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Abstract
TheoutbreakofCOVID-19 in2020has led to a surge in the interest in themathematicalmodelingof infectious diseases.Disease
transmission may be modeled as compartmental models, in which the population under study is divided into compartments
and has assumptions about the nature and time rate of transfer from one compartment to another. Usually, they are composed
of a system of ordinary differential equations in time. A class of such models considers the Susceptible, Exposed, Infected,
Recovered, and Deceased populations, the SEIRD model. However, these models do not always account for the movement of
individuals from one region to another. In this work, we extend the formulation of SEIRD compartmental models to diffusion–
reaction systems of partial differential equations to capture the continuous spatio-temporal dynamics of COVID-19. Since the
virus spread is not only through diffusion, we introduce a source term to the equation system, representing exposed people
who return from travel. We also add the possibility of anisotropic non-homogeneous diffusion. We implement the whole
model in libMesh, an open finite element library that provides a framework for multiphysics, considering adaptive mesh
refinement and coarsening. Therefore, the model can represent several spatial scales, adapting the resolution to the disease
dynamics. We verify our model with standard SEIRD models and show several examples highlighting the present model’s
new capabilities.

Keywords COVID-19 · Compartmental models · Diffusion–reaction · Partial differential equations · Adaptive mesh
refinement and coarsening

1 Introduction

The COVID-19 pandemic has caused widespread damage
worldwide, in terms of human lives and international eco-
nomic weakening. As a new highly contagious disease,
governments have taken unprecedented measures to slow the
spread of the virus, including quarantines, curfews, lock-
downs, and national and international travel suspension.
These measures, considered essential by many experts, are
partly motivated by the lack of reliable data on this disease’s
transmission and lethality, which justifies cautious responses
from the authorities and population. These events demon-

B Alvaro L. G. A. Coutinho
alvaro@nacad.ufrj.br

Malú Grave
malugrave@nacad.ufrj.br

1 Department of Civil Engineering, COPPE/Federal University
of Rio de Janeiro, P.O. Box 68506, Rio de Janeiro, RJ
21945-970, Brazil

strate more than ever the need for reliable tools designed to
model the spatio-temporal spread of infectious diseases.

The study of infectious disease proliferation is a well-
established field and has given rise to the area of science
called mathematical epidemiology [51]. Mathematical epi-
demiology proposes models that help the understanding of
epidemics and to outline policies to control infectious dis-
eases. In Brazil, studies of this type have been carried out
for years for diseases such as Dengue [20] and Zika [17],
and, in a global context, diseases such as HIV [41], SARS
[19], Malaria [40], Ebola [38], among others. The COVID-
19 pandemic brought the need for more research in this area.
Several models for this pandemic outbreak have been pre-
sented in recent months [3,13,25,47,48].

Disease transmission may be modeled as compartmental
models, in which the population under study is divided into
compartments and has assumptions about the nature and time
rate of transfer from one compartment to another [9]. These
models have been used extensively in biological, ecologi-
cal, and chemical applications [8,30,32]. They allow for an
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understanding of the processes at work and for predicting the
dynamics of the epidemic.

One of the simplest compartmental models is the SIR
model proposed by Kermack and McKendrick [34], where
the population is divided into susceptible, infected, and
recovered compartments. This basic SIR model can be
extended in several ways by enriching the number of com-
partments, as the susceptible-infectious-susceptible (SIS)
model for the common cold, in which infectious people
become susceptible again once recovered; the susceptible-
infected-recovered-deceased (SIRD), which distinguishes
recovered from dead; the susceptible-exposed-infectious-
recovered (SEIR) model, where infected carriers experience
an exposed period before they become infectious; among
others. Several features may be included such as maternal
immunity, vaccinations, effects of age, variable contact rates,
quarantine measures [49], etc. The SIR based models also
may be used along with other approaches as a mobility net-
workmodel [15] or an agent-based computational framework
[54].

The large majority of the compartmental models are com-
posed of a system of ordinary differential equations (ODE’s)
in time. Though compartmentalized models are simple to
formulate, analyze, and solve numerically, these models
do not always account for the movement of individuals
from one region to another. Different approaches have been
used to introduce spatial variation into such ODE models
[23,25,28,31]. The strategies consist of defining regional
compartments corresponding to different geographic units
and adding coupling terms to the model equations to account
for species’ movement from unit to unit.

In this work, we use a partial differential equation (PDE)
model to capture the continuous spatio-temporal dynamics
of COVID-19. PDE models incorporate spatial information
more naturally and allow for capturing the dynamics across
several scales of interest. They have a significant advantage
over ODEmodels, whose ability to describe spatial informa-
tion is limited by the number of geographic compartments.
Indeed, recent research indicates that COVID-19 spreading
presents multi-scale features that go from the virus and indi-
vidual immune system scale to the collective behavior of
a whole population [7]. For the scale of virus transmission
among individuals, there are studies such as the potential
infection zone produced by a cough [55] or the viral propa-
gation in a built environment [39]. On a smaller scale, it is
possible even to study the effects of the viral decontamina-
tion efficacy with UV irradiation [56]. On the other hand, it is
also possible to simulate a global planetary scale pandemic
as in [54]. Here, we are interested in study the dynamics of
the virus spread in specific geographic regions.

We study a compartmental SEIRD model (susceptible-
exposed-infected-recovered-deceased) that incorporates spa-
tial spread through diffusion terms [12,32,35,47,48]. Adap-

tive mesh refinement and coarsening [14] can resolve popu-
lation dynamics from local (street, city) to regional (district,
state), providing an accurate spatio-temporal description of
the infection spreading.Moreover, diffusionmay be properly
tuned to account for local natural or social inhomogeneities
(e.g., mountains, lakes, highways) describing populations’
movements.

However, the main limitation of the diffusion–reaction
PDE approach is the definition of the diffusion operator
and transmission coefficients, which depend on the pop-
ulation’s behavior. Another issue is that the virus spread
is not only through diffusion, since people, who may be
infected, travel long distances in a short period. Some mod-
els relate the mobile geolocation data with the spread of
the disease [37,42]. These issues make the model a highly
complex system, which may completely change as the pop-
ulation’s behavior changes. Therefore, this work contributes
to improving the knowledge of compartmental diffusion–
reaction PDE models.

All implementations are done using the libMesh library.
As other freely available open-source libraries (deal.II [5],
FEniCS [2], GRINS [6], MOOSE [22], etc), libmesh
provides a finite element framework that can be used for
numerical simulation of partial differential equations in var-
ious applied fields in science and engineering. It has already
been used in more than 1000 publications with applications
in many different areas. See, for example, recent applica-
tions in sediment transport [27] and bubble dynamics [26].
This library is an excellent tool for programming the finite
element method and can be used for one-, two-, and three-
dimensional steady and transient simulations on serial and
parallel platforms. The libmesh library provides native
support for adaptive mesh refinement and coarsening, thus
providing a natural environment for the present study. The
main advantage of this library is the possibility of focusing on
implementing the specifics features of the modeling without
worrying about adaptivity and code parallelization. Conse-
quently, the effort to build a high performance computing
code tends to be minimized.

The remainder of this work is organized as follows: In
Sect. 2, we present the governing equations that describe
the dynamics of a virus infection. First, we present a
generic spatio-temporal SEIRD model, based on the EPI-
DEMIC software [16], used to verify our implementation.
We then present a model that better represents the dynam-
ics of COVID-19 infection spread, based on [47,48]. In
Sect. 3, we introduce theGalerkin finite element formulation,
the time discretization, and the libMesh implementation.
Then, we present the numerical verification of the generic
spatio-temporal SEIRD model implementation. We verify
our algorithm’s capacity to represent a compartmental model
[16] and show how the diffusion influences the dynamics.
Section 5 presents the numerical results of the spatio-
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temporal model of COVID-19 infection spread. We perform
simulations similar to the ones presented in [48] and show
tests to highlight the new modeling capabilities introduced
in this work. Finally, the paper ends with a summary of our
main findings and the perspectives for the next steps of this
research.

2 Governing equations

The presentation of the governing equations follows the con-
tinuum mechanics framework in [48] instead of the more
traditional approach found in mathematical and biological
references. Consider a system which may be decomposed
into N distinct populations: u1(x, t), u2(x, t), ..., uN (x, t).
Let Ω ∈ R2 be a simply connected domain of interest with
boundary ∂Ω = ΓD∩ΓN , and [0, T ] a generic time interval.
The vector compact representation of the governing equa-
tions as a transient nonlinear diffusion–reaction system of
equations reads,

∂u
∂t

+ (A + B(u))u − ∇ · (ν∇u) − f = 0 in Ω × [0, T ](1)
u = uD in ΓD × [0, T ] (2)

(ν∇u) · n = h in ΓN × [0, T ] (3)

We denote the densities of the susceptible, exposed,
infected, recovered and deceased populations as s(x, t),
e(x, t), i(x, t), r(x, t), and d(x, t). Also, let c(x, t) denote
the cumulative number of infected and n(x, t) the sum of the
living population; i.e., n(x, t) = s(x, t) + e(x, t) + i(x, t) +
r(x, t). We consider u = [s, e, i, r , d]T . The matrices A, B
and ν, and the vector f depend on a particular form of the
system dynamics. Furthermore, in general, ν = ν(x), that
is, diffusion is heterogeneous and anisotropic. Besides the
boundary conditions (2), (3), we specify the initial condition
u(x, 0) = u0. The total population Ui (t) of each compart-
ment ui (x, t) is,

Ui (t) =
∫

Ω

ui (x, t)dΩ (4)

for i = 1, 2, . . . , N .

2.1 Generic spatio-temporal SEIRDmodel

We first consider a SEIRDmodel based on [16], in which we
add diffusion operators based on [47], given by the following
system of coupled PDEs over Ω × [0, T ]:

∂s

∂t
+ β

n
si − ∇ · (nνs∇s) = 0 (5)

∂e

∂t
− β

n
si + αe − ∇ · (nνe∇e) = 0 (6)

∂i

∂t
− αe + (γ + δ)i − ∇ · (nνi∇i) = 0 (7)

∂r

∂t
− γ i − ∇ · (nνr∇r) = 0 (8)

∂d

∂t
− δi = 0 (9)

where β is transmission rate (days−1), α the latent rate
(days−1), γ the recovery rate (days−1), δ the death rate
(days−1), and νs , νe, νi , νr are diffusion parameters respec-
tively corresponding to the different population groups (km2

persons−1 days−1). We append to the system of equa-
tions homogeneous Neumann boundary conditions, that is,
(ν · ∇u) · n = 0.

We can reframe this model in the general form given by
Eq. (1). Thus, the matrices A, B, ν and the vector f reads,

A =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 α 0 0 0
0 −α γ + δ 0 0
0 0 −γ 0 0
0 0 −δ 0 0

⎤
⎥⎥⎥⎥⎦ (10)

B =

⎡
⎢⎢⎢⎢⎣

0 0 β
n s 0 0

0 0 −β
n s 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ (11)

ν =

⎡
⎢⎢⎢⎢⎣

νs 0 0 0 0
0 νe 0 0 0
0 0 νi 0 0
0 0 0 νr 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ (12)

νk =
[
νkxx νkxy
νkyx νkyy

]
with k = s, e, i, r (13)

f = 0 (14)

This model is based on the EPIDEMIC software,1 and it is
employed to verify our implementation. The system of equa-
tions represents that the susceptible population decreases as
the exposed population increases. This variation depends on
the transmission rate between infected and susceptible. The
number of exposed increases because of the transmission
rate and decreases when the exposed individuals become
infected (after the incubation period). The number of infected
increases after the incubation period and decreases depend-
ing on the recovery and death rate. The number of deaths
depends only on the death rate as the number of recovered
depends only on the recovery rate. Finally, the cumulative
number of infected depends only on the exposed and the

1 https://americocunhajr.github.io/EPIDEMIC/ [16].
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incubation period. The diffusion parameters are included in
the model to spread the disease spatially.

Summarizing, this model assumes:

– Movement is proportional to population size; i.e., more
movement occurs within heavily populated regions;

– No movement occurs among the deceased population;
– There is a latency period between exposure and the devel-
opment of symptoms;

– The probability of contagion is inversely proportional to
the population size;

– The exposed persons will ever develop symptoms;
– Only infected persons are capable of spreading the dis-
ease;

– The non-virus mortality rate is not considered in this
model;

– New births are not considered in this model.

Note that the EPIDEMIC model’s dynamics does not rep-
resent the actual COVID19 dynamics since, in the case of
COVID19, the exposed populationmaybe asymptomatic and
recover without becoming infected and still spread the virus.
Thus, a better model would be the one based on [47,48].

2.2 Spatio-temporal model of COVID-19 infection
spread

We begin by making several model assumptions to represent
the COVID-19 infection spread adequately [48]:

– Only mortality due the COVID-19 is considered;
– New births are not considered in this model.
– Some portion of exposed persons never develop symp-
toms, and move directly from the exposed compartment
to the recovered compartment (asymptomatic cases);

– Both asymptomatic (exposed) and symptomatic (infected)
patients are capable of spreading the disease;

– There is a latency period between exposure and the devel-
opment of symptoms;

– It is possible that new cases of exposed people appear
randomly in the system (exposed people who return from
a travel);

– The probability of contagion increases with population
size (Allee effect [47]);

– Movement is proportional to population size; i.e., more
movement occurs within heavily populated regions;

– No movement occurs among the deceased population;

Then, the system of equations becomes:

∂s

∂t
+ βi

(
1 − A

n

)
si + βe

(
1 − A

n

)
se + f

− ∇ · (nνs∇s) = 0

(15)

∂e

∂t
− βi

(
1 − A

n

)
si − βe

(
1 − A

n

)
se + (α + γe)e − f

− ∇ · (nνe∇e) = 0

(16)

∂i

∂t
− αe + (γi + δ)i − ∇ · (nνi∇i) = 0 (17)

∂r

∂t
− γee − γi i − ∇ · (nνr∇r) = 0 (18)

∂d

∂t
− δi = 0 (19)

where A characterizes the Allee effect (persons), that takes
into account the tendency of outbreaks to cluster around large
populations,βi is the transmission rate between symptomatic
and susceptible (persons−1 days−1), βe is the transmis-
sion rate between asymptomatic and susceptible (persons−1

days−1), f is a source function that depends on space and
time (persons), α is the latent rate (days−1), γe is the recov-
ery rate of the asymptomatic (days−1), γi is the recovery rate
of the symptomatic (days−1), δ is the death rate (days−1), and
νs , νe, νi , νr are the diffusion parameters respectively corre-
sponding to the different population groups (km2 persons−1

days−1).
Now, we call exposed who has contact with the virus but

remains asymptomatic. However, since the virus is highly
transmissible, the exposed population also may transmit the
virus. The exposed may recover without any symptoms or
may become infected. The infected follow the same logic as
the previous SEIRD system (they may recover or die). The
main difference in the new SEIRD system is in the exposed
population andwithwhom it interacts. The source function f
may be defined to represent exposed people who return from
travel. Note that β has units (days−1) while βi and βe have
units (person−1 days−1). This difference arrives from the for-
mulation choice. While in Eqs. (5) and (6), the contact terms
are normalized by the living population, this normalization
does not occur in Eqs. (15) and (16). The first approach is
called frequency-dependent formulation, in which the con-
tagion is independent of population density. On the other
hand, in the density-dependent formulation, the contagion
depends on population density, as the name suggests. Both
models may be valid and deliver accurate results, depending
on the physical situation.

To better represent what happens in real situations, where
the epidemiology changes as the public health guidelines,
lockdowns, and health response evolve, it is relevant to
consider time and spatially varying parameters. The poli-
cies may be different in different cities, as well as it may
change with time. Therefore, it is possible to adjust the
contact rate and diffusion parameters for each period and
location. Connecting the COVID-19 available data to emerg-
ing technologies, like physics informed neural networks [44],
data-driven inference techniques [50], or Bayesian calibra-
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tion [29] can help to get insight into the relevant parameters
and their spatio-temporal characteristics.

To express this model in the general form given by equa-
tion (1), the matrices A, B, ν and the vector f reads,

A =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 α + γe 0 0 0
0 −α γi + δ 0 0
0 −γe −γi 0 0
0 0 −δ 0 0

⎤
⎥⎥⎥⎥⎦ (20)

B =

⎡
⎢⎢⎢⎢⎣

0 βe
(
1 − A

n

)
s βi

(
1 − A

n

)
s 0 0

0 −βe
(
1 − A

n

)
s −βi

(
1 − A

n

)
s 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ (21)

ν =

⎡
⎢⎢⎢⎢⎣

νs 0 0 0 0
0 νe 0 0 0
0 0 νi 0 0
0 0 0 νr 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ (22)

νk =
[
νkxx νkxy
νkyx νkyy

]
with k = s, e, i, r (23)

f =

⎡
⎢⎢⎢⎢⎣

− f
f
0
0
0

⎤
⎥⎥⎥⎥⎦ (24)

If we assume that the region of interest is isolated, we
prescribe the following homogeneous Neumann boundary
conditions,

∇s · n = 0 (25)

∇e · n = 0 (26)

∇i · n = 0 (27)

∇r · n = 0 (28)

or simply (ν · ∇u) · n = 0.

2.3 Determination of R0

The basic reproduction number, R0, is defined as the aver-
age number of additional infections produced by an infected
individual in a wholly susceptible population over the full
course of the disease outbreak. In an epidemic situation, the
threshold R0 = 1 is the dividing line between the infection
dying out and the onset of an epidemic. R0 > 1 implies
growth of the epidemic, whereas R0 < 1 implies decay in
infectious spread [9].

The concept of R0 is well-defined for ODEmodels. How-
ever, its extension to a PDE model is unclear, owing to the

Fig. 1 Statistical refinement strategy: elements in hatched areas are
flagged to AMR/C process

Fig. 2 Adaptive mesh refinement: hierarchy of refined meshes with
hanging nodes, where the solution is constrained to enforce continuity

Fig. 3 Test 1: Reproducing a compartmental model

influence of diffusion. Viguerie et al. [48] found that a R0

derived for the ODE version of the PDE model is not consis-
tently reliable to represent the epidemic’s dynamic growth
adequately. If we do not consider the diffusion, R0 may be
calculated as:

R0 = βes + f

α + γe
+ βiαs

(α + γe)(δ + γi )
(29)

For further details about the R0 calculation, refer to [18,
48].
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Fig. 4 Test 1: Values over a centralized horizontal line at t = 365 days

Fig. 5 Test 2: Infected initial condition

Fig. 6 Test 2: Values over a centralized horizontal line at t = 365 days

3 Finite element formulation

In this sectionwebriefly introduce theGalerkinfinite element
formulation, the time discretization, and the the libMesh
implementation, supporting adaptive mesh refinement and
coarsening. Appendices A and B give respectively the result-
ing finite element matrices for the generic spatio-temporal
SEIRD and COVID-19 models.

3.1 Space discretization

We introduce a Galerkin finite element variational formula-
tion for space discretization. Without loss of generality, we
consider the case of homogeneous Dirichlet and Neumann
boundary conditions. Let Vu

h be a finite dimensional space

Fig. 7 Test 2: Infected people at different time-steps (top) and adapted meshes (bottom)
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Fig. 8 Test 3: Susceptible initial condition

such that,

Vu
h = {uh(·, t),wh(·) ∈ H1(Ω) | uh = 0,

wh = 0 on ΓD} (30)

in which uh(·, t) is the discrete counterpart of u and wh the
weight function. The weak formulation is then: find uh ∈
Vu

h such that ∀wh ∈ Vu
h ,

(
wh,

∂uh

∂t

)
+

(
wh,

(
A + B(uh)

)
uh

)

−
(
wh,∇ · (ν∇uh)

)
−

(
wh, f

)
= 0 in Ω × [0, T ]

(31)

(
wh,uh(·, 0)

)
=

(
wh,u0

)
in Ω (32)

Here we define the operation (·, ·) as the standard scalar
product in L2(Ω).

3.2 Time integration

The SEIRD and COVID-19 models yield stiff systems of
equations, making explicit time-marching methods unfeasi-
ble. The Backward Euler method is widely applied because
of its unconditional numerical stability characteristics. How-
ever, it has the disadvantage of beingonlyfirst-order accurate,
which introduces a significant amount of numerical diffusion.
Then,weuse the second-orderBackwardDifferentiationFor-
mula (BDF2), which, compared to the prevailing Backward
Euler method, has significantly better accuracy while retain-
ing unconditional linear stability. The model becomes,

(
wh,

1.5uhn+1 − 2uhn + 0.5uhn−1

Δt

)

+
(
wh,

(
A + B(uhn+1)

)
uhn+1

)

−
(
wh,∇ · (ν∇uhn+1)

)

−
(
wh, fn+1

)
= 0 in Ω × [0, T ]

(33)

The subscript n + 1 is associated to t = tn+1 and n, and
n − 1 to the previous time-steps.

3.3 Implementation and adaptivemesh refinement

We implement the compartmental epidemiologicalmodels in
libMesh, a C++ FEMopen-source software library for par-

Fig. 9 Test 3: Infected people at different time-steps (top) and adapted meshes (bottom)
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Fig. 10 Test 3: Total deaths at t = 365 days

Fig. 11 COVID19 Test 1: Compartmental model

Fig. 12 COVID19 Test 2: Initial conditions

allel adaptive finite element applications [36].libMesh also
interfaces with external solver packages like PETSc [4] and
Trilinos [46]. Recently, libMeshwas also coupled with in-
situ visualization and data-analysis tools [11,45]. It provides
a finite element framework that can be used for the numeri-
cal simulation of partial differential equations on serial and
parallel platforms. This library is an excellent tool for pro-

Fig. 13 COVID19 Test 2: Reproducing a 1D model

Fig. 14 COVID Test 2: Populations at t = 200 days

gramming the finite element method and can be used for
one-, two-, and three-dimensional steady and transient sim-
ulations. The libMesh library also has native support for
adaptive mesh refinement and coarsening (AMR/C).

Multiple scales can be resolved by AMR/C. libMesh
supports AMR/C by h-refinement (element subdivision), p-
refinement (increasing the polynomial approximation order),
and hp-refinement, that is, a combination of both [14]. In
libMesh, coarsening is supported in the h, p, and hp
AMR/C options. In the present work, we restrict ourselves
to h-refinement with hanging nodes. The AMR/C proce-
dure uses a local error estimator to drive the refinement and
coarsening procedure, considering the error of an element
relative to its neighbor elements in the mesh. This error may
come from any variable of the system. As it is standard in
libMesh, Kelly′s error indicator is employed, which uses
the H1 seminorm to estimate the error [1].Apart from the ele-
ment interior residual, the flux jumps across the inter-element
edges influence the element error. The flux jump of each edge
is computed and added to the element error contribution. For
both the element residual and flux jump, the values of the
desired variables at each node are necessary. Therefore, the

123



Computational Mechanics (2021) 67:1177–1199 1185

Fig. 15 COVID19 Test 2: Mesh
convergence study (total
population by time)

error ‖e‖2 can be stated as,

‖e‖2 =
n∑

i=1

‖e‖2i (34)

where ‖e‖2i is the error of each variable. In this study, we use
all population types as variables for the error estimator.

After computing the error values, the elements are
“flagged” for refining and coarsening regarding their relative
error. This is done by a statistical element flagging strat-
egy. It is assumed that the element error ‖e‖ is distributed
approximately in a normal probability function. Here, the
statistical meanμs and standard deviation σs of all errors are
calculated. Whether an element is flagged is depending on
a refining (r f ) and a coarsening (c f ) fraction. For all errors

‖e‖ < μs − σsc f the elements are flagged for coarsening
and for all ‖e‖ > μs + σsr f the elements are marked for
refinement (see Fig. 1). The refinement level is limited by a
maximum h-level (hmax ), (see Fig. 2), and the coarsening is
done by h-restitution of sub-elements [14,33].

4 Numerical results: verification of the
generic spatio-temporal SEIRDmodel

To verify the implementation of the generic spatio-temporal
SEIRD model, we have done several tests. For this, we con-
sider a square domain of 1 km × 1 km centered at (0, 0) for
all tests in this section.
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Fig. 16 COVID19 Test 2: Mesh
convergence study (individuals
at t = 90 days)

4.1 Test 1: reproducing a compartmental model

In the first test, we do not consider diffusion. We consider a
population of 1000 people/km2 with 1 person/km2 initially
infected in all area of the domain. Then, the initial conditions
are: s0 = 999, e0 = 0, i0 = 1, r0 = 0 and d0 = 0. This test
aims to reproduce a compartmental simulation of the EPI-
DEMIC software by using the same initial parameters. The
results have to be the same in each point of the domain and
the same as the EPIDEMIC software. We set α = 0.14286
days−1, β = 0.25 days−1, δ = 0.06666 days−1, γ = 0.1
days−1 and Δt = 1 day. The mesh has 50 × 50 bilinear
quadrilateral elements. Figure 3 shows the comparison of

the results, where we can see a very good agreement between
both solutions.

Figure 4 shows the results over a centralized horizontal
line crossing the domain at t = 365 days. It is possible to see
that the results are the same in all the domain, as expected.

4.2 Test 2: initial infected only in a circle region with
diffusion

Now, we consider the same parameters of the previous
example, but different initial conditions. We consider a pop-
ulation of 1000 people/km2 in all area of the domain with
1 person/km2 initially infected only in a circle centered at
(0, 0) and radius R = 0.5 km, We assume that νs = νe =
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Fig. 17 COVID19 Test 2: Time
convergence study (total
population by time)

νi = νr = 10−8 km2 persons−1 days−1. Then, the initial
conditions are: s0 = 999, e0 = 0, i0 = 1 for R <= 0.5 and
i0 = 0 for R > 0 with R = √

x2 + y2, r0 = 0 and d0 = 0
(see Fig. 5). We consider adaptive mesh refinement in this
example. The originalmesh has 50×50 bilinear quadrilateral
elements, and after the refinement, the smallest element has
size 0.005 km. We initially refine the domain in two levels.
For the AMR/C procedure, we set hmax = 2, r f = 0.95,
c f = 0.05. We apply the adaptive mesh refinement every 5
time-steps.

Figure 6 shows the results over a centralized horizontal
line crossing the domain at t = 365 days. Figure 7 shows the
infected people at different time-steps. Note that the infected
remains actives in other parts of the domain because of the
diffusion. It is possible to see the wave effect of the disease

spreading. Note that the AMR/C procedure improves spa-
tial resolution on the regions where the infected people are
higher.

4.3 Test 3: varying the population

In this test, we change the initial population. Instead of a
constant value in all domain, we set 1000 people/km2 at
the left/top quadrant, 500 people/km2 at the right/top quad-
rant, 250 people/km2 at the left/bottom quadrant and 750
people/km2 at the right/bottom quadrant (Fig. 8). Then, the
initial conditions are: s0 = 999 for x ≤ 0 and y > 0,
s0 = 499 for x > 0 and y > 0, s0 = 249 for x ≤ 0
and y <=, s0 = 749 for x > 0 and y > 0, e0 = 0, i0 = 1
for R ≤ 0.5 and i0 = 0 for R > 0 with R = √

x2 + y2,
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Fig. 18 COVID19 Test 2: Time
convergence study (individuals
at t = 90 days)

r0 = 0 and d0 = 0. The initial population infected is 1
person/km2 at the same circled region of the previous test.
All other parameters are the same of the previous simulation.

Figure 9 shows the infectedpeople ate different time-steps.
It is possible to see that the regions with denser populations
(more people/km2) are more affected by the disease. Fig-
ure 10 shows the total number of deaths after 365 days, and
the regions with more people/km2 have more deaths than
the less dense regions. Note also that the AMR/C procedure
generates meshes following the model dynamics.

5 Numerical results: verification of the
spatio-temporal model of COVID-19
infection spread

In this section, we perform some simulations to validate the
spatio-temporal model of COVID-19 infection spread.

5.1 COVID19 Test 1: compartmental model

In this test,wedonot consider diffusion.Weconsider a square
domain of 1 km × 1 km centered at (0, 0) with a population
of 1000 people/km2, with 1 person/km2 initially infected and
5 people/km2 exposed in all area of the domain. Then, the
initial conditions are: s0 = 994, e0 = 5, i0 = 1, r0 = 0
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Fig. 19 COVID Test 3: Populations at different times (top rows) and adapted meshes (bottom)

and d0 = 0. The aim of this test is to reproduce a com-
partmental simulation presented in [48] by using the same
initial parameters. The results has to be the same in each
point of the domain and also the same of the ones given in
[48]. We set α = 0.125 days−1, βi = βe = 0.005 days−1

persons−1, δ = 0.0625 days−1, γi = 0.041666667 days−1

and γe = 0.1666667 days−1. The mesh has 50× 50 bilinear
quadrilateral elements. Figure 11 shows the comparison of
the results, where we can see an excellent agreement.
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Fig. 20 COVID Test 3:
Populations over a
horizontal/vertical line crossing
the middle of the domain

Fig. 21 COVID Test 3: Time history of the total number of individuals

5.2 COVID19 Test 2: reproducing a 1Dmodel

In this example, we reproduce a 1Dmodel with quadrilateral
elements being the spatial domain Ω given by [0, 1] and a
time interval [0, T ] with T = 200 days. To reproduce a 1D
simulation with quadrilateral elements, we fix the element
width to 0.0005 and vary its length to find the proper refine-
ment for this case. Therefore, we run a mesh convergence
study as well as a time-step convergence study.

For the initial conditions, we set s = s0 and e = e0 as
follows,

s0 = e−(x+1)4 + e− (x−0.35)2

10−2

+ 1

8

(
e
− (x−0.62)4

10−5 + e
− (x−0.52)4

10−5 + e
− (x−0.42)4

10−5

)

+ 1

4
e
− (x−0.735)4

10−5

(35)

e0 = 1

20
e
− (x−0.75)4

10−5 (36)

Figure 12 shows the initial conditions. We further set i0 =
0, r0 = 0, and d0 = 0. Qualitatively, the initial conditions
represent a large population centered around x = 0.35 with
no exposed persons and a small population centered around
x = 0.75 with some exposed individuals. We also enforce
homogeneous Neumann boundary conditions at x = 0 and a
zero-populationDirichlet boundary condition at x = 1 for all
model compartments. The latter represents a non-populated
area at x = 1.

We set α = 0.09375 days−1, βi = βe = 0.375 days−1

persons−1, δ = 0.0046875 days−1, γi = 0.03125 days−1

and γe = 0.125 days−1, A = 0, νs = 3.75 × 10−5, νe =
0.75× 10−3, νi = 0.75× 10−10 and νr = 3.75× 10−5 km2

persons−1 days−1.
Figure 13 shows the comparison of the results with amesh

size Δx = 1/500 and a time-step Δt = 0.25 days. For
comparison, we multiply the total number of individuals by
2000, since our element width is 1/2000 and it has influence
when integrating the domain. We can observe a very good
agreement between both solutions.

5.2.1 Mesh convergence study

We compare numerical solutions computed on successively
refined uniform grids with mesh size Δx = 1/50, 1/100,
1/250, 1/500, and 1/1000. The time step isΔt = 0.25 days.
Figure 15 shows the difference in the total population of each
compartment of individuals for the different meshes.

A good resolution is found for Δx = 1/500. It is easy to
see this convergence in Fig. 16, where the number of indi-
viduals of each compartment is plotted at t = 90 days.

5.2.2 Time-step convergence study

We examine the impact of time-step sizeΔt on the numerical
approximation of the model solution. We consider the time
step sizes Δt = 1, Δt = 0.5, Δt = 0.25, Δt = 0.125 and
Δt = 0.0625 days. As the results in Sect. 5.2.1 suggested
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Fig. 22 COVID Test 4: Populations at different times (top rows) and adapted meshes (bottom)

Δx = 1/500 is a sufficiently fine spatial discretization,
we utilize this mesh resolution here. Figure 17 shows the
difference of the total population of each compartment of
individuals for the different time-steps.

A good accuracy is found forΔt = 0.25 days. It is easy to
see how the accuracy improves in Fig. 18, where the number
of individuals of each compartment is plotted at t = 90 days.

5.3 COVID19 Test 3: reproducing a 2Dmodel

This test is the application of the previous configura-
tion rotated in a two dimensional square with corners at
(−1,−1), (1,−1), (1, 1) and (−1, 1). The initial population

123



1192 Computational Mechanics (2021) 67:1177–1199

Fig. 23 COVID Test 4:
Populations over a horizontal
line crossing the middle of the
domain

Fig. 24 COVID Test 4:
Populations over a vertical line
crossing the middle of the
domain

Fig. 25 COVID Test 4: Time history of the total number of individuals

is:

s0 = e−(R+1)4 + e− (R−0.35)2

10−2

+ 1

8

(
e
− (R−0.62)4

10−5 + e
− (R−0.52)4

10−5 + e
− (R−0.42)4

10−5

)

+ 1

4
e
− (R−0.735)4

10−5

(37)

Fig. 26 COVID Test 5: Initial susceptible population

e0 = 1

20
e
− (R−0.75)4

10−5 (38)

with R = √
x2 + y2.

The original mesh has 50× 50 bilinear quadrilaterals ele-
ments and it is refined in two levels at the beginning of the
simulation. For the AMR/C procedure, we set hmax = 2,
r f = 0.95, c f = 0.05. We apply the adaptive mesh refine-
ment every 4 time-steps. The behavior of the transmission has
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to be similar to the 1D model results, but in a radial configu-
ration. In latex: Figures 19 shows the populations at different
time-steps. Figure 20 shows the results over a centralized
horizontal line (or vertical because the axisymmetry) cross-
ing the domain at t=200 days. If we compare Figure 20 with
Figure 14, it is possible to see that the populations follow a
similar behavior.

In Fig. 21 we plot the time history of the total number
of individuals. There is a small gain in the total number of
individuals (less than 0.1%).

5.4 COVID19 Test 4: Anisotropic diffusion

This test considers anisotropic diffusion in the previous con-
figuration (only in the x direction). Therefore, the populations
move spatially only in the x direction. Figure 22 shows
the populations at different time-steps. Figure 23 shows
the results over a centralized horizontal line crossing the
domain, and Fig. 24 over a centralized vertical line. By
comparing these two figures, it is clear how the diffusion
direction influences the behavior of the virus spread. Since
there is no movement of infected or exposed people in the y
direction, part of the population does not have contact with
the virus because there is no chance of the virus to reach
them.

In Fig. 25 we plot the time history of the total number of
individuals. We can see a gain in the total number of individ-
uals of less than 0.1%.

5.5 COVID19 Test 5: Random source

This test has a new configuration. We still work with the two
dimensional square with corners at (−1,−1), (1,−1), (1, 1)
and (−1, 1) and an anisotropic diffusion only in the x direc-
tion. We set α = 0.09375 days−1, βi = βe = 0.375/n
days−1 persons−1, δ = 0.0046875 days−1, γi = 0.03125
days−1 and γe = 0.125 days−1, A = 0, νs = 3.75 ×
10−9, νe = 0.75 × 10−7, νi = 0.75 × 10−14 and νr =
3.75 × 10−9 km2 persons−1 days−1, and Δt = 0.25
days.

The original mesh has 50× 50 bilinear quadrilaterals ele-
ments and it is refined in two levels at the beginning of the
simulation. For the AMR/C procedure, we set hmax = 2,
r f = 0.95, c f = 0.05. We apply the adaptive mesh refine-
ment every 4 time-steps.

The initial population is:

s0 = max

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

100000e− R41
10−2

10000e− R42
10−4

10000e− R43
10−4

1000

(39)

Fig. 27 COVID Test 5: Example of the random source of exposed
people

e0 = 0 (40)

i0 = 0 (41)

R1 =
√
x2 + y2 (42)

R2 =
√
x2 + (y − 0.75)2 (43)

R3 =
√

(x − 0.75)2 + y2 (44)

Figure 26 shows the initial susceptible population. Note
there are not infected or exposed people at the initial time.
We implement a random source of the exposed popula-
tion that depends on the number of susceptible people. In
all time-steps random nodes of the domain receive a cer-
tain number of exposed people. It tries to simulate people
who travel and suddenly appear in a region carrying the
virus. The random source does not add individuals to the
population, but change individuals between susceptible and
exposed compartments. Of course, thismodel is simple. Nev-
ertheless, it demonstrates how to handle a random source
term in the equations. Figure 27 shows a example of the
random exposed number of people that appears in one time-
step.

Figure 28 shows the populations at different time-steps.
We see oscillations in the number of individuals of the pop-
ulations coming from the random source dynamic. These
oscillations are smoothed in the x direction because of
the diffusion. We can see this better in Figs. 29 and 30
that shows the results over a centralized horizontal and
vertical line crossing the domain, respectively. The verti-
cal plot shows unsmoothed oscillations coming from the
random source in the y direction. In this example, it is
possible to better seeing the effects of anisotropic diffu-
sion. Note that in the horizontal plot, the populations spread
over the x direction, while in the vertical plot, the pop-
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Fig. 28 COVID Test 5: Populations at different times (top rows) and adapted meshes (bottom)

ulations change the compartments but stay in the same
coordinates.

In Fig. 31, we plot the time history of the total number of
individuals. There is a negligible increase in the total number
of individuals (less than 0.1%).

6 Conclusions

Wedeveloped an extended continuumSEIRDmodel to repre-
sent the dynamics of theCOVID-19 virus spread based on the
framework proposed in [47]. We validate our code by com-
paring our results with other simulations. We introduce new
test cases to highlight newmodeling capabilities. Among the
new features added to the base model, there is the addition of
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Fig. 29 COVID Test 5:
Populations over a horizontal
line crossing the middle of the
domain

Fig. 30 COVID Test 5:
Populations over a vertical line
crossing the middle of the
domain

Fig. 31 COVID Test 5: Time history of the total number of individuals

a source term, which represents exposed people who return
from travel, by changing individuals from the susceptible
compartment to the exposed compartment. We also add the
possibility of anisotropic non-homogeneous diffusion. Our
code is implemented through the libMesh library and sup-
ports adaptive mesh refinement and coarsening. Therefore, it

can represent several spatial scales, adapting the resolution
to the disease dynamics.

We worked with a transient nonlinear reaction-diffusion
system of equations that can also be improved to include
advection to represent vectors of motion of the population
in specific directions in a given region [21,24,52,53]. For
instance, this could model movement to and from certain
vacation spots or daily movement between capital and coun-
tryside.

Data is essential to define the epidemic spreading param-
eters, as diffusion and infection rate. We have to study how
it would be the best way to represent people who return
from travels, addressing questions like defining the prob-
ability of a random source appearing in the system, in
which area, the population density, among others. Diffusion–
reaction models, as the present one, are richer than standard
compartmental models. However, they are slower, which
hampers their widespread utilization in what-if scenarios,
parametric studies, and time-critical situations. Therefore,
the development of low-dimensional computational models
will leverage the ability of continuous models to perform in
real-time scenarios. Projection-based or data-driven model
order reduction [10,43] aims to lower the computational
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complexity of a given computational model by reducing its
dimensionality (or order), can provide this leverage. They
can work in conjunction with emerging machine learning
methods such as physics informed neural networks [44],
data-driven inference techniques to learn parameters [50]
or Bayesian calibration [29]. We can foresee a tremendous
impact in the mathematical epidemiology field of all these
new methods and techniques, enlarging the predictive capa-
bilities and computational efficiency of diffusion–reaction
epidemiological models.
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A Implementation of the generic
spatio-temporal SEIRDmodel

We implement the generic SEIRD model similar to the EPI-
DEMICsoftware.Wehave used theBDF2 timediscretization
method, Newton’s method for the nonlinear terms, and we
simplify the number of the living population by considering
the previous time-step solution. For all test cases the non-
linear tolerance for Newton’s method is set to 10−8 and the
linear solver tolerance is set to 10−10. The linear solver is
GMRES with ILU(0) preconditioner.

In libMesh, we calculate directly the new solution
(un+1) instead of the variation (δu). Then, on the left-hand
side, we gather the terms containing an unknown, whereas all
the other terms are taken to the right-hand-side. The super-
script k is from the previous Newton iteration. The terms in
black are from the mass matrix, in blue are the nonlinear
terms, in red the diffusive terms, and in green the remaining
terms from the stiffness matrix (colour equations online).
The finite element shape functions are represented by Na ,
a = 1, . . . , nnnos , where nnnos is the number of nodes in the
finite element mesh.

Susceptible (Eq. 5):

Kss =
∫

Ωe

1.5NaNbdΩ+Δt
∫

Ωe

NaβNb
ik
nk

+Δt
∫

Ωe

∇Nankνs∇NbdΩ (45)

Ksi = Δt
∫

Ωe

NaβNb
sk
nk

dΩ (46)

Fs =
∫

Ωe

Na(2sn − 0.5sn−1)dΩ+Δt
∫

Ωe

Naβ
skik
nk

dΩ

(47)

Exposed (Eq. 6):

Kee =
∫

Ωe

1.5NaNbdΩ+Δt
∫

Ωe

αNaNbdΩ

+Δt
∫

Ωe

∇Nanoldνe∇NbdΩ (48)

Kei = −Δt
∫

Ωe

NaβNb
sk
nk

dΩ (49)

Kes = −Δt
∫

Ωe

NaβNb
ik
nk

dΩ (50)

Fe =
∫

Ωe

Na(2en − 0.5en−1)dΩ−Δt
∫

Ωe

Naβ
skik
nk

dΩ

(51)

Infected (Eq. 7):

Kii =
∫

Ωe

1.5NaNbdΩ+Δt
∫

Ωe

(γ + δ)NaNbdΩ

+Δt
∫

Ωe

∇Nankνi∇NbdΩ (52)

Kie = −Δt
∫

Ωe

αNaNbdΩ (53)

Fi =
∫

Ωe

Na(2in − 0.5in−1)dΩ (54)

Recovered (Eq. 8):

Krr =
∫

Ωe

1.5NaNbdΩ+Δt
∫

Ωe

∇Nankνr∇NbdΩ (55)

Kri = −Δt
∫

Ωe

γ NaNbdΩ (56)

Fr =
∫

Ωe

Na(2rn − 0.5rn−1)dΩ (57)

Diseased (Equation 9):

Kdd =
∫

Ωe

1.5NaNbdΩ (58)

Kdi = −Δt
∫

Ωe

δNaNbdΩ (59)

Fd =
∫

Ωe

Na(2dn − 0.5dn−1)dΩ (60)

B Implementation of the spatio-temporal
model of COVID-19 infection spread

We present the matrix contributions of the system of equa-
tions that represents the COVID19 dynamics [47,48].We use
the BDF2 time discretization method, Newton’s method for
the nonlinear terms, and we simplify the number of the living
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population by considering the previous linear solution. For
all test cases the nonlinear tolerance for Newton’s method is
set to 10−8 and the linear solver tolerance is set to 10−10.
The linear solver is GMRES with ILU(0) preconditioner.

In libMesh, we calculate directly the new solution
(un+1) instead of the variation (δu). Then, on the left-hand
side, we gather the terms containing an unknown, whereas all
the other terms are taken to the right-hand-side. The super-
script k is from the previous Newton iteration. The terms
in black are from the mass matrix, in blue are the nonlinear
terms, in red the diffusive terms, in green the remaining terms
from the stiffness matrix and in yellow the source terms.

Susceptible (Eq. 15):

Kss =
∫

Ωe

1.5NaNbdΩ+Δt
∫

Ωe

Naβi

(
1 − A

nk

)
Nbik

+Δt
∫

Ωe

Naβe

(
1 − A

nk

)
NbekdΩ

+Δt
∫

Ωe

∇Nankνs∇NbdΩ

(61)

Ksi = Δt
∫

Ωe

Naβi

(
1 − A

nk

)
NbskdΩ (62)

Kse = Δt
∫

Ωe

Naβe

(
1 − A

nk

)
NbskdΩ (63)

Fs =
∫

Ωe

Na(2sn − 0.5sn−1)dΩ

+Δt
∫

Ωe

Naβi

(
1 − A

nk

)
skikdΩ

+Δt
∫

Ωe

Naβe

(
1 − A

nk

)
skekdΩ+ f

(64)

Exposed (Eq. 16):

Kee =
∫

Ωe

1.5NaNbdΩ+Δt
∫

Ωe

(α + γe)NaNbdΩ

+Δt
∫

Ωe

∇Nankνe∇NbdΩ

−Δt
∫

Ωe

Naβe

(
1 − A

nk

)
NbskdΩ (65)

Kei = −Δt
∫

Ωe

Naβi

(
1 − A

nk

)
NbskdΩ (66)

Kes = −Δt
∫

Ωe

Naβi

(
1 − A

nk

)
NbikdΩ

−Δt
∫

Ωe

Naβe

(
1 − A

nk

)
NbekdΩ (67)

Fe =
∫

Ωe

Na(2en − 0.5en−1)dΩ

−Δt
∫

Ωe

Naβi

(
1 − A

nk

)
skikdΩ

−Δt
∫

Ωe

Naβe

(
1 − A

nk

)
skekdΩ− f (68)

Infected (Eq. 17):

Kii =
∫

Ωe

1.5NaNbdΩ+Δt
∫

Ωe

(γi + δ)NaNbdΩ

+Δt
∫

Ωe

∇Nankνi∇NbdΩ

(69)

Kie = −Δt
∫

Ωe

αNaNbdΩ (70)

Fi =
∫

Ωe

Na(2in − 0.5in−1)dΩ (71)

Recovered (Eq. 18):

Krr =
∫

Ωe

1.5NaNbdΩ+Δt
∫

Ωe

∇Nankνr∇NbdΩ (72)

Kri = −Δt
∫

Ωe

γi NaNbdΩ (73)

Kre = −Δt
∫

Ωe

γeNaNbdΩ (74)

Fr =
∫

Ωe

Na(2rn − 0.5rn−1)dΩ (75)

Diseased (Eq. 19):

Kdd =
∫

Ωe

1.5NaNbdΩ (76)

Kdi = −Δt
∫

Ωe

δNaNbdΩ (77)

Fd =
∫

Ωe

Na(2dn − 0.5dn−1)dΩ (78)
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