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Abstract

A mesh size objective multiscale modeling is developed for fatigue failure prediction of long fiber-reinforced composites
based on the multiscale discrete damage theory (MDDT). MDDT tracks the failure processes along discrete failure surfaces
at the microscale and concurrently bridges it to continuum-based description of damage at the macroscale. The proposed
approach achieves mesh-size objectivity by introducing a length scale operator which effectively adjusts the microstructure
size as a function of macroscale element size; and when a non-additive fatigue damage evolution law is used to describe
progressive cracking at the microscale. Temporal multiscaling is used to track long-term fatigue damage evolution with high
computational efficiency. The performance of the proposed model is demonstrated by the analysis of unnotched and open-
hole laminate configurations. The results indicate mesh-size objectivity even in the presence of multiple failure mechanisms
including splitting, delamination and transverse matrix cracks. The interaction between splitting and transverse cracks is
investigated by a parametric study, which reveals the effects of mode I and mode II dominated degradation on the failure

behavior under fatigue loading.
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1 Introduction

Continuous fiber reinforced polymer composite materials
typically exhibit favorable fatigue properties. Neverthe-
less, long-term fatigue degradation of composite structures
remains to be a structural design consideration in aerospace,
automobile and many other industries. The current design
practices mostly rely on conservative knock-down factors
to account for fatigue degradation. In contrast, ongoing
research in modeling and prediction attempts to gain better
understanding of fatigue failure mechanisms and facilitate
damage tolerance principles to composite design. Early stud-
ies proposed accurate empirical or phenomenological fatigue
theories for prediction of residual stiffness, residual strength
and fatigue life of laminated composites (e.g. [1,2]). How-
ever, interactions between multiple failure modes associated
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with intralaminar/interlaminar damage in complex compos-
ite configurations are difficult to capture with analytical
methods.

In the past decade or so, progressive damage analysis
(PDA) has gained significant attention as a physics based
framework for fatigue failure prediction of composites. Pro-
gressive damage analysis of composites subjected to fatigue
have been performed based on either computational frac-
ture mechanics or continuum damage mechanics approaches.
Studies that couple Paris Law (or a variant) with J-integral,
virtual crack extension and closure techniques (e.g. [3-5])
have been employed to study crack growth in composite
laminates. These approaches are either combined with a
crack nucleation model or restricted to configurations that
include one or multiple precracks. They consider brittle crack
growth with the assumption of negligible fracture process
zone, which forms in quasi-brittle materials. Cohesive zone
modeling (CZM) has also been used for fatigue crack pre-
diction in composites. Most CZM-based studies focused on
interlaminar failure (e.g. [6,7]) since most commonly used
(intrinsic) CZM formulations require that the crack paths
are pre-defined. Some studies also used CZM to describe
intralaminar crack propagation [8—10] by placing cohesive
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zone elements at all element faces. Element enrichment tech-
nologies such as the extended finite elements [11,12], the
phantom node method [13] and the floating node method [5]
have been recently employed as well. These methodologies
allow cracks to grow along orientations independent of the
finite element mesh.

Continuum damage mechanics (CDM) is also a com-
mon method for failure prediction of composites because
of its simplicity and directness for computational imple-
mentation. A number of studies (e.g. [14—18]) focused on
establishing cycle-sensitive damage evolution models to pre-
dict fatigue failure in composite materials. Cycle sensitive
CDM models were then used to explore fatigue response
of various composite configurations [19-21] under different
fatigue loading conditions [22]. More recently, CDM-based
multiscale models have been developed for fatigue dam-
age and life prediction in composites. Arnold et al. [18]
employed the Generalized Method of Cells accelerated with
cycle jump approach. Oskay et al. proposed a multiscale
spatial-temporal life prediction approach that relies on model
order reduction in space [23-25] and time [26-29] to accel-
erate fatigue prediction. This approach has been applied to
laminated open-hole as well as bolted joint composite config-
urations [30]. Regardless of whether the failure behavior is
represented using single scale or multiscale models, CDM
approaches exhibit spurious mesh sensitivity and lack of
mesh convergence [31,32] due to damage localization. While
this issue has been comprehensively studied for static loading
over the past several decades, mesh sensitivity and alleviation
strategies under fatigue loading conditions received relatively
little attention. Only the nonlocal approach using gradient
damage type [32] and integral type [33] localization limiters
have been employed to achieve mesh-size objectivity in the
fatigue case.

In this manuscript, we propose a mesh-size objective
multiscale model for fatigue damage evolution and failure
in composites. The proposed model builds on and gener-
alizes the multiscale discrete damage theory (MDDT) that
was recently proposed for composite failure under static
loading conditions [25]. MDDT is a discrete-continuum
multiscale approach, where the failure is tracked in dis-
crete surfaces as fracture paths within the microstructure.
Growth of the discrete microstructural fracture events cul-
minates to diffuse damage patterns at the macroscopic scale,
and hence exhibits mesh size sensitivity when unregular-
ized. The proposed model achieves mesh-size objectivity
at the coarse scale by adjusting the microstructure size in
an effective manner with respect to the macroscopic ele-
ment length using an analytically determined length scale
parameter. In order to accelerate fatigue life predictions, the
MDDT approach is integrated with a multiple time scaling
approach [26,27]. We demonstrate that mesh size sensitivity
of fatigue predictions can only be achieved when constitu-
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tive (i.e., traction-separation behavior) models with a specific
form are used. The efficacy of the model is demonstrated in
the context of un-notched and open-hole laminate configura-
tions (0° ply and [90° /0°]s cross-ply) subjected to high-cycle
fatigue loading. A parametric study is performed to explain
the differences in fatigue crack patterns observed in com-
posite laminates made of some thermoplastic and thermoset
resins.

The rest of the manuscript is organized as follows: Sect.
2 provides a brief introduction of the multiscale discrete
damage theory (MDDT) and temporal multiscale modeling,
and also provides detailed information of mesh-size objec-
tivity treatment and related fatigue cohesive model. Section
3 includes the verification of the proposed approach in the
context of un-notched and open-hole laminated composite
configurations, and provides a parametric study on the effect
of mode-I and mode-II dominated fatigue failure behavior
of composite laminates. Section 4 provides conclusions. The
appendix includes additional details on multiple time scale
modeling.

2 Multiscale discrete damage theory for
fatigue

2.1 Spatial multiscale modeling

Progressive failure behavior in the composite material is
modeled using the Multiscale Discrete Damage Theory
(MDDT) recently proposed in Ref. [25]. A brief overview
of MDDT and the governing equations are provided below.
The underlying theory and detailed derivation of the govern-
ing equations are omitted herein for brevity.

The overall multiscaling strategy in MDDT is illustrated in
Fig. 1. The proposed modeling approach relies on concurrent
coupling between the scale of the composite microstructure
(i.e., representative volume or unit cell) and the macro-
scopic domain using the computational homogenization
theory [34,35]. The progressive failure process within the
microstructure associated with an arbitrary position in the
macroscale domain is modeled by tracking the cohesive (i.e.,
traction-separation) behavior over a pre-selected finite set
of discrete “potential” failure paths (See Fig. 1b). Progres-
sive fracture over each failure path is tracked throughout the
loading process. The microscale response is bridged to the
continuum representation of damage at the macroscopic scale
based on averaging operations consistent with the mathe-
matical homogenization theory [25]. In order to accelerate
the analysis, the failure processes within the microstructure
are computed using a reduced-order representation, with cer-
tain microstructural information precomputed (i.e., influence
functions and coefficient tensors) prior to the macroscopic
analysis. Although the macroscopic failure in MDDT is rep-
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resented as continuum damage (i.e. smeared crack), MDDT
differs from classical smeared crack models as it tracks dis-
crete cracks within the microstructure. In addition, MDDT
has the capability to incorporate multiple failure mechanisms
at macroscale corresponding to failure paths embedded in the
microstructure.

Consider a microstructure domain, ® at an arbitrary
macroscopic position X € €2, within which possible frac-
ture is explicitly tracked along m failure paths (See Fig. 1).
Let 8 denote the spatially averaged separation (i.e., dis-
placement jump) on the failure path, o (¢ = 1,2...,m).
The macroscopic stress ¢ (X, t) at time ¢ during the loading
process is expressed as:

gx,)=L:ex.n+y 2@.8@x 1 (1)

a=1

where € stands for macroscopic strain tensor; L is the tensor
of homogenized elastic moduli; 7@ is a third order coeffi-
cient tensor that determines the stress contribution due to
the separations on the failure path, «; (-) and (:) respec-
tively denote inner and double inner product operators. L
and Z® are computed as integrals of characteristic influ-
ence functions (i.e., numerical Green’s functions) over the
microstructure, and incorporate material heterogeneity and
failure path morphology information. The coefficient tensors
are evaluated by linear elastic analyses over the domain of
the microstructure prior to the multiscale simulation. A brief
introduction to the microstructure analysis is shown in the
appendix.

The governing equilibrium equation within the microstruc-
ture is recast on each failure path as:

m
t9xn-CY:ex.n+Y DD 5P xn=0 (2
p=1

where t® is the average traction vector on the failure path,
o, and C® and DA are coefficient tensors. The governing
reduced order system of “mesoscale” equations is closed by
introducing a traction-separation relationship to describe the
cohesive behavior on the failure paths (expressed in a generic
form):

@ _ f@ (3(a>’ q<a>) 3)

where ¢ denotes a vector of internal state variables that define
the evolution of the cohesive law. In order to describe fail-
ure under the fatigue process, the cohesive law is taken
to be cycle-sensitive and history-dependent. The MDDT
framework admits various forms of constitutive laws for the
cohesive behavior such as the classical bi-linear [36] and

others (e.g. [26,27]). The specific evolution equations for the
cohesive model employed in this study are discussed below.

2.2 Mesh-size objectivity

When unregularized and subjected to static or fatigue load-
ing conditions, the MDDT model exhibits spurious mesh-size
sensitivity and diminishing dissipated energy due to fracture
as a function of increasing mesh density. The homogeniza-
tion process results in a continuum description of damage
at macroscale which is well known to result in spurious
mesh-size sensitivity [31,32] in the presence of failure local-
ization, despite the fact that failure is represented along
discrete surfaces at the microscale. The issue of spurious
mesh sensitivity is alleviated by enforcing overall fracture
energy consistency [37]. Under static loading, leveraging
the multiscale nature of the MDDT approach, the regular-
ization effectively adjusts the size of the microstructure as
a function of the characteristic macroscopic element size,
so as to keep the macroscopic fracture energy independent
of element size. The microstructure size adjustment is per-
formed in an effective fashion by analytically expressing
the corresponding reduced order model (i.e. coefficient ten-
sors) as a function of macroscopic element size, rather than
directly building and discretizing separate microstructures
of different sizes for different macroscopic element sizes.
The “reference” microstructure is the only one which is dis-
cretized for computing the coefficient tensors (i.e. reference
coefficient tensors). The analytical relationship between the
reduced order model and macroscopic element size has been
established for cohesive laws that exhibit linear or near-linear
softening behavior (e.g., bilinear law [36]) using the refer-
ence coefficient tensors. Let £ = [/h® denote the length
scale ratio, where [ stands for the reference microstructure
size (e.g., smallest RVE or unit cell) and h@ the charac-
teristic length of the macroscale element along the direction
dictated by the orientation of the failure path, «. The reduced
order model associated with the length scale ratio, é("‘) is
then obtained by scaling the reference coefficient tensors:

I CL) (S(‘”) =@ (5(0”) . p@d (4)

When expressed in terms of the local coordinate systems
aligned with the unit normals and two tangential directions
of the failure paths, the matrix form of the scaling tensor is
diagonal:

S E@) 0 0
(1) =] 0 afee@ o )
0 0 g E®)
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Fig.1 Spatial multiscale
modeling strategy for composite
laminates. a Macroscopic
domain b microstructure
domain, S; (i=1,2,3) denote
failure paths (surfaces in 3-D)

Macroscopic domain

Scaled Z®) (E ("’)) is defined in the matrix form as:

@) @) (@@ (@) (@)
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D@ and Z(® are the reference coefficient tensors, taken
as D@A) (S(a)) — Dep) (g(a) - 1) and Z@ = 2@ (@ =
1), when the size of the reference microstructure equals the

macroscopic element size. 7)5\7) , ngol‘) and ngoz‘) are respectively

the scaling factors that are computed using coefficient tensor
components in the normal and two orthogonal shear direc-
tions of the failure path:

(Ot)A(a)
= (@ @ ia) @@ @ = D
AN +(1=§@) (DYLY + Zy CyO(LY)
() (@)
0 = ‘% ®)
1 (@) () 7 () () ~(@)y 7 (@) —
Ay’ +(1=§@) (DG L) + Zg Cs) (L)) ™!
()
g(a)AS
) = 2 ; ©

AT (- €@) DPLY + 20 D)

2

where Ag\‘f), Agf):) and A(SOZ‘) stand for the softening slopes

of the traction-separation relationship, defined as Agg) =
(o) (@) 4(@) _ o (o) (@) 4(@) _ o () (o)

Aty /08y, Ag = 0tg 7[00 ", Ag,” = 0t /08, IN, ISy,

ts, and 8y, 85, , 85, are respectively normal and two tangen-

tial components of the traction and separation vectors. Dg\?),

Dgf), Dg;), C](\‘,x) Cgf), Cé‘;), Zg\‘;), E(S‘T), l_,(sozl) are respectively
linear compositions of the coefficient tensor components in
terms of the aforementioned local coordinates of the failure
path.

The regularization methodology is schematically illus-
trated in Fig. 2. Unlike the crack band approach [37], which
also employs the strategy of energy consistency, the consti-
tutive (i.e., traction-separation) behavior remains unchanged
in the present approach. The microstructure size (i.e., the cor-
responding MDDT model) is adjusted instead to regularize
dissipated energy within the microstructure. The softening
slope of the resulting macroscopic stress-strain relationship
varies as a function of the length scale parameter.
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One consideration is the relationship between the size of
the microstructure, physical observable within the localiza-
tion band and the macroscopic mesh size. Let w and p,
respectively denote the width of the localization band and
the microcrack density within the band. /y denotes the size
of the smallest microstructure that can represent the mor-
phology (e.g., a single fiber unit cell in Fig. 2) with a single
failure path, and 4 = aw the size of the macroscopic element
along the direction normal to the failure path. a is a constant
that sets the macroscopic element size relative to localization
band width w. Using the energy equivalence principle, the
microcrack density within the localizing element must be set
as: p, = p/a. Noting that the microcrack density within the
element is inversely proportional to the microstructure size,
1, and defining pg = 1/l as the crack density associated with
the unit cell, we obtain:

L o)
ly pow

It follows from above that the size of the microstructure
used in MDDT corresponds to the single fiber unit cell (i.e.,
I =lp)if h = pwly.

The aforementioned regularization strategy has been
demonstrated to be effective under static loading condi-
tions [25], where fracture energy dissipation is dictated
by the strain softening regime of the macroscopic element
response. Generalization of this regularization strategy to
fatigue requires additional considerations. Many constitu-
tive laws (i.e., traction-separation) that idealize progressive
degradation under cyclic loading dissipate substantial frac-
tion of the fracture energy during the hardening stage of the
loading process [7,17,26-29,32]. Some of the fatigue dam-
age models do not employ a softening regime and idealize
the entire degradation process during hardening [17,26-29].
Evenin the absence of a softening stage, fatigue damage mod-
els exhibit mesh size sensitivity, albeit for a different reason.
As a fracture process zone cannot form at the crack tip, crack
tip stress becomes singular and damage growth accelerates
with increasing mesh density [32]. The extension of the pro-
posed regularization strategy to this class of cycle-sensitive
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models is not straightforward. Instead, we adopt an alterna-
tive class of cycle-sensitive constitutive models, where the
energy dissipation occurs during the softening stage [38].

2.3 Non-additive traction-separation law

This section provides the specific cohesive law used to ide-
alize the progressive failure along a failure path subjected to
cyclic loading. The proposed law is a variant of the constitu-
tive model devised by Khoramishad et al. [38], who introduce
two damage variables to describe the cycle-sensitive failure
behavior. In what follows, superscript « that indicates the
failure path index is omitted for simplicity of presentation.
The traction-separation relationship is expressed as:

t=(1—-wK-:$§ an

where K represents the cohesive stiffness tensor, [K] = K1,
and I is the second order identity tensor; @ € [0, 1] is a
scalar damage variable. w = 0 denotes the initial state with
full cohesive stiffness, w = 1 represents cohesionless crack
along the failure path. Employing the classical bilinear form,
the cohesive damage variable is expressed as:

0 K < Ve

P B el (12)
K (Vy — Ve)
1 K >V,

where « (1) = m[%x] {v(z)} is the history variable of equiv-
7€(0,1

alent separation v, v = [|§]| = /8%, + 8%1 + 822, where §y
satisfies 6y > O to eliminate the possibility of interpene-
tration. v, and v, respectively correspond to the values of
the equivalent separation at the onset of the softening region
and at ultimate failure. They are evaluated under mixed-
mode conditions based on a quadratic damage initiation
criterion [36] and using the B-K criterion [39]:

1+ B
ve = o161, P (13)

642+ (Buth)

2 B 2 gx
== [GI{ + (Gl —Gl) <L> } (14)
c

1+ B2

where B, is the mixed-mode ratio defined as the ratio
between tangential and normal separations,

B = 1/8%1 + 6%2/ dy. Degradation behavior under repet-
itive cyclic loading is modeled by introducing the fatigue
damage variable wy € [0, 1]. Unlike w, which degrades the
instantaneous secant stiffness, the fatigue damage variable
acts on the critical separation at the onset of damage and the
critical energy release rate:

8L =80 (1—wf), 8l =8m(1-wy)
Gl{- = Gre(1 — wf)z, Gl];c = Ge(1 — a)f)2

(15)
(16)
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where, &, 0., are equivalent separations at the onset of the
softening region, G, and Gy are critical fracture energies
under mode-I and mode-II conditions. Under pure mode
I loading (B,, = 0), the critical and ultimate equivalent
separations become v, = 83.: and v, = 8,{1, respectively.
Similarly, pure mode II loading (8,, = oo) results in crit-
ical and ultimate equivalent separations of v, = (SZ” and
vy = 8,{11, respectively. 86];, 83;1, GlfC and GI’; . are effectively
the fracture parameters of a cohesive interface that has been
cyclically damaged by w r. Considering the bilinear form of
the cohesive law: t, = Ké,., G, = 1,6, /2, the fatigue degra-
dation can also be regarded as reducing the peak traction
t, and ultimate equivalent separation §,,: 1l =1, (1—wy),
6,{ = 0y (1 — a)f). The stiffness and softening slope of the
traction-separation relationship is not influenced by fatigue
damage.

In order to account for the presence of fatigue damage
variable, the history variable « is expressed as:

Kk (f) = max
@) 7€[0,7]

v(7)

— (1 - t 17
{1—wf(f)}( @r®) an
In the absence of cyclic degradation (i.e., wy = 0), Eq. 17
degrades to its original definition.

With respect to the evolution law for fatigue damage, this
work adopts separation-based form [32]:

Br oy
V) F{0)+ (18)

wr = Cexp(rwy) <— .
u

Vu

where A is a material parameter, and (-)4 = [| - | + (1)]/2
denotes the Macaulay brackets. In order to model fatigue
damage evolution under mixed-mode conditions, the ampli-
tude coefficient C and the power index B are respectively
defined as functions of the mixed mode ratio (following the
form of the B-K model [40]):

InC =InCy + [InCy — In Cyr]( )"e (19)

1
1+ 82

2
Ly 20)

Br =Bn+ B — Br)

where C = Cy, By = By indicate the material properties
that control the fatigue damage evolution under pure mode I
loading (i.e. B, = 0), and C = Cy1, By = By, under pure
mode II (i.e., B, — 00). Power indices m, and mg, are
additional parameters controlling damage evolution under
mixed mode loading.

Figure 3 schematically illustrates a typical behavior of
the cohesive law subjected to cyclic loading. For generality
of demonstration, a separation-controlled variable ampli-
tude loading is employed to generate the traction-separation

@ Springer

Traction

Equivalent separation

Fig. 3 Traction-separation curve obtained by non-additive scheme
under cyclic loading. Dash line represents the bilinear profile obtained
under monotonic loading

curve. The figure illustrates that if the peak traction magni-
tude does not reach the instantaneous ultimate traction (i.e.,
t,{ ), the behavior is non-dissipative and ti,f reduces under
cyclic loading. The softening slope remains constant regard-
less of the value of tf . The energy dissipation occurs only
during the softening regime. This is crucial to regularization
of MDDT model as it adjusts dissipated energy by regular-
izing the softening moduli of the homogenized stress-strain
relationship.

2.4 Temporal multiscale scheme

Straightforward time integration of the governing equations
of the MDDT model to characterize long-term damage evolu-
tion and failure is computationally prohibitive for high cycle
fatigue. In such a cycle-by-cycle approach, each loading cycle
is discretized into several increments and the governing equa-
tions of the MDDT model is evaluated using a nonlinear
solver (e.g., Newton-Raphson or others) for each increment
of each cycle. Instead, we accelerate the simulations by
adopting the multiple time scale life prediction methodology
proposed in Ref. [26]. In this regard, we define two problems
separated by the time scales they operate. The microchrono-
logical problem evaluates the response subjected to a single
load cycle (summarized in Box A in the appendix). The
macrochronological problem provides the long-term evolu-
tion of damage and equilibrium state. The governing system
of equations are summarized in the appendix for brevity of
this discussion.

The implementation of the multiple time scale approach
is similar to the block-cycle modeling [18] and illustrated
in Fig. 4. The micro- and macrochronological problems
are evaluated in a tightly coupled fashion. At each macro-
chronological increment, #;, a microchronological problem
is evaluated to compute the rate of fatigue damage evolu-
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Fig.4 a Fatigue loading history, b time domain decomposition in the temporal multiscale scheme

tion. The macrochronological time increments are adaptively
set [27] based on maximum allowable damage accumulation
(Awp) within a single increment.

Following Ref. [27], the microchronological problem is
evaluated in a quasi-linear fashion, where the damage accu-
mulation is assumed to not affect the equilibrium state
within a single load cycle. By this approach, fatigue dam-
age accumulation within the microchoronologcal problem is
expressed in cyclic form as:

dof  C(1—awp)thr
dN 148y

(\)max)ﬂf+1 _ (Vmin)ﬂfJF] 21
Vu Vu

where v, and vy, are respectively maximum and min-
imum equivalent separation within the unit loading cycle.
Load characteristic such as the R-ratio natually affects fatigue
damage accumulation in the microchronological problem.
This is evident in Eq. 21 due to the presence of v,,,, and
Vinin terms.

The implementation of the MDDT modeling framework
consists of the construction of the reduced order model that
corresponds to the reference microstructure, and evalua-
tion of the macroscopic, multichronological problem. The
reference reduced order model is computed using an in-
house code. The macroscopic problem is evaluated using
the commercial finite element analysis package, ABAQUS.
The reduced-order MDDT model as well as regularization
scheme are incorporated using the user supplied subroutine
capability, UMAT. The coupling between the micro- and
macrochronological problems is implemented using Python
scripts that involves the appropriate problem in turn as shown
in Fig. 4.

exp (Awf)

3 Numerical verification

In this section, fatigue simulations using un-notched and
open-hole laminate configurations are performed to verify
the MDDT models in terms of (1) mesh-size objectivity and
(2) capabilities in capturing complex failure mechanisms.

Figure 5 displays the configuration and discretization
of the reference microstructure employed for all numerical
examples in this study. The microstructure is a unit cell com-
posed of square-packed unidirectional fiber reinforcement
embedded in a continuous matrix. The elastic properties of
isotropic matrix and transversely isotropic fiber constituents
are listed in Table 1. The unit cell is 65% fiber by vol-
ume. Three potential failure paths that correspond to the
primary failure modes of transverse matrix cracking, delami-
nation and fiber fracture are considered, and reside within the
domain of the respective constituents. As the intralaminar and
interlaminar damage of matrix constituents are separately
modeled in different domains of the numerical specimens,
they are represented using two separate microstructures. The
transverse matrix cracking and delamination failure paths
have the same morphology and fracture properties, but they
are oriented differently with respect to the ply lay up. In
case of loading along the fiber direction, ultimate failure
would constitute fracture in both fiber and matrix. In this
study, fatigue fracture of the matrix ligament is ignored due
to the significant moduli disparity between the fiber and the
matrix, and the fiber fracture path is considered within the
fiber domain only.

3.1 Unnotched specimen
The unnotched numerical specimens subjected to cyclic load-

ing are employed for verification of the MDDT model.
Figure 6 displays the geometry, loading and a sample dis-
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Table 1 Elastic properties of

matrix™ and fiber(/) E™ [GPa] v E\" [GPa] E5" [GPa G [GPal vl vy}
3.55 0.35 263 13 275 0.32 0.20
Fiber fracture Fiber fracture

Transverse

. . Delamination
AZLZC Matrix cracking
(@ (b)
Transverse

Matrix cracking

T L LS
Y
A

e

7L
77
17777774
17777
s

y 77

Fiber fracture

Delamination

(o)

Fig. 5 Reference microstructure embedded with the failure paths of
a transverse matrix cracking and fiber fracture, and b delamination
and fiber fracture. ¢ Discretizations of the reference microstructure and
failure paths

cretization of the specimens. The 90° unnotched numerical
specimens are loaded under strain-controlled uni-axial ten-
sion and simple shear loading that respectively activate
mode-I and mode-II dominant fracture in the matrix. The
numerical specimens are chosen as microscopic in order to
observe a non-brittle failure under cyclic tensile loading,
which allows us to clearly demonstrate mesh-size objectivity.
The MDDT model shown in Fig. 5a is therefore employed.
The loading conditions considered do not activate fatigue
fracture in the fiber. The fracture parameters for the transverse
matrix cracking failure path is listed in Table 2. Compared
to generic unidirectional carbon fiber reinforced thermoset
composites, this example employs low mode-I and mode-
IT cohesive fracture energy release rates for the purposes of
demonstration. More realistic material parameters are used
in laminate analyses discussed in the next section. The load-
ing amplitudes for uniaxial and simple shear loadings are
respectively 1.02% and 2.5% total applied strain with R-
ratio equals to O in both cases. In the uniaxial tension case,
symmetry boundary conditions are applied at the three sides
normal to x, y and z directions, respectively. In the shear
case, the lateral side that is parallel to the failure path is
fixed to ensure that the onset of mode-I failure is suppressed.
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(b)

Fig. 6 Macroscopic domain of microscopic 90° unnotched specimen
under a tensile loading, b shear loading

Table 2 Fracture parameters of matrix cracking for unnotched config-
uration

Cohesive Failure

o o km e
[MPamm] [MPamm] [MPa] [MPa] [MPamm !]

0.03 0.045 60 90 6 x 107 1
Fatigue damage evolution

o cy g’ B mm A
2x1073  1x1073 01 0.1 1 0.1

The macroscopic domain is discretized with different mesh
densities, where the corresponding length scale ratio is set
tobe & = 1,2,4,8, 16 for verification of mesh-size objec-
tivity. In the simple shear case, the coarsest discretization
(¢ = 1) does not adequately resolve shear deformation and
is not used. Damage localization is generated by disturbing
the properties of one layer of elements lying parallel to the
matrix failure path. 8-noded tri-linear hexahedral elements
with reduced integration and hourglass control are employed
in the macroscale discretizations. Simulations using the tem-
poral multiscale integration scheme as well as the reference
direct cycle-by-cycle time integration are performed. In the
reference simulations, the vast majority of the increments
resolve the non-linear response in the loading or reloading
regime. The fatigue damage tolerance parameter that adap-
tively controls macrochronological time step size is set to be
1% or 2% in the simulations that use the temporal multiscale
scheme.

Figure 7a, b show the predicted fatigue life for differ-
ent mesh sizes under tensile and shear loading conditions,
respectively. In this example, fatigue life refers to the number
of load cycles, where the load carrying capacity of the struc-
ture vanishes (i.e., damage in the matrix crack failure path,
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Fig. 7 Fatigue life versus length scale ratio (i.e. £ = [/h) obtained
by direct cycle-by-cycle scheme and temporal multiscale scheme with
1% and 2% tolerance for adaptive macrochronological time stepping

™ = 1). The solid curves indicate predicted fatigue life
when the regularization approach is employed, whereas the
dash curves are the results of the unregularized simulations.
In all cases, the temporal multiscale scheme exhibits good
agreement with the direct cycle-by-cycle scheme. The corre-
sponding average errors with step adaptivity tolerances of 1%
and 2% are respectively less than 1.5% and 6% for all mesh
size discretizations in both uniaxial and shear loaded cases.
In contrast, the computational cost of the multiscale time
integration scheme is significantly less than the reference
scheme. The temporal multiscale scheme requires a total of
90 (normal) and 75 (shear) resolved cycles on average for tol-
erance of 1%, and 46 (normal) and 39 (shear) resolved cycles
on average for tolerance of 2%, compared to 10,753 (normal)
and 11,512 (shear) cycles resolved in the direct cycle-by-
cycle scheme. A tradeoff exists between prediction accuracy
and computational efficiency when choosing the tolerance:
smaller value leads to higher accuracy but requires more
macro-chronological time steps that reduces the efficiency
of the approach. Because 2% tolerance has higher compu-
tational efficiency and also keeps reasonable accuracy, the
open-hole simulations performed in this manuscript employ
the temporal multiscale time integration algorithm with 2%
tolerance.

Figure 8 displays stiffness evolution of the specimen as a
function of load cycles when the tolerance is taken to be 1%.
In terms of both fatigue life (Fig. 7) and stiffness loss, the
MDDT model yields mesh-size consistent fatigue behavior
with regularization (represented by solid lines). On the con-
trary, the non-regularized MDDT model (represented by dash
lines) accelerates stiffness loss and leads to shortened fatigue
life when element size is reduced. In the case of shear loaded
unnotched specimen, mesh size sensitivity is so severe that

16000

"[——Direct cycle-by-cycle
—&— Multi-temporal, Awpzl %
—&— Multi-temporal, Aa)p=2%

12000 —e=—— —§% ——

8000 r

Failure cycles

4000 ¢
®

- . . . . .
2 4 6 8 10 12 14 16
Length scale ratio, &

(b)

strategy under a uniaxial and b shear loading. Solid lines show results
with regularization, while dash lines indicate unregularized model

fine resolution simulations show immediate failure within the
first cycle.

3.2 Analysis of open-hole unidirectional specimens

In this section, the capabilities of the MDDT model are
demonstrated in predicting stable crack growth under fatigue
loading conditions in a mesh size objective manner. The
analysis is performed in the context of an open-hole 0° unidi-
rectional tape. Figure 9 illustrates the geometry, loading and
boundary conditions, and discretizations used in this study.
The overall width, length and thickness of the specimen are
20mm, 28mm and 0.125mm, respectively. The hole radius is
3.175mm. 1/8 of the specimen is discretized with symmetry
boundary conditions applied at the three directions, leverag-
ing symmetries of the specimen. As shown in Fig. 9b, the
parts of the specimen, where the potential crack propagation
is expected, is discretized with elements aligned with fiber
direction to eliminate mesh bias effect. Different mesh sizes
of 0.1mm, 0.05mm, 0.025mm, 0.0125mm within the poten-
tial crack propagation region of the specimen were used in
order to verify mesh-size consistency. In the thickness direc-
tion, the ply is discretized using one element.

Table 3 lists the fracture properties for both failure paths of
transverse matrix cracking and fiber fracture, which are con-
sistent with generic unidirectionally carbon fiber reinforced
thermoset composites. The parameters for fatigue damage
evolution are selected within a reasonable range that the cor-
responding crack propagation rate is of the same order as
experiments described in Ref. [9]. The analysis presented
herein is focused on verification of mesh size objectivity. A
formal calibration/validation study of a particular composite
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Fig.8 Residual stiffness versus cycles obtained by the temporal multiscale scheme with 1% tolerance under a uniaxial and b shear loading. Solid
lines show the results with regularization, while dash lines indicate the unregularized model
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Fig.9 a Geometry, boundary and loading conditions, and the MDDT model configuration for open-hole 0° ply single lamina analysis. b Different
mesh discretizations using the size of h=0.1 mm, 0.05 mm, 0.025 mm, 0.0125 mm

(See [26,28]) is outside the scope of the current manuscript,
and will be the emphasis of future studies.

Force-controlled uniaxial cyclic loading with an ampli-
tude of 482 MPa (80% of static strength) is applied to the
specimen along z-direction with R-ratio equal to 0. The tem-
poral multiscale scheme with 2% fatigue-damage tolerance
for adaptive macro-chronological time stepping strategy is
employed for the open-hole configurations.

Figure 10 shows the contours of shear stress oy, captured
at the first cycle, 30,000 cycles and 300,000 cycles which are
predicted using the regularized MDDT model. The macro-
scopic crack is displayed by light colored elements (shown
as red in the electronic version of the manuscript) which have
reached completed damage state (w™ = 1). A single domi-
nant splitting crack initiates at the hole brim at the first cycle
and grows aligned with the fiber (vertical) direction under
subsequent cyclic loading. No fiber damage is observed in
this case. The fracture process zone (0 < 0™ < 1) is
represented by the white straight line ahead of the splitting
crack and results in low shear stress around 90 MPa as split-
ting crack is mode-II dominant. The length of the fracture
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process zone becomes shorter with increasing crack length,
because the stress concentration at the crack tip reduces
as the split grows. The patterns of crack propagation and
fracture process zone are both mesh-size consistent. Fig-
ure 11 displays the cyclic evolution of crack propagation
and stiffness as a function of load cycles. Without regu-
larization, the splitting crack propagation and stiffness loss
drastically accelerates with decreasing macroscopic element
size. For the regularized MDDT model, the initial crack
growth occurs faster compared to the non-regularized cases.
This is because, the regularized MDDT model is referenced
to the case with the element size (i.e. damage localization
width) of & = [ = 0.0lmm, which is significantly finer than
the finest mesh employed in this study. In addition, the results
of the regularized MDDT model exhibits mesh-size con-
sistent crack propagation rates and stiffness evolution. The
crack growth and stiffness evolution curves also demonstrate
converging trends with higher mesh densities. This indicates
that the discrepancy between the regularized curves can be
largely attributed to mesh resolution effects rather than spu-
rious mesh size sensitivity.
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Table 3 Fracture parameters for open-hole configuration
Cobhesive failure for matrix cracking
Y i o & o
[MPa mm] [MPa mm)] [MPa] [MPa] [MPa mmfl]
0.2 1 60 90 6 x 107 1
Fatigue damage evolution for matrix cracking and delamination
(m) (m) (m) (m) (m) _(m) (m)
2 Cu B fu me Mg A
1 x 1072 1 x 107 0.1 0.1 1 0.1
Cobhesive failure & fatigue damage evolution for fiber fracture
GG MPammy i, 1) (MPal K [MPamm™'] ) al.c gy By me mi) ey
12 4000 4 x 10° 1 1077 0.1 1 0.1
Fig. 10 Shear stress contour oy, h=0.1mm h=0.05mm h=0.025mm

captured at the first cycle,

3 x 10* cycles and 3 x 103
cycles for 0° ply single lamina
with mesh densities of h=0.1
mm, 0.05 mm, 0.025 mm,
0.0125 mm

h=0.0125mm

30,000
cycle

300,000 l
cycle v

3.3 Analysis of cross-ply open-hole specimens

The capabilities of the proposed multiscale model are further
assessed in a composite specimen configuration that exhibits
diffuse damage, cracking and multiple failure mechanisms.
We consider an open-hole [90° /0°]s cross-ply laminate con-
figuration subjected to tensile fatigue loading. Figure 12
illustrates the geometry, loading and boundary conditions,
and discretizations used in this case. Similar to the previ-

ous example, 1/8 of the specimen is modeled leveraging the
symmetries in the laminate and geometry. Model parameters
shown in Tables 1 and 3 are employed. Force-controlled uni-
axial cyclic loading of 313 MPa (90% of static strength) is
applied to the specimen along the z-direction with R-ratio
equal to 0. Previous experimental observations reveal the
presence of delamination that affects fatigue damage progres-
sion in carbon-fiber reinforced thermoset resins [9,41,42]. In
order to better capture the kinematics of delamination prop-
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Fig. 11 a Splitting crack extension and b residual stiffness loss ratio as a function of cycle number for 0° lamina. Solid and dash lines respectively

denote the results obtained by regularized and non-regularized models

agation, delamination is modeled by inserting an additional
thin layer of macroscopic elements in between the 90° and
0° plies, in which the associated microstructure is embed-
ded with delamination failure path, shown in Fig. 5b. The
microstructure employed for delamination layer elements is
identical to the ply layers, except for the difference of fail-
ure path orientations between delamination and transeverse
matrix crack (See Fig. 5a,b). The thickness of the delam-
ination layer is set to be 10 microns (8% ply thickness).
MDDT regularization procedure ensures that the fracture
energy consistency is satisfied regardless of the thickness
of the delamination layer. The potential crack propagation
region is discretized using the element sizes of 0.15 mm, 0.1
mm, 0.05 mm in order to verify mesh-size objectivity (see
Fig. 12b). As demonstrated in the simulations below, trans-
verse matrix cracks within the 90° ply are bridged by fibers
within 0° ply, and the damage does not fully localize. In the
absence of damage localization, fracture energy associated
with transverse matrix cracking in the 90° ply is mesh-size
independent without the need for regularization. Applying
regularization would result in an unphysical increase of frac-
ture energy with mesh refinement, which suppresses this
failure mode when fine meshes are used. In what follows,
we therefore do not employ the regularization scheme for
90° transverse matrix cracks.

Figure 13 shows the damage contours for transverse
matrix cracking in the 90° ply shown as dark region (black
color in the electronic version), for splitting crack in the 0°
ply shown as the light grey region (light blue color in the
electronic version), and for delamination shown as medium
grey (red color in the electronic version). Delamination con-
tours are shown in both 90° and 0° plies. The figure shows
the results using different mesh densities captured after the
first load cycle, 160,000 cycles and 320,000 cycles. The first
cycle of loading results in a substantial amount of damage
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near the hole that consist of a diffuse region of transverse
matrix cracking in the 90° ply, a dominant split in the 0° ply
with length in the order of the hole radius, and some delam-
ination. The level of damage observed is expected as the
loading amplitude is large (90% of the static strength of the
specimen). While significant damage is observed at the end
of the first load near the hole, none of the failure paths reach
full fracture state within the specimen (i.e., corresponding
damage variable reaching unity). Subsequent cycling results
in stable growth of all three damage mechanisms. Distinct,
yet diffuse transverse matrix cracks begin to grow in the 90°
ply but arrested by the splitting crack. Delamination growth
occurs around the growing split and the transverse cracks. A
small amount of fiber damage also occurs near the hole (not
shown in figure) and grows slowly compared with the matrix
damage. The general feature of damage contours conform
well with the X-ray tomography of the damage in the high
cycle fatigue cases of Refs. [9,41,42], which employ similar
laminate configurations. No significant difference in crack
extension patterns appear when different meshes are used in
the simulations.

Figure 14 shows the growth of the dominant splitting crack
as a function of load cycles, as well as the evolution of spec-
imen stiffness. Crack growth is considered to initiate when
full damage in the “transverse matrix crack™ failure path is
reached in the first element along the split. The crack growth
process follows a short incubation period. During the incuba-
tion period, damage growth does not fully localize (as shown
in top rows of Fig. 13), and the regularization is not effec-
tive. This manifests itself in the differences in crack growth
initiation cycles shown in Fig. 14a. The number of cycles
during incubation are respectively 4577 cycles, 9911 cycles
and 17,864 cycles for the simulations with coarse (h=0.15
mm), medium (0.1 mm) and fine (0.05 mm) meshes. The
cycles to initiation constitutes a small portion of the struc-



Computational Mechanics (2021) 67:969-987

Fig.12 a Geometry, boundary
and loading conditions for the
open-hole [90°/0°]s cross-ply
laminates, as well as
microstructure configuration for
each ply and delamination
modeling. b Different mesh
densities with h=0.15 mm, 0.05
mm, 0.025 mm for
discretization

Delamination

tural life and the errors do not affect the overall life prediction
significantly. A reasonable overall mesh-size consistency is
observed in both splitting crack growth and stiffness evolu-
tion curves.

We further conduct a parametric study on the relative
fatigue sensitivity of mode-I and mode-II damage growth
rates, and its consequences on specimen level damage
evolution in the context of open-hole cross-ply laminate
configurations. In this manuscript, the mode sensitivity is
demonstrated by varying the fatigue amplitude parameters
(i.e. Clm) and CI(? 1)), which affect the fatigue behavior, but
not the static response. Other parameters such as the cohesive
strength are expected to show similar influences. In this case,
the amplitude parameter CI('") that controls fatigue evolution
(of “transverse matrix cracking” and “delamination” fatigue
paths) under mode-I condition is reduced from 1072t0 1079,
while CI(Im ) and the rest of the parameters remain the same.
This choice of the parameter effectively reduces the sensi-
tivity of cyclic propagation of mode-I crack. The structural
mesh is discretized with the element size of h=0.1 mm. Fig-
ure 15 makes the comparison of predicted damage contours
between Cl(m) = 1072 and CI('") = 107% at 320,000 cycles.
The splitting crack in the 0° ply, the interlaminar damage
in the delamination layer, as well as the diffuse damage in

90° ply for Cl(m) = 107° remain unchanged, but no dis-
crete transverse cracks are observed. As shown in Fig. 16,
the absence of transverse cracks does not have a significant
influence on splitting crack extension, but reduces the stiff-
ness loss steadily as the cyclic loading continues.

The differences in behavior is further illustrated by study-
ing mode-I and mode-II fatigue damage evolution. Figure 17a
compares the pure-mode fatigue damage evolution rate
dwy/dt as a function of dimensionless equivalent separation
v/v, between C\™ = 1076 and C{"™ = 10~2. The figure
plots Egs. 18, 19, 20 with the respective material parameters.
In the case of C;m) = 1079, the pure mode-I fatigue degra-
dation is orders of magnitude smaller than mode-II failure,
whereas the opposite conclusion is reached for the case of
CI('") = 1072, Noting that the transverse and the splitting
cracks are respectively mode-I and mode-II dominated, set-
ting CI('") = 1070 results in a much smaller transverse crack
growth rate compared to the splitting crack. Conversely, set-
ting Cl(m) = 1072 enhances transverse crack propagation
and more interaction with the growing splitting crack

The two distinctly different behaviors have also been
observed in experiments that use similar laminate config-
urations but different types of materials for matrix con-
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320,000
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Fig. 13 Transverse matrix crackings (black) in 90°, splitting crack (light blue) in 0° ply, as well as delamination (red) captured at the first cycle,
160,000 cycles and 320,000 cycles for different mesh sizes of h=0.15 mm, 0.1 mm, 0.05 mm. (Colour figure online)

stituents. According to the experiments conducted by Spear-
ing et al. [41], T300/914C laminates subjected to high-
fatigue cyclic loading shows long extension of transverse
cracks, which are almost negligible in AS4/PEEK laminates
observed by Wang et al. [43]. Figure 17b shows the typ-
ical fatigue crack growth rate curves for T300/914C and
AS4/PEEK composite systems. The curves are generated by
assuming that the fatigue crack propagation follows the Paris
law with parameters calibrated using double cantilever beam
and end notch flexure tests [44,45]. The switch between mode
I and mode II fatigue sensitivity observed for the thermoset
and thermoplastic systems and the experimentally observed
damage propagation behavior are qualitatively in agreement
with the trends shown in the parametric study.

4 Conclusion

This study proposed a new computational framework based
on multiscale discrete damage theory (MDDT) for fatigue
failure prediction of laminated composite structures. The
MDDT model offers reduced-order homogenized represen-
tation of microscale fracture events along the discrete failure
paths within which progressive fatigue loading induced fail-
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ure occurs. Mesh-size objectivity is attained by adjusting
microstructure size in an effective manner with respect to
macroscopic element size. The MDDT model is integrated
with temporal multiscale modeling and an adaptive time step
selection strategy to achieve high computational efficiency.
Our investigations indicate that energy regularization based
on element size could be ineffective for fatigue damage accu-
mulation unless specific forms of fatigue damage evolution
laws are considered. In particular, fatigue damage laws (a)
must include softening behavior (to eliminate stress state
singularities at the crack tip) and (b) must dissipate fatigue
fracture energy in the softening regime (for effective energy
regularization). Numerical verification studies performed on
open-hole laminate configurations subjected to high-fatigue
tensile loading indicate the proposed multiscale model is
mesh-size insensitive in terms of damage growth, crack prop-
agation as well as specimen stiffness evolution. For cross-ply
laminates, simultaneous growth of splitting, delamination
and transverse matrix cracks, their distribution and growing
patterns predicted by the proposed model agree well with
experimental results. Furthermore, differences between the
fatigue damage growth patterns observed in some thermoset
and thermoplastic resins can be explained based on the rel-
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Fig. 14 a Splitting crack propagation, and b residual stiffness as a function of cycle numbers for [90°/0°]s laminates

Fig. 15 Transverse matrix

C,m=107, C m=10*

C =10, C =10

crackings (black) in 90°,
splitting crack (light blue) in 0°

ply and delamination (red)
captured at 320,000 cycles
compared between

c™ =0.01,cy” =104 and
™ =107, ¢y =104,
(Colour figure online)
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ative fatigue resistances against mode I and mode II fatigue
crack growth.

Acknowledgements The authors gratefully acknowledge the financial
support of the Office of Naval Research Airframe Structures and Mate-
rials (Award No: N00014-17-1-2040, Program Manager: Dr. Anisur
Rahman).

Appendix
Microstructure analysis

Consider the microstructure domain shown in Fig. 1, the
displacement field u is expressed in terms of a two-scale
asymptotic decomposition:

u(x,y,t) = u’ x,t) + g“u1 x,y,1) (A.1)

where u’ is continuous and constant displacement field over
the microstructure, ¢ stands for scaling parameter between
the two scales y(x) = x/¢. The microscopic crack results
in a displacement jump within the microstructural displace-
ment fieldu' : 8 (x,y,1) := [[ul]]. Both u' and § are periodic
along with the microstructure. Based on mathematical hom-

genization theory, the microstructural displacement field is
expressed as:

H(y) : € (x,0) 4 ) (hy %80) (X, ¥, 1)(A2)

a=1

u' (x,y,1)

where, €? = Viu’, Vi is the symmetric gradient opera-

tor with respect to the macroscopic coordinates. H is the
influence function that provides the variation of the elastic
response over the microstructure volume without fracture.
Another influence function h,, is computed as responses to
the separation of dirac function form d applied along the
discontinuity path of failure path « (§ € Sy): [he(y, )] =
diy — §).

Reduced-order approximation is employed for separation
as a function of nonlocal weight functions v® defined at
failure path « to alleviate computational efforts of direct
homogenization method:

8@ (x,1) = / V@ (§)8 (x,9,1)dy (A.3)

Premultiplying the microscale equilibrium equation Vy -
o (x,y,t) = 0 by influence function h,, integrating over the
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microstructure and applying reduced-order approximation
result in reduced-order microstructural equilibrium equation
Eq. 2, where the corresponding coefficient tensors consist of
integration of influence functions, nonlocal weight functions
and elastic moduli:

C@ .= fs ’ V@ (§) C(§) ay (A.4)
€)= [ 85 Lw:Amdy A5)
DB — _ / V@ () D® (§) d§ (A6)
D@ () := f@ g (v.9) - L(y) : R® (y)dy (A7)
R@ (y) = fs ; N (9) g (v. 9) d¥ (A8)

where L is the elastic moduli tensor varying with different
material constituents. A = I+ G, Iis the fourth order identity
tensor, G = VyH is the elastic polarization tensor, and g, =
V§ha stands for the separation polarization tensor.

Macroscopic stress-strain relationship Eq. 1 is obtained by
averaging the stress field over microstructure domain. Coef-
ficient tensor Z(® is expressed as:

Z@ = (L) R )
Li=(L®:AMe

(A.9)
e

(A.10)

Systems of equations for temporal multiscale
scheme

Figure 18 provides the summary of the system of equations
for microchronological and macrochronological problems.
The equations of the two scale problems have the same form,
but the response fields are expressed in terms of different
time scale coordinates. 7 represents macrochronological time
resolving the whole structure life, where ¢ € [0, #f]. T stands
for microchorological time coordinates defined within the
unit cyclic loading, where t € [0, t9]. The response field
in macrochronological problem is homogenized using fixed-
point operator: 5 (t) = ¢ (¢, 79) [26]. In this work, the fixed
point is chosen at the end of microchronological step.

Temporal local periodicity is not feasible in the microchrono-
logical problem due to the presence of irreversible damage
condition. Therefore, almost periodicity is introduced for
fatigue damage by allowing small value change within the
microchronological time domain [26]. The derivative of
temporal homogenized fatigue damage in the macrochrono-
logical problem is then expressed as follows according to the
chain rule:

S0 = FED.8“) +ol @ (A1)

where f (8@, S(Ol)) stands for partial derivative of damage
with respect to the coarse time scale ¢, cb(fa_)ap (1) is the almost

Microchronological problem (r € [0, 7] )

Given: macroscopic strain € (t,7), coicide with
microchronological time t; cohesive law
and associated parameters;

Compute: microchronogical separation 6 (¢, 7),

microchronogical stress (x,t,7)

Equilibrium equation:
V-o(x,t,7)+b(x) =0

Microstructural equlibrium equation:
™m

) (t,7) - C et 1)+ Y D60 (t,7) =0
B=1
Cohesive behavior:

@ (£, 7) = [1 — (@ (¢, ) K - 5 (¢,7)

Constitutive relationship:

ot,r)=Lie(t,r)+Y 2z 57

a=1

Macrochronological problem (¢ € [0, t¢])

Given: macroscopic strain € (t) ; cohesive law and
associated parameters;
Compute: temporal homogenized separation S(a)(t) ,
temporal homogenized stress & (x, t)

Equilibrium equation:
V-a(x,t) +b(x); x€Q; 7€][0,7)

Microstructural equlibrium equation:
T - @ 51 + Y. D" .57 1) =0
B=1
Cohesive law:

F{(a)(t) = [1 — a(a)(t)]K(a) .'S(a) (t)

Constitutive relationship:
G =L:&n+Y 2.3
a=1

Fig. 18 Summary of microchronological and macrochronological problems based on temporal multiscale scheme
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periodicity variable expressed as:

- ()

1 o o
o) () = T—O(w} (1, 10) — 0 (2, 0) (A.12)

In adaptive macrochronological time stepping strategy, the
time increment At; = ;11 —t; at the i’ h macrochronological
step is determined by:

Aw,

= A.13
10 ()l A1

ti

where w’f (t;) is the vector consisting of cbifl_)ap(t), which
is evaluated in the current micro-chronological load cycle
associated with all the failure path at all integration points
within the macroscopic discretized domain. Aw,, stands for
the tolerance parameter for allowable damage accumulation
across the macro-chronological time step.
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