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Abstract
The present work proposes an extension of the third medium contact method for solving structural topology optimization
problems that involve and exploit self-contact. A new regularization of the void region, which acts as the contact medium,
makes the method suitable for cases with very large deformations. The proposed contact method is implemented in a second
order topology optimization framework, which employs a coupled simultaneous solution of the mechanical, design update,
and adjoint problems. All three problems are derived and presented in weak form, and discretized with finite elements of
suitable order. The capabilities and accuracy of the developed method are demonstrated in a topology optimization problem
for achieving a desired non-linear force–displacement path.

Keywords Nonlinear topology optimization · Third medium contact · Large deformations · Second order optimization · Void
regularization

1 Introduction

In structural topology optimization under large deformations,
it is not uncommon that beam-like members eventually come
into contact.Modeling of self-contact is therefore essential in
order to avoid non-physical self-penetration in the mechan-
ical analysis and thereby extend the accuracy and validity
range of such optimization solutions. Even more than that, a
self-contact aware optimization can lead to radically differ-
ent designs by exploiting the possibility of unilateral contact
between parts of the design in e.g. non-linear mechanism
design.

Applying standard methods for modeling of self-contact
to situations like this, where the actual contact interfaces are a
priori unknown, is in principle possible but also very tedious
[1].Applying the thirdmediumcontactmethod [2,3], instead,
is a very natural and simple choice because density based
topology optimization already involves a void region which
can play the role of the contactmedium. Still, there are impor-
tant technical aspects that require a careful treatment in order
to make the combination numerically stable.
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The third medium contact method was introduced in [2]
as a purely continuum mechanics based alternative to con-
tact domainmethods [4]. Its main advantage against standard
contact methods, such as augmented Lagrangian and penalty
ones [5,6], is that it avoids an explicit treatment of the contact
kinematics and the implementation of inequality constraints.
However, it comes with the disadvantages of i) parasitic
remote forces transferred between the bodies before the
actual contact, and ii) not permitting large amounts of slid-
ing between the contacting bodies. Due to these limitations,
thirdmedium contact has hitherto not found significant appli-
cations as a replacement to the established contact methods
based on Lagrange multipliers.

When it comes to topology optimization though, the third
medium contact approach is an excellent fit, because density
based topology optimization already employs a void phase
in the a priori unknown regions where contact may actually
occur. By appropriate constitutive modeling, the void phase
can easily be used as the contact medium. At the same time,
the inherent limitation of the method in capturing a sharp
transition from zero to finite contact stresses, turns into an
advantage in topology optimization. The parasitic interaction
of non-contacting parts of the structure due to small but finite
stiffness of the third medium, makes the problem differen-
tiable and hence allows the optimization to drive a design
towards a self-contact state, if this is beneficial for the objec-
tive being optimized.
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The idea of employing third-medium contact methods in
topology optimization for modeling internal and external
contact has so far been unexplored. Nevertheless, traditional
modeling of, mainly external, contact in topology optimiza-
tion has been pursued in a series of papers. Apart from
earlier works in the field, reviewed by Hilding et al. [7],
more recent works within small deformations topology opti-
mization under external contact with rigid obstacles, include
compliance or volume minimization in a frictionless [8,9]
or frictional [10] setting, as well as compliance or contact
pressure minimization in a frictional setting [11]. Regarding
large deformations topology optimization, Luo et al. [12] per-
formed compliance minimization under frictionless contact
with circular rigid obstacles, modeled by means of nonlinear
springs. Fernandez et al. [13] used conventional large defor-
mation contact methods to model external contact between
the optimized design and a prescribed external deformable
solid. Known efforts for accounting for internal contact in
compliance minimization problems are limited to a priori
fixed internal contact interfaces, either without [14] or with
friction [15]. Otherwise, the level set method has also been
successfully used for internal contact, though limited to zero
initial gap and small sliding [16].

Apart from its simplicity, the major advantage of third
medium contact in the context of density based topology
optimization is that it completely eliminates the need for
prescribing potential internal or external contact interfaces.
The main challenge lies in defining a constitutive law for the
contact medium that is numerically stable even at extremely
severe deformations and large sliding. Apart from the cur-
rently employed constitutive laws for the void phase in large
deformation topology optimization [17,18], specialized third
medium constitutive laws from the contact mechanics litera-
ture [2,3] provide a foundation for further developments. The
original model from [2] with an explicitly added anisotropic
stiffness term, has already been simplified in [3], based on
the fact that a highly distorted hyperelastic continuum actu-
ally exhibits the desired anisotropy naturally. In the present
work, a similar neo-Hookean material is used for the contact
medium as the Hencky material used in [3]. In addition, in
order to allow for contact situations with considerable slid-
ing and very distorted elements, the present work proposes
a new void regularization based on penalization of higher
order strains in void elements.

The basic idea can be basically implemented in any den-
sity based topology optimization algorithm accounting for
large strains [18,19], minimizing a given objective func-
tion under a set of given constraints. However, the present
work introduces and uses a new second order topology opti-
mization framework, fully defined in the continuous setting
prior to discretization. The approach is similar to the con-
tinuous adjoint sensitivity analysis by Cho and Jung [20],
and is presented in a rather generalized form before being

Table 1 Notation conventions

A·B = Ai Bi Scalar product

A : B = Ai j Bi j Double contraction

A ..
.
B = Ai jk Bi jk Triple contraction

|A| Determinant of matrix A

‖A‖ = √
A : A Frobenius norm of matrix A

∇A = ∂Ai

∂X j
Spatial gradient of a vector field A

HA = ∂2Ai

∂X j∂Xk
Spatial Hessian of a vector field A

dev(A) 3D deviator operator

〈x〉 = max(0, x) Positive part function

particularized to a specific hyperelastic material law and
the objective function considered in the numerical exam-
ple. The included numerical results were obtained with the
displacement field approximated with quadratic quadrilat-
eral elements and the density field approximated with linear
quadrilateral elements in a structured mesh but the actual
method and its implementation is neither limited to struc-
tured meshes nor bound to a specific element type.

The subsequent Sect. 2 presents some important adap-
tations of the third medium contact method that extend its
applicability to larger amounts of sliding. The topology opti-
mization framework for the present work is introduced in
Sects. 3 and 4 presents an optimization example that exploits
the occurrence of self contact for achieving a desired nonlin-
ear force–displacement response. Important conclusions are
summarized in Sect. 5, while Table 1 summarizes notation
conventions used throughout the present work.

2 Mechanical model

The modeling domain Ω consists of a solid structure sub-
domain Ωs embedded in a void phase subdomain Ωv. A
vector field u defined in the undeformed domainΩ expresses
displacements from the initial to the current deformed con-
figuration. Let also q denote a Lagrange multiplier vector
which can either be a single vector or a vector field over
some part ΓD of the domain boundary ∂Ω . In the former
case, it is used to enforce a Dirichlet boundary condition in
an average sense, while in the latter case, the condition is
enforced at every point of ΓD . Based on these definitions,
the mechanical equilibrium of the system can be expressed
in weak form as

R(u, q; δu, δq) = 0 ∀δu, δq (1)
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with

R(u, q; δu, δq) =
∫

Ω

Ψ,u(u; δu) dΩ

+
∫

ΓD

{
q · δu + (u − uD) · δq

}
dΓ

(2)

where Ψ,u(u; δu) is the virtual variation of the strain energy
density function Ψ due to an infinitesimal displacements
variation δu. This is the usual virtual work expression that
can be rewritten in many equivalent forms of work conju-
gate pairs of strain variations and stresses. Depending on
whether the Dirichlet condition on ΓD is applied in an aver-
age sense or pointwise, uD is either a single vector or a vector
field expressing the prescribed displacement or displacement
field.

2.1 Hyperelasticity

Regarding the strain energy function Ψ , there are many pos-
sible choices for hyperelasticmaterial laws.Most of these are
formulated so that Ψ tends to infinity when the material is
compressed towards zero volume. This property, apart from
representing the actual physical response of any real mate-
rial, is also essential for the third medium contact model
employed here.

A rather common isotropic neo-Hookean material law
according to Simo et al. [21] is adopted in the present work
both for the solid and the void domain, defined through the
strain energy density function

Ψ (u) = K

2
(ln |F |)2 + G

2

(
|F |−2/3 ‖F‖2 − 3

)
(3)

with the deformation gradient F = I + ∇u. The initial bulk
modulus K and shear modulus G depend on the material
domain, being respectively equal to Ks andGs inΩs, and Kv

and Gv in Ωv. These elasticity constants in the void domain
Ωv are very small but finite.

Even if the void stiffness is initially negligible com-
pared to the solid stiffness, the presence of the ln |F |
term in Eq. (3) will eventually lead to an infinite stiff-
ness when the void is compressed to zero volume. This
property is crucial for the present application, because
it results in a compressed void which is stiffer than the
solid phase and can therefore transfer forces between solid
members of the structure. In general, every material law
with this characteristic can serve as a third medium for
modeling contact, in contrast to material laws, like the
otherwise frequently used Saint Venant-Kirchhoff model,
that result in vanishing stresses under ultimate compres-
sion.

The virtual work expression appearing in Eq. (2), results
from Gateaux differentiation of Ψ with respect to the dis-

placements field u. For the hyperelastic strain energy density
from Eq. (3), this operation results in

Ψ ,u(u; δu) = P
(∇u

) : ∇δu (4)

with the 1st Piola–Kirchhoff stress tensor

P
(∇u

) = K ln |F | F−T + G |F |−2/3 dev(FFT )F−T (5)

All equations have been presented in their three dimen-
sional form, however a reduction to plane strain is trivial by
defining the three dimensional deformation gradient as

F = I +
⎡
⎣∇u

0
0

0 0 0

⎤
⎦ . (6)

At the same time, for plane strain problems, P in Eq. (4)
needs to be reduced to its in-plane components.

2.2 Void regularization

In general, the constitutive behavior of the void is not essen-
tial for the mechanical system as long as stresses in the void
are small enough to not affect the deformation of the solid
significantly. Nevertheless, a rigorous modeling of the void
up to large strains is essential for avoiding numerical insta-
bilities of the overall system. This is especially true when the
void is used as the third medium for contact modeling, where
many elements will collapse to almost zero volume.

Figure 1 shows a classical benchmark example for deal-
ing with large deformations in the void region [17,18]. In
the present work, the upper beam is loaded by prescribing
the average vertical displacement within the small region ΓD

through an incremented vertical component uDy in the vector
uD in Eq. (2). The horizontal displacement of the ΓD region
is left free by defining q = {

0, qy
}T and δq = {

0, δqy
}T in

Eq. (2), reducing the formulation to a scalar Lagrange multi-
plier qy , which is just a single additional degree of freedom
in the overall system. The homogeneous Dirichlet condition
on ΓDh can be imposed by restricting the solution space of
u.

The plots in the first column of Fig. 2 show simulation
results for the reference solution with Ks=1 and Gs=6/13
in stress units, and the void elements completely removed.
The second column shows the corresponding results after
including void elements with Kv/Ks =Gv/Gs =10−12. All
results are obtained with a 20×20 discretization of the total
domain Ω with 8-node quadratic quadrilateral elements and
numerical integration with nine Gauss points. Although the
simulation does not break down in the load range shown
in Fig. 2, the deformed void mesh in the second column
has many severely deformed elements which are close to
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Fig. 1 C-shape structure with t = 0.1L and a length of ΓD equal to
0.05L

being inverted. At higher load levels, inverted or severely
distorted elements lead to numerical instabilities preventing
the employed Newton algorithm from converging.

Different methods have been successfully applied for
avoiding this kind of degenerate states of the deformed void
[17,18]. The present work proposes a new regularization
which gives excellent control over the void mesh deforma-
tion and at the same time is compatible with the use of the
void as a third medium for contact modeling. The basic idea
is to augment the material strain energy function Ψ with an
energy associated with higher order strains within each finite
element according to an energy density proportional to the
function

Φ̃ = 1

2
Hu ..

.
Hu. (7)

where Hu is the Hessian of the displacement field, i.e. the
second order strain tensor. The colorplot shown in the second
column of Fig. 2 illustrates large values of Φ̃ occurring in
regions of severe mesh distortion.

In order to penalize these deformation modes, one could
consider an augmented strain energy function Ψ + kr I Φ̃,
with the regularization scaling constant kr and the void
indicator function I, which would lead to the virtual work
expression

Ψ ,u(u; δu) + kr I Hu ..
.
Hδu. (8)

This is a rather non-intrusive approach because it would only
penalize bending and warping deformation modes in void
elements, while it would not penalize homogeneous defor-
mation states even at very severe homogeneous compression
and shearing.

In order to reduce the impact of the regularization term
further, an ad hoc scaling of the higher order term in Eq. (8)
is proposed, leading to the weak form

Higher order strain energy Φ̃

(a) uDy = −0.2H

(b) uDy = −0.4H

(c) uDy = −0.6H

Fig. 2 Deformed C-shape structure for H = L = 1, with no void
material (left), without void regularization (middle) and with void reg-
ularization (right). Solid structure is shown in black, void is colored
according to the higher order strain energy Φ̃ defined in Eq. (7)

Ψ,u(u; δu) = Ψ ,u(u; δu) + kr I e−5|F |
Hu ..

.
Hδu (9)

to be used, with a slight exploitation in notation, in Eq. (2).
The added negative exponential dependency on the determi-
nant of the deformation gradient is derived from numerical
experiments. It leads to a decaying intensity of the regular-
ization for elements that are not severely compressed, or even
less for elements that are stretched.

The penalization constant kr has force units. In order to
work with a dimensionless quantity with more general valid-
ity, the following scaling relationship is proposed

kr = k̄r L
2Ks. (10)

where L is used as a characteristic length of the structure
and Ks is the elastic bulk modulus of the solid. The dimen-
sionless constant k̄r has to be chosen just large enough to
avoid extreme distortion of void elements. Convergence stud-
ies with regard to the parameter k̄r have led to the value
k̄r = 10−6 used in all numerical examples throughout the
present work. Note that the added Hessian term serves its
purpose of regularizing the deformed element shape, even
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for finite element spaces for u which are not C1 continuous
across element boundaries, as a compatible discretization of
this term would require.

C-shape structure example

The last column in Fig. 2 shows simulation results for
the square C-shape structure with the void regularization
according to Eq. (9) and otherwise the same void mate-
rial parameters as the results of the second column. Before
adding the regularization, the void material was squeezed
out at the open right boundary of the domain, resulting in
a severely bent mesh, especially near the tip of the loaded
beam. With the proposed regularization, all void region ele-
ments remain completely regular, which is also reflected in
the much lower bending and warping energy plotted in the
void region. When looking at the bottom beam at the high-
est load, a barely visible negative vertical deflection for the
case with the regularized void, reveals a stronger parasitic
interaction between the loaded and the unloaded beam. This
weak but still detectable effect is consequence of an added
bending stiffness due to the regularization.

The last load step, shown in Fig. 2c, indicates how more
prone to numerical instabilities the model without void regu-
larization is, compared to themodel with void regularization.
There exist other void regularization schemes in the literature
which are as effective in this benchmark example. For this
reason, the additional potential of the proposed regularization
is further illustrated in a modified version of this example,
that involves contact between the two beams.

Half height C-shape structure example

In the next example, shown in Fig. 3, the height of the C-
shape structure is reduced to half, i.e. H = 0.5L , so that
upon vertical loading of the upper beam, the two horizontal
beams will eventually come into contact. The effectiveness
of the proposed void regularization in modeling self-contact
is demonstrated by imposing a displacement of the upper
beam up to uDy = −H . The structure is discretized with
40 times 20 elements along the length and height directions,
respectively.

In fact, this is a rather challenging contact example,
because contact will occur at the very corner of the upper
beam against the top surface of the lower beam. The first
column of Fig. 3 shows the deformed structure at different
loading states, with no void material and conventional con-
tact modeling with Lagrange multipliers [22], as a reference
solution. The second column shows results with the void
between the two horizontal beams modeled with the void
regularization according to Eq. (9). The void mesh remains
very regular, as was the case in the previous example, but
despite the absence of any inverted elements, the free edge

at the right boundary of the domain folds into a configu-
ration that leads to overlapping. The fact that the expected
contact point is at the boundary of the void domain prevents
the void from acting as a contact medium between the two
beams.

This is easy to overcome simply by extending the void
domain with an additional column of elements at the right
boundary of the domain, as shown in the last columnof Fig. 3.
In fact,when applying the thirdmediumapproach for contact,
it is essential, that every potential contact region is entirely
embedded in the contact medium. With a void domain that
sufficiently embeds the contact region in this case, the reg-
ularized void acts as a contact medium transferring forces
and permitting penetration between the two beams even for
the significant amount of sliding observed at the maximum
imposed displacement uDy = −H . At a moderate displace-
ment of the upper beamwith uDy =−0.2H , both simulations
with the regularized void exhibit no visible deviations from
the reference solution. At the intermediate loading state with
uDy =−0.5H , a barely visible deflection of the lower beam
indicates a small parasitic interaction between the two beams
that have not yet come into contact. At the post contact defor-
mation state with uDy =−H , the result seen in the right hand
side column for the regularizedvoidwith the additional buffer
layer of void is in good agreementwith the reference solution.

A more quantitative comparison is provided in Fig. 4 that
illustrates the obtained load displacement curves for the three
cases from Fig. 3. The two curves for the simulations with
void material coincide until the onset of contact and exhibit
a just slightly larger reaction force compared to the refer-
ence case. Beyond the occurrence of contact, the case with
the appropriately extended void domain follows the refer-
ence solution with a very small deviation even at a significant
amount of sliding. The inset detail view of the transition point
at the onset of contact helps estimating the loss of accuracy
in predicting a sharp transition due to the inherent limitation
of the third medium contact approach, compared to conven-
tional contact modeling.

2.3 Material interpolation

So far, only structures have been treated that involve solid
and void domains clearly delimited by a discontinuous inter-
face. However, density based topology optimization relies
on the concept of a continuous material density varying from
void to solid in a differentiable manner. A graded interface
between the two regions is essential for establishing the sen-
sitivity of an objective functionwith respect to changes of the
design.With this motivation, a material interpolation scheme
is introduced below for representing a transition from solid
to void regions, and the effectiveness of the proposed third
medium contact is also evaluated in this context.
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(a) uDy = −0.2H

(b) uDy = −0.5H

(c) uDy = −H

Fig. 3 Deformations of the C-shape structure with H = 0.5L , with no void material solved using a conventional contact formulation based on
Lagrange multipliers (left), with void regularization (middle) and with void regularization and an additional layer of void material at the open right
hand side boundary (right)
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Fig. 4 Load–displacement responses at ΓD for the three simulations of
the C-shape structure from Fig. 3

The design is described by a continuous design variable
field χ which represents a purely mathematical uncon-
strained quantity, i.e. χ ∈ (−∞,∞). To express material

consumption, χ is mapped to a physical material density ρ

through the function

ρ(χ) = 1

1 + e−χ
, (11)

which results in a density fieldwithin the asymptotic limits of
0 and 1, corresponding to a perfect void and a perfect solid
material, respectively, as illustrated in Fig. 5a. According
to this mapping, the conventional solid to void boundary at
ρ = 0.5 corresponds to χ = 0, while for values of χ in the
order of +10 and −10, respectively, the deviation from a
perfect solid and void material, has no practical significance.

Although the density field is continuous, the aim is never-
theless to achievemanufacturable and discrete designswhere
ρ is either at its upper or lower bound, while intermedi-
ate densities are limited to the interface between solid and
void domains. Usually this is done by penalizing the stiff-
ness of intermediate densities through a convex relationship
betweenmaterial usageρ andmaterial performance, i.e. stiff-
ness for structural topology optimization. The present work
adopts the RAMP material interpolation function by Stolpe
and Svanberg [23] due to its finite initial slope. Expressed in
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(a) Mapping: χ → ρ(χ)

0 0.5 1
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(b) RAMP (p = 8)
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0
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(c) Void indicator at χv=−5

-10 -5 0 5 10
0

0.5

1

(d) All transition functions

Fig. 5 a Mapping from the design variable to the physical density,
Eq. (11). b RAMP material stiffness interpolation function, Eq. (12). c
Void indicator function, Eq. (13), for activating void regularization. d
Comparison of material density, material stiffness and void regulariza-
tion transition functions

terms of the mathematical design variable χ , this interpola-
tion is represented by the function

E(
χ

) = E0 + (1 − E0) ρ(χ)

1 + p(1 − ρ(χ))
, (12)

where p is the penalization parameter and E0 is a small pos-
itive value ensuring minimum stiffness even if the density is
very close to zero. The RAMP interpolation function from
Eq. (12) is applied as scaling to the solidmaterial elastic prop-
erties resulting in the initial bulk modulus K =E(

χ
)
Ks and

the initial shear modulusG=E(
χ

)
Gs. A linear interpolation

is obtained for p=0, while increasingly positive values for p
result in an increasing penalization of intermediate densities.
Figure 5b illustrates the RAMP function for the penalization
parameter p=8, used throughout the present work, while the
compound function E(

χ
)
for the same value of p is shown

in Fig. 5d.
In the context of a continuous material transition from

void to solid, discussed in this subsection, the void indicator
function I, which acts as a switch for the void regularization
introduced in Eq. (9), needs also to be redefined in a differen-
tiable manner. In order to apply the regularization term only
to regions where the design variable χ is below a specified
threshold χv, the following smooth negative step function
between χv − 1 and χv, adopted from [24], can be used.

Iχv

(
χ

) = 6
〈
χv − χ

〉5
[0,1] − 15

〈
χv − χ

〉4
[0,1]

+ 10
〈
χv − χ

〉3
[0,1]

(13)

with

〈χ〉[0,1] =
⎧⎨
⎩
0 if χ < 0
1 if χ > 1
χ if 0 ≤ χ ≤ 1

(14)

Figure 5c illustrates this smooth indicator function for the
threshold value χv = −5, used throughout this work. The
function yields 0 for χ ≥−5 and 1 for χ ≤−6, which means
that the void regularization is completely absent in solid and
intermediate density regions, as also seen in Fig. 5d.

After having introduced a dependence of thematerial elas-
ticity parameters on the design variable χ and after replacing
I in Eq. (9) with the smooth void indicator function from
Eq. (13), the mechanical equilibrium residual according to
Eq. (2) becomes

R(χ, u, q; δu, δq) =∫
Ω

{
E(

χ
)
Ps(∇u) :∇δu

+ kr Iχv

(
χ

)
e−5|F(∇u)|

Hu ..
.
Hδu

}
dΩ

+
∫

ΓD

{
q · δu + (u − uD) · δq

}
dΓ ,

(15)

where Ps is the 1st Piola–Kirchhoff stress tensor fromEq. (5)
for the completely solid material, i.e. K =Ks and G=Gs.

Half height C-shape structure with graded interface

Introducing a graded transition from void to solid will
unavoidably affect the structure’s mechanical behavior com-
pared to a discontinuous transition, especially when studying
the contact between solid members. In order to evaluate the
effectiveness of the third medium contact approach with the
proposed void regularization, in the context of a graded void-
solid interface, the last example from the previous subsection
is reevaluated. The domain discretization is now refined by a
factor of two, resulting in 82×40 elements, and the transition
from solid to void, i.e. from χ = −10 to χ = 10, is spread
over two elements, with the transition being linear in terms
of χ . In order to match the previous example, the minimum
stiffness factor in Eq. (12) is set to E0 = 10−12. Figure 6
shows the resulting material density field and the deformed
structure at different loading states.

Figure 7 provides amore quantitative comparison between
themodelwith the discontinuous solid to void transition from
Fig. 3 and the model with the graded transition from Fig. 6.
The upper diagram of Fig. 7 shows the reaction force as a
function of the imposed vertical displacement to the upper
beam for the two investigated cases, while the lower diagram
shows the corresponding curve slopes.
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0 1
ρ

(a) Undeformed

(b) uDy = −0.5H

(c) uDy = −H

Fig. 6 C-shape structure with H = 0.5L and graded interface in its
underfomed state (a) and two deformed states at different load levels
(b, c)

The observed deviations between the two cases are due
to different effects. The interpretation of the original discon-
tinuous interface as the graded interface shown in Fig. 6a,
in combination with the RAMP interpolation applied to the
intermediate density material, leads to a reduced effective
beam thickness due to the lower stiffness of the intermediate
density material at the interface. For this reason, the graded
interface model is in general more compliant than the one
with the discontinuous interface. It is an accepted effect in
topology optimization, that designs with intermediate densi-
ties are in general more compliant than crisp solid and void
designs.

-1-0.8-0.6-0.4-0.20
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0.06

0.08

-1-0.8-0.6-0.4-0.20

-0.2

-0.15

-0.1

-0.05

0

Fig. 7 Load and stiffness response as function of prescribed displace-
ment for the discontinuous void-solid transition (Fig. 3) and the graded
void-solid interface (Fig. 6)

Apart from that, additional effects emerge in the context of
contact modeling. Most significantly due to the finite thick-
ness of the graded interface between solid and void, contact
now occurs prematurely as seen in Fig. 6c and the lower
diagram of Fig. 7. Moreover, the presence of a layer of inter-
mediate density material between the contacting solids adds
some compliance to the contact, resulting in a less sharp
transition from non-contact to contact, as observed e.g. in
the force displacement curves shown.

Despite the presence of the mentioned effects, it is to be
concluded that the overall contact behavior is captured ade-
quately for topology optimization applications. Especially
the inaccuracy of remote interaction of solid members, can
actually be an advantage in the context of optimization,
because it provides information about potential contact inter-
faces in the surroundings that should be avoided or exploited,
depending on the goal of the optimization andmakes the con-
tact problem differentiable.

3 Topology optimization formulation

The method for third medium contact with the void regu-
larization presented above, can in theory be implemented
in every topology optimization framework for finite strains.
This section presents its implementation in a new general-
ized framework,which is basedon thedesignparametrization
fromSect. 2.3, and a discretization-agnostic formulation. The
proposed optimization scheme is entirely defined in the con-
tinuous setting in weak form and is second order consistent.
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3.1 Optimization framework

Consider an optimization problem defined as the minimiza-
tion of an objective function C , i.e.

min
χ

C(χ, u, q) (16)

subjected to the mechanical equilibrium constraint

R(χ, u, q; δu, δq) = 0 ∀δu, δq (17)

corresponding to Eq. (1) but with the residual functionR also
including the dependence on the design variableχ introduced
in Eq. (15).

A simple but still rather general form for the objective
function C is the following additive split in three single vari-
able functions

C(χ, u, q) = Cχ (χ) + Cu(u) + Cq(q). (18)

Minimization of the objective function under the aforestated
mechanical equilibrium constraint, is equivalent to mini-
mization of the augmented objective function

C∗(χ, u, q) = C(χ, u, q) + R(χ, u, q; λu, λq) (19)

for any λu and λq respectively in the spaces of δu and δq. The
optimality condition is based on the variation of the objective
function C which can be evaluated as

δC = δC∗

= Cχ,χ (χ; δχ) + R,χ (χ, u, q; λu, λq; δχ)

+ Cu,u(u; δu) + R,u(χ, u, q; λu, λq ; δu)

+ Cq,q(q; δq) + R,q(χ, u, q; λu, λq; δq).

(20)

Applying the adjoint sensitivity analysis method, the vari-
ations δu and δq are eliminated from Eq. (20) by finding
multipliers λu and λq that satisfy the adjoint equations

R,u(χ, u, q; λu, λq; δu) + Cu,u(u; δu) = 0 ∀ δu

R,q(χ, u, q; λu, λq; δq) + Cq,q(q; δq) = 0 ∀ δq.
(21)

The variation of the objective is thereby reduced to

δC = Cχ,χ (χ; δχ) + R,χ (χ, u, q; λu, λq; δχ). (22)

In total,mechanical equilibrium, adjoint analysis and opti-
mality are expressed by the following system of coupled
nonlinear equations

R(χ, u, q; δu, δq) = 0 ∀ δu, δq

R,u(χ, u, q; λu, λq; δu) + Cu,u(u; δu) = 0 ∀ δu

R,q(χ, u, q; λu, λq ; δq) + Cq,q(q; δq) = 0 ∀ δq

Cχ,χ (χ; δχ) + R,χ (χ, u, q; λu, λq; δχ) = 0 ∀ δχ

(23)

with regard to the unknowns χ , u, q, λu and λq . Assum-
ing that all functions involved in Eq. (23) are differentiable
with respect to the five unknowns, a consistent linearization
of this system of equations is trivial to obtain in order to
apply Newton’s method. Application of Newton’s method
to the fully coupled Eq. (23) corresponds to a second order
optimization scheme and it will lead to quadratic converge,
simultaneously towards the optimal design and mechanical
equilibrium, if the initial guess is sufficiently close to the
solution.

Due to the extremely nonlinear nature of the design prob-
lem though, the initial guess for χ will never be close enough
to the final design for Newton’s algorithm to converge. A
reasonable strategy for dealing with this without losing the
second order information on the system is to add a damping
on the last equation in Eq. (23) and solve the system as an
ODE with an implicit time discretization, where each time
step is solved with Newton’s method. Somewhat similar to
reference [25], but also introducing damping of spatial gra-
dients of χ , the optimality condition δC = 0, appearing in
the last row of Eq. (23), is now substituted with

δC +
∫

Ω

{
χ̇δχ + l2t ∇χ̇ · ∇δχ

}
dΩ = 0 ∀ δχ (24)

where time derivatives are with regard to a pseudo-time t ,
and lt is a characteristic length-scale for the spatial evolution
of the design field χ . Assuming that the design field χold at
pseudo-time t − Δt is known, the design field χ at pseudo-
time t can be found by solving the system

R(χ, u, q; δu, δq) = 0 ∀ δu, δq

R,u(χ, u, q; λu, λq; δu) + Cu,u(u; δu) = 0 ∀ δu

R,q(χ, u, q; λu, λq ; δq) + Cq,q(q; δq) = 0 ∀ δq

Cχ,χ (χ; δχ) + R,χ (χ, u, q; λu, λq; δχ)

+
∫

Ω

{
χ − χold

Δt
δχ

+ l2t
∇χ − ∇χold

Δt
· ∇δχ

}
dΩ = 0 ∀ δχ

(25)

obtained from substituting a backward Euler approximated
version of Eq. (24) into Eq. (23).

It is easy to verify that the steady state solution of Eq. (25)
corresponds to an exact solution of Eq. (23). Hence, the intro-
duced damping constitutes a consistent regularization in the
sense that the exact solution is recovered as the time step Δt
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Intialize variables χ, u, q, λu and λq

and data χold, Δt. Set i = 0.

Solve design update i

Newton solve of Eq. (25)

Newton converged
within 7 iterations?

Δt ← Δt/4

χold ← χ
t ← t + Δt

If Newton iterations ≤ 5:
Δt ← 2Δt

i = imax or
Δt > Δtmax?

i ← i+1

Optimization completed

yes

no

yes

no

Fig. 8 Flow chart of the adaptive time step solution algorithm

approaches infinity. At the same time, the convex term added
to the original optimality equation ensures that, for Δt small
enough, the last row of Eq. (25) will not lead to a diverging
Newton loop. In that sense, Eq. (25) provides a very conve-
nient way to start the optimization with small pseudo-time
increments Δt , that ensure a stable design evolution, and
end it with exceedingly large time steps Δt , that recover the
quadratic convergence rate of the original Eq. (23) towards
its exact optimality solution.

Solution algorithm

Due to its importance for the overall efficiency of the pro-
posed topology optimization framework, the exact adaptive
time stepping algorithm for Eq. (25) is documented schemat-
ically in Fig. 8. The basic idea is to use the convergence
behavior of the Newton loop on Eq. (25) as a measure of the
nonlinearity of the system and adaptΔt accordingly. In prac-
tice this leads to small time steps when rapid design changes
occur and large time steps when design changes are small.

3.2 Application to load–displacement path control

In order to demonstrate the capabilities of the proposed con-
tact modeling approach in topology optimization, the next
section deals with a load–displacement path optimization
problem. For this reason, the general framework introduced
in the previous subsection needs to be applied to this specific
optimization problem.

Assuming a set of prescribed displacements u〈 j〉
D for j =

1, 2, . . . in the mechanical residual Eq. (2), the goal is to

find a design field χ that minimizes the deviation between
the respective reaction tractions q〈 j〉 obtained, and a set of
corresponding prescribed average reactions q〈 j〉∗ . This can be
achieved by minimizing the squared deviation between the
actual and desired tractions through an objective function in
the form

Cq(q) =
∑
j

∫
ΓD

w〈 j〉
∥∥∥q〈 j〉 − q〈 j〉∗

∥∥∥2 dΓ , (26)

where w〈 j〉 are individual weighting factors for each con-
trol point. To maintain the compact notation of the previous
subsection, all variables q〈 j〉 are combined in a set q =
{q〈1〉, q〈2〉, . . .}. The corresponding set of displacement fields
u〈 j〉 are combined in a set u={u〈1〉, u〈2〉, . . .}.

With this notation, the first row of Eq. (25) can express
the mechanical equilibrium at all control points j =1, 2, . . .,
which are otherwise assumed to be independent from each
other, i.e. excluding path dependent mechanical responses.
Corresponding adjoint problems need to be defined for each
control point j . In order to express these in the second and
third row of Eq. (25), sets of the involved adjoint variables
are defined as λu ={λ〈1〉

u , λ
〈2〉
u , . . .} and λq ={λ〈1〉

q , λ
〈2〉
q , . . .}.

So far, there has been no dependence between mechanical
equilibriumor adjoint problems for different control points j .
This is not true anymore when considering the damped opti-
mality equation in the last row of Eq. (25), where the term

R,χ (χ, u, q; λu, λq; δχ)

=
∑
j

R,χ (χ, u〈 j〉, q〈 j〉; λ
〈 j〉
u , λ

〈 j〉
q ; δχ) (27)

couples all subproblems for the various control points
involved in the load–displacement path optimization. As a
consequence, in order to maintain a second order optimiza-
tion scheme, Eq. (25) needs to be solved as a coupled system
of equations involving all variables at the different control
points simultaneously.

Regarding the contributionCu(u) in the objective function
in Eq. (18), there is no need for this kind of contribution in
this specific application. Hence

Cu(u) = 0. (28)

On the contrary, the design field contribution Cχ (χ) in
Eq. (18) is essential both for controlling the width of the
graded void-solid interface and for enforcing material uti-
lization constraints. By observing Fig. 5a, the width of the
void-solid interface for a linearly varying χ from large
negative to large positive values is approximately equal to
2/(ρ′(0) ‖∇χ‖). Enforcing a minimum width of the diffuse
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interface equal to li can therefore be obtained by penalizing
positive values of the quantity

〈
ρ′(0) ‖∇χ‖ − 2/li

〉
, (29)

for example by means of a p-norm over the entire design
domain. This kind of penalization is essential not only for
providing a length-scale for the void-solid interface but also
for obtaining a converged design from Eq. (25), with the
otherwise unbounded design variable χ .

Based on a dimensionless version of Eq. (29) as well as
on an enforced upper bound ρ̄max to the average density ρ̄

over the design domain, i.e. ρ̄ ≤ ρ̄max, an extended function
Cχ is defined as

Cχ (χ, ρ̄, μavg, μmax)

=
∫

Ω

{
ki

〈
ρ′(0) ‖∇χ‖ li/2 − 1

〉n

+ (ρ(χ) − ρ̄) μavg

+ kρ

2
〈 ρ̄

ρ̄max
− 1 − μmax

kρ

〉2 − μ2
max

2kρ

}
dΩ.

(30)

In this expression, ki is a weighting factor and n is a p-norm
exponent for the enforcement of theminimum interfacewidth
li . The equality of the scalar variable ρ̄ to the average of
the field ρ over Ω is enforced through the Lagrangian with
the Lagrange multiplier μavg. The inequality constraint ρ̄ ≤
ρ̄max is enforced through the augmented Lagrangian with
the Lagrange multiplier μmax and the augmentation constant
kρ . The additional equations necessary for solving for the
three new scalar unknowns ρ̄, μavg and μmax are provided
by saddle point conditions of the respective Lagrangians, i.e.

Cχ,ρ̄(ρ̄, μavg, μmax) = 0

Cχ,μavg(χ, ρ̄) = 0

Cχ,μmax(ρ̄, μmax) = 0

(31)

These three equations need to be appended to Eq. (25), lin-
earized and solved simultaneously with all other problem
variables.

With the adaptations presented in the present subsection
so far, the application of the framework to load–displacement
path control is essentially completed. Nevertheless, for more
clarity, the most complex terms involved in the solution of
Eq. (25) are presented in more detail. With Cu,u vanishing
due to Eq. (28), the adjoint equation in the second row of
Eq. (25) actually reads

∫
Ω

{
E(

χ
) (

∂P〈 j〉
s

∂∇u〈 j〉 : ∇δu

)
: ∇λ

〈 j〉
u

+ krIχv

(
χ

)
e−5|Fj |

(
Hδu − 5

∣∣Fj
∣∣(F−1

j :∇δu
)
Hu〈 j〉) ..

.
Hλ

〈 j〉
u

}
dΩ

+
∫

ΓD

δu · λ
〈 j〉
q dΓ = 0 ∀ j, δu

(32)

where Fj = F(∇u〈 j〉).
It should be noted that applying Newton’s method on

Eq. (25) requires linearization of Eq. (32) with respect to
all involved unknowns, which means that the derivative of
the 1st Piola–Kirchhoff stress P with respect to ∇u, appear-
ing in this equation, needs to be differentiated one additional
time with respect to ∇u. This is easy for the adopted hypere-
lastic material law with the resulting expression for P shown
in Eq. (5), but this is not in general the case for any con-
stitutive law. The term in Eq. (32) due to the proposed void
regularization, weighted with kr , is also straightforward to
linearize with respect to ∇u.

For this specific application, the adjoint equation in the
third row of Eq. (25) becomes

∫
ΓD

{
δq · λ

〈 j〉
u

+ 2w〈 j〉(q〈 j〉 − q〈 j〉∗
)

· δq
}
dΓ = 0 ∀ j, δq

(33)

Finally, the damped optimality equation for a design
update froma previous designχold, appearing last in Eq. (25),
is particularized for this application as

∫
Ω

{
n

〈
ρ′(0) ‖∇χ‖ li

2
− 1

〉n−1
ρ′(0) ∇χ

‖∇χ‖ · ∇δχ

+ ρ′(χ)μavg δχ

+
∑
j

(
E ′(χ)

Ps(∇u〈 j〉) :∇λ
〈 j〉
u

+ krI ′
χv

(
χ

)
e−5

∣∣F(∇u〈 j〉)∣∣
Hu〈 j〉 ... Hλ

〈 j〉
u

)
δχ

+ χ−χold

Δt
δχ

+ l2t
∇χ−∇χold

Δt
· ∇δχ

}
dΩ = 0 ∀ δχ.

(34)

Despite some lengthy expressions, all involved terms are
differentiable also in this last equation, so that application of
Newton’s method with a consistent tangent matrix is pos-
sible. The model is implemented in the automated finite
element framework GetFEM [26], which performs neces-
sary symbolic linearizations and the numerical assembly of
the discretized system of equations.

123



1110 Computational Mechanics (2021) 67:1099–1114

L

H Ω

ΓD

ΓDh

x

y

Fig. 9 Problem domain for designing a stiff coupling with initial clear-
ance. Homogeneous Dirichlet condition region ΓDh has a length 0.1H
and the nonhomogeneous Dirichlet condition region ΓD spans from
0.4L to 0.6L along the bottom edge. Dimensions: L = 52, H = 26

4 Results and discussion

The internal contact enabled topology optimization formu-
lation for load–displacement path control, described in the
previous section, is applied now to design a structure that
switches from a completely decoupled to a high stiffness
connection, within a given displacement interval. Figure 9
shows the problem domain, along with the initial material
density distribution and a discretization with 60×30 square
elements. A small region ΓDh , near the top of the left side
of the domain, is fixed, while a prescribed horizontal dis-
placement is imposed on a region ΓD in the middle of the
bottom side of the domain. The path control problem to be
solved consists in minimizing the reaction force on ΓD for
a horizontal displacement u〈1〉

Dx = 0.1L and at the same time

maximize the reaction force for u〈2〉
Dx =0.15L .

Before applying the method, a suitable discretization
needs to be specified for all unknown fields. The displace-
ment fields u〈 j〉 are approximated with 8-node quadratic
elements. All degrees of freedom within the ΓDh region and
all vertical degrees of freedom within the ΓD region are
removed from the finite element space. Moreover, all hor-
izontal degrees of freedom within ΓD are reduced to a single
master degree of freedom, enforcing a rigid body transla-
tion of this boundary. The finite element space resulting after
these restrictions is used for u〈 j〉, the corresponding adjoint
fields λ

〈 j〉
u and variations δu. Linear 4-node elements are used

for approximating the design field χ and the correspond-
ing variations δχ without any further restrictions. Since χ is
unbounded, it does not suffer by the usual limitation to linear
elements when approximating the density field ρ directly, in
order to ensure density values in the [0, 1] interval. Never-
theless, numerical experiments with quadratic elements for
χ showed an only relatively small accuracy gain. For this
choice of finite element spaces for the different fields, all
terms involved in the the problem domain Ω are assembled
with nine Gauss points in each quadrilateral element. Terms

Table 2 Model parameters for the optimization example

Domain dimension L × H 52 × 26 mm2

Mesh size 60 × 30 –

Solid bulk modulus Ks 5/3 MPa

Solid shear modulus Gs 5/14 MPa

Void/solid stiffness contrast E0 10−12 –

Void regularization scaling k̄r 10−6 –

Max. material vol. fraction ρ̄max 0.35 –

Vol. constr. augm. param. kρ 10−3 –

Control point weights w〈1〉/w〈2〉 104/103 MPa−2

Target tractions q〈1〉∗x /q〈2〉∗x 0 / 0.1 MPa

Transient length scale lt 2 mm

Minimum interface width li 2 mm

Interf. width p-norm weight ki 10−1 –

Interf. width p-norm exponent n 6 –
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Fig. 10 Load–displacement response of the initial and optimized
design, together with a post-evaluation analysis with a body fittedmesh.
The colored dots mark traction values at the control points and the aster-
isk indicates the state shown in Fig. 13c

defined on the boundary ΓD are assembled with the corre-
sponding three Gauss points per element edge.

Since vertical displacements on ΓD are already fixed by
restricting the relevant finite element space, the unknown
multipliers q〈 j〉 on ΓD are reduced to just their x component,
written in the formq〈 j〉 ={q〈 j〉

x , 0}T . The same format applies
to the corresponding adjoint variables λ

〈 j〉
q , variations δq, and

target reactions q〈 j〉∗ , which also reduce to scalars.
Based on this discretization, the optimization procedure

from the previous section is applied with a volume constraint
ρ̄max of 35% and two control points j = {1, 2}, illustrated
in Fig. 10. In order to minimize the initial stiffness of the
coupling, a target average traction q〈1〉∗x = 0 is set for the
first control point at u〈1〉

Dx = 0.1L . Requiring a stiff coupling
upon further displacement of the moving part is represented
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Fig. 11 Evolution of objective value and design update time step. The
total objective value C = Cχ + Cq and the contributions of the two
control points to Cq are shown separately

by a high target value q〈2〉∗x = 0.1 for the second control
point at u〈2〉

Dx = 0.15L . The corresponding weightings w〈 j〉
for the objective function Cq according to Eq. (26), are pro-
vided in Table 2. With this kind of objective Cq , a design is
expected where contact onset occurs between the two control
points. All further parameters for this optimization example
are reported in Table 2.

The initial design, shown in Fig. 9, consists of two dis-
connected regions with material density ρ = 0.2, separated
by a stripe of void material with ρ = 10−5. Other non-
uniform starting guesses like this one result in similar albeit
shifted designs, whereas completely uniform initial designs
lack of adequate initial non-linearity to guide the optimiza-
tion towards a contact dominated structure.

After 150 design evolution iterations through the objec-
tive history shown in Fig. 11, the optimization procedure
converges to the design shown in Fig. 12b, in terms of the
physical density ρ. The corresponding field of the underlying
mathematical design variable χ is shown in Fig. 12a. The
performance of the initial and the optimized designs with
respect to the set objective can be evaluated based on the
corresponding load–displacement curves, shown in Fig. 10.
The initial design is very compliant satisfying basically only
the zero reaction force required at the first control point but
being far from the objective at the second control point. The
optimized design exhibits a small but non-zero reaction force
at the first control point and a large reaction force at the sec-
ond control point, which is nevertheless still below the target
traction q〈2〉∗x . This solution represents a compromise between
the two competing requirements at the two control points.
Unless a design exists that can satisfy both target values, a
compromise is to be expected. The larger, by an order ofmag-
nitude, weighting w〈1〉 for the first control point, compared

Mathematical design variable χ(a)

Physical density ρ(b)

Fig. 12 Optimization results after 150 iterations. The mathematical
design variable field χ , shown in a, is interpolated with the bi-linear
finite elements chosen for this field, while the physical density field ρ,
shown in b and actually used in the mechanical simulation, is obtained
through Eq. (11) without any further post-processing.

to w〈2〉, results in a smaller deviation from the reaction-free
objective at the first point compared to the deviation at the
second control point.

As expected, the transition from the approximately decou-
pled to the stiff response is rather smooth and thus there is no
distinct contact point. This is a consequence of the remain-
ing stiffness in the void between the contact surfaces, and
especially in the graded interface, as already has been shown
for the C-shape example from Figs. 6 and 7. This parasitic
interaction, however, is what makes the contact problem dif-
ferentiable, and therefore more suitable for optimization.

After the first approximately 20 iterations, spent on satis-
fying the minimum interface width li constraint (contained
in Cχ ), which is not respected in the initial guess, the objec-
tive function Cq for the two control points dominates the
total objective function C . At that point, the objective of
the second control point starts to decrease at the cost of an
increasing objective for the first control point. During the
whole optimization procedure, the pseudo-time step for each
design update increases by several orders of magnitude. Note
that the larger the value of Δt , the closer Eq. (25) is to the
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(a) Deformed structure at control point 1, uDx = 0.1L.

(b) Deformed structure at control point 2, uDx = 0.15L.

(c) Deformed post-evaluation structure at uDx ≈0.17L.

Fig. 13 Deformations of the optimized structure at the two control
points (a, b). Deformations from post-evaluation with a body fitted
mesh (c), based on a discrete solid/void interface at ρ = 0.5, at the
same load as for the optimized structure at control point 2 (marked with
an asterisk in Fig. 10)

exact (local) optimum fromEq. (23). The ultimately obtained
design contains a truss like structure, typical for compliance
minimization, and a hook like coupling, which involves third
medium contact. Figure 13b, c show the optimized structure
in its deformed state at the first and second control point,
respectively. It can be seen both in Figs. 10 and 13b, that
third medium contact interaction actually occurs prior to the
first control point. Nevertheless, a very clear transition can be
observed, in general, from a practically zero initial stiffness
to an ultimately stiff post-contact response.

It should be noted that, as the load is increased, the slope of
the contact interface in the obtained hook geometry changes

due to the deformation of the structure. Ultimately, at a
sufficiently high load, this geometrical change will lead to
sliding between the two parts and disengagement. The large
deformation aware optimization procedure, employed in the
present work, intrinsically accounts for this effect, com-
pensating for such load-dependent geometrical changes to
prevent a disengagement, at least until the second control
point. This is obviously a design characteristic which can
only be obtained through a large deformation consistentmod-
eling of both solid and contact mechanics, as applied here.

Post-evaluation with body fittedmesh

The design obtained exhibits a graded solid-void interface of
constant width that is perfectly consistent with the prescribed
value li . Nevertheless, the finite size of the interface is the
major source of inaccuracy in the modeling of contact. For
this reason a post-evaluation and comparison with a body
fitted mesh is highly relevant.

In order to investigate the behavior of a corresponding
discrete void and solid structure, which is actually manufac-
turable, a body fitted mesh has been generated with GMSH
[27], based on the interpretation of the contour line ρ =0.5,
i.e. χ = 0, as the external surface of the solid. This body
fitted mesh is shown in Fig. 13c, in its undeformed state,
and in Fig. 13c, in its deformed state under the same load as
the graded density structure at the second control point. Tri-
angular 6-node elements and the Lagrange multiplier based
contact method from [22] were used for the simulations with
this body fitted mesh. The corresponding load–displacement
curve is shown in Fig. 10 alongside the one from the opti-
mized graded density design.

The post-evaluation curve reveals how delayed the onset
of contact actually occurs, being closer to the second control
point rather than the first one. This discrepancy is due to the
presence of the graded density layer between the contacting
solids in the graded density structure, seen in Figures 13a
and 13b. On the other hand, the post-evaluation confirms a
high stiffness of the coupling after onset of contact, which
is actually even higher than predicted by the graded density
representation, again due to a compliant layer of intermediate
density material between the solids in the latter case. Both
effects observed aremainly caused by the remaining stiffness
inside the graded solid-void interface, and as such, they are
expected to decrease with finer discretization and smaller
minimum interface width li .

All in all, the example presented clearly demonstrates that
the proposed method is capable of producing valuable struc-
tural designs that exploit internal contact. These can either
be used as input to shape optimization methods or be further
optimized within the same framework in a multigrid scheme
with subsequent mesh refinements and decreased interface
width li .
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Fig. 14 Optimized design (converged ρ field after 150 iterations) for a
reduced volume fraction ρ̄max = 0.2 and an accordingly reduced target
reaction q〈2〉∗ = 0.05MPa for the second control point.

Fig. 15 Optimized design (converged ρ field after 300 iterations) for
reversed loading direction, i.e. u〈1〉

Dx = −0.1 L, u〈2〉
Dx = −0.2 L and

q〈2〉∗ = − 0.1MPa, and the original volume fraction ρ̄max = 0.35

Additional examples

To illustrate the generality of the proposedmethod, two varia-
tions of the previous example are presented inFigs. 14 and15.
For the first variation, the same properties as in Table 2
are used, except for a stricter upper limit on the material
usage of ρ̄max = 0.2 and a lower target traction value at
the second control point q〈2〉∗ = 0.05MPa, to account for
the reduced volume fraction. The optimization converged
towards the design shown in Fig. 14 with similar but thinner
features as in the original example.

For the second variation, the loading is reversed by pre-
scribing negative displacements u〈1〉

Dx = − 0.1 L and u〈2〉
Dx =

− 0.2 L, and desired traction q〈2〉∗ = −0.1MPa, while main-
taining all further parameters from Table 2. Figure 15 shows
the optimized design for this variation, after 150 iterations,
consisting of two solid blocks, separated by a straight con-
tact interface with orientation perpendicular to the load path
between ΓDh and ΓD .

Computational performance

For the strongly nonlinear optimization examples of the
present work, the computational cost of a single design iter-

ation does not only depend on the number of degrees of
freedom of the system, but also on the number of required
Newton iterations. The occurrence of contact does not affect
the computational cost for a single Newton iteration. Never-
theless, the increased nonlinearity due to contact is likely to
lead to more frequent time step adaptations according to the
scheme of Fig. 8. Thiswill affect the average number ofNew-
ton iterations performed per design update. In quantitative
terms, the optimization shown in Fig. 11 for the first exam-
ple of this section, with 46,294 degrees of freedom in total,
required 26 s of cpu time per design update on average, on
a single Xeon E5-2660 v3 processor. The implementation of
the examplewas done in Pythonwith all computational inten-
sive operations, like vector and matrix assemblies performed
in the underlying C++ library GetFEM [26], and linear sys-
temsolutions performed in theFortrandirect solverMUMPS,
[28].

5 Conclusion

A method for indirect internal contact in finite strain topol-
ogy optimization has been presented, based on the third
medium contact approach. Void regions, which are inher-
ently present in density based topology optimization, were
exploited as the contact medium, circumventing the need for
defining contact surfaces and detecting contact. To this end,
the present work has introduced a new void material regu-
larization which allowed to approximate frictionless contact
between structures with discrete or graded solid-void inter-
face, accommodating considerable amounts of sliding.

In general, the usefulness of including a simple and sta-
ble contact formulation in topology optimization is twofold.
It enables the optimization procedure to utilize contact as a
design feature, as the example shown in the present work, but
it also allows to account for collisions, in cases where con-
tact should be avoided. Hereby it opens up for numerous
potential applications in the design of compliant mecha-
nisms, microstructures of periodic material with extremal
mechanical properties and energy absorbing structures.

The present work has also assessed the limitations of
the proposed approach. The main source of discrepancies
between the proposed third medium contact and graded
density design method, and a body fitted mesh based post
evaluation, was found to be related to the finite width of
the solid-void interface layer. Possible mitigations have also
been discussed.

Besides the contact modeling contribution, this work has
also introduced a new general framework for finite strain
topologyoptimization. Theproposed framework is expressed
entirely inweak form in a discretization agnosticmanner. It is
based on the idea of a simultaneous solving of the fully cou-
pled nonlinear equations for mechanical equilibrium, adjoint
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analysis, and design optimality, providing a second order
consistent optimization scheme. Moreover, it includes a new
method for imposing a length scale for the graded solid-void
interface, which is very essential for third medium contact
modeling, as explained above. The potential of this frame-
work has been demonstrated by the optimization examples
included, and more in depth studies shall follow in future
work.
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