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Abstract
The U-duct turbulent flow is a known benchmark problem with the computational challenges of high Reynolds number, high
curvature and strongflowdependence on the inflowprofile.Weuse this benchmark problem to test and evaluate theSpace–Time
Variational Multiscale (ST-VMS) method with ST isogeometric discretization. A fully-developed flow field in a straight duct
with periodicity condition is used as the inflow profile. The ST-VMS serves as the core method. The ST framework provides
higher-order accuracy in general, and the VMS feature of the ST-VMS addresses the computational challenges associated
with the multiscale nature of the unsteady flow. The ST isogeometric discretization enables more accurate representation of
the duct geometry and increased accuracy in the flow solution. In the straight-duct computations to obtain the inflow velocity,
the periodicity condition is enforced with the ST Slip Interface method. All computations are carried out with quadratic
NURBS meshes, which represent the circular arc of the duct exactly in the U-duct computations. We investigate how the
results vary with the time-averaging range used in reporting the results, mesh refinement, and the Courant number. The results
are compared to experimental data, showing that the ST-VMS with ST isogeometric discretization provides good accuracy
in this class of flow problems.

Keywords Space–Time Variational Multiscale method · ST-VMS · Isogeometric discretization · NURBS mesh · Turbulent
flow · U-duct

1 Introduction

In the benchmarking context of the U-duct turbulent flow,
which has a number of computational challenges,we conduct
test and evaluation of the Space–Time Variational Multiscale
(ST-VMS) method [1–3] with ST isogeometric discretiza-
tion [1,4–6]. Turbulent-flow test and evaluation studies were
conducted earlier for the ST-VMS (see [5,7,8]), but the com-
putations in [7,8] were with finite element discretization,
and the computation in [5] was with a significantly milder
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test problem, a straight pipe with circular cross-section. Fur-
thermore, here we use the latest stabilization parameters [9]
designed in conjunction with the ST-VMS, with the latest
element length expressions [10].

1.1 Stabilized andVMS ST computational methods

The stabilized and VMS ST computational methods started
with theDeforming-Spatial-Domain/StabilizedST (DSD/SST)
method [11–13]. TheDSD/SSTwas introduced for computa-
tion of flows with moving boundaries and interfaces (MBI),
including fluid–structure interaction (FSI). In flow computa-
tions with MBI, the DSD/SST functions as a moving-mesh
method.Moving the fluid mechanics mesh to follow an inter-
face enables mesh-resolution control near the interface and,
consequently, high-resolution boundary-layer representation
near fluid–solid interfaces.

Stabilized and VMS methods have for decades been
playing a core-method role in flow analysis with semi-
discrete andSTcomputationalmethods. The incompressible-
flow Streamline-Upwind/Petrov-Galerkin (SUPG) [14,15]
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and compressible-flow SUPG [16–18] methods are two
of the earliest and most widely used stabilized meth-
ods. The incompressible-flow Pressure-Stabilizing/Petrov-
Galerkin (PSPG) method [11,19], with its Stokes-flow ver-
sion introduced in [20], is also among the earliest and most
widely used.Thesemethods bringnumerical stability in com-
putation of flow problems at highReynolds orMach numbers
and when using equal-order basis functions for velocity
and pressure in incompressible flows. Because the meth-
ods are residual-based, the stabilization is achieved without
loss of accuracy. The residual-based VMS (RBVMS) [21–
24], which is also widely used now, subsumes its precursor
SUPG/PSPG.

Because the stabilization components of the original
DSD/SST are the SUPG and PSPG stabilizations, it is now
also called “ST-SUPS.” The ST-VMS [1–3] is the VMS ver-
sion of the DSD/SST. The VMS components of the ST-VMS
are from theRBVMS. The ST-VMS,which subsumes its pre-
cursor ST-SUPS, has two more stabilization terms beyond
those in the ST-SUPS, and the additional terms give the
method better turbulence modeling features. The ST-SUPS
and ST-VMS, because of the higher-order accuracy of the
ST framework (see [1,2]), are desirable also in computations
without MBI.

As a moving-mesh method, the DSD/SST is an alterna-
tive to the Arbitrary Lagrangian–Eulerian (ALE) method,
which is older (see, for example, [25]) and more com-
monly used. The ALE-VMS method [26–32] is the VMS
version of the ALE. It succeeded the ST-SUPS and ALE-
SUPS [33] and preceded the ST-VMS. The ALE-SUPS,
RBVMS and ALE-VMS have been applied to many classes
of FSI, MBI and fluid mechanics problems. The classes of
problems include ram-air parachute FSI [33], wind turbine
aerodynamics and FSI [34–46], more specifically, vertical-
axis wind turbines (VAWTs) [43,44,47,48], floating wind
turbines [49], wind turbines in atmospheric boundary lay-
ers [42–44,50–52], and fatigue damage in wind turbine
blades [53], patient-specific cardiovascular fluid mechanics
and FSI [26,54–59], biomedical-device FSI [60–67], ship
hydrodynamics with free-surface flow and fluid–object inter-
action [68,69], hydrodynamics and FSI of a hydraulic arrest-
ing gear [70,71], hydrodynamics of tidal-stream turbines
with free-surface flow [72], passive-morphing FSI in turbo-
machinery [73], bioinspired FSI for marine propulsion [74,
75], bridge aerodynamics and fluid–object interaction [76–
78], and mixed ALE-VMS/Immersogeometric computa-
tions [63–65,79,80] in the framework of the Fluid–Solid
Interface-Tracking/Interface-Capturing Technique [81].
Recent advances in stabilized and multiscale methods may
be found for stratified incompressible flows in [82], for
divergence-conforming discretizations of incompressible
flows in [83], and for compressible flows with emphasis on
gas-turbine modeling in [84,85].

In flow computations with FSI or MBI, the ST-SUPS
and ST-VMS require a mesh moving method. Mesh update
has two components: moving the mesh for as long as it is
possible, which is the core component, and full or partial
remeshing when the element distortion becomes too high.
The key objectives of a mesh moving method should be to
maintain the element quality near solid surfaces and to min-
imize remeshing frequency. A number of well-performing
mesh moving methods were developed in conjunction with
the ST-SUPS and ST-VMS. The first one, introduced in [86–
89], was the Jacobian-based stiffening (JBS), which is now
called, for reasons explained in [90,91], “mesh-Jacobian-
based stiffening.”Themost recent ones are the element-based
mesh relaxation [92], where the mesh motion is determined
by using the large-deformation mechanics equations and
an element-based zero-stress-state (ZSS), a mesh moving
method [91] based on fiber-reinforced hyperelasticity and
optimized ZSS, and a linear-elasticity-based mesh moving
method with no cycle-to-cycle accumulated distortion [93].

The ST-SUPS and ST-VMS have also been applied to
many classes of FSI, MBI and fluid mechanics problems
(see [94] for a comprehensive summary of the work prior
to July 2018). The classes of problems include spacecraft
parachute analysis for the landing-stage parachutes [29,92,
95–97], cover-separation parachutes [98] and the drogue
parachutes [99–101], wind turbine aerodynamics for
horizontal-axis wind turbine (HAWT) rotors [7,29,34,102],
full HAWTs [40,103–105] and VAWTs [43–46,106,107],
flapping-wing aerodynamics for an actual locust [4,29,
108,109], bioinspired MAVs [104,105,110,111] and wing-
clapping [112,113], blood flow analysis of cerebral
aneurysms [104,114], stent-blocked aneurysms [114–116],
aortas [66,67,90,117–120], heart valves [66,67,90,105,112,
119,121–125] and coronary arteries in motion [126], space-
craft aerodynamics [8,98], thermo-fluid analysis of ground
vehicles and their tires [3,51,52,122], thermo-fluid analysis
of disk brakes [127], flow-driven string dynamics in turbo-
machinery [45,46,128–130], flow analysis of turbocharger
turbines [5,131–134], flow around tires with road contact and
deformation [9,122,135–137], fluid films [137,138], ram-
air parachutes [6,51,52], and compressible-flow spacecraft
parachute aerodynamics [139,140].

1.2 ST Slip Interfacemethod

The ST Slip Interface (ST-SI) method was introduced
in [106], in the context of incompressible-flow equations,
to retain the desirable moving-mesh features of the ST-VMS
and ST-SUPS in computations involving spinning solid sur-
faces, such as a turbine rotor. Themesh covering the spinning
surface spins with it, retaining the high-resolution represen-
tation of the boundary layers, while the mesh on the other
side of the SI remains unaffected. This is accomplished by
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adding to the ST-VMS formulation interface terms similar
to those in the version of the ALE-VMS for computations
with sliding interfaces [141,142].The interface terms account
for the compatibility conditions for the velocity and stress
at the SI, accurately connecting the two sides of the solu-
tion. An ST-SI version where the SI is between fluid and
solid domains was also presented in [106]. The SI in that
case is a “fluid–solid SI” rather than a standard “fluid–fluid
SI” and enables weak enforcement of the Dirichlet bound-
ary conditions for the fluid. The ST-SI introduced in [127]
for the coupled incompressible-flow and thermal-transport
equations retains the high-resolution representation of the
thermo-fluid boundary layers near spinning solid surfaces.
These ST-SI methods have been applied to aerodynamic
analysis of VAWTs [43–46,106,107], thermo-fluid analysis
of disk brakes [127], flow-driven string dynamics in turbo-
machinery [45,46,128–130], flow analysis of turbocharger
turbines [5,131–134], flow around tires with road contact and
deformation [9,122,135–137], fluid films [137,138], aero-
dynamic analysis of ram-air parachutes [6,51,52], and flow
analysis of heart valves [66,67,119,123–125] and ventricle-
valve-aorta sequences [90]. In the ST-SI version presented
in [106] the SI is between a thin porous structure and the
fluid on its two sides. This enables dealing with the porosity
in a fashion consistent with how the standard fluid–fluid SIs
are dealt with and how the Dirichlet conditions are enforced
weakly with fluid–solid SIs. This version also enables han-
dling thin structures that have T-junctions. This method has
been applied to incompressible-flow aerodynamic analysis
of ram-air parachutes with fabric porosity [6,51,52].

1.3 ST Isogeometric Analysis

The success with Isogeometric Analysis (IGA) basis func-
tions in space [26,54,141,143] motivated the integration of
the ST methods with isogeometric discretization, which is
broadly called “ST-IGA.” The ST-IGAwas introduced in [1].
Computations with the ST-VMS and ST-IGA were first
reported in [1] in a 2D context, with IGA basis functions in
space for flow past an airfoil, and in both space and time for
the advection equation. Using higher-order basis functions
in time enables deriving full benefit from using higher-order
basis functions in space. This was demonstrated with the sta-
bility and accuracy analysis given in [1] for the advection
equation.

The ST-IGA with IGA basis functions in time enables
a more accurate representation of the motion of the solid
surfaces and a mesh motion consistent with that. This was
pointed out in [1,2] and demonstrated in [4,108,110]. It
also enables more efficient temporal representation of the
motion and deformation of the volume meshes, and more
efficient remeshing. These motivated the development of the
ST/NURBSMesh UpdateMethod (STNMUM) [4,108,110],

with the name coined in [103]. The STNMUM has a wide
scope that includes spinning solid surfaces. With the spin-
ning motion represented by quadratic NURBS in time, and
with sufficient number of temporal patches for a full rota-
tion, the circular paths are represented exactly. A “secondary
mapping” [1,2,4,29] enables also specifying a constant angu-
lar velocity for invariant speeds along the circular paths.
The ST framework and NURBS in time also enable, with
the “ST-C” method, extracting a continuous representation
from the computed data and, in large-scale computations,
efficient data compression [3,122,127–130,144]. The STN-
MUM and the ST-IGA with IGA basis functions in time
have been used in many 3D computations. The classes
of problems solved are flapping-wing aerodynamics for
an actual locust [4,29,108,109], bioinspired MAVs [104,
105,110,111] and wing-clapping [112,113], separation aero-
dynamics of spacecraft [98], aerodynamics of horizontal-
axis [40,103–105] and vertical-axis [43–46,106,107] wind
turbines, thermo-fluid analysis of ground vehicles and their
tires [3,51,122], thermo-fluid analysis of disk brakes [127],
flow-driven string dynamics in turbomachinery [45,46,128–
130], flowanalysis of turbocharger turbines [5,131–134], and
flow analysis of coronary arteries in motion [126].

The ST-IGA with IGA basis functions in space enables
more accurate representation of the geometry and increased
accuracy in the flow solution. It accomplishes that with
fewer control points, and consequently with larger effective
element sizes. That in turn enables using larger time-step
sizes while keeping the Courant number at a desirable level
for good accuracy. It has been used in ST computational
flow analysis of turbocharger turbines [5,131–134], flow-
driven string dynamics in turbomachinery [45,46,129,130],
ram-air parachutes [6,51,52], spacecraft parachutes [140],
aortas [66,67,119,120], heart valves [66,67,119,123–125],
ventricle-valve-aorta sequences [90], coronary arteries in
motion [126], tires with road contact and deformation [9,
136,137], fluid films [137,138], and VAWTs [45,46,107].
The image-based arterial geometries used in patient-specific
arterial FSI computations do not come from the ZSS of the
artery. A number ofmethods [27,29,145–154] have been pro-
posed for estimating the ZSS required in the computations.
Using IGA basis functions in space is now a key part of
some of the newest ZSS estimation methods [66,152–155]
and related shell analysis [156]. The IGA has also been suc-
cessfully applied to the structural analysis of wind turbine
blades [157–161].

1.4 Stabilization parameters and element lengths

In all the semi-discrete and ST stabilized and VMS methods
discussed in Sect. 1.1, an embedded stabilization parame-
ter, known as “τ ,” plays a significant role (see [29]). This
parameter involves a measure of the local length scale (also
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known as “element length”) and other parameters such as
the element Reynolds and Courant numbers. The interface
terms in the ST-SI also involve element length, in the direc-
tion normal to the interface. Various element lengths and
τ s were proposed, starting with those in [14,15] and [16–
18], followed by the ones introduced in [162,163]. In many
cases, the element length was seen as an advection length
scale, in the flow-velocity direction. The τ definition intro-
duced in [163], which is for the advective limit and is now
called “τSUGN1” (and the corresponding element length is
now called “hUGN”), automatically yields lower values for
higher-order finite element basis functions (see [164,165]).

Calculating the τ s based on the element-level matri-
ces and vectors was introduced in [166] in the context
of the advection–diffusion equation and the Navier–Stokes
equations of incompressible flows. These definitions are
expressed in terms of the ratios of the norms of the matri-
ces or vectors. They automatically take into account the
local length scales, advection field and the element Reynolds
number. The definitions based on the element-level vectors
were shown [166,167] to address the difficulties reported
at small time-step sizes. A second element length scale, in
the solution-gradient direction and called “hRGN,” was intro-
duced in [168,169]. Recognizing this as a diffusion length
scale, a new stabilization parameter for the diffusive limit,
“τSUGN3,” was introduced in [169,170], to be used together
with τSUGN1 and “τSUGN2,” the parameters for the advec-
tive and transient limits. For the stabilized ST methods,
“τSUGN12,” representing both the advective and transient lim-
its, was also introduced in [168,169].

Some new options for the stabilization parameters used
with the SUPS and VMS were proposed in [3,4,7,103,171].
These include a fourth τ component, “τSUGN4” [3], which
was introduced for the VMS, considering one of the two
extra stabilization terms the VMS has compared to the
SUPS. They also include stabilization parameters [3] for
the thermal-transport part of the VMS for the coupled
incompressible-flow and thermal-transport equations.

Some of the stabilization parameters described in this sub-
sectionwere also used in computationswith other SUPG-like
methods, such as the computations reported in [73,172–184].

The stabilization parameters and element lengths dis-
cussed in this subsection so far were all originally intended
for finite element discretization but quite often used also
for isogeometric discretization. The element lengths and
stabilization parameters introduced in [185] target isogeo-
metric discretization but are also applicable to finite ele-
ment discretization. They were introduced in the context
of the advection–diffusion equation and the Navier–Stokes
equations of incompressible flows. The direction-dependent
element length expression was outcome of a conceptually
simple derivation. The key components of the derivation are
mapping the direction vector from the physical ST element

to the parent ST element, accounting for the discretization
spacing along each of the parametric coordinates, and map-
pingwhat has been obtained in the parent element back to the
physical element. The test computations presented in [185]
for pure-advection cases, including those with discontinuous
solution, showed that the element lengths and stabilization
parameters proposed result in good solution profiles. The test
computations also showed that the “UGN” parameters give
reasonably good solutions evenwithNURBSbasis functions.
The stabilization parameters given in [9], which were mostly
from [185], were the latest ones designed in conjunction with
the ST-VMS.

In general, we decide what parametric space to use based
on reasons like numerical integration efficiencyor implemen-
tation convenience.Obviously, choices basedon such reasons
should not influence the method in substance. We require the
element lengths, including the direction-dependent element
lengths, to have node-numbering invariance for all element
types, including simplex elements. The direction-dependent
element length expression introduced in [186] meets that
requirement. This is accomplished by using in the element
length calculations for simplex elements a preferred paramet-
ric space instead of the standard integration parametric space.
The element length expressions based on the two parametric
spaces were evaluated in [186] in the context of simplex ele-
ments. It was shown that when the element length expression
is based on the integration parametric space, the variation
with the node numbering could be by a factor as high as 1.9
for 3D elements and 2.2 for ST elements. It was also shown
that the element length expression based on the integration
parametric space could overestimate the element length by a
factor as high as 2.8 for 3D elements and 3.2 for ST elements.

Targeting B-spline meshes for complex geometries, new
direction-dependent element length expressions were intro-
duced in [10]. These latest element length expressions are
outcome of a clear and convincing derivation and more
suitable for element-level evaluation. The new expressions
are based on a preferred parametric space, instead of the
standard integration parametric space, and a transformation
tensor that represents the relationship between the integration
and preferred parametric spaces. We do not want the ele-
ment splitting to influence the actual discretization, which
is represented by the control or nodal points. Therefore,
the local length scale should be invariant with respect to
element splitting. That invariance is a crucial requirement
in element definition, because unlike the element definition
choices based on implementation convenience or computa-
tional efficiency, it influences the solution. It was proven
in [187] that the local-length-scale expressions introduced
in [10] meet that requirement.

The direction-dependent local-length-scale expressions
introduced in [10,185] have been used in computational flow
analysis of turbocharger turbines [133,134], compressible-
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flow spacecraft parachutes [140], tires with road con-
tact and deformation [9,137], fluid films [137,138], heart
valves [125], ventricle-valve-aorta sequences [90], and
tsunami-shelter VAWTs [107]. They have also been used
in [85], in the context of gas turbine computational flow
analysis with isogeometric discretization, in calculating the
Courant number based on the NURBS mesh local length
scale in the flow direction.

1.5 U-duct turbulent flow

The U-duct turbulent flow is a known benchmark problem
with sufficient experimental data (see, for example, [188]).
The computational challenges encountered include high
Reynolds numbers, high curvature and strong flow depen-
dence on the inflow profile. In the U-duct computations
we present, a fully-developed flow field in a straight duct
with periodicity condition is used as the inflow profile. In
the straight-duct computations to obtain the inflow velocity,
the periodicity condition is enforced with the ST-SI method.
Both the straight-duct and U-duct computations are carried
out with quadratic NURBS meshes, which represent the cir-
cular arc of the duct exactly in the U-duct computations.
We investigate how the results vary with the time-averaging
range used in reporting the results, mesh refinement, and the
Courant number. The results are compared to experimental
data [188] to show how the ST-VMS with ST isogeometric
discretization performs in this class of flow problems.

1.6 Outline of the remaining sections

In Sect. 2,we provide the definitions used in the data analysis.
The straight-duct computations are presented in Sect. 3, and
the U-duct computations in Sect. 4. The concluding remarks
are given in Sect. 5. The ST-VMS and ST-SI methods and the
stabilization parameters are given in Appendices A and B.

2 Definitions for the data analysis

2.1 Scale separation

We split the velocity scales as

u = u + u′, (1)

where the overbar indicates the time-averaging over the range
T = (T1, T2):

f = 1

T2 − T1

∫ T2

T1
f dt, (2)

and f can be a vector or scalar. We note that this scale sepa-
ration is different from the VMS scale separation. It is used
only for post processing. We extend that to the ST context as

f = 1∫
T

∫
Ωt

dΩdt

∫
T

∫
Ωt

f dΩdt (3)

= 1∫
Q dQ

∫
Q

f dQ, (4)

where Q = {x(t) ∈ Ωt | t ∈ T } is the ST domain.
We define the Lq norm of a scalar as

‖ f ‖q,T =
(

1

T2 − T1

∫ T2

T1
| f |q dt

) 1
q

. (5)

We extend that to the ST context as

‖ f ‖q,Q =
(

1∫
T

∫
Ωt

dΩdt

∫
T

∫
Ωt

| f |q dΩdt

) 1
q

(6)

=
(

1∫
Q dQ

∫
Q

| f |q dQ
) 1

q

. (7)

2.2 Nondimensionalization

With ρ, U and D being the scales for the density, velocity
and length, we define the scaled quantities as

u∗ = u
U

, (8)

t∗ = tU

D
, (9)

p∗ = p

ρU 2 , (10)

where p is the pressure. For notation convenience, we drop
the asterisk, which results in ρ = 1, for example.

2.3 Wall-related scaling

We define the scaled wall-normal coordinate as

y+ = yuτ

ν
, (11)

where y is the coordinate along the wall normal, ν = μ/ρ is
the kinematic viscosity, and μ is the viscosity. The friction
velocity uτ is defined as

uτ =
√

‖hv‖
ρ

, (12)

where hv is the wall shear stress. The streamwise velocity
is scaled near the wall as u+ = us

uτ
. We note that whether
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Fig. 1 Straight duct. Computational domain and the coordinate basis
vectors. The two end planes are colored red to remind the reader that
we are enforcing periodicity condition on those planes. (Color figure
online)

the scaling we do here is done after or before the scaling in
Sect. 2.2 does not change the outcome.

3 Straight duct with periodicity condition

3.1 Problem setup

The duct has a D×D cross-section and is 5D long. Figure 1
shows the computational domain and the coordinate basis
vectors e1, e2 and es. In the Reynolds number definitionRe =
UD
ν
, U is streamwise velocity averaged in time and over the

cross-section. We compute the cases Re = 4×104 and 105.
In the data analysis, we express the velocity components as
uk = u · ek , where k = 1, 2, s.

3.2 Mesh

Figure 2 shows the mesh used for both Re = 4×104 and 105,
which is made of 723 quadratic NURBS elements. The mesh
is uniform in the streamwise direction. The normal-direction
thickness for the first layer of elements near thewall results in
y+ = 0.43 and 0.95 for Re = 4×104 and 105. In calculating
the y+ values based on Eqs. (11) and (12), ‖hv‖ is estimated
from the pipe friction factor f given [189] as

1

f 0.5
= 2 log

(
Re f 0.5

)
− 0.8. (13)

The f values corresponding to Re = 4×104 and 105 are
2.2×10−2 and 1.8×10−2.

3.3 Boundary conditions

The no-slip conditions on the walls are enforced weakly (see
Appendix A.2.2). In each case of Reynolds number, the pres-
sure difference specified across theSI (seeAppendixA.2.1) is

Fig. 2 Straight duct. Control mesh (left). The yellow circles are the
control points. The corresponding mesh (middle) and its part in the red
frame (right). (Color figure online)

adjusted until we achieve a Reynolds number close enough to
the caseReynolds number. That becomes the actual Reynolds
number we compute.

3.4 Computational conditions

We use the ST-VMS, with the stabilization parameters given
by Eqs. (22)–(24), (33) and (34). The time-step size Δt is
determined from the Courant number CΔt = UΔt

hs
, where hs

is the “apparent” element length1 in the streamwise direction.
We set CΔt = 0.322. The number of nonlinear iterations per
time step is 3, and the number of GMRES iterations per
nonlinear iteration is 500. We define T = L/U , where L is
the duct length. After achieving the actual Reynolds number
we compute, the duration we compute for data extraction is
20T , which is equivalent to 4474 time steps.

3.5 Results

In computationswe carry out to adjust the pressure difference
specified across the SI, we achieve the Reynolds number
values of 3.96×104 and 9.98×104 at scaled pressure gradient
values 5.6×10−2 and 4.7×10−2. In both cases, the difference
from the case Reynolds number is no more than 1%.

Figure 3 shows, for Re = 105, us and
∥∥u′

s

∥∥
2,Q , together

with the experimental data from [188]. Figure 4 shows, for

both Re = 4×104 and 105, u+, together with the DNS data
for Re = 4×104 from [190].

4 U-duct

4.1 Problem setup

Figure 5 shows the computational domain and the coordinate
basis vectors. We compute the case Re = 105. The loca-
tions where the flow characteristics are reported are shown
in Fig. 6.

1 We note that this is not the element length calculated from the defi-
nition introduced in [10,185] for isogeometric discretization and to be
used as the local length scale in stabilization parameters.
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Fig. 3 Straight duct. Re = 105. us and
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s
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2,Q with Q =

{x = (0, x2, xs)| xs ∈ (0, 5D), t ∈ (8.5T , 20T )}. The experimental
data is from [188]
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Fig. 4 Straight duct. Re = 4×104 and Re = 105. u+ with Q =
{x = (0, x2, xs)| xs ∈ (0, 5D), t ∈ (8.5T , 20T )}. The DNS data is for
Re = 4×104 and from [190]
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1.15D

Fig. 5 U-duct. Computational domain and the coordinate basis vectors.
The red plane is the inlet, and the blue plane is the outlet. (Color figure
online)
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Fig. 6 U-duct. Locations where the flow characteristics are reported.
The red and blue planes are the near-wall (x1/D = 0.375) and center
(x1 = 0) planes. The velocity profiles are reported along the red and
blue lines. (Color figure online)
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Fig. 7 U-duct. Exact representation of the curvature by NURBS.
Weight definitions for the mesh. The blue points represent the con-
trol point locations where the weight is cos(π/4), and the red points are
where it is 1. (Color figure online)

4.2 Boundary conditions

The ST-averaged velocity profile, u, from the straight-duct
computation is used as the inlet condition (see Sect. 3.5) The
no-slip conditions on the walls are enforced weakly. At the
outlet, zero-stress condition is used.

4.3 Mesh

To define the geometry exactly, we use four quadratic
NURBS patches. Figure 7 shows the weight definitions. By
using a sequence of knot insertions, we generate fivemeshes,
which we call Mesh A, B, C, D and E. We start with Mesh
A. Mesh B, C and D have in all three directions 2, 3 and
4 times the number of elements Mesh A has. Mesh E has
along the bend twice the number of elements Mesh D has.
Beyond that it has 5 more elements along the lower straight
part of the duct, and the element sizes in both the lower
and upper straight parts are adjusted along the streamwise
direction such that the maximum ratio between two adjacent
elements is at most 2. We note that Mesh D and E have the
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Table 1 U-duct. Number of control points (nc), number of quadratic NURBS elements in the entire model (ne) and along the bend (neb), streamwise
length of the first element at the inlet (hs,inlet), minimum streamwise element length (hs,min), which is in the bend, and y+ at the walls

Mesh nc ne neb hs,inlet hs,min y+

Mesh A 202×60 182×55 12 2.77×10−1D 3.6×10−2D 3.79

Mesh B 382×115 362×110 24 1.39×10−1D 1.8×10−2D 1.90

Mesh C 562×170 542×165 36 0.93×10−1D 1.2×10−2D 1.26

Mesh D 742×225 722×220 48 0.69×10−1D 0.9×10−2D 0.95

Mesh E 742×278 722×273 96 0.69×10−1D 0.45×10−2D 0.95

Fig. 8 U-duct. Mesh A, B, C, D and E

same cross-section as the straight-duct mesh in Sect. 3, and
the same streamwise element length at the inlet. Figure 8
shows all five meshes, and Table 1 shows the mesh data for
all five.

0.00 1.00 2.00

Velocity magnitude

0.00 1.25 2.50

Pressure

Fig. 9 U-duct. Flow development as depicted by ‖u‖ and p on the
center plane, for time-averaging over T = (0, 10T ), (10T , 20T ),
(20T , 30T ), and (30T , 40T )

4.4 Computational conditions

We use the ST-VMS, with the stabilization parameters given
by Eqs. (22)–(24), (33) and (34). The time-step size is deter-
mined from the Courant number, which is based on the
minimum streamwise element length (see Table 1). The num-
ber of nonlinear iterations per time step is 3, and the number
of GMRES iterations per nonlinear iteration is 500. In calcu-
lating T from T = L/U , we define L = (3+0.65π +6.5)D.
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Fig. 10 U-duct. Fourier decomposition of u2 at the blue point on the
center plane, in the time ranges indicated in the legend, all spanning
10T . (Color figure online)

4.5 Results

4.5.1 Sequence of computations

First, Mesh A is used in computing for T = (0, 40T ). Then,
the initial condition for Mesh B computation is obtained by
refining the data from Mesh A at t = 29T . After computing
with Mesh B for a duration of T , the initial condition for
Mesh C is obtained by least-squares projection at t = 30T .
The initial conditions for Mesh D and E are also obtained by
least-squares projection, from Mesh C at t = 31T and from
Mesh D at t = 32T .

4.5.2 Effect of the time-averaging range

In this study, we use CΔt = 10. Figure 9 shows the flow
development as depicted by the flow patterns for different
time-averaging ranges, all spanning 10T . The differences
between the flow patterns for the time ranges beyond T =
(0, 10T ) are not significant. Figure 10 shows the Fourier
decomposition of u2 in various time ranges, all spanning
10T . The patterns in the time ranges beyond T = (0, 10T )

are similar. Figure 11 shows the Fourier decomposition of u2
in various time ranges ending at 40T . We see that the lowest
frequency of local maximum is around 0.67 T−1, which cor-
responds to a period of 1.5T . From that we conclude that an
averaging period of 3T is long enough in taking the statistics
of the flow field.

4.5.3 Effect of the mesh refinement

We compare the data computed with Mesh A to E at CΔt =
10. Figure 12 shows the Fourier decomposition of u2 in
T = (33T , 36T ). We see good agreement, though with the
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Fig. 11 U-duct. Fourier decomposition of u2 at the blue point on the
center plane, in the time ranges indicated in the legend, all ending at
40T . The cyan line marks the lowest frequency of local maximum.
(Color figure online)

100 101 102

10−4

10−3

10−2

10−1

Frequency (1/T )

A
m

pl
itu

de

Mesh A Mesh B Mesh C
Mesh D Mesh E

+

0.65D

0.5D

Fig. 12 U-duct. Fourier decomposition of u2 at the blue point on the
center plane, in T = (33T , 36T ). (Color figure online)

representation getting shorter at the higher end of the spec-
trum as the mesh gets coarser. Figure 13 shows us on the
center plane, time-averaged over T = (33T , 36T ), together
with the experimental data from [188]. Slight effect of mesh
refinement is seen between the results obtained with Mesh
A and the finer meshes up to Mesh D, while the results
obtained withMesh B, C and D are in agreement. The results
fromMesh E differ from the others slightly around the bend.
Section 4.5.4 includes more investigation of the differences
between the results obtained with Mesh D and E.

4.5.4 Effect of the Courant number

We compare the data computed withMesh D and E atCΔt =
10, 5 and 2.5, in T = (33T , 36T ). Figure 14 shows the
isosurfaces corresponding to a positive value of the second
invariant of ∇∇∇u. With Mesh D, the effect of the Courant
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Fig. 13 U-duct. Effect of the
mesh refinement. us on the
center plane, at various locations
along the duct, time-averaged
over T = (33T , 36T ). The
experimental data is from [188]
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Fig. 14 U-duct. Isosurfaces corresponding to a positive value of the
second invariant of ∇∇∇u, colored by ‖u‖, time-averaged over T =
(33T , 36T ). Mesh D (left) and E (right). CΔt = 10 (top), 5 (middle)
and 2.5 (bottom). The yellow contour lines represent the intersection
between the isosurfaces and the center plane. (Color figure online)

number is not significant. With Mesh E at CΔt = 10, the
behavior is similar to what we see withMesh D. On the other

hand, with Mesh E at CΔt = 5 and 2.5, the recirculation
occurs earlier. This observation becomes easier tomakewhen
we inspect us. Figures 15 and 16 show that, together with the
experimental data from [188], on the center and near-wall
planes. Figures 17 and 18 show

∥∥u′
s

∥∥
2,T on those planes.

Overall, the data computed with Mesh E at CΔt = 5 and 2.5
is in good agreement with the experimental data.

5 Concluding remarks

We have conducted test and evaluation of the ST-VMS with
ST isogeometric discretization in the benchmarking context
of theU-duct turbulent flow,which has a number of computa-
tional challenges, and there is a good amount of experimental
and computational data associatedwith this benchmark prob-
lem. The computational challenges include high Reynolds
numbers, high curvature and strong flow dependence on
the inflow profile. The ST framework provides higher-order
accuracy in general, and the VMS feature of the ST-VMS
addresses the computational challenges associated with the
multiscale nature of the unsteady flow. The ST isogeomet-
ric discretization enables more accurate representation of the
duct geometry and increased accuracy in the flow solution.
We used the latest stabilization parameters designed in con-
junction with the ST-VMS, with the latest element length
expressions. The inflow velocity used in the computations
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comes from a fully-developed flow field in a straight-duct
computation with periodicity condition, enforced with the
ST-SI method. Both the straight-duct and U-duct compu-
tations were carried out with quadratic NURBS meshes,
enabling exact representation of the circular arc in the U-duct
computations. We investigated how the results vary with the
averaging period used in reporting the results, mesh refine-
ment, and the Courant number. We compared the results to
experimental data and showed that the ST-VMSwith ST iso-
geometric discretization provides good accuracy in this class
of flow problems.
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A ST-VMS and ST-SI

For completeness, we include, mostly from [106,135], the
ST-VMS and ST-SI methods.

A.1 ST-VMS

The ST-VMS is given as

∫
Qn

wh · ρ

(
∂uh

∂t
+ uh · ∇∇∇uh − fh

)
dQ

+
∫
Qn

εεε(wh) : σσσ hdQ −
∫

(Pn)h

wh · hhdP

+
∫
Qn

qh∇∇∇ · uhdQ+
∫

Ωn

(wh)+n ·ρ
(
(uh)+n −(uh)−n

)
dΩ

+
(nel)n∑
e=1

∫
Qe
n

τSUPS

ρ

(
ρ

(
∂wh

∂t
+ uh · ∇∇∇wh

)

+∇∇∇qh
)

· rhMdQ

+
(nel)n∑
e=1

∫
Qe
n

νLSIC∇∇∇ · whρrhCdQ

−
(nel)n∑
e=1

∫
Qe
n

τSUPSwh ·
(
rhM · ∇∇∇uh

)
dQ

−
(nel)n∑
e=1

∫
Qe
n

τ 2SUPS

ρ
rhM ·

(
∇∇∇wh

)
· rhMdQ

= 0, (14)

where

rhM = ρ

(
∂uh

∂t
+ uh · ∇∇∇uh − fh

)
− ∇∇∇ · σσσ h, (15)

rhC = ∇∇∇ · uh (16)

are the residuals of the momentum equation and incompress-
ibility constraint. Here, f and h are the body force and the
stress specified at the boundary. The stress tensor is defined
as σσσ = −pI + 2μεεε(u), where I is the identity tensor and
εεε (u) = (

(∇∇∇u) + (∇∇∇u)T
)
/2 is the strain-rate tensor. The

test functions associated with the u and p are w and q. A
superscript “h” indicates that the function is coming from
a finite-dimensional space. The symbol Qn represents the
ST slice between time levels n and n + 1, (Pn)h is the part
of the slice lateral boundary associated with the boundary
condition h, and Ωn is the spatial domain at time level n.
The superscript “e” is the ST element counter, and nel is the
number of ST elements. The functions are discontinuous in
time at each time level, and the superscripts “−” and “+”
indicate the values of the functions just below and above the
time level.

Remark 1 The ST-SUPS can be obtained from the ST-VMS
by dropping the eighth and ninth integrations.

The stabilization parameters, τSUPS and νLSIC, will be given
in Appendix B.1.

A.2 ST-SI

A.2.1 Two-side formulation (fluid–fluid SI)

In describing the ST-SI, labels “Side A” and “Side B” will
represent the two sides of the SI. The ST-SI version of the
formulation given byEq. (14) includes added boundary terms
corresponding to the SI. The boundary terms for the two sides
are first added separately, using the test functionswh

A and qhA
and wh

B and qhB. Then, putting together the terms added to
each side, the complete set of terms added becomes
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Fig. 15 U-duct. Effect of the
Courant number for Mesh D and
E. us on the center plane, at
various locations along the duct,
time-averaged over
T = (33T , 36T ). The
experimental data is from [188]
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Fig. 16 U-duct. Effect of the
Courant number for Mesh D and
E. us on the near-wall plane, at
various locations along the duct,
time-averaged over
T = (33T , 36T ). The
experimental data is from [188]
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Fig. 17 U-duct. Effect of the
Courant number for Mesh D and
E.

∥∥u′
s

∥∥
2,T on the center plane,

at various locations along the
duct, time-averaged over
T = (33T , 36T ). The
experimental data is from [188]

Fig. 18 U-duct. Effect of the
Courant number for Mesh D and
E.

∥∥u′
s

∥∥
2,T on the near-wall

plane, at various locations along
the duct, time-averaged over
T = (33T , 36T ). The
experimental data is from [188]

−
∫

(Pn)SI

(
qhBnB − qhAnA

)
· 1
2

(
uhB − uhA

)
dP

−
∫

(Pn)SI

ρwh
B · 1

2

((
Fh
B −

∣∣∣Fh
B

∣∣∣
)
uhB

−
(
Fh
B −

∣∣∣Fh
B

∣∣∣
)
uhA

)
dP

−
∫

(Pn)SI

ρwh
A · 1

2

((
Fh
A −

∣∣∣Fh
A

∣∣∣
)
uhA

−
(
Fh
A −

∣∣∣Fh
A

∣∣∣
)
uhB

)
dP

+
∫

(Pn)SI

(
nB · wh

B + nA · wh
A

) 1

2

(
phB + phA

)
dP

−
∫

(Pn)SI

(
nB · wh

B − nA · wh
A

) 1

2
ΔpdP

−
∫

(Pn)SI

(
wh
B − wh

A

)
·
(
n̂B · μ

(
εεε(uhB) + εεε(uhA)

))
dP

− γ

∫
(Pn)SI

n̂B · μ
(
εεε

(
wh
B

)
+ εεε

(
wh
A

))
·
(
uhB − uhA

)
dP
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+
∫

(Pn)SI

μC

h

(
wh
B − wh

A

)
·
(
uhB − uhA

)
dP, (17)

where

Fh
B = nB ·

(
uhB − vhB

)
, (18)

Fh
A = nA ·

(
uhA − vhA

)
, (19)

n̂B = nB − nA
‖nB − nA‖ . (20)

Here, (Pn)SI is the SI in the ST domain, n is the unit normal
vector, v is the mesh velocity, γ = 1, and C is a nondi-
mensional constant. The element length h will be defined in
Appendix B.2. In Remark 3 of [135], it was proposed to use
ST-SI also as a way of imposing the periodicity in ST-VMS
computations with spatial periodicity. As mentioned in the
same remark, in such cases, an SI is placed where the period-
icity is imposed and the computations are carried out while
including the corresponding ST-SI term. The fifth term in
Eq. (17), with Δp representing the pressure jump across the
SI, is the ST-SI term corresponding to the periodicity. We
note that, consistent with the notation in [6,106,139,140],
positive Δp means higher pressure on Side A.

A.2.2 One-side formulation (fluid–solid SI)

On solid surfaces where we prefer weak enforcement of the
Dirichlet conditions [191,192] for the fluid, we use the ST-SI
version where the SI is between the fluid and solid domains.
This version is obtained (see [106]) by startingwith the terms
added to Side B and replacing the Side A velocity with the
velocity gh coming from the solid domain. Then the SI terms
added to Eq. (14) to represent the weakly-enforced Dirichlet
conditions become

−
∫

(Pn)SI

qhBnB · uhBdP

−
∫

(Pn)SI

ρwh
B · Fh

Bu
h
BdP

+
∫

(Pn)SI

qhBnB · ghdP

+
∫

(Pn)SI

ρwh
B · 1

2

((
Fh
B +

∣∣∣Fh
B

∣∣∣
)
uhB

+
(
Fh
B −

∣∣∣Fh
B

∣∣∣
)
gh

)
dP

−
∫

(Pn)SI

wh
B ·

(
nB · σσσ h

B

)
dP

− γ

∫
(Pn)SI

nB · 2μεεε
(
wh
B

)
·
(
uhB − gh

)
dP

+
∫

(Pn)SI

μC

hB
wh
B ·

(
uhB − gh

)
dP. (21)

The element length hB will be given in Appendix B.2.

B Stabilization parameters

B.1 ST-VMS

There are various ways of defining the stabilization parame-
ters τSUPS and νLSIC. Here, τSUPS is mostly from [185]:

τSUPS =
(
τ−2
SUGN12 + τ−2

SUGN3 + τ−2
SUGN4

)− 1
2
. (22)

The first and second components are given as

τ−2
SUGN12 =

[
1
u

] [
1
u

]
: GST (23)

and

τ−1
SUGN3 = νrr : G, (24)

where r is the solution-gradient direction:

r = ∇∇∇ ‖u‖
‖∇∇∇ ‖u‖‖ . (25)

Here GST and G are the ST and space-only element metric
tensors:

GST =
(
Q̂ST

)−T ·
(
Q̂ST

)−1
, (26)

G = Q̂−T · Q̂−1, (27)

where

Q̂ST = QST ·
(
DST

)−1
, (28)

Q̂ = Q · D−1. (29)

The ST and space-only Jacobian tensors are

QST =
[

∂t
∂θ

∂t
∂ξξξ

∂x
∂θ

Q

]
(30)

and

Q = ∂x
∂ξξξ

, (31)

where θ and ξξξ are the temporal and spatial parametric coor-
dinates. The transformation tensor DST is defined as

DST =
[
Dθ 0T

0 D

]
. (32)
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The definitions used for Dθ and D play an important role,
especially for higher-order isogeometric discretization [10,
185] and simplex elements [186]. In this article, we set Dθ =
1 and set D to its “RQD-MAX” version [10].

The third component, originating from [3], is defined as

τSUGN4 =
∥∥∥∇∇∇uh

∥∥∥−1

F
, (33)

where ‖ · ‖F represents the Frobenius norm.
The stabilization parameter νLSIC is from [103]:

νLSIC = h2LSIC
τSUPS

, (34)

where hLSIC is set equal to the minimum element length
hMIN:

hMIN = 2
(
max
r

(rr : G)
)− 1

2
. (35)

For more ways of calculating the stabilization parameters in
flow computations, see [73,167,172–183].

B.2 ST-SI

The element length used in the ST-SI is given as

h =
(
h−2
B + h−2

A

2

)− 1
2

, (36)

hB = 2 (nBnB : G)−
1
2 (for Side B), (37)

hA = 2 (nAnA : G)−
1
2 (for Side A), (38)

n̂B = nB − nA
‖nB − nA‖ . (39)
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