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Abstract
In this paper we present a fully-coupled, two-scale homogenization method for dynamic loading in the spirit of FE2 methods.
The framework considers the balance of linear momentum including inertia at the microscale to capture possible dynamic
effects arising from micro heterogeneities. A finite-strain formulation is adapted to account for geometrical nonlinearities
enabling the study of e.g. plasticity or fiber pullout, which may be associated with large deformations. A consistent kinematic
scale link is established as displacement constraint on the whole representative volume element. The consistent macroscopic
material tangent moduli are derived including micro inertia in closed form. These can easily be calculated with a loop over all
microscopic finite elements, only applying existing assembly and solving procedures. Thus, making it suitable for standard
finite element program architectures. Numerical examples of a layered periodic material are presented and compared to direct
numerical simulations to demonstrate the capability of the proposed framework. In addition, a simulation of a split Hopkinson
tension test showcases the applicability of the framework to engineering problems.

Keywords Computational homogenization ·Multiscale dynamics ·Microscopic inertia ·RVE ·Volume constraint ·Consistent
tangent modulus

1 Introduction

Under dynamic loading, micro-heterogeneities can give rise
to additional wave effects at the microscale leading to com-
plexmicroscopic stress distributions. This then contributes to
the complex macroscopic dynamic material behavior. There
are various examples from different fields of application
which cover a broad range of length scales. Currently the
interest is high in metamaterials in general, but especially in
locally resonant metamaterials exhibiting special properties
like band gaps and negative bulk moduli. The applications
range from cloaking devices [8,24] over tunable sound atten-
uation [29,34] to earthquake protection [5,43].More classical
materials are being investigated as well. One example is
metaconcrete, which replaces aggregates by rubber-coated
lead inclusions to weaken impact waves [26,44]. A different
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approach for an improved impact resistance are strain-
hardening cement-based composites (SHCC), that show a
pronounced energy dissipation under dynamic loading, as
well as a change in fiber failure and overall crack pattern
[10–12]. In addition to that, porous materials have shown an
influence of microscopic inertia on voids under high strain
rates [45,53]. This list serves only to illustrate the possible
influence of the material microstructure on the macroscopic
response under high dynamic loading for a wide range of
materials and applications. In general, any material under
impact loading, which has large variation in stiffness, e.g.
rubber-coated particles, or materials with a pronounced vari-
ation in density, e.g. if pores or cracks are present at the
microscale, can exhibit distinct effective macroscopic prop-
erties resulting from the dynamics in the microstructure.
In principle, locally large deformations may occur at the
microscale in suchmaterials.One example is thefiber-pullout
process in SHCCunder dynamic loading. Due to the progress
of cracks through the cementitious matrix, structural prob-
lems arise at the microscale with deformations which are
large compared to the structural components such as the
fibers or the crack. This requires the consideration of finite
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strains in a geometrically nonlinear settingwhere the descrip-
tion is not limited to linearized strains.

To model the before-mentioned effects, the dynamics
at the microscale need to be accounted for. Computa-
tional homogenization methods for quasi-static loading have
become a common tool in numerical material analysis, see
e.g. [15,16,40,46,55,59]. A recent overview of computa-
tional homogenization methods in general is given in [18].
In addition a recapitulation of the FE2 method in particu-
lar is presented in [54]. However, with the rise in interest
in metamaterials more and more dynamic homogenization
frameworks have been published in the last years. Early
works date back to elastodynamic problems [62], with more
recent work confirming that the effective macroscopic den-
sity under the influence of inertia is not the simple average
density as for quasi static applications, c.f. [37,41]. Then
there are works dealing with microdynamics analytically
[64,67], motivating further research. One widely applied
homogenization method is asymptotic expansion, see e.g.,
[7,17,20–22], which is mainly based on the original work
of Bensoussan et al. [1]. In addition to that, there is the
more general theory of elastodynamic homogenization by
Willis [63], which has been applied in e.g. [42,47,49,65] and
others. The two approaches are based on related ideas and
their similarities are studied in [48]. Both mentioned meth-
ods are limited to elastic, periodic media, a considerable
limitation when dealing with various composites. A further
approach is based on the work of Irving and Kirkwood [23].
It is called the continuum homogenization theory, where the
main extensive quantities as mass, momentum and energy
are computed as weighted averages of their microscopic
counterparts, c.f. [35,38]. A more general approach is the
micro-macro simulation based on a representative volume
element (RVE). In such homogenization methods, macro-
scopic quantities such as the deformation gradient and the
displacement vector at a macroscopic integration point are
projected onto amicroscopic boundary value problemwhose
homogenized response replaces the constitutivematerial law.
In the case where the finite element method (FEM) is used
on both scales, this procedure is called the FE2 method. A
good theoretic introduction to this theory including dynam-
ics is given by [14], which has been the foundation on
which this paper is built. The framework in [17] calculates
a quasi-static microstructure but then applies an inertia-
induced eigenstrain based on the microstructure as an extra
body force at the macroscale to account for micro-inertia
effects. This was extended by [25] to account for matrix
cracking at the microscale under impact loading. Other,
rather FE2-type schemes as [32,33,51,52,56,60,61] calcu-
late the full balance of linear momentum at the microscale.
In [32] an explicit, periodic, small-strain framework is pre-
sented, which was extended to an implicit time integration
method for modeling resonant elastic metamaterials in [33].

[51,52] use the assumption of linear elasticity to improve the
computational performance, by splitting the problem into a
purely static and a special dynamic boundary value problem
(BVP). To better capture a wider range of applied frequen-
cies, [56] use a Floquet–Bloch transformation to build a base
of eigenmodes to analyze elastic, periodic metamaterials.
The mentioned frameworks all use at least one of the follow-
ing idealizations: small strains, linear elasticity, periodic or
symmetric microstructures. In addition, many require quite
elaborate implementations. A recent publication [60] does
fulfill the named requirements, however for the derivation of
the macroscopic tangent moduli, specific nodes are assumed
to experience no microscale fluctuation. This assumption is
quite reasonable in the context of metamaterials, whose anal-
ysis was primary goal in [60], because there the regions at
the unitcell boundaries are particularly stiff. For microscopic
problems not specifically addressing classical metamaterial
microstructures, however, more flexibility at the boundaries
may be more reasonable which is why we propose an alter-
native approach here.

The aim of this paper is to build a multiscale frame-
work for dynamic loading as general as possible, while still
being compatible with standard FE architecture. To enable
the analysis of micro-mechanical processes as plasticity or
fiber pullout, as well as to incorporate effects resulting from
geometric nonlinearities, the proposed framework uses a
finite-strain formulation. Its importance is supported by the
analytical example in [27] of a nonlinear, elastic metamate-
rial, where finite strains were shown to be relevant for large
wave amplitudes. The conducted numerical studies are so far
not specifically chosen to highlight this aspect of the frame-
work. To permit a flexible damage evolution in the RVE,
which is not dominated by periodic boundary conditions
[6] or aforementioned assumptions regarding fixated fluctu-
ations at specific boundary nodes [60], we propose to apply
kinematic scale links as constraints on the whole RVE. This
allows us to model any type of RVE morphology.

The paper starts by discussing the general ideas of the
framework in Sect. 2. The used notations of the large-strain
framework are presented and the averaging relations derived
in [13] are briefly recapitulated to include the full balance
of momentum at the microscale. Then in Sect. 3 the FE for-
mulations of the microscale are presented and the kinematic
constraints are derived. In Sect. 4 the respective macroscale
formulations are displayed. There, a focus is laid on the
derivation of consistent macroscale tangent moduli in closed
form. These enable a quadratically converging macroscopic
Newton-iteration, resulting in a robust and efficient algorithm
compared to numerical differentiation through perturbation
of the macroscopic quantities [39]. Once the whole theo-
retical background of the framework is explained, Sect. 5
provides numerical examples, demonstrating the conver-
gence behavior and analyzing someproperties ofRVEs under
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dynamic loading. In Sect. 6, the applicability of the frame-
work to construction materials is given. A split Hopkinson
tension test is conducted on a sample of strain-hardening
cementitious composite (SHCC). The presented example is
an extension of the example published in [58], presenting
a more complex, 3D microstructure. The publication [58]
is focused on the comparison to experimental results and
the understanding of the composite behavior, without going
into detail on the developed homogenization framework. The
paper is completed in Sect. 7 with concluding remarks.

2 Homogenization framework including
microscopic inertia

The general idea of the homogenization framework for
dynamics is to consider the full balance of linear momentum
including the inertia terms at themicroscale. This enables not
only the analysis of full dynamic fields at themicroscale but a
direct study of microscopic inertia effects on the macroscale.
By using appropriate averaging relations and kinematic links,
a consistent scale bridging for dynamic loading is estab-
lished. In the FE2 method, each macroscopic Gauss point
is associated with a separate microscopic RVE simulation
which uses the macroscopic mechanical quantities to define
the microscopic BVP. In order to differentiate the two scales,
variables associated with the macroscale are denoted with a
bar •. Here, the finite-strain framework is taken into account
in order to enable the analysis of a wide range of material
behavior and micro-mechanical effects under dynamic load-
ing. In the following sections the fundamental ingredients
of the scale-coupling framework are explained, see also the
schematic illustration in Fig. 1.

2.1 Kinematics at different scales

The connection of the (undeformed) reference and the
(deformed) current configuration is described by the dis-
placement u as u = x − X, where X ∈ B denotes the
coordinates in the reference configuration and x ∈ S the
deformation. The link between the two configurations in
terms of transformations of vector elements is described
by the deformation and displacement gradients, respectively
F = ∂Xx = 1 + H and H = ∂Xu, such that x = FX. In this
work, the origin of the microscopic coordinates is chosen as
the geometrical center of the RVE, with

∫
B
X dV = 0, (1)

where
∫
B dV is the volume integral over the microscopic

reference body B. Note that this choice of origin has no
influence on the results but it simplifies the notation. Now

the microscopic deformation x can be split into the sum of
terms,

x = u + FX + ũ. (2)

Herein, two terms result directly from the macroscale: a con-
stant part u, which describes the macroscopic rigid body
translations, and a homogeneous part FX, defined in terms
of the macroscopic deformation gradient.

The difference of these homogeneous deformations u +
FX to the actual deformations x is the microscopic displace-
ment fluctuation field ũ. This is the field the microscopic
BVP will be solved for. Now the microscopic displacements
u can be written as

u = u + HX + ũ. (3)

Analogously, the microscopic deformation gradient can be
split as

F = F + H̃ with H̃ = ∂Xũ. (4)

At the macroscale the kinematics are standard, see Fig. 2,
where the kinematic relations for both the micro- and
macroscale are illustrated.

2.2 Averaging relations

To expand quasi-static homogenization frameworks to the
case of dynamics, an extended version of the Hill–Mandel
condition of macro homogeneity [19,36], which takes into
account inertia and body forces at the microscale, is adopted

P : δF − f · δu = 〈P : δF − f · δu〉 , (5)

see [3] and [14]. Herein, 〈•〉 = 1
V

∫
B • dV is an expres-

sion used to abbreviate the volume average of a microscopic
quantity. P is the first Piola–Kirchhoff stress tensor, f is the
microscopic body force vector, and f is itsmacroscopic coun-
terpart. The variational Eq. (5) is also called the Principle of
Multiscale Virtual Power. It ensures that the virtual work of
themacroscale coincides with its respectivemicroscopic vol-
ume average, thus ensuring energetic consistency across the
scales. By decomposing δF and δu, following (3) and (4),
three important equations can be derived. First, one obtains

〈
P : δF̃ − f · δũ

〉 = 0, (6)

which is automatically fulfilled for mechanical equilibrium.
Then, more importantly, the averaging equation for the effec-
tivemacroscopic stressP and the effectivemacroscopic body
force vector f are derived as

P = 〈P − f ⊗ X〉 and (7)
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Fig. 1 Overview of the FE2 framework includingmicroscale dynamics.
Here, an example of macroscopic impact on SHCC is illustrated

(a)

(b)

Fig. 2 Large-strain continuum mechanics on both scales

f = 〈f 〉 . (8)

These averaging relations can be found in multiple frame-
works dealing with homogenization of dynamics, see e.g.,
[14,31,32,45,51,52,60]. Itwas shown in [30] that the extended
Hill–Mandel averaging relation can be applied in a dis-
cretized setting without introducing additional error by scale
transition.

2.3 Scale separation

A principal ingredient of the Hill–Mandel condition, as well
as the presented extension (5), is the assumption of scale sep-
aration. This means that the equation only holds if the length
scale of the microscopic mechanical fields is significantly
smaller than the one of the macroscopic mechanical fields.
For dynamic homogenization this means in practice, that the
macroscopic wavelength is sufficiently larger than the size
of the RVE.

2.4 Time integration

In this paper, an implicit numerical time integration method
of first order is applied. Considering

•̈ = (α1• − α2•̂)

�t2
, (9)

we can express the second time derivative of any quantity
• as the difference of the current time step and the last •̂,
divided by the square of the time step �t , bearing in mind
that •̂ includes the first and second time derivatives of the
last time step. The parameters α1 and α2 define the specific
time integration scheme. For an explicit time integration, α1

can be set to zero. Applying this to derivatives of acceleration
termswith respect to a quantity� in the current configuration
leads to

∂ •̈
∂� = 1

�t2
∂(α1• − α2•̂)

∂� = α1

�t2
∂•
∂� . (10)

Analogously, the derivative of a value • with respect to the
second time derivative �̈ reads

∂•
∂�̈

=
(

∂�̈
∂•

)−1

=
(

1

�t2
α1∂(� − α1�̂)

∂•

)−1

= �t2

α1

∂•
∂� .

(11)

For the numerical simulations in the numerical analysis sec-
tion the widely used Newmark method [50] is applied, with
α1 = 1

β
. Herein, β is one of the two parameters of the New-

mark method influencing the type and stability of the time
integration.

3 Themicroscopic problem

We start with the formulation of the microscopic prob-
lem, which includes the necessary kinematic links to the
macroscale. Furthermore, an algorithmic treatment for the
associated constraint conditions is given.

3.1 Microscopic balance of linear momentum

For a dynamic analysis, the microscopic balance of linear
momentum is given by

DivP + f = 0. (12)

The body force vector f can be decomposed into an inertia
part f ρ and a body force vector representing e.g. the grav-
itational pull f b. As this framework is intended to model
impact loading, gravitational forces are assumed to be negli-
gible compared to the inertia forces. Thus, the relevant body
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force vector is defined as f := f ρ= − ρ0ü with ρ0 referring
to the density of the microscale constituents in the reference
configuration. If gravitational forces have to be considered,
they can be included in the standard way by the additional
force vector f b = ρ0 g, where g is the gravitation field. Since
this force however, does not depend on the displacements, it
does not represent any specialty with view to the proposed
homogenization framework and is thus omitted from the pre-
sentation to avoid unnecessary complications.

Using standard FE procedures for the discretization and
linearization of the weak form of the balance of linear
momentum, the well-known equation

δD̃
T
K̂�D̃ = δD̃

T
R̂ (13)

is obtained, where K̂ and R̂ are the global tangent stiffness
matrix and the residuum matrix, respectively. In the follow-
ing, the hat •̂ is used to highlight quantities that include
dynamic terms. After incorporating the Dirichlet boundary
conditions, the global matrix of incremental nodal displace-
ments �D̃ are computed from K̂�D̃ = R̂ in each Newton
iteration step in order to obtain the updated displacements
until convergence of the Newton scheme is achieved, i.e.
until |�D̃| < tol. For the classical scheme, the global tan-
gent stiffness matrix K̂ is assembled from the element matrix
defined as

k̂
e = ke + α1

�t2
me, with (14)

ke =
∫
Be

BeT
ABe dV and me =

∫
Be

Neρ0NeT dV . (15)

Herein,Ne is the classical element matrix of shape functions,
Be denotes the classical B-matrix containing the derivatives
of the shape functions, and A is the matrix representation of
thematerial tangent modulus, defined as the sensitivity of the
microscopic stress with respect to the microscopic deforma-
tion gradient as A = ∂FP. Analogously, the global residuum
matrix R̂ is obtained by the assembly of the element-wise
counterparts, given as

r̂e =
∫
Be

(
BeTP + Neρ0ü

)
dV . (16)

Herein,P denotes thematrix representation of the first Piola–
Kirchhoff stresses. It can be noted that both, k̂

e
and r̂e

have dynamic terms related to the density ρ0, which directly
enables the evaluation of inertia at the microscale.

3.2 Kinematic links to themacroscale

As depicted in Fig. 1, the macroscopic displacements and
deformation gradient and their time derivatives are used
to define boundary conditions on the RVE. Inserting them

into (2) is only the first step. If no additional constraint is
considered, the BVP will find an equilibrium where the fluc-
tuations ũ oppose the applied displacements which results
in zero effective displacement of the microstructure. This
might not seemobvious at first, howeverwithout any imposed
constraint, the energetically most favorable position of each
node will be its initial configuration, as any deviation from
it requires energy. Thus, resulting in a microscopic displace-
ment fluctuation field of ũ = u + HX, c.f. (3). Based on
the principal of kinematic admissibility, described in detail
in [3] and applied in dynamic settings e.g. in [14,52], two
kinematic links are chosen here, i.e.

F = 〈F〉 and u = 〈u〉 . (17)

The first constraint (17)1 is well-known from quasi-static
RVE homogenization frameworks. It postulates, that the vol-
ume average of the microscopic deformation gradients must
equal the macroscopic deformation gradient. This is usu-
ally enforced by choosing appropriate boundary conditions,
e.g., linear displacement or periodic boundary conditions.
The second constraint (17)2 is a necessary expansion for
the dynamic microscopic problem. This link to the macro-
scopic displacements is essential in order to prevent the
RVE from moving arbitrarily in space. In quasi-static cal-
culations, fluctuations e.g. of a corner node in the RVE
are restricted, which does not influence the results. This is,
however, not directly possible for the dynamic case with-
out artificially restricting the fluctuations. This is due to the
fact that themicroscopic deformations are already influenced
by just moving the RVE. Thus, restricting the movement
at selected locations will yield different deformation fields.
Some dynamic homogenization frameworks, e.g. the one in
[51], apply a displacement constraint only on the boundary,
which can be a reasonable assumption for dynamic meta-
materials. There, the boundary lies in the matrix phase,
which behaves quasi statically compared to the dynami-
cally active inclusions. The framework proposed here does
not make any a priori assumptions on which part of the
microstructure will be dynamically significant, as this can-
not always be determined in advance for arbitrary problems.
Using the displacement split (3) and the definition of the
origin of the local coordinate system as the center of the vol-
ume (1), the displacement constraint (17)2 can be reduced
to

〈̃u〉 = 0, (18)

which states that the constraint is fulfilled, once the volume
average of the fluctuations equals zero.
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3.3 Algorithmic treatment of kinematic constraints

To enforce the displacement constraint in (18) on the whole
RVE domain, we propose to use the method of Lagrange
multipliers [2]. Similar applications can be found in [4,52].
For this purpose, the mechanical boundary value problem is
recast in terms of the principle of minimum potential energy.
By adding the potential �λ associated with the Lagrange
multipliers λ and the constraint (18) to the function of poten-
tial energy �, one obtains

� = �int + �ext + �λ, with �λ = λ ·
∫
B
ũ dV . (19)

In the following, only the terms concerning the Lagrange
multiplier will be regarded, as the other terms capturing
the internal potential energy �int and the external potential
energy �ext will result in the standard FE formulation (13)
described above. However, note that due to the Lagrange
term, the additional degrees of freedom λ appear.

3.3.1 Variation

The potential energy is varied once with respect to the
displacement fluctuations ũ and once with respect to the
Lagrange multipliers λ, i.e.

δ̃u�
λ = λ ·

∫
B

δũ dV and (20)

δλ�
λ = δλ ·

∫
B
ũ dV . (21)

3.3.2 Discretization

Using ũ ≈ Ned̃
e
and δũ ≈ Neδd̃

e
as FE approximations, the

discretized expressions can be written as

δ̃u�
λ = λT A

e

[∫
Be

Ne dV δd̃
e
]

and (22)

δλ�
λ = δλT A

e

[∫
Be

Ne dV d̃
e
]

. (23)

To obtain the equivalent of the global volume integral in
terms of the elements, the assembly operator A is applied for
the respective matrices. For better readability, a new element
matrix is defined as

geT =
∫
Be

Ne dV . (24)

This simplifies the formulations to

δ̃u�
λ = λT A

e

[
geTδd̃

e
]

and (25)

δλ�
λ = δλT A

e

[
geTd̃

e
]
. (26)

3.3.3 Global matrix notation

To write the whole system of equations as a global prob-
lem, the global matrices are defined in terms of the element
matrices, i.e.

G = A
e
ge, D̃ = U

e
d̃
e

and δD̃ = U
e

δd̃
e
, (27)

where A is the aforementioned assembly operator and U a
unification operator, as the node displacement fluctuations
shared by different elements are not added up, but belong
to the same degree of freedom. Now the expressions (25)
and (26) can be reformulated in global fields as

δ̃u�
λ = λTGTδD̃ = δD̃

T
Gλ and (28)

δλ�
λ = δλTGTD̃ = 0. (29)

Since the Lagrange multiplier only appears in �λ, no terms
result from the variation of �int and �ext with respect to λ.
It follows, that the second expression has to vanish, see (29).

3.3.4 Linearization

In order to solve the nonlinear global system of equations,
the Newton–Raphson method is utilized. For that purpose,
we not only need the equations in weak form as in (28) and
(29) but also their linearizations. They are used to iteratively
compute the nodal displacement fluctuations as well as the
Lagrange multipliers. Here the definition of the� operator is
used. When linearizing a function f (x) = 0 at x̂ as Lin f =
f |x̂ +� f |x̂ , then� f = ∂ f

∂x

∣∣
x̂
�x . Applying this to the weak

forms results in

Lin δ̃u�
λ = δD̃

T
Gλ + δD̃

T
G�λ and (30)

Lin δλ1�
λ = δλTGTD̃ + δλTGT�D̃ = 0. (31)

3.4 Global discretizedmicroscopic problem
including constraint

From the linearized variations of �λ we define the global
residua

Rũ = −Gλ = e
A r̃u

e
with r̃u

e = −geλ and (32)

Rλ = −GTD̃ =
e∑

rλ
e

with rλ
e = −geTd̃

e
. (33)
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Including all linearized variations of�int+�ext+�λ yields
the discrete equation

[
δD̃

T
δλT

] [
K̂ G
GT 0

] [
�D̃
�λ

]
=

[
δD̃

T
δλT

] [
R̂ + Rũ

Rλ

]

(34)

as expansion of (13). After including Dirichlet boundary
conditions and applying standard arguments of variational
calculus, the resulting discrete system of equations reads

[
K̂ G
GT 0

] [
�D̃
�λ

]
=

[
R̂ + Rũ

Rλ

]
. (35)

Note that in contrast to K, the new tangent stiffness matrix
is not necessarily positive definite, which needs to be taken
into account when choosing and setting up a solver. In gen-
eral, Lagrange multipliers have the disadvantage of adding
new degrees of freedom to the system of equations. For the
presented displacement constraint, only one extra degree of
freedom is added for each spacial direction This is due to the
fact that the constraint is applied on the whole RVE which
avoids the approximation of the Lagrange multipliers as field
variables. Thus, for three-dimensional problems, λ will only
add three additional degrees of freedom. Compared to the
displacement fluctuations which are linked to the nodes and
whichmay thus easily reach thousands of degrees of freedom,
the number of three additional degrees of freedom over the
whole RVE is negligible, making it computationally cheap.

3.5 Coupling of the deformation gradient

The constraint related to the deformation gradient (17)1, can
be derived and applied in the same manner as just presented
for (17)2 in the previous section. The only change in the
final formulation is that the related geT〈F〉 matrix needs to be
computed as the volume average of the element B-Matrix
instead of the shape functions,

geT〈F〉 =
∫
Be

Be dV . (36)

Applying the constraint regarding the deformation gradient
on the volume instead of enforcing it using periodic boundary
conditions will lead to minimally invasive boundary con-
ditions enabling e.g. arbitrary damage propagation without
artificial restrictions imposed by periodic boundary condi-
tions. As shown in [13], such minimally invasive boundary
conditions result in a softer constraint compared to periodic
boundary conditions. To simplify the numerical examples in
this paper, only the displacement constraint is applied and
the constraint related to the deformation gradient is enforced
by using periodic boundary conditions.

4 Themacroscopic problem

For the solution of the dynamic macroscopic boundary
value problem, the associated linearized, discretized balance
equations are derived. Herein, specific macroscopic tangent
moduli appear which are consistently derived for the case
where the displacement constraint proposed in the previous
section is taken into account.

4.1 Macroscopic boundary value problem

4.1.1 Macroscopic equilibrium equation

The complete macroscopic balance of linear momentum
including inertia is given by

DivP + f = 0. (37)

Applying the Galerkin method with a test function δu
on the entire domain B leads to the weak form of lin-
ear momentum

∫
B δuT

(
DivP + f

)
dV = 0. By applying

Div(P)δu = Div(PTδu) − P : Grad δu and the Gauss the-
orem

∫
B Div(PTδu) dV = ∫

∂B δu · t dA, the weak form is
written as

G :=
∫
B

δF : P dV +
∫
B

δuTf
ρ
dV = 0. (38)

Herein, zero traction forces are taken into account at the
boundary and δF = Grad δu. Analogous to the microscale,
only body forces related to inertia, not gravitation, are con-
sidered at the macroscale. Thus, the body force vector is set
to f :=f

ρ = 〈
f ρ

〉
.

4.1.2 Linearization

To solve the weak form of equilibrium by using the standard
Newton–Raphson scheme, the linearized balance of linear
momentum is obtained as

LinG = G + �G = 0 with �G

=
∫
B

δF : �P dV +
∫
B

δuT�f
ρ
dV . (39)

Now the � operator is applied again to �P and �f
ρ
:

�P = ∂P

∂F
: �F + ∂P

∂ü
· �ü and (40)

�f
ρ = ∂f

ρ

∂F
: �F + ∂f

ρ

∂ü
· �ü. (41)

Here an interesting property of the two-scale homogeniza-
tion framework for dynamics is observed. The macroscopic
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stress not only depends on the deformation gradient but on
the acceleration as well. In turn, the inertia forces can also
depend on the deformation gradient in addition to the accel-
eration. We define the resulting four sensitivities as

A
P,F = ∂FP, A

P,u = ∂üP,

A
f,F = ∂Ff

ρ
and A

f,u = ∂üf
ρ
. (42)

These moduli (42) are inserted into the linearized weak form
which results in

LinG =
∫
B

δF : P dV

+
∫
B

δuTf
ρ
dV +

∫
B

δF : AP,F : �F dV

+
∫
B

δF : AP,u · �ü dV +
∫
B

δuTA
f,F : �F dV

+
∫
B

δuTA
f,u · �ü dV . (43)

4.1.3 FE discretization

The linearization is of the weak form of the balance of linear
momentum is now discretized in terms of finite elements.
First, the linear increment

�G =
∫
B

δF : AP,F : �F dV +
∫
B

δF : AP,u · �ü dV

+
∫
B

δuTA
f,F : �F dV +

∫
B

δuTA
f,u · �ü dV ,

(44)

is discretized using standard FE formulations. Then, to get
rid of the dependence on the time derivatives, the numerical
time integration in terms of (10) is used, which results in

�G=
nele∑
e=1

δd
e
P

(∫
Be

B
e
i j PA

P,F
i jmn B

e
mnQ+ α1

�t2
B
e
i j PA

P,u
i jk N

e
Qk

+N
e
PiA

f,F
imn B

e
mnQ + α1

�t2
N

e
PiA

f,u
ik N

e
Qk dV

)
�d

e
Q . (45)

Herein, the matrix representation of the moduli in index
notation has been used. Lowercase indices refer the spa-
cial dimension ndm, whereas uppercase indices to the total
degrees of freedom of a element nedf. Again, standard
element B-matrix B

e
and shape function matrix N

e
are

considered. By extracting the nodal virtual and incremental
displacements, this yields the definition of the full macro-
scopic element tangent stiffness matrix

k̂
e

PQ =
∫
Be

(
B
e
i j PA

P,F
i jmn B

e
mnQ + α1

�t2
B
e
i j PA

P,u
i jk N

e
Qk

+N
e
PiA

f,F
imn B

e
mnQ + α1

�t2
N

e
PiA

f,u
ik N

e
Qk

)
dV . (46)

Now the remaining part of the linearization (43), the
residuum R, is discretized as

R̂ =
nele∑
e=1

(
δdP

∫
Be

B
e
i j P Pi j dV + δdP

∫
Be

N
e
i P f

ρ

i dV

)
.

(47)

By extracting the nodal virtual displacements, the element
residuum is identified as

r̂
e
P =

∫
Be

(
B
e
i j P Pi j + N

e
Pi f

ρ

i

)
dV , (48)

where againmatrix representation and index notation is used.

4.2 Consistent macroscopic tangent moduli

For the dynamic homogenization framework, four macro-
scopic tangent moduli (42) need to be determined. To obtain
the sought-after moduli in closed form, we start with tak-
ing the derivative of the incremental linearized weak form
of linear momentum at the microscale with respect to the
two relevant macroscopic quantities, the deformation gradi-
ent F and the acceleration ü. Then we derive the moduli by
considering the microscopic problem in its equilibrium state.

4.2.1 Incremental weak forms including displacement
constraint

As it will be shown later, the derivatives of the microscopic
fluctuations with respect to the macroscopic deformation
gradient and the acceleration will be required. For their cal-
culation, the incremental linearized weak forms have to be
derived with respect to these two quantities. In order to
account for the proposed displacement constraint, the associ-
ated increments of the weak form of linear momentum and of
the Lagrange multiplier potential with respect to the micro-
scopic displacement fluctuations as well as the Lagrange
multipliers, i.e. (20) and (21), are identified as

�Gũ =
∫
B

δFi jAi jmn�Fmn dV +
∫
B

δũiρ0�üi dV

+ �λi

∫
B

δũi dV and (49)

�Gλ = δλi

∫
B

�ũi dV . (50)
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Using the decompositions (3) and (4), equation (49) can be
reformulated as

�Gũ =
∫
B

δFi jAi jmn�Fmn dV

+
∫
B

δFi jAi jmn�H̃mn dV +
∫
B

δuiρ0�üi dV

+
∫
B

δuiρ0�F̈ i j X j dV +
∫
B

δuiρ0� ¨̃ui dV

+ �λi

∫
B

δũi dV . (51)

4.2.2 Derivatives of incremental weak forms

By taking the derivatives of the increments (50) and (51) in
the equilibrium state �G = 0, a closed form formulation of
the tangentmoduliwill be obtained later. Thus, the associated
derivatives are computed in the following.

Derivative with respect to F: Taking the derivatives of (50)
and (51) with respect to the macroscopic deformation gradi-
ent, while considering (10) results in

0kl =
∫
B

δFi jAi jkl dV +
∫
B

δFi jAi jmn
∂ H̃mn

∂Fkl
dV

+ α1

�t2

∫
B

δukρ0Xl dV

+ α1

�t2

∫
B

δuiρ0
∂ ũi
∂Fkl

dV + ∂λi

∂Fkl

∫
B

δũi dV and

(52)

0kl =δλi

∫
B

∂ ũi
∂Fkl

dV . (53)

Using standard FE discretization yields

0kl =
nele∑
e=1

δd̃eP

(∫
Be

Be
i j PAi jkl dV

+
∫
Be

Be
i j PAi jmn B

e
mnQ dV

∂ d̃eQ
∂Fkl

+ α1

�t2

∫
Be

Ne
Pkρ0Xl dV

+ α1

�t2

∫
Be

Ne
Piρ0N

e
Qi dV

∂ d̃eQ
∂Fkl

+
∫
B
Ne
Pi dV

∂λi

∂Fkl

)
and

(54)

0kl =
nele∑
e=1

δλi

(∫
B
Ne
Pi dV

∂ d̃eP
∂Fkl

)
. (55)

Rewriting this in global notation using the abbreviations
defined in Appendix 1 Table 2 leads to the expressions

0 = L + α1

�t2
Z +

(
K + α1

�t2
M

) ∂D̃

∂F
+ G

∂λ

∂F
and (56)

0 = GT ∂D̃

∂F
. (57)

By combining the nodal fluctuations and the Lagrange mul-
tipliers into one column matrix D∗, the two equations can be
written as one system of equations K∗∂FD∗ = −L∗ with the
matrices

D∗T =
[
D̃
T

λT
]
, (58)

L∗T =
[
LT + α1

�t2
ZT 0

]
and (59)

K∗ =
[
K + α1

�t2
M G

GT 0

]
. (60)

Then, the required derivative can be computed from

∂D∗

∂F
= −K∗−1

L∗. (61)

Note that K∗ is the microscopic tangent stiffness matrix
in (35), which is already available from solving the micro-
scopic boundary value problem.

Derivative with respect to ü: Analogously, the derivative
of (51) with respect to ü can be obtained by applying (11),
i.e. one obtains

0k = �t2

α1

∫
B

δFi jAi jmn
∂ ¨̃Hmn

∂ ük
dV +

∫
B

δukρ0 dV

+
∫
B

δuiρ0
∂ ¨̃ui
∂ ük

dV + ∂λi

∂ ük

∫
B

δũi dV (62)

0k = δλi

∫
B

∂ ũi
∂ ük

dV . (63)

Standard FE discretization using matrix representation and
index notation yields

0k =
nele∑
e=1

δd̃eP

(∫
Be

Be
i j PAi jmn B

e
mnQ dV

∂ d̃eQ
∂ ük

+
∫
Be

NPkρ0 dV

+ α1

�t2

∫
Be

Ne
Piρ0N

e
Qi dV

∂ d̃eQ
∂ ük

+
∫
B
Ne
Pi dV

∂λi

∂ ük

)
and

(64)

0k =
nele∑
e=1

δλi

(∫
B
Ne
Pi dV

∂ d̃eP
∂ ük

)
. (65)

Again, the two equations are combined by joining the dis-
placements and the Lagrangemultipliers into a singlematrix,
c.f. (58). By solving the resulting system of equations with
respect to the required derivatives ∂üD

∗, we obtain

∂D∗

∂ü
= −K∗−1

W∗. (66)
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Herein, the definitions (58)–(59), the abbreviations defined
in Appendix 1 Table 2, as well asW∗T = [

WT 0
]
are used.

4.2.3 Derivation of tangent moduli

In this subsection the four moduli will be derived by insert-
ing the derivatives computed in the last subsection. Note
that all moduli are only consistent for a microscopic equilib-
rium state. Thus, quadratic convergence of the macroscopic
Newton–Raphson iteration is only ensured if themicroscopic
boundary value problem is solved for each macroscopic iter-
ation step. After the last microscopic iteration, the consistent
tangent moduli can be computed.

Derivation of A
P,F

: To derive the sensitivity of the macro-
scopic stresses with respect to the macroscopic deformation
gradient, the derivative is rewritten using the definition of the
macroscopic stresses in terms of the microscopic fields, i.e.

A
P,F
i jmn = ∂Pi j

∂Fmn
= ∂

〈
Pi j + ρ0üi X j

〉
∂Fmn

. (67)

Using the chain rule ∂P(F)

∂F
= ∂P

∂F : ∂F
∂F

, applying (3), (4), (10)
and inserting FE discretization, the equation can be written
as

A
P,F
i jmn =

nele∑
e=1

(
1

V

∫
Be

Ai jmn dV

+ α1

�t2
1

V

∫
Be

ρ0δim X j Xn dV

+ 1

V

∫
Be

Ai jkl B
e
kl P dV

∂ d̃eP
∂Fmn

+ α1

�t2
1

V

∫
Be

ρ0N
e
Pi X j dV

∂ d̃eP
∂Fmn

)
. (68)

By using the global abbreviations defined in Appendix 1
Tables 2, 3 and inserting (61), the closed form result is
obtained as

A
P,F =

〈
A + 1

β�t2
Y

〉
− 1

V
L∗TK∗−1

L∗. (69)

Note that this result has already been presented in [57] for
a special scenario of dynamic homogenization, which did
not include macroscopic acceleration and the displacement
constraint.

Derivation of A
P,u

: The derivation of the sensitivity of the
macroscopic stresses with respect to the macroscopic accel-

erations is analogous to that of A
P,F

. First the derivative is

rewritten using the definition of the macroscopic stresses in
terms of the microscopic fields as

A
P,u
i jk = ∂Pi j

∂ ük
= ∂

〈
Pi j + ρ0üi X j

〉
∂ ük

. (70)

Then using the chain rule, (3), (4), (10) and FE discretization,
the equation reads

A
P,u
i jk =

nele∑
e=1

(
1

V

∫
Be

ρ0δik X j dV + 1

V

∫
Be

Ai jmn B
e
mnP dV

∂ d̃eP
∂ ük

+ α1

�t2
1

V

∫
Be

ρ0X j N
e
Pi dV

∂ d̃eP
∂ ük

)
. (71)

Finally, using the global abbreviations in Appendix 1 Tables
2, 3 and inserting (66), the modulus is obtained as

A
P,u = 〈V〉 − 1

V
L∗TK∗−1

W∗. (72)

Derivation of A
f,F

: The derivation of the sensitivity of the
macroscopic inertia with respect to the macroscopic defor-

mation gradient is again similar to that of A
P,F

. First, the
derivative is rewritten as

A
f,F
imn = ∂ f

ρ

i

∂Fmn
= ∂ 〈ρ0üi 〉

∂Fmn
(73)

and by using (3), (4), (10) and FE discretization, the equation
reads

A
f,F
imn =

nele∑
e=1

(
α1

�t2
1

V

∫
Be

ρ0δim Xn dV

+ α1

�t2
1

V

∫
Be

ρ0N
e
Pi dV

∂ d̃eP
∂Fmn

)
. (74)

Using the global abbreviations in Appendix 1 Tables 2, 3 and
plugging in (61), the modulus is identified as

A
f,F = α1

�t2

〈
VT

〉
− 1

V

α1

�t2
W∗TK∗−1

L∗. (75)

Derivation of A
f,u
: Analogously, the derivative is rewritten

as

A
f,u
ik = ∂ f

ρ

i

∂ ük
= ∂ 〈ρ0üi 〉

∂ ük
. (76)

Then, using (3) andFEdiscretization, the expressionbecomes

A
f,u
ik =

nele∑
e=1

(
1

V

∫
Be

ρ0δik dV
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Fig. 3 Algorithm for single
macroscopic iteration of the
dynamic FE2 framework with
respective equation references.
It should be noted that the
overall structure of the standard
FE procedure does not change,
only some additional fields need
to be computed. Furthermore,
for the implementation of the
microscopic problem, the
macroscopic displacments u
may be omitted from the code. It
is the second derivative ü,
computed in the macroscopic
problem, which influences the
microscopic results

+ 1

V

α1

�t2

∫
Be

ρ0N
e
Pi dV

∂ d̃eP
∂ ük

)
. (77)

Taking into account the global abbreviations in Appendix 1
Tables 2, 3 and inserting (66), the modulus is derived as

A
f,u = 〈

ρ0
〉 − 1

V

α1

�t2
W∗TK∗−1

W∗. (78)

Note that if α1 and α1 are equal to zero, which would be
equivalent to a quasi-static calculation, the first tangent mod-
uli in (69) take the same form as e.g. found in [40]. Here,
the closed form moduli (69), (72), (75) and (78) extend this
consistently to the dynamic regime. Note that for a com-
parable approach at small strains, most derivative terms are
conceptually quite similar. Also the incorporation of the new
kinematic constraint in terms of Lagrange multipliers can be
considered analogous for small strains. An overview over the
algorithm of the proposed framework is presented in Fig. 3.

5 Numerical analysis: layered structure

This section presents numerical studies as a proof of concept,
as well as an initial analysis of different RVE choices. As it
turns out, for dynamic homogenization the definition of RVE
is evenmore complex than for quasi-static cases. Single-scale
comparisons are calculated to assess the reliability of the
homogenization framework. First, a rather arbitrary example
is shown to analyze the macroscopic Newton iteration and
demonstrate the quadratically converging algorithm, which
is based on the tangent moduli derived in Sect. 4. Then the
concept of a unit cell as RVE is analyzed under dynamic
conditions. Finally, a comparison of two different displace-
ment constraints, including the proposed one, is presented.
All numerical examples make use of the Newmark scheme

with the parameters γ = 0.5 and β = 0.25, resulting in an
unconditionally stable algorithm. For more details on time
integration methods in the context of nonlinear FE methods
see e.g. [66].

A one-dimensional model of a layered structure with the
total length of L is investigated. The studied heterogeneous
material consists of two alternating phases, a soft and light
phase, and a stiff and heavy phase. Each phase has a length of
lM, a Young’s modulus E1 and E2, and a density ρ1 and ρ2,
respectively. All calculations are run using E1 = 2 ·103 N

mm2 ,

E2 = 2 · 105 N
mm2 , ρ1 = 1 · 103 kg

m3 and ρ2 = 1 · 105 kg
m3 . The

Poisson’s ratio is chosen to be negligible, i.e. ν = 10−6,
to enable a quasi-1D investigation. The left boundary is
fixed, on the right end an impact load is applied in terms
of a displacement boundary condition using the polynomial

function u(t) = 28umax
T 8 (t)4(t−T )4, where umax is the ampli-

tude of the impact wave and T the duration in which the
load is applied. Initially, the bar is at rest. The problem will
be solved using both, a standard single-scale finite element
problem referred to as direct numerical simulation (DNS),
as well as the proposed dynamic FE2 framework, c.f. Fig. 4
respectively. The DNS discretizes the microscopic phases at
the macroscale into a large number of finite elements with
a length of lE . It thereby serves as overkill reference for
the multiscale approach. The FE2 simulations have a macro-
scopic element length of lE andmake use of the same element
length lE at the microscale for better direct comparability
of the microscopic fields to the DNS. To approximate the
displacement fields of the elements, linear shape functions
and two Gauss points are used for all scales. As shown in
Fig. 4b, each microscopic RVE calculation is associated to
a single macroscopic integration point. The corresponding
parameters for each simulation, regarding geometry, mate-
rial parameters and loading will be listed in the caption of
each figure.
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Fig. 4 Illustration of the
numerical calculations
including, a a 1D single-scale
FE Model, b the macroscopic
model and the RVE of the FE2

approach

(a)

(b)

Fig. 5 Analysis of algorithmic
consistency: a comparison of
displacement fields, b
convergence of the macroscopic
Newton iteration with a
tolerance of 10−8. The
simulation parameters are
L = 10,000 mm, lM = 10 mm,
lE = 33.33 mm,
umax = 100 mm, T = 0.01 s,
�t = 5 · 105 s and basic unit
cell type A as RVE

(a) (b)

5.1 Consistency of numerical framework

This example analyzes the convergence behavior of the
macroscopic Newton iteration. In Fig. 5a, the distribution of
macroscopic displacement fields is shown at three different
time instances for both, the DNS and the FE2 calculation.
As RVE, the basic unit cell of the type A (c.f. Fig. 6) is
used. It can be seen, that the dynamic multiscale framework
approximates the overall behavior well and even captures
some of the smaller waves arising from the microstructure.
A better representation of the wave propagation might be
achieved by using finer time steps, but this would gener-
ally make the calculation converge faster as the initial values
are already closer to the solution, defying the objective to
properly test the tangent moduli. The convergence behavior
for the three arbitrarily chosen time frames is depicted in
Fig. 5b. Quadratic convergence of the norm of the updates
of the nodal displacements

∣∣�D∗∣∣ is observed. This demon-
strates that the macroscopic tangent moduli, incorporating
both the microscale inertia forces as well as possible con-
straints, have been derived in a consistent manner. Note that
in this example, locally strains appear of over 10% which
exceed the range of small strains. However, due to the one-
dimensionality of the problem, no significant influence from
the finite strain setting can be expected.

5.2 Analysis of the unit cell concept under dynamic
loading

For quasi-static homogenization simulations of periodic
microstructures, it is known that the resulting macroscopic
answer, as well as the corresponding microscopic fields are
invariant with respect to the specific choice of unit cell, as
long as an admissible periodic unit cell is chosen. In con-
trast to quasi-static cases, the distribution of the mass relative
to the geometrical center matters in a dynamic setting. An
extreme example is shown in Fig. 7, which compares the
macroscopic displacement field at t = 0.045 s presented in
the first example in Fig. 5a with a simulation using the basic
unit cell type B as an RVE (c.f. Fig. 6). To properly measure
the influence of different RVE choices on the FE2 simula-
tion, an objective error measure ε is considered. It is defined
as average difference of the macroscopic displacement fields
ε = ∑nnodes

i

∣∣uIi (t j ) − uIIi (t j )
∣∣ /nnodes, where uI and uII stand

for any two displacement signals that are being compared.
This measure can be evaluated for each time step and thus,
the average is once more computed over the number of time
steps εtime = ∑ntimesteps

j ε j/ntimesteps. Note, that due to the
comparison of nodal displacements, a unitless error value
obtained by dividing the difference by the reference value
is problematic as the regarded value might be zero. Further-
more, a delay in the response may lead to relatively large
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Fig. 6 Selection of RVE
choices with different numbers
of basic unit cells

Fig. 7 Comparison of
macroscopic displacement fields
for two different RVEs with
different basic unit cells types.
The simulation parameters are
L = 10,000 mm, lM = 10 mm,
lE = 33.33 mm,
umax = 100 mm, T = 0.01 s,
t = 0.045 s and �t = 5 · 105 s

(a) (b)

Fig. 8 Analysis of different RVE choices: a direct comparison of RVEs
with unit cell type A and B, for an increasing number of basic unit cells
per RVE (the error is computed as difference between the response of
the two unit cell types, not with respect to the DNS). b Error of unit cell

type A and B, compared to DNS as reference. The simulation param-
eters are L = 10,000 mm, lM = 2.5 mm, lE = 20 mm, umax = 100
mm, T = 0.01 s, �t = 5 · 105 s, ntimesteps = 400

errors in the displacements summarizing over time even if the
shape of the displacement wave is perfectly fine. Therefore,
in principle it is difficult for dynamic problems to obtain a
quantitativemeasure to evaluate the accuracy. The interpreta-
tion of the error value should therefore be done with caution,
as the single value does not convey any information about the
actual shape of the wave. However for the present analysis
the considered error measure is sufficient to analyze the gen-
eral trend. Figure 8 shows the calculated errors of different
choices of the RVE. For the comparison, RVEs with multiple
periods of the same unit cell type, as depicted in Fig. 6, were
considered. Two effects can be observed: The first, presented
in Fig. 8a, is that the difference inmacroscopic displacements
between different choices of unit cell type decreases, when
the number of unit cells perRVE is increased. Thismeans that
the choice of particular basic unit cell type does not matter as

long as the RVE is chosen large enough. The second effect,
shown in Fig. 8b, is that the error, computed as difference
to the DNS reference, increases when the size of the RVE,
relative to the macroscopic element length, gets too large.
Then, errors resulting from a violation of the scale separa-
tion assumption are obtained. Generally, the second effect
can be neglected, as calculations with RVE sizes larger than
the macroscopic element length have little practical appli-
cation when using FE2. At this point it is favorable to use
domain decomposition approaches instead of a homogeniza-
tionmethod in order to avoid the scale separation assumption.

5.3 Influence of displacement constraints

Finally the proposed displacement link u = 〈u〉 is analyzed
for the examples in Fig. 8b, in comparison to the standard
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Table 1 Number of time steps before either the simulation crashed
(divergence of Newton iteration at microscale) or the intended complete
set of 1000 time steps was successfully reached

Number of unit cells per RVE 1 3 5 7
Unit cell type u-link Number of time steps

A u = 〈u〉 1000 940 1000 1000

ũcorner = 0 1000 671 634 1000

B u = 〈u〉 1000 456 1000 1000

ũcorner = 0 944 420 192 166

Different choices of RVEs and constraints were analyzed

displacement link for quasi-static periodic homogenization,
where the fluctuations at the RVE corner nodes is set to zero,
i.e. ũcorner = 0. For the quasi-1D example analyzed here,
this is equivalent to setting the integral over the surface equal
to the corresponding macroscopic displacements, which has
been taken into account in other dynamic homogenization
schemes.

The first observation is, that using the proposed volume
constraint u = 〈u〉 results in a more robust framework in
terms of stability of theNewton–Raphson iterations. Further-
more, slightly smaller error values are obtained compared to
the DNS reference. Table 1 shows the number of time steps
reached before either the calculations crashed (due to diverg-
ingNewton iterations at themicroscale) or theywere finished
successfully after the intended complete set of 1000 time
steps. Especially the calculations using the unit cell type B
in combinationwith the zero fluctuations of the corner nodes,
underperformed the other scenarios. To understand the dif-
ference between the performance of the displacement links,
it is necessary to examine the behavior at the RVE level.

Here the examples with the RVEs consisting of three peri-
ods of the basic unit cell B are further analyzed. Figure 9
compares the microscopic displacements for four relevant
time instances right before the peak of the input wave passes
through theRVEs.More specifically, the differences between
the microscopic displacement fields u of an RVE and the
respective macroscopic displacements u. To compare the
DNS, an effective u has been computed as the average dis-
placement over the associated length. Thereby, the quality
of the microscopic fields can be analyzed independently
of the macroscopic displacements. With this, the two dif-
ferent displacement constraint options can be effectively
compared with the reference solution obtained from DNS.
The graphs show, that the fixed corner constraint leads to arti-
ficially increased displacement intensities at the microscale
due to the constricted boundary. These increased displace-
ments eventually lead to extreme deformations in single
elements at the microscale, crashing the simulation. The pro-
posed displacement volume constraint however, leads to a
softer constraint which results in a more robust computation

while still enabling dynamic effects which agree well with
the ones from the reference DNS. In the presented examples,
the only rate-dependent influence are inertia forces. In cases
where also rate-dependent material properties are included
we expect the influence of different displacement constraints
on the overall simulation to increase, in favor for the proposed
volume constraint.

6 Numerical analysis: split Hopkinson bar

After presenting an analysis focused on the study of general
properties of dynamic homogenization, this section shows
the applicability of the framework to an engineering prob-
lem. A standard experiment to study material behavior under
impact loading is therefore replicated, the split Hopkinson
tension bar test, see e.g. [11,58]. By releasing a pre-strained
steel bar, a loading pulse is transmitted to an aluminum input
bar. The wave travels along the bar and through a speci-
men, which is sandwiched between the input and another
aluminum bar called the output bar. Strain gauges in the two
bars record the wave signal. By applying the elastic, uniaxial
stress wave propagation theory to the split Hopkinson bar
experiment, the time history of the forces and the displace-
ments of the faces of the test specimen are calculated, in the
following denoted as σ 1 and σ 2, cf. [28]. These are then used
to approximate the stress and strain within the specimen in
loading direction. A schematic visualization is presented in
Fig. 10. As target material, a strain-hardening cementitious
composite (SHCC) is chosen. This fiber-reinforced concrete
exhibits an outstanding ductility and a pronounced energy
dissipation under high strain rates. Therefore it is ideal as
reinforcing layer to improve the impact resistance of struc-
tures [12]. The interpretation of experimentally measured
data under dynamic conditions is difficult. Therefore there is
a need for accurate simulations including inertia at themacro-
and the microscale. In [58] a quite simplified microstruc-
ture was considered as RVE. Although a three-dimensional
discretization of theRVEwas taken into account, themultidi-
mensional character with respect to mechanics was strongly
limited by the fact that only one fiber in the direction of
the main macroscopic traveling wave direction was taken
into account. Therefore, in contrast to [58], here we con-
sider an RVEwith multiple fibers to more realistically reflect
the three-dimensional nature of microscopic problems in real
SHCC. In total, 13 randomly oriented fibers are included
representing a more or less isotropic distribution of fiber
orientations. First the applied micromechanical models and
the chosen microstructure are presented. The macroscopic
boundary value problem is shown and used to analyze the
dynamic effects.
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(a) (b)

(d)(c)

Fig. 9 Comparison of microscopic displacement fields obtained from
the FE2 simulations with the DNS. The displacements have been nor-
malized by u (for the DNS, average displacement) to analyze the quality
of microscopic displacements more or less independent of the macro-
scopic displacements. The two different displacement links, the volume
constraint (VC) and the fixed corners (FC) are analyzed. The simula-

tion parameters are L = 10,000 mm, lM = 2.5 mm, lE = 20 mm,
umax = 100 mm, T = 0.01 s,�t = 5 ·105 s, location of the macroscale
integration point X1 = 7504, 23 mm, section of the DNS displacement
field from X1 = 7496.25 mm to X1 = 7511.25 mm, RVE with three
periods of basic unit cell types B

6.1 Microscale problem

The microscale problem discretizes the fiber-reinforced con-
crete. Therefore the relevant micromechanical features need
to be replicated. Before the first crack through the cementi-
tiousmatrix, the concretematrix itself dominates thematerial
behavior of the composite. Once a crack has formed the fibers
are engaged and bridge the crack. Finally, a crack will open
when the fibers are pulled out. The fiber properties as well as
the pullout behavior are shown to be rate dependent [9,11].
To capture these micromechanical effects two main models
are required: (i) a model for the concrete matrix, including
cracking and (ii) a representation for the embedded fibers.
The concrete is represented as a first approximation by a
standard Neo–Hooke material law. The complex compres-
sive behavior of concrete is neglected as only tensile loading

is considered within this example. A realistic representation
of the crack development is not within the scope of this work.
Therefore, to represent the matrix cracking, a simple erosion
method is implemented. It sets the material stiffness of an
integration point close to zero, once the stress in loading
direction surpasses a critical value σcr. The fibers are repre-
sented by a linear truss element, sharing the nodes with the
matrix mesh. This allows for a 1D effective material law to
be applied, capturing the complex material behavior of the
fiber as well as that of the fiber-matrix bond. However, the
forces are thus not transferred to the matrix continuously,
leading to stress concentrations at the nodes resulting in spu-
rious crack patterns. Therefore, the crack path in the matrix
is here defined in advance. The chosen material model uses
a general 1D Neo–Hookean material law with an additional
strain rate sensitivity of the stress as well as a damage formu-
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(a) (b)

Fig. 10 Schematic visualization of the multiscale split Hopkinson tension bar simulation. a Depicts the RVE, b the macroscopic problem

lation, cf. [58]. The stress in terms of the first Piola–Kichhoff
stress tensor is given by P = 1

2 E(F − 1
F )(1 + �)(1 − D)

where E is the Young’s modulus, � denotes the dynamic
increase which takes on only positive values, and D is the
damage valuewhich takes on values from0 to 1. The dynamic
increase function � is defined by a logarithmic function,
which depends on the rate of the deformation gradient Ḟ .
For values of Ḟ ≥ αII, it is defined as � = αI ln[ Ḟ

αII ] oth-
erwise it is zero, i.e. no dynamic increase for rates lower
than αII. The exponential damage formulation is given by
D = D∞(1 − exp(−(

ψD
Drate

)Dshape)). The damage value D
is determined by the effective energy considered for dam-
age ψD. It is defined as the current maximum value of the
strain energy functionψ0. The damage algorithm is therefore
classified as a discontinuous damage approach. The damage
evolution is controlled by three parameters. D∞ defines the
maximum damage reached, Drate > 0 sets the velocity of
the damage evolution, and Dshape modifies the shape of the
function.

As RVE, a cubic body with an edge length of 1mm is
chosen, see Fig. 10a. A crack face perpendicular to the load-
ing direction is located in the center, splitting the matrix
in two halves, which are connected by a number of 13
randomly oriented fibers. The concrete matrix is modeled
by brick elements, whereas in the center, the feature for
cracking is included to represent a possible crack through
the matrix. This microstructure fulfills minimal geometric
requirements to reproduce the relevantmicromechanical pro-
cesses of SHCC. More complex structures are only of value
once advanced micromechanical models are utilized. In the
subsequent simulations the followingmaterial parameters are
used: for the concrete matrix E = 29kN/mm2, ν = 0.3,
and ρ0 = 2100kg/m3, additionally for the crack Ecr =
10−3 kN/mm2 and σcr = 5kN/mm2, for the fiber model
E = 40kN/mm2, A = 0.00385mm2, ρ0 = 980kg/m3,
D∞ = 0.9982, Dshape = 0.36, Drate = 0.2, αI = 0.08, and
αII = 0.51.

6.2 Macroscopic boundary value problem

The macroscale represents the experimental setup of the
split Hopkinson tension bar. The cylindrical equipment

and SHCC sample are discretized by truss elements. Stan-
dard elements are used to simulate the aluminum input
and output bars, the two-scale homogenization framework
is applied to model only the SHCC specimen. A sketch
of the setup is shown in Fig. 10b. All elements have a
length of 10mm. To simulate the experimental loading
conditions a piece-wise polynomial function uBC is cho-
sen. The load is applied as a boundary displacement. The
three parts are defined as uI(t) = 14

275 t vc(
2t
tvc

)3, uII(t) =
t vc
275 [7( 2t

tvc
)8 − 12( 2t

tvc
)7 + 16( 2t

tvc
)6 + 19 − 34

3 ( 2t
tvc

)−1] and

uIII(t) = vc(t − 529
825 tvc). The transitions between the respec-

tive functions are at uI(0.592 tvc) = uII(0.592 tvc) and
uII(tvc) = uIII(tvc).

The functiondescribes the pulse,which is characterizedby
two phases. First the acceleration phase and second a phase
of constant velocity. The two parameters of the function tvc
and vc, define respectively the time when the transition from
the first to the second phase is reached and the constant veloc-
ity.

6.3 Results

By using the presented microstructure in combination with
the split Hopkinson tension bar simulation, the capabilities
of the developed framework to analyze material behavior of
composites under dynamic loading are illustrated. Follow-
ing the experimental procedure, the stress signals σ 1 and
σ 2 of the nodes at the specimen interfaces is averaged as
σ . The stress is then plotted against an approximated spec-
imen strain, computed by the difference of displacement
of the interfaces divided by the specimen length. First a
quasi-static simulation is compared to the dynamic response,
shown in Fig. 11. A clear increase in the dynamic simulation
is observed. In addition, a shift is visible from the sudden
drop of stress under quasi static loading, due to the homo-
geneous stress state, to a more gradual stress increase under
dynamic conditions, mimicking themultiple cracking behav-
ior of SHCC. Then, to understand the origin of the dynamic
increase, two parameter studies are conducted. In Fig. 12,
the strain rate sensitivity of the fibers is varied. Clearly, the
overall stress response is increased by an increase in αI. In
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Fig. 11 Quasi-static and
dynamic results of the split
Hopkinson tension bar
simulation. The zoom shows the
initial cracking of the matrix

Fig. 12 Variation of the strain rate sensitivity αI

Fig. 13 Influence of microinertia on the macroscopic response

addition, the unsteady phase of multiple cracking is com-
pleted at smaller overall strains, due to the effective increase
infiber stiffness.A similar effect is observedwhen comparing
microstructures with random fiber direction to perpendicu-
lar fibers in loading direction. The fibers at an angle to the
applied load result in the softer macroscopic response, c.f.
[58]. In Fig. 13, the focus is on the influence of the microin-
ertia. It is evident that the main dynamic influences of this
example are the structural inertia and the strain rate sensitiv-
ity of the fiber pullout. The microscopic inertia, in contrast
to the earlier example of the layered structure in Sect. 5, does
not appear to have a significant influence on the macroscopic
stress. As the chosen microstructure only allows for mod-
erate dynamic activity, this is not surprising. However with
more advanced micromechanical models this might change.

7 Conclusion

In this paper, a general purpose, consistent, two-scale
homogenization framework for dynamics at the macro- and
microscale was proposed in the sense of the FE2 method.
The novelty of this framework lays in its generality. The
framework does not include any simplifications such as
linearized strains, explicit time integration or partly quasi-
static scenarios. The only assumption taken into account is a
sufficiently pronounced scale separation, which is anyway
essential requirement of any FE2 approach. Therefore, it
enables the simulation of various structural problems of com-
plex micro-heterogeneous materials under dynamic loading
such as impact. Furthermore, the derived formulations are
compatible with standard FE2 architecture. Themain aspects
are: (i) the incorporation of the complete balance of momen-
tum at the micro- and macroscale including inertia forces,
(ii) extended microscopic boundary conditions resulting in
a more robust scheme and giving the possibility for non-
periodic RVE boundaries, (iii) a finite-strain formulation
enabling the simulation of a wide range of macro- andmicro-
mechanical phenomena, and (iv) the derivation of consistent
macroscopic tangent moduli ensuring quadratically converg-
ingmacroscopic iterations. The presented results on different
choices of RVEs show that different admissible unit cells of
a periodic microstructure lead also to a different mechan-
ical response - even if periodic boundary conditions are
employed. This is in contrast to quasi-static scenarios. How-
ever, these results should not entail that the most basic unit
cell is necessarily a bad choice for a simulation, but the spe-
cific choice of this basic unit cell is not unique. In addition,
a more complex simulation of a split Hopkinson tension test
on an SHCC specimen was presented. The example at hand,
compared to the simplified microstructure in [58], exhibits
a softer macroscopic response, as not all fibers are oriented
in loading direction. This is apparent due to the more pro-
nounced phase of multiple cracking up to 1.5% strain. The
example shows the capability of the multiscale framework to
further the understanding of experimental material behavior
under impact.
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Appendix: Matrix abbreviations

See Tables 2 and 3.

Table 2 Overview of the used fields at element and global level, with
nedf: number of DOF at element level and ndm: spacial dimension

Global Element
Definition Size

K = nele
A
e=1

ke nedf × nedf kePQ =
∫
Be

Be
i j PAi jkl B

e
klQ dV

L = nele
A
e=1

le nedf × n2dm lePi j =
∫
Be

Be
kl PAkli j dV

M = nele
A
e=1

me nedf × nedf me
PQ =

∫
Be

Ne
Piρ0N

e
Qi dV

W = nele
A
e=1

we nedf × ndm we
Pi =

∫
Be

ρ0N
e
Pi dV

Z = nele
A
e=1

ze nedf × n2dm zePi j =
∫
Be

ρ0N
e
Pi X j dV

G = nele
A
e=1

ge nedf × ndm gePi =
∫
Be

Ne
Pi dV

V n2dm × ndm Vi jk = ρ0δik X j

Y n2dm × n2dm Yi jkl = ρ0δik Xl X j

Table 3 Overview of the extended fields, with nedf: number of DOF
at element level, nlgr: number of DOF of Lagrange constraint and ndm:
spacial dimension

Matrix Size

D∗ =
[
D̃
T

λT
]T

(nedf + nlgr) × 1

L∗ = [
LT + α

�t2
ZT 0

]T
(nedf + nlgr) × n2dm

L∗ =
[
LT + α

�t2
ZT 0

]T
(nedf + nlgr) × n2dm

W∗ = [
WT 0

]T
(nedf + nlgr) × nlgr

K∗ =
[
K + α

�t2
M G

GT 0

]
(nedf + nlgr) × (nedf + nlgr)
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