclusion 83.76% 86.44% 83.76%
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the recovered Young’s modulus distribution. In particular, 
the delimitation of the neighboring layers and the bound-
ary of inclusions are well preserved when using the noise 
filtering approach. With the noise filtering approach, the 
Young’s modulus distribution is also recovered in the pres-
ence of 1% noise (see Fig. 18). However, the inclusions 
or layers were not detected without using noise filtering.

3.1.5 � Influence of the assumed Poisson’s ratio 
on the reconstruction of Young’s modulus 
distribution

In this paper, we assumed that the Poisson’s ratio was known 
for solving the inverse problem. It is important to examine 
the impact of the value of the Poisson’s ratio on the recon-
structed results. Figure 19 indicates that the value of the 
assumed Poisson’s ratio does not influence significantly the 
Young’s modulus distribution. The relative error in the iden-
tified Young’s modulus is very close for different assumed 
Poisson’s ratio (Table 12).

3.2 � Experimental data

We also tested the proposed VFM on displacement data 
obtained experimentally with ultrasound. The simplified 

illustration of the experimental setup is shown in Fig. 20a. 
A stiff and circular inclusion was embedded in the soft back-
ground. More details on the experiment have been discussed 
in [12, 28]. Furthermore, the experimental dataset was fil-
tered with a B-spline noise filtering approach. The target 
stiffness ratio between the stiff inclusion and the background 
was 3. The specimen was assumed as nearly incompress-
ible in the inverse problem, with a Poisson’s ratio of 0.48. 
The reconstructed elastic property distributions using the 
DI, OP and EX methods are shown in Fig. 20. It can be 
seen that the three methods were capable of detecting the 
location of the inclusion accurately. Moreover, the Young’s 
modulus value of the recovered inclusion was very close to 
the target. The relative error of the Young’s modulus of the 
inclusion was less than 14% (see Table 13). Additionally, the 
DI and EX methods were capable of deriving more circular 
inclusion than the OP method. Nevertheless, the OP method 
induced less error in the Young’s modulus of the inclusion 
(see Table 13), although the shape of the inclusion was not 
well recovered compared with the other two approaches.

Fig. 15   The reconstructed 
Young’s modulus distribution 
using the OP method with dif-
ferent noise filter approaches
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4 � Discussion

In this paper, we have presented a methodology to charac-
terize the nonhomogeneous elastic property distribution of 
solids. The proposed method is based on the virtual fields 
method (VFM). We proposed direct and regularized VFM 
inverse approaches, and the feasibility of the proposed 
approaches were tested successfully by multiple numerical 
and experimental examples presented in the Results Section. 
All the inverse problems presented in this paper were solved 
within several seconds even by a personal computer. The 
reconstructed results using the simulated displacement fields 
demonstrate that these approaches are capable of detecting 
the nonhomogeneous region in the domain in the presence 
of low noise level. However, with a high noise level, the 
reconstruction of the elastic property distribution was poorly 
recovered. We also tested several different virtual fields and 
acquired roughly the same reconstruction results. Although 
we tested several different virtual fields in this study, there 
remain many other choices of possible virtual fields. When 
we worked with experimental results, both the shape and the 
stiffness ratio of the inclusion were well recovered. From 
the comparative study of the proposed VFM approaches, 
we observed that the DI and EX methods performed better 
than the OP method. We also observed that the reconstructed 

material property distribution deviated from the exact one 
even without any noise introduced. This was induced by 
numerical errors arising when deriving the strain field. The 
numerical error “propagated” from top to bottom elements 
and accumulated.

Compared to regularization, it seems that noise filtering 
significantly improves the quality of the reconstruction. The 
reason might be that the accuracy of any VFM method is 
highly dependent on the accuracy of the strain fields. By 
smoothing the displacement data, the smoothness of the 
associated strain field (the gradient of the displacement 
field) is improved remarkably. This subsequently improves 
the smoothness of the reconstructed Young’s modulus 
distribution.

In this paper, we started from the top edge and then 
mapped the interior elements (the same direction as the 
applied external loading). We used the axial direction for 
scanning because the axial deformation was more significant 
than the lateral deformation. Thus, the contribution of the 
axial strain to the virtual work was more significate. As a 
result, this scanning pattern appeared more accurate.

The primary advantage of the proposed method is the 
high efficiency to solve the inverse problem. In general, solv-
ing inverse problem requires solving a large-scale optimi-
zation problem. However, in this paper, we converted the 

Fig. 16   The reconstructed 
Young’s modulus distribution 
using the OP method with dif-
ferent noise filter approaches
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large-scale optimization problem into multiple small-scale 
optimization problems. Thus, the computational cost was 
significantly reduced, and the convergence rate of the inverse 
problem was remarkably improved. In particular, since there 
are only fewer optimization parameters in each small-scale 
optimization problem, the uniqueness of the inverse problem 
can be improved as well.

The VFM method based on the Fourier series [20] uti-
lized using the continuous Fourier function to smoothen the 
reconstructed results, while the regularized VFM method 
proposed here attempted to smoothen the reconstruction by 
adding an additional regularization term. Since the regulari-
zation was applied locally, the regularization did not signifi-
cantly affect the final reconstruction results. Compared to the 
VFM method based on the Fourier series [20], the proposed 
method does not require solving a very large linear algebraic 
system, thus the computational time for the proposed method 
is remarkably reduced. However, the effect of the regulari-
zation on improving the smoothness of the reconstructed 
results is not significant, and much effort should be devoted 
to this question in the future.

Since the strain field is required in the proposed VFM 
approach, the proposed approach is very sensitive to noise. 
This needs to be addressed in future work. For that, the 

resolution and accuracy of the imaging facilities need 
to be improved. Alternatively, strategies on filtering the 
noisy displacement data could be employed. In fact, the 
experimental displacement field utilized in this work is 
filtered by a B-spline approach [12]. By using the filter-
ing approach, the quality of the reconstruction might be 
improved. Another approach to improve the accuracy of 
the proposed VFM method could be to use the Split Breg-
man method [29] to solve the L1 norm regularized prob-
lems of Eq. 11. This method has shown great potential in 
solving a very broad class of L1- regularized problem. 
Further, a new formulation that is capable of avoiding 
calculation of the strain field should be proposed. In this 
paper, we merely tested the feasibility of the proposed 
method for examples with uniform mesh. For the irregular 
mesh, the proposed method should work as well and will 
be examined in the future work.

Besides, although reconstruction of the Young’s modu-
lus or shear modulus distributions are the primary goals in 
elastography, we should also estimate the Poisson’s ratio 
in some cases. For the VFM, the Poisson’s ratio has been 
estimated by using the virtual fields expressed by either 
sinusoid or polynomial functions [30–32] in order to esti-
mate the homogeneous material properties. To the best of 

Fig. 17   The reconstructed 
Young’s modulus distribution 
using the OP method with dif-
ferent noise filter approaches
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our knowledge, there is no work on the identification of 
the nonhomogeneous Poisson’s ratio distribution using the 
VFM. For the anisotropic elastic model, since there are 
more elastic properties in the constitutive model, more 
virtual fields or measurements are required in the inverse 
algorithm. For the three-dimensional domain, the compu-
tational cost is usually more intensive, the reduction of the 
computational cost by the proposed inverse approach will 
also be investigated.

5 � Conclusion

In this paper, we have proposed novel VFM-based inverse 
approaches to reconstruct the nonhomogeneous elastic 
property distribution of solids. The inverse approaches 
have been tested successfully for a number of simulated 
and experimental datasets. The reconstruction results have 
demonstrated that the proposed VFM approaches are capa-
ble of recovering inclusions even with a low level of noise. 
We also observed that the DI and EX methods perform 
much better than the OP method in characterizing the elas-
tic property distribution. This is probably due to the fact 
that the OP method cannot guarantee a global minima. 
Nevertheless, the three proposed methods are capable of 
detecting the inclusions in the tissue mimicking phantom 
using the experimental data. The proposed method intro-
duced the regularization into the VFM method. Although 
there is still limitation in the current version of the regu-
larization based VFM, the introduction of the regulariza-
tion might address the issue of the overfitting noisy data 
of the VFM. The proposed method also provides a com-
putationally efficient way to solve the inverse problem 
in elasticity and has great potential in developing novel 
mechanics-based disease detection techniques in biomedi-
cal engineering.

Fig. 18   The reconstructed 
Young’s modulus distribution 
using the OP method with dif-
ferent noise filter approaches 
when the noise level is 1%

Table 12   Relative error in the identified Young’s moduli of each 
layer or inclusion in Fig. 19

� = 0.2 � = 0.3 � = 0.4

Layered structure Relative error (%)
Top layer 1.90% 1.10% 0.00%
Middle layer 7.46% 8.99% 11.76%
Bottom layer 5.97% 7.60% 10.56%
Two circular inclusions Relative error (%)
Left inclusion 20.90% 20.84% 20.73%
Right inclusion 20.90% 20.83% 20.73%
One circular, one elliptic Relative error (%)
Circular inclusion 16.60% 15.15% 12.64%
Elliptic inclusion 5.49% 5.33% 16.66%
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Appendix

Without loss of generality, a discretized two-dimensional 
domain is considered and two neighboring elements A and B 

Fig. 19   The reconstructed 
Young’s modulus distribution 
using the OP method with 
different value of the assumed 
Poisson’s ratio

Fig. 20   The reconstructed 
Young’s modulus distribution 
of a tissue mimicking phantom 
using the DI (c), OP (d) and EX 
(e) methods

Table 13   Relative error in the identified Young’s moduli of the inclu-
sion in Fig. 20

DI method OP method EX method

Relative error (%) 13.63% 8.17% 13.66%
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are arbitrarily selected for analysis as shown in Fig. 21a. The 
corresponding values of Young’s modulus for element A and 
B are set to EA  and EB , respectively. A local coordinate system 
is introduced where the directions of the two coordinate axes 
s and t are along the interface between these two neighboring 
elements and perpendicular to it, respectively. The relation-
ship between the s-t coordinates and Cartesian coordinates 
is shown in Fig. 21b. The local coordinates are defined as the 
axes obtained by rotating the Cartesian coordinates by an angle 
θ. As the material property distribution is discontinuous in the 
domain of interest, the material properties are assumed to be 
constant over every element to preserve the discontinuous tran-
sition well. In this case, Young’s modulus does not vary along 
the interface, i.e. �E∕�s = 0 . Therefore, the Young’s modulus 
depends only on the variable t. Recall the continuous form of 
the TVD regularization formulation can be expressed as:

According to the rules of coordinate transformation, Eq. 
(19) can be rewritten in terms of s and t, which is:

To satisfy Eq. (20), the condition, �E∕�s = 0 , is utilized. 
And based upon jump conditions, the TVD formulation can 
be further reduced to:

where lAB is the length of the interface between the element 
A and B. It can be seen in Eq. (21) that the discrete TVD 
regularization is linearly proportional to the difference in 

(19)RegAB = ∫
ΩA∪ΩB

√
|∇E|2dxdy

(20)RegAB = ∫
ΩA∪ΩB

||||
�E

�t

||||dsdt = l
||||
�E

�t

||||

(21)RegAB = lAB
||EA − EB

||

the shear modulus between neighboring elements and the 
length of the interface. So the regularization term reduces 
to just Eq. (21) since element-wise constant distribution of 
the shear modulus is assumed.

Acknowledgements  The authors acknowledge the support from 
the Foundation  for  Innovative  Research  Groups  of  the  National  Nat-
ural  Science  Foundation (11821202), the National Natural Science 
Foundation (11732004,12002075), Program for Changjiang Schol-
ars, Innovative Research Team in University (PCSIRT), 111 Project 
(B14013), the Fundamental Research Funds for the Central Universities 
(Grant No. DUT19RC(3)017) and the European Research Council for 
Grant ERC-2014-CoG BIOLOCHANICS. We also thank Prof. Jianwen 
Luo from Tsinghua University for sharing the experimental datasets.

References

	 1.	 Barbone PE, Rivas CE, Harari I, Albocher U, Oberai AA, Zhang 
Y (2010) Adjoint-weighted variational formulation for the direct 
solution of inverse problems of general linear elasticity with full 
interior data. Int J Numer Methods Eng. https://​doi.​org/​10.​1002/​
nme.​2760

	 2.	 Goenezen S, Barbone P, Oberai AA (2011) Solution of the nonlin-
ear elasticity imaging inverse problem: the incompressible case. 
Comput Methods Appl Mech Eng 200(13–16):1406–1420. https://​
doi.​org/​10.​1016/j.​cma.​2010.​12.​018

	 3.	 Avril S, Huntley JM, Pierron F, Steele DD (2008) 3D Heteroge-
neous stiffness reconstruction using MRI and the virtual fields 
method. Exp Mech 48(4):479–494. https://​doi.​org/​10.​1007/​
s11340-​008-​9128-2

	 4.	 Oberai AA, Gokhale NH, Feijoo GR (2003) Solution of inverse 
problems in elasticity imaging using the adjoint method. Inverse 
Probl 19:297–313

	 5.	 Mei Y, Kuznetsov S, Goenezen S (2015) Reduced boundary sen-
sitivity and improved contrast of the regularized inverse problem 
solution in elasticity. J Appl Mech 83:031001. https://​doi.​org/​10.​
1115/1.​40319​37

	 6.	 Dong L et al (2016) Quantitative compression optical coherence 
elastography as an inverse elasticity problem. IEEE J Sel Top 
Quantum Electron 22(3):6802211

Fig. 21   a Two arbitrary ele-
ments in the domain; b the 
coordinate transformation

https://doi.org/10.1002/nme.2760
https://doi.org/10.1002/nme.2760
https://doi.org/10.1016/j.cma.2010.12.018
https://doi.org/10.1016/j.cma.2010.12.018
https://doi.org/10.1007/s11340-008-9128-2
https://doi.org/10.1007/s11340-008-9128-2
https://doi.org/10.1115/1.4031937
https://doi.org/10.1115/1.4031937


1599Computational Mechanics (2021) 67:1581–1599	

1 3

	 7.	 Mei Y et al (2018) A comparative study of two constitutive mod-
els within an inverse approach to determine the spatial stiffness 
distribution in soft materials. Int J Mech Sci 140:446–454. https://​
doi.​org/​10.​1016/j.​ijmec​sci.​2018.​03.​004

	 8.	 Goenezen S et al (2012) Linear and nonlinear elastic modulus 
imaging: an application to breast cancer diagnosis. IEEE Trans 
Med Imaging 31(8):1628–1637. https://​doi.​org/​10.​1109/​TMI.​
2012.​22014​97

	 9.	 Bonnet M, Constantinescu A (2008) Inverse problems in elasticity. 
Inverse Probl 21:R1

	10.	 Avril S et  al (2008) Overview of identification methods of 
mechanical parameters based on full-field measurements, pp 
381–402. https://​doi.​org/​10.​1007/​s11340-​008-​9148-y

	11.	 Zhu Y, Hall TJ, Jiang J (2003) A finite-element approach for 
Young’s modulus reconstruction. IEEE Trans Med Imaging 
22(7):890–901. https://​doi.​org/​10.​1109/​TMI.​2003.​815065

	12.	 Pan X, Liu K, Bai J, Luo J (2014) A regularization-free elasticity 
reconstruction method for ultrasound elastography with freehand 
scan. Biomed Eng Online 13(1):132. https://​doi.​org/​10.​1186/​
1475-​925X-​13-​132

	13.	 Pierron F, Grédiac M (2012) The virtual fields method: extracting 
constitutive mechanical parameters from full-field deformation 
measurements. Springer, Berlin

	14.	 Pierron F, Vert G, Burguete R, Avril S, Rotinat R, Wisnom MR 
(2007) Identification of the orthotropic elastic stiffnesses of com-
posites with the virtual fields method: sensitivity study and experi-
mental validation, pp 250–259

	15.	 Avril S, Grédiac M, Pierron F (2004) Sensitivity of the virtual 
fields method to noisy data. Comput Mech. https://​doi.​org/​10.​
1007/​s00466-​004-​0589-6

	16.	 Marek A, Davis FM, Pierron F (2017) Sensitivity-based virtual 
fields for the non-linear virtual fields method. Comput Mech 
60(3):409–431. https://​doi.​org/​10.​1007/​s00466-​017-​1411-6

	17.	 Bersi MR, Bellini C, Humphrey JD, Avril S (2018) Local vari-
ations in material and structural properties characterize murine 
thoracic aortic aneurysm mechanics. Biomech Model Mechano-
biol. https://​doi.​org/​10.​1007/​s10237-​018-​1077-9

	18.	 Pierron F, Avril S, Tran VT (2010) Extension of the virtual fields 
method to elasto-plastic material identification with cyclic loads 
and kinematic hardening. Int J Solids Struct 47(22–23):2993–
3010. https://​doi.​org/​10.​1016/j.​ijsol​str.​2010.​06.​022

	19.	 Martins JMP, Andrade-Campos A, Thuillier S (2018) Compari-
son of inverse identification strategies for constitutive mechanical 
models using full-field measurements. Int J Mech Sci 145(Febru-
ary):330–345. https://​doi.​org/​10.​1016/j.​ijmec​sci.​2018.​07.​013

	20.	 Nguyen TT, Huntley JM, Ashcroft IA, Ruiz PD, Pierron F (2017) 
A Fourier-series-based virtual fields method for the identifica-
tion of three-dimensional stiffness distributions and its application 
to incompressible materials. Strain 53:12229. https://​doi.​org/​10.​
1111/​str.​12229

	21.	 Bersi MR et al (2020) Multimodality imaging-based charac-
terization of regional material properties in a murine model of 
aortic dissection. Sci Rep 10(1):1–23. https://​doi.​org/​10.​1038/​
s41598-​020-​65624-7

	22.	 Bersi MR, Bellini C, Di Achille P, Humphrey JD, Genovese K, 
Avril S (2016) Novel methodology for characterizing regional 
variations in the material properties of murine aortas. J Biomech 
Eng. https://​doi.​org/​10.​1115/1.​40336​74

	23.	 Mei Y, Avril S (2019) On improving the accuracy of nonhomo-
geneous shear modulus identification in incompressible elasticity 
using the virtual fields method. Int J Solids Struct 179:136–144. 
https://​doi.​org/​10.​1016/j.​ijsol​str.​2019.​06.​025

	24.	 Mei Y, Tajderi M, Goenezen S (2017) Regularizing biomechani-
cal maps for partially known material properties. Int J Appl Mech 
9(2):1750020. https://​doi.​org/​10.​1142/​S1758​82511​75002​0X

	25.	 Shapiro LG, Stockman GC (2001) Computer vision. Prentice Hall, 
Upper Saddle River

	26.	 Haddad RA, Akansu AN (1991) A class of fast Gaussian bino-
mial filters for speech and image processing. IEEE Trans Acoust 
39:723–727

	27.	 Huang TS, Yang GJ, Tang GY (1979) A fast two-dimensional 
median filtering algorithm. IEEE Trans Acoust 27(1):13–18

	28.	 Liu Z, Sun Y, Deng J, Zhao D (2020) A comparative study of 
direct and iterative inversion approaches to determine the spatial 
shear modulus distribution of elastic solids. Int J Appl Mech 
11(10):1–17. https://​doi.​org/​10.​1142/​S1758​82511​95009​72

	29.	 Goldstein T, Osher S (2009) The split Bregman method for 
L1-regularized problems. SIAM J Imaging Sci 2(2):323–343. 
https://​doi.​org/​10.​1137/​08072​5891

	30.	 Yoon S, Ioannis G, Siviour CR (2015) Application of the virtual 
fields method to the uniaxial behavior of rubbers at medium strain 
rates. Int J Solids Struct 69–70:553–568. https://​doi.​org/​10.​1016/j.​
ijsol​str.​2015.​04.​017

	31.	 Pierron F (2010) Identification of Poisson’s ratios of standard and 
auxetic low-density polymeric foams from full-field measure-
ments. J Strain Anal 45:233–253. https://​doi.​org/​10.​1243/​03093​
247JS​A613

	32.	 Pierron RMF, Wisnom SRHMR (2011) Full-field strain measure-
ment and identification of composites moduli at high strain rate 
with the virtual fields method. Exp Mech 51:509–536. https://​doi.​
org/​10.​1007/​s11340-​010-​9433-4

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations’.

https://doi.org/10.1016/j.ijmecsci.2018.03.004
https://doi.org/10.1016/j.ijmecsci.2018.03.004
https://doi.org/10.1109/TMI.2012.2201497
https://doi.org/10.1109/TMI.2012.2201497
https://doi.org/10.1007/s11340-008-9148-y
https://doi.org/10.1109/TMI.2003.815065
https://doi.org/10.1186/1475-925X-13-132
https://doi.org/10.1186/1475-925X-13-132
https://doi.org/10.1007/s00466-004-0589-6
https://doi.org/10.1007/s00466-004-0589-6
https://doi.org/10.1007/s00466-017-1411-6
https://doi.org/10.1007/s10237-018-1077-9
https://doi.org/10.1016/j.ijsolstr.2010.06.022
https://doi.org/10.1016/j.ijmecsci.2018.07.013
https://doi.org/10.1111/str.12229
https://doi.org/10.1111/str.12229
https://doi.org/10.1038/s41598-020-65624-7
https://doi.org/10.1038/s41598-020-65624-7
https://doi.org/10.1115/1.4033674
https://doi.org/10.1016/j.ijsolstr.2019.06.025
https://doi.org/10.1142/S175882511750020X
https://doi.org/10.1142/S1758825119500972
https://doi.org/10.1137/080725891
https://doi.org/10.1016/j.ijsolstr.2015.04.017
https://doi.org/10.1016/j.ijsolstr.2015.04.017
https://doi.org/10.1243/03093247JSA613
https://doi.org/10.1243/03093247JSA613
https://doi.org/10.1007/s11340-010-9433-4
https://doi.org/10.1007/s11340-010-9433-4

	Introducing regularization into the virtual fields method (VFM) to identify nonhomogeneous elastic property distributions
	Abstract
	1 Introduction
	2 Methods
	2.1 Identification of spatially varying stiffness properties with the VFM
	2.2 Identification of spatially varying stiffness properties with the VFM using “local” regularization
	2.3 Identification of material properties on the boundary
	2.4 Effect of unknown boundary conditions

	3 Results
	3.1 Synthetic data
	3.1.1 Reconstruction of a three-layered structure
	3.1.2 Reconstruction of the structure with inclusions
	3.1.3 Influence of the virtual fields on the reconstruction
	3.1.4 Influence of the noise filter on the reconstruction of Young’s modulus distribution
	3.1.5 Influence of the assumed Poisson’s ratio on the reconstruction of Young’s modulus distribution

	3.2 Experimental data

	4 Discussion
	5 Conclusion
	Acknowledgements 
	References




