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Abstract
In this paper, a phase field model of ductile fracture is described within the framework of large plastic strains. Most results
dealing with phase field modeling of ductile fracture are carried out on a fixed mesh, which requires a fine mesh throughout
all the computation. The aim of this paper is to introduce an adaptive isotropic remeshing strategy coupled with a phase field
model of ductile fracture to achieve accurate results with a major decrease in computational time. A mixed velocity/pressure
finite element formulation is used for the solution of mechanical fields. The plastic strain field needs to be transferred to
the new mesh after each remeshing operation. This field transfer requires the use of a suitable remeshing-transfer operator.
Different field transfer operators are tested and results are reported. In order to reduce the numerical diffusion associated
with the field transfer operation, a volume quality based metric has been introduced. This paper presents different numerical
examples with both qualitative and quantitative analyses in order to show the ability of the developed strategy in predicting
crack evolution in ductile materials. The proposed framework is also able to predict crack paths in highly ductile materials
while benefiting from space-adaptivity.

Keywords Phase field model · Ductile fracture · Velocity/pressure finite element · Adaptive isotropic remeshing · Field
transfer operator

1 Introduction

The phase field model for fracture was introduced in a varia-
tional form by Francfort andMarigo [1] as a generalization of
Griffith’s criterion to predict the critical stress for brittle frac-
ture. The minimization of a functional that contains the sum
of total elastic strain energy and fracture energy enables pre-
dicting the initiation, propagation, merging and branching of
multiple cracks under complex loading conditions. Nonethe-
less, the original formulation is not appropriate for numerical
treatment since the crack surfaces are not known a priori;
hence the computational scheme becomes non-tractable in
the sense that the resulting algorithm will be complicated to
implement. Fortunately, this problem has been tackled in the
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field of image processing with the so-called Mumford-Shah
functional [2] and thereafter a regularization introduced by
Ambrosio and Tortorelli [3]. Bourdin et al. [4] introduced
a numerical procedure based on the regularized functional
that substitutes the sharp crack topology by a damaged zone
with a field variable known as “phase field” that goes from 0
(intact material) to 1 (totally damaged).

Most of the phase field models available in the literature
deal with the problem of brittle fracture [5–7]. However,
many extensions of the phase field model for ductile fracture
have been introduced in the literature for 2D configurations
[8,9] and also for 3D configurationswith finite strains [9–13].
Recently, a porous-ductile phase field model was introduced
in [14] inwhich the critical energy release rate is decomposed
into elastic and plastic parts where the plastic deformation is
described by a modified GTN model [15,16]. Unfortunately,
the phase field model for ductile fracture is not variationally
consistent. In consequence, different options are proposed
in the literature on the way plastic strains can contribute
to the ductile fracture in order to mimic the behaviour of
brittle fracture. For example, Ambati et al. [8] introduced a
new degradation function that contains the equivalent plastic
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strain in an exponential form. This means that the material
is degraded in regions where the plastic strain is localized;
hence the crack propagation is directly affected by plastic-
ity. On the other hand, Borden et al. [11] added the plastic
strain energy along with a plastic degradation function that
depends only on the phase field variable in the crack driving
force. A good review for the different phase field models of
ductile fracture can be found in [17].

In the current work, the model of Borden [11] is imple-
mented inFORGE®1 where amixedvelocity/pressure finite
element model with a bubble function stabilization known
as P1+/P1 is used to solve the mechanical equations using
tetrahedral elements. The bubble stabilization technique is
used in order to satisfy the Brezzi-Babuska inf-sup condition
[18,19]. The resulting finite element model is able to solve
themechanical problemswith large plastic strainswhilemin-
imizing numerical instabilities. The phase field equation is
solved on the same mesh. A staggered algorithm is used to
decouple the solution ofmechanical equations from the phase
field equation since the resulting coupled systemof equations
is highly nonlinear [6]. Numerical comparisons are carried
out in order to validate the current numerical implementation
with the original model.

Starting the computations with a fixed mesh that is locally
refined in the areas where the phase field is expected to prop-
agate is the main strategy used in the literature to solve this
problem. It can be expected that two problems emerge when
this strategy is applied: (i). the locations of cracks need to
be known a priori which is not the case in most of the appli-
cations in fracture mechanics; (ii). the number of elements
in the mesh becomes very large from the beginning of the
computations which is usually not needed before a crack
is initiated, hence the computational scheme becomes inef-
ficient. In order to deal with these problems, an adaptive
isotropic remeshing strategy is used in order to adapt themesh
in the regions where the phase field is expected to propagate.
In isotropic remeshing, all edges of each element should be
scaled with the same multiplicative factor which is suitable
for our purpose. Very few attempts to use adaptive remeshing
strategies coupled with a phase field model in the context of
brittle fracture have been reported in the literature. To the
extend of our knowledge, the development of an adaptive
remeshing scheme for the phase field model for ductile frac-
ture has not been addressed before in the literature.

Amulti-scalemodeling approach has been adopted in [20]
to keep a small mesh size around the crack tip. A fine mesh
structure is defined with respect to a coarse mesh topology
using a multi scale basis functions.

Another proposition of a multi level hp-FEM strategy has
been adopted also in [21] for brittle fracture simulations.

1 FORGE® is a finite element software specialized inmaterial forming
simulation.

They showed that with the developed remeshing strategy, it
was possible to obtain accurate numerical results as com-
pared to the cases with a fixed mesh. The main advantage is
the great reduction in the number of degrees of freedom at
the beginning of the simulation and hence the computational
time decreases significantly. In [22], a predictor-corrector
refinement strategy inspired by the work in [23] is presented
within a global-local approach for the anistropic phase field
modeling. The solution of themechanical system is solved on
a global coarse mesh while the phase field solution is based
on a local refined mesh. Recently, Alba Muixi et al. [24]
introduced a new h-refinement strategy that is based on the
use of two types of elements: standard and refined elements
where continuity is imposed in a weak sense by the means
of Nitsche’s method. In addition, Patil et al. [25] presented
a Phase field adaptive scheme for brittle materials that com-
bines three different methods: (i). Phase field method; (ii).
Extended finite element method (XFEM); (iii). Multiscale
finite element method. The proposed approach reduces the
solution domain to a small vicinity around the crack tip with
an adaptive refinement which reduces significantly the com-
putation time.

In [26], a predictor-corrector remeshing strategy is imple-
mentedwithin the framework of brittle fracture. Startingwith
a coarse mesh, a two-steps solution procedure is adopted: a
predictor step on a coarse mesh is first used to obtain ini-
tial results which is followed by a refinement step where the
solution is recalculated. A similar idea is used in [23], a solu-
tion is obtained at time t on an initial mesh. Then, the time
advances and if the crack is found to propagate outside the
refined zone, a refinement operation takes place while the old
phase solution is interpolated on the new mesh. The process
is repeated until no change happens.

Authors in [27] introduced a computational framework
known as VEM (Virtual element method) as a generaliza-
tion of the classical finite elements method that can be used
to form any shape of elements with an arbitrary number of
nodes. The developed method is suitable for crack propaga-
tion and brittle and ductile fracture simulations [28,29]. Ali
Hussein et al. [30] introduced an adaptive crack simulation
framework using the phase field method and the VEM in
brittle materials. The mesh is refined around the crack tip
when the maximum value of the phase field reaches some
threshold which is followed by an equilibrium step using the
staggered algorithm. Finally, a cutting algorithm is used to
split the virtual elements and open the crack faces.

In this paper, we generalize the remeshing operation to
deal with ductile fracturewhere thematerial is history depen-
dent due to plastic deformations. Three main challenges are
to be studied: (i). the choice of an appropriate refinement
indicator function that is suitable for ductile materials; (ii).
the choice of a conservative field transfer operator that min-
imizes the numerical diffusion during the transport of fields;
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(iii). the reduction of the number of remeshing operations
in order to minimize the numerical diffusion that could lead
to inaccurate tracking for the crack path. The ultimate goal
is to have a numerical framework that is able to accurately
resolve the phase field equationswhile reducing the computa-
tional time in ductile fracture simulations. A comprehensive
review for the different field transfer operators can be found
in [31]. The paper is structured as follows: Sect. 2 introduces
the variational formulation of the phase field method for duc-
tile fracture within the framework of velocity/pressure mixed
finite element formulation. Then Sect. 3 presents the adap-
tive isotropic remeshing scheme used in this work. In Sect. 4,
two numerical examples are presented with both qualitative
and quantitative analyses. Finally, a conclusion with some
perspectives on the future work is drawn in Sect. 5.

2 Formulation of the problem

2.1 Original formulation

The first step is to define a free energy functional E which is
a Mumford-Shah [2] type as follows

E(u, �) =
∫

�h

We(ε
e) d�h +

∫
�

Gc d� (1)

where εe is the elastic strain tensor, We is the elastic energy
density, Gc is the fracture toughness,�h is the occupied vol-
ume in the reference configuration (Fig. 1a) and� is the crack
surface in the reference configuration. This energy functional
is an extension of the Griffith’s definition of brittle fracture.
The competition between internal elastic and fracture ener-
gies leads to the onset and propagation of cracks in materials.
As can be observed, it is needed to determine a priori the
fractured surface in order to calculate the fracture energy.
This results in a computational scheme that is non-tractable
and inconvenient to apply. To facilitate the solution of this
problem, another variational formulation based on regular-
izing the energy functional following the work of Ambrosio
and Tortorelli was introduced [3]. With this approximation,
a scalar variable known as the phase field variable is added;
d goes from 0 (intact material) to 1 (totally broken) (Fig.
1b). The variational formulation of brittle diffused damage
is written as

El(u, d) =
∫

�h

ge(d)We(ε
e) d�h +

∫
�h

Gc C(d,∇d) d�h

(2)

where two new components are added:

ge(d) is an elastic degradation function that is defined as
follows

ge(d) = ((1 − d) + ζ )2 (3)

and C(d,∇d) is the crack surface density that diffuses the
sharp crack topology into a continuous field

C(d,∇d) = 1

2lc
(d2 + l2c |∇d|2) (4)

where ζ is a numerical parameter used to prevent the singular-
ity of the stiffness matrix. Minimizing the regularized energy
functional would give a differential equation that governs the
evolution of the phase field in brittle materials. Miehe et al.
[6,32] proposed a thermodynamically consistent formulation
to the phase field problem based on transforming the discon-
tinuous nature of the crack to a continuous one leading to
very similar mathematical formulation.

In order to deal with the ductile fracture problems, new
components should be added to the formulation such as plas-
tic strain, stress triaxility and lode parameter [33].M.Ambati
et al. [8] showed that although there is no variationally con-
sistent formulation for the phase field problem of ductile
fracture, it is possible to mimic the brittle fracture formula-
tion by adding components that represent the ductility of the
material. Authors proposed to couple the elastic degradation
function with the equivalent strain through an exponential
form. In addition, Borden et al. [11] added the plastic energy
with a new plastic degradation function to the free energy
functional.

2.2 Phase field formulation of ductile fracture

Following the work of [11], the plastic strain energy is added
to the crack driving forceHwhere a plastic degradation func-
tion gp is added in order to weaken the material where the
plastic deformation is localized. The strong form of the phase
field evolution equation is written as

Gc

lc
(d − l2c∇2d) = H(x, t) (Evolution of the phase field)

(5a)

H = β1 g
′
e(d)max

n
We(ε

e(x, dn)) + β2 g
′
p(d)

< Wp(ε̄) − W0 > (Crack driving force) (5b)

∇d · n = 0 (Neumann boundary condition) (5c)

the angle bracket operator is defined as follows:

< x >=
{
x x ≥ 0

0 x < 0
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Fig. 1 aGeometry and boundary conditions of an arbitrary domainwith
discontinuity�.bTransformation of the crack to a diffused damagewith
the phase field d that goes from 0 to 1

ε̄ is the equivalent plastic strain, d is the phase field variable
that varies from 0 (intact material) to 1 (totally broken), We

is the elastic strain energy,Wp is the equivalent plastic strain
energy,H is the crack driving force, ge and gp are the elastic
and plastic degradation functions, respectively. For simplic-
ity, the plastic degradation function gp is chosen to be the
same as the elastic one represented in Eq. 3 as used in [11].
Gc is the fracture toughness, lc is a predefined length scale,
β1, β2 andW0 are numerical parameters used for calibrating
the phenomenological model and n is a unit vector normal to
the surface. The Neumann boundary condition is imposed to
ensure that no external source can actively create the crack. In
other words, the crack evolution is governed by the evolution
of other mechanical fields (Fig. 1).

2.3 Mechanical beahaviour at large strains

Two main formulations are used in order to deal with large
strain nonlinear problems within the context of finite ele-
ment analysis: (i). Total lagrange formulation; (ii). Updated
lagrange formulation [34,35] . In order to deal with the
problem of large plastic strains, an updated lagrangian for-
mulation coupled with adaptive remeshing is used. With the
updated lagrange formulation, the new reference configura-
tion is set to be the deformed configuration of the last time
step. In consequence, a continuous update of the geome-
try coordinates necessitates adaptive remeshing operation in
order to conserve the quality of elements used throughout the
simulation.

2.4 Mechanical constitutive law

An elasto-plastic constitutive material law is considered.
Applying the phase field model without any special treat-
ment for crack evolution in the regions where compressive
stresses exist have shownunrealistic interpenetration of crack
lips. Bourdin et al. have already demonstratedwith numerical
examples in [4] this problem.

2.4.1 Elastic model

Decomposing the elastic strain energy into positive and neg-
ative parts while degrading solely the positive part seems
to solve the aforementioned problem. The final form of the
elastic energy can be decomposed as

We(ε
e) = ge(d)W+

e (εe) + W−
e (εe) (6)

whereW+
e andW−

e are the positive and negative parts of the
elastic strain energy, respectively.

The approach introduced byAmor et al. [36] for the energy
decomposition is used as follows:

W+
e (εe, d) = κ

2
〈tr(εe)〉2+ + μ εedev : εedev

W−
e (εe, d) = κ

2
〈tr(εe)〉2−

(7)

where εedev = εe − tr(εe)
3 , μ = E

2(1+ν)
, E is the Young’s

modulus, ν is Poisson’s ratio and κ is the bulk’s modulus.
where

< x >+=
{
x x ≥ 0

0 x < 0
< x >−=

{
0 x ≥ 0

x x < 0

The first part of the positive elastic strain energy W+
e

replaces the total strain energy We that appears in Eq. 5b.
The positive elastic energy W+

e contains a volumetric part
that reflects the effect of dilatation along with the deviatoric
part that reflects the effect of shear deformation. The positive
elastic strain energy enters in competition with the fracture
energy resulting in the evolution of the phase field.

On the other hand, the negative part of the elastic energy
density that is related to reduction in volume does not con-
tribute to the evolution of the phase field.

The resulting constitutive relation is shown as

σ = κ(1 − αd)2 tr(εe) + 2(1 − d)2 εedev I
dev (8)

where

α =
{
1 tr(εe) > 0

0 else

and I devi jkl = Ii jkl − 1
3δi jδkl , Ii jkl = 1

2 (δi jδkl + δikδ jl) with δ

the Kronecker’s delta.

2.4.2 Elasto-Plastic model

The return mapping algorithm is used to update the equiv-
alent plastic strain and deviatoric Cauchy stress tensor at
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each time step, with the assumption of no plastic deforma-
tion increment, the resulting equations can be written as

str ial = 2μ ge(dn) [εn+1 − ε
p
n ] (9a)

f trial = σ V M − gp(dn)σ 0(ε̄n) ≤ 0 (9b)

where

σ V M =
√
3 J2(str ialn+1 ) (10)

where str ial is the trial deviatoric stress, ε is the total strain
tensor and ε p is the plastic strain tensor, J2 is the second
invariant of the deviatoric stress tensor and n is the incre-
ment number. If condition 9b is not satisfied, a new plastic
deformation increment is found as follows

f =
√
3 J2(str ialn+1 ) − gp(dn)σ 0(ε̄n+1) − 3μgp(dn)�λ = 0

(11)

whereλ is the plasticmultiplier. The effective stress is defined
as follows

σ 0 = σy + H ε̄ (12)

where σy is the initial yield stress and H is the plastic mod-
ulus. It should be noted that dn is constant in Eq. 11. A
Newton-Raphson nonlinear solver is used to solve Eq. 11,
the plastic strain update is written as

ε̄n+1 = ε̄n + �λ (13)

The update of the deviatoric stress tensor and discrete tangent
modulus are expressed as follows

sn+1 = str ialn+1

1 + 3μge(dn)�λ
σ 0(ε̄n+1)

(14)

Cd
n+1 = ∂ ṡn+1

∂ ε̇n+1 = 2μge(dn)
(
1 − 6

μ2�λ

J2(str ialn+1 )
Idev

)

− 4μ2n̄ ⊗ n̄
( 1

∂σ 0
∂δλ

+ 3μge(dn)
+ �λ

J2(str ialn+1 )

)
(15)

where n̄ = 3
2

s
J2(sn+1)

and ⊗ is the tensor product.

3 Adaptive isotropic remeshing

Themost used strategy in the literature to deal with the phase
field model is to use a fixed mesh with local refinement. The
minimum element size hmin should be chosen in order to
properly describe the damage zone. However, a larger ele-
ment size can be used at the beginning of the simulation

before starting the damage initiates. As recommended by
Miehe et al. [6], hmin in the critical zones where the crack is
expected to propagate is chosen to be two times less than the
length scale lc. Twomain problems arise with that choice: (i).
the element size is not necessary to get accurate results before
damage occurs, which leads to high unnecessary computa-
tional cost; (ii). the fact that the mesh size should be refined
before starting the computations contradicts the purpose of
our model which is to predict the location of crack initiation
and propagation.

In this article, an adaptive scheme is adopted to generate
new meshes that are refined in the regions where the phase
field is expected to propagate. The originality of the current
work comes from the applicability of the developed tools
to deal with both brittle and ductile fracture patterns using
the phase field model. Three main challenges exist with the
adopted remeshing strategy: (i). controlling the number of
remeshing operations until the final geometry is obtained;
(ii). the choice of an indicator function that triggers the
remeshing process; (iii) the choice of a consistent field trans-
fer operator thatminimizes the numerical diffusion after each
remeshing step.

Elements are refined upon reaching a given threshold for
a given indicator function that can be tailored numerically. A
tag for each element is used to know whether or not it needs
to be refined during the computations.

3.1 Controlling the number of remeshing operations

Numerical diffusionduring remeshing is inevitable. Thus, the
solution will be more conservative as the number of remesh-
ing operations is reduced. Once a sufficiently refined mesh
is obtained, the remeshing process should be terminated. In
order to achieve that objective, another indicator function is
proposed that is based on a volume quality metric. The vol-
ume quality metric is defined as the ratio between the new
and old volumes of each element. At each increment, the
new volume of each element is calculated based on the nodal
values of the phase field. For example, if the smallest vol-
ume quality among all elements of the new mesh exceeds a
given threshold, a remeshing step is carried out. Otherwise,
no remeshing step is done. Figure 2 illustrates the way of cal-
culating the element size. The size related to the phase field
value at each node is determined based on the value of the
phase field, i.e., the size only changes if the phase field value
exceeds the pre-set threshold. At each increment, a volume
quality metric B is calculated for each element T as follows

B(T ) = min(
( lnew
lold

)3
,
( lold
lnew

)3
,
V�1

VRef
) (16)

where lnew is the average length of a tetrahedron in the new
mesh in case of remeshing, lold is the average length of a
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Fig. 2 Calculating the new element size based on the phase field values
at the nodes

tetrahedron in the old mesh, V�1 is the volume of a tetrahe-
dron in the old mesh and VRef is the volume of a reference
equilateral element of the same average length as the element
of the new mesh in case of remeshing.
The mesh quality threshold can be chosen to be as follows

Mesh quality threshold =
( l f
η l0

)3
(17)

where l f is the pre-set element size in the refined zone in
which the phase field is expected to propagate, l0 is the ele-
ment size of the initial mesh and η is a numerical parameter
that varies between 0.6 and 1.4. This artificial parameter η

gives some tolerance for the remeshing initiation process as
the initial element size distribution is heterogeneous. The
proposed threshold gives an upper bound for the ratio of ele-
ment volume between the old and new meshes.

This proposed mesh quality metric is essential in limiting
data diffusion due to remeshing. In other words, the rule
here is that: once the region in which the crack is expected
to propagate is remeshed, the remeshing is terminated.

3.2 Field transfer operator

Field transfer operation refers to the transport of fields
between two different topologies representing the same geo-
metrical space. Regardless of the method used in this step,
an amount of data is always lost due to the non-exact transfer
of fields. The main features of a conservative remeshing-
transfer operator are: (i).Minimizing the numerical diffusion;
(ii). Preserving the mechanical equilibrium. Two types of
fields can be transferred, nodal fields and fields that are stored
at the integration points. For the updated lagrangian formu-
lation that is used in this study, both the nodal fields and the
fields that are stored at the integration points will be interpo-
lated to the new mesh.

Two categories of transfer operator will be used for the
sake of demonstration: (i). P0 transfer: each integration point
in the new mesh takes the value of its nearest neighbourhood
in the old mesh; (ii) P1 transfer: A three-step procedure is

carried out (i). A smoothing operator transforms the field
stored at the integration points to a nodal field; (ii). A direct
interpolationmaps the nodal fields of the oldmesh to the new
mesh; (iii). The continuous field at the newmesh is remapped
to the integration points [37,38].

Different remeshing transfer operators are introduced in
the literature. Sushil Kumar et al. [31] presented a compar-
ison between a wide categories of methods related to the
recovery by element patches and recovery by nodal patches.
Authors have shown that increasing the interpolation order
of the transfer operator increased the accuracy and conver-
gence behaviour by the same order. In [39], a continuous
solution is given in the vicinity of a given integration point
that is considered to be valid for a patch of elements. Then,
the value is used for the element of the new mesh that con-
tains this integration point. Likewise, Zienkiewicz and Zhu
presented in [40] the SPR (Super convergent Patch Recov-
ery) method which is based on retrieving a mapped stress
field using a patch of elements sharing a common node. In
order to ensure the equilibrium after each remeshig opera-
tion, a few Newoton-Raphson iterations need to be carried
out as suggested in [41]. Authors in [42] propose to divide the
loading step just after the remeshing operation to two steps
in order facilitate the convergence while ensuring the equi-
librium. Another proposition in [31,43] is to ensure that the
transferred field preserves the equilibrium at the new mesh.

In this article, for the sake of simplicity, two field transfer
operators are tested: i. Nearest point interpolation method;
ii. P1 transfer by Galerkin smoothing method.

3.2.1 P0 transfer method (Nearest point interpolation)

Thismethod is the simplest one among the other field transfer
operators. However, it lacks a proper mathematical consis-
tency when compared to other methods so that it can be very
diffusive if the mesh is not very refined. The values of P0
fields (constant per element) are transferred directly from
each integration point of the old mesh to the nearest new
point in the newmesh as shown in Fig. 3a. This technique has
the advantage of preserving the values of the transferred field
when the changes in the mesh topology are very small. How-
ever, the remapping error is proportional to the field gradient,
i.e., when the gradient of a given field is very high, it becomes
very difficult to recover the fields with high accuracy. This
technique also has the advantage of a low computational cost
since no additional operations are done except for locating
the nearest neighbourhood of each integration point in the
mesh. Figure 3a summarizes the steps of this method.

3.2.2 P1 transfer with Galerkin smoothing

The Galerkin smoothing method is referred to the smoothing
of discontinuous P0 fields in order to build another continu-
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Fig. 3 Field interpolation
method: a P0 transfer (Nearest
point interpolation. b P1 transfer
with Galerkin smoothing

ous P1 field per element. This means that at each time step
the P0 fields are transformed to be P1 fields followed by a
direct nodal interpolation using the same interpolation func-
tions used for the finite element solution as shown in Fig. 3b.
Finally, a P0 field is recovered from the constructed P1 field.
The main advantage of this method is that it is expected
to be more conservative than the nearest point interpolation
method when the old and new mesh typologies are very dif-
ferent. On the contrary, it should always be expected to have
an amount of data loss due to the P0-P1-P0 transformations
even if the mesh topological changes are small.

Let us consider a given discontinuous field gP0 that is
calculated on an old mesh and the new continuous field cal-
culated at the element nodes fP1. Recovering the same field
at the nodes requires that

fP1 = gP0 (18)

since the condition cannot be strongly applied due to the
nature of the two functions, transforming the equation into a
weak form and minimizing the residual using the Galerkin
smoothing method would be a possible solution. The weak
form applied over an element gives

∫
�h

φh fP1 d� =
∫

�h

φhgP0 d� (19)

where φh is a test function. The functions fP1 and φh are
defined as follows

fP1 =
Nn∑
k=1

Nk
l f̂ kP1 (20a)

φh =
Nn∑
k=1

Nk
l φ̂k (20b)

where Nk
l are the same basis functions used in the finite

element model in “Appendix A”.
The resulting finite element system is solved. In the

smoothing step, a nodal interpolation step is done in order to
find the field values at the new nodes. Then, another inter-
polation is done to find the field value at a single integration
point at the barycentre of the element.

3.3 Summary

A summary of the developed method is presented in algo-
rithm 1.

Result: 	vt=0:T , Pt=0:T , dt=0:T
1. Initialize 	vt , Pt and dt ;
for t = 0 : T do

i ← 0, 	vi ← 	vt , Pi ← Pt ;
2. while (Res1 > TolN R and i < imax ) do

Solve the system of Eqs. 27a, 27b and 27c using a
Newton Raphson solver to obtain vi+1, pi+1;
Compute the new plastic strain increment using Eqs. 9, 11
and 13;
i ← i + 1

end
vt ← vi ;
pt ← pi ;
3. Compute H(x, t) based on the new elastic and plastic
strains using Eq. 5b;
4. Solve Eq. 27d with H(x, t) to obtain dt+�t ;
5. Check if the phase field value at each node exceeded the
threshold;
6. compute new element size;
7. Check the volume quality for each element in the mesh.;
if (Minimum mesh quality < Mesh quality threshold) then

8. Trigger remeshing and transport the mechanical fields;
else

Go to step 2;
end

end

4 Numerical results and validation

4.1 Symmetrically notched tension test

In this section, numerical validation of the implementation of
Borden et al. [11] is done. The validation step is carried out
with a fixed mesh. Figure. 4 shows the geometry and bound-
ary conditions of a symmetrically notched tension test. A
sensor is also placed at the middle of the distance between
the two notches to trace the evolution of the phase field vari-
able at different deformation levels. The material parameters
used are: E = 68.8 GPa, ν = 0.33, ρ = 2700 kg/m3,
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Fig. 4 The representation of the tension test geometry and boundary
conditions of a reference case [11]. The mesh is illustrated with the
local refinement. The thickness of the specimen is 2.37 mm where all
dimensions are in mm

σy = 320 MPa, H = 688 MPa. The model parameters
are: β1 = β2 = 1, lc = 0.6452 mm Gc = 60 k J/m2 and
ζ = 10−3.

In order to choose a suitable time step for performing
the calculations, a convergence study is done with a plastic
energy threshold W0 = 10 MPa and results are illustrated in
Fig. 5. Normalized stress refers to the applied force divided
by the initial area of the narrowest cross section and nor-
malized strain is the total displacement divided by the initial
length of the specimen. From the results shown in Fig. 5,
a time step of 0.05 sec is used for all subsequent simula-
tions since it provides a good compromise between quality of
results and CPU time. At the same time, one can observe that
in the linear regime, the Normalized stress vs. Normalized
strain curves are almost identical to the reference solution
and hence a larger time step can be used without loosing the
solution accuracy.

Figure 6 shows a comparison with the implementation of
[11] of the normalized stress vs. normalized strain curves
for two different values of the plastic threshold W0. The
curves are very close to the reference solution especially
for W0 = 10 MPa. It can be observed that there is a small
shift between the curves of the current work and reference
solution. This is most likely related to the type of spatial
discretization used for the numerical simulations which is
different than the one used in [11]. For the reference case, the
computations were performed using a quadratic NURBS iso-
geometric spatial discretization [44] whereas in the present
work a tetrahedral element is used. Figure 7 also shows the
crack evolution for different values of the plastic threshold.

One can clearly observe that the phase field profile at the ini-
tiation phase depends on the threshold and hence it should
be well calibrated in order to accurately track the crack evo-
lution.

4.2 Double-edge symmetric tension test with
remeshing

In this example, we show the numerical results of the phase
field model obtained with the developed isotropic remeshing
strategy. When remeshing is used, a constant mesh size is
used in the whole initial domain. Then, a mesh refinement
process is carried out in order to have a small enough ele-
ment size in the regions in which the crack is expected to
propagate. Two different base element sizes are compared
for the values 0.5 mm and 1.25 mm. The numerical com-
putations are carried out with two different base mesh sizes
in order to illustrate the accuracy of the two field transfer
operators. Results are compared with a reference case of an
initial fixed mesh with local refinement as shown in Fig. 4.
The same geometry and material properties as in Sect. 4.1
with a plastic work threshold equals to 10MPa are used in all
the simulations. Two fixed size meshes, mesh 1 and mesh 2,
are used to compare the results with the cases where remesh-
ing is adopted 4. Mesh 1 and mesh 2 have sizes of 0.5 mm
and 1.25 mm in the domain, respectively. A minimum mesh
size of 0.1613 mm is used in the region where the crack is
expected to propagate. The specimen is fixed from the bottom
and displaced from the upper end with a constant velocity of
0.0042 mm/sec. Two different thresholds of the phase field
indicator function are used: 0.025 and 0.075.

Figure 8 shows the phase field evolution at four differ-
ent strain states with the phase field threshold value equals
to 0.025 and base mesh size set to 0.5 mm. The time step
is set to 0.5 s for the first 125 increments since accurate
results can be obtained in the linear regime with a large time
step and then 0.05 s for the rest of the simulation since it is
concluded from the time step convergence study that the pro-
posed time step is a good compromise between accuracy and
low computational time. The results are plotted on the current
configuration where the mesh topology at the different states
is shown. In Fig. 8a, the remeshing is not yet initiated since
this is a very early deformation state, i.e., the same phase
field distribution is obtained. Then, the remeshing operation
is initiated with both transfer operators as shown in Fig. 8b.

The phase field profiles with a threshold value of 0.075
are shown in Fig. 9. Comparing Figs. 8c and 9c shows that
when the phase field threshold is 0.075, the crack initiates
and propagates at a larger displacement than the case of a
threshold of 0.025. This can be explained by the fact that
when the elements size in the damaged region are not suffi-
ciently fine, the accuracy of the mechanical fields evolution
is affected. In other words, when the remeshing initiation is
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Fig. 5 Study of the time step
convergence for the Normalized
Stress vs. Normalized Strain
curves. Time increments are in
seconds

Fig. 6 Numerical validation
with the model of M.J. Borden
et al. [11]. Results are reported
for two different values of the
plastic threshold. The time step
is set to 0.5 sec during the first
125 steps in the linear regime
then 0.025 sec for the rest of the
simulation

Fig. 7 Contour plots of the
phase field evolution for three
different values for the plastic
threshold W0. Four different
deformation states are illustrated
starting from crack initiation at
(a) until the final failure at (d)
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Fig. 8 Evolution of phase field
at different deformation states
on the deformed configuration
for a phase field threshold is set
to 0.025. a u = 0.3028 mm. The
average element size of the base
mesh is set to 0.5 mm. b u =
0.3417 mm. c u = 0.3618 mm. d
u = 0.3650 mm

Fig. 9 Evolution of phase field
at different deformation states
on the deformed configuration
for a phase field threshold is set
to 0.075. The average element
size of the base mesh is set to
0.5 mm. a u = 0.3207 mm. b u =
0.3539 mm. c u = 0.3648 mm. d
u = 0.3671 mm

a lightly delayed, the exact moment of crack initiation is not
accurately captured. In consequence, the full crack is formed
at a displacement u = 0.3671 mm which is also higher
than the case when the threshold is 0.025 as it is reported
as u = 0.3650 mm.

It can also be observed in Fig. 9c that the crack prop-
agates for a longer distance toward the center at the same

displacement when the Galerkin smoothing method is used.
The reason for that is also related to the field transfer opera-
tion that affects the accuracy of the transported fields.

Figure 10 shows the Normalized Stress vs. Normalized
Strain curves for different threshold values. Results are
obtained for both field transfer operators and compared with
the case of an initial fixedmesh.When the value of the thresh-
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Fig. 10 Symmetrically notched
specimen tension test. a
Normalized Stress vs.
Normalized Strain curves for
two different values for the
phase field threshold. A
comparison is shown for the two
field transfer operators with the
reference case with an initial
fixed mesh. The base element
size = 0.5 mm

Table 1 Symmetrically notched tension test with base element size = 0.5 mm

Transfer operator Threshold Remeshing operations Initial number of elements Final number of elements CPU run time [hour]

Fixed mesh 112080 112080 1.09

Galerkin smoothing 0.025 6 82477 125550 0.85

Galerkin smoothing 0.075 6 82477 111800 0.79

Nearest point 0.025 7 82477 130800 0.77

Nearest point 0.075 6 82477 117780 0.71

old is increased to 0.075, the coarse mesh topology before
the initiation of the remeshing operations does not permit
to capture the localized plastic strains at an early stage of
the deformation and hence the crack initiation is delayed.
Locally, Fig. 14a shows the local phase field evolution at a
node shown in Fig. 4. It can be clearly observed that there
is a small difference in the phase field profile between the
remeshing and the reference cases.

The number of elements and run time2 are reported in
Table 1. It can be clearly observed that the number of ele-
ments in the end of simulations is even lower than the
reference case since it is difficult to know where exactly the
refinement should take place sowe tend to enlarge the region.
of the refined mesh.

2 The calculations are carried out using 6 processors on a workstation
with an Intel@ coreTM i7-8700 CPU @ 3.2 GHz and a 32 GB RAM.

To conclude, the developed adaptive remeshing strategy
results in a very accurate prediction of the crack initiation and
propagation with a significant reduction in the computation
time. It should be noted that the reduction factor in the ele-
ment size from the beginning to the end of the computations
was about 3 times. The next step is to test the model validity
with a higher reduction ratio. A base element of size 1.25
mm is used with a reduction ratio to the final element size
of about 7.75. Figures 11 and 12 show the phase field evo-
lution profiles for two threshold values of 0.025 and 0.075,
respectively.

In a general sense, for both threshold values the crack is
initiated at a larger displacement than the cases with a base
element size 0.5 mm. It can be observed again that displace-
ments starting at the crack initiation until the complete failure
are higher when the threshold 0.075 is used.

The same conclusion is drawn regarding the two field
transfer operators; the crack propagates for a longer dis-
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Fig. 11 Evolution of phase field
at different deformation states
on the deformed configuration
for a phase field threshold is set
to 0.025. The average element
size of the base mesh is set to
1.25 mm. a u = 0.3027 mm. b u
= 0.3539 mm. c u = 0.3749 mm.
d u = 0.3788 mm

Fig. 12 Evolution of phase field
at different deformation states
on the deformed configuration
for a phase field threshold is set
to 0.075. The average element
size of the base mesh is set to
1.25 mm. a. u = 0.3207 mm. b.
u = 0.3446 mm. c. u = 0.3759
mm. d. u = 0.3788 mm

tance at the same displacement when the Galerkin smoothing
method is used as shown in Figs. 11c and 12c.

The Normalized Stress vs. Normalized Strain curves are
shown in Fig. 13. From a global view, there is a the shift
between the curves of fixed mesh and remeshing cases as
compared to the case with a base element size of 0.5 mm. It

can be also observed that when a threshold of a value 0.025
is used, closer results to the reference solution are obtained.
The behavior of the global response can be explained by the
local evolution of the phase field as shown in Fig. 14b.

The initial and final number of elements along with the
CPU run time are reported in Table 2. It can be clearly seen
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Fig. 13 Normalized Stress vs.
Normalized Strain curves for
two different values for the
phase field threshold.
Comparison between the two
field transfer operators with the
reference case with an initial
fixed mesh. The base element
size = 1.25 mm

Fig. 14 Comparison between the phase field evolution at a fixed mesh and with remeshing with a base element size = 0.5 mm in a and 1.25 mm in
b

Table 2 Symmetrically notched tension test with base element size = 1.25 mm

Transfer operator Threshold Remeshing operations Initial number of elements Final number of elements CPU run time [hour]

Fixed mesh 52278 52278 0.57

Galerkin smoothing 0.025 7 7023 43688 0.15

Galerkin smoothing 0.075 5 7023 34618 0.14

Nearest point 0.025 4 7023 38326 0.15

Nearest point 0.075 4 7023 26119 0.11

that the initial and final number of elements are less than the
case with a base element size of 0.5 mm, i.e., the computa-
tional time has drastically been reduced by a factor of nearly
4 in average.

The conclusion here is that, it is possible to get a significant
decrease of computational time by using remeshing. How-

ever, the solution accuracy with remeshing is reduced when
the initial element size is increased. In addition, the results
are improved when the phase field threshold is reduced since
the localization of plastic strain is well captured with the
small element size, but the computational time is increased.
In consequence, the developed computational framework can

123



776 Computational Mechanics (2021) 67:763–783

Fig. 15 a Geometry and
boundary conditions of a double
notched specimen. b The mesh
size of the reference case
without remeshing. The
thickness of the specimen is 0.2
mm. All dimensions are in mm

be adopted to have a good compromise between solution
accuracy and computational time. Regarding the field trans-
fer operators, the results show that the data diffusion is very
similar for the two cases with a slight improvement exists
when the Galerkin smoothing method is used. In the follow-
ing example, the Galerkin smoothing method is adopted for
all cases.

4.3 Double notched specimen

In this example, a double notched thin specimen is used to
prove the ability of the developed algorithm to deal with
complex crack paths efficiently. The geometry and boundary
conditions of the specimen are shown in Fig. 15 [17] along
with themesh size distribution.The thickness of the specimen
is chosen to be 0.2 mm. A quasi static loading is assumed,
i.e., inertial effects are neglected. The material parameters
are: E = 180 GPa, ν = 0.28, σy = 443 MPa, H = 300
MPa.

The model parameters are: W0 = 80 MPa, β1 = β2 = 1,
lc = 0.04mm,Gc = 20 k J/m2 and ζ = 10−3. TheGalerkin
smoothing method is used for all simulations in this section.

Figure 16 shows the phase field evolution for a base ele-
ment size of 0.2mmwhere the phase field threshold is chosen
to be 0.06. It should be noted that the choice of the numerical
parameterη is tailoredmanually in all the following examples
in order to obtain a similar number of remeshing operations
i.e., the effect of data diffusion due to remeshing is elimi-
nated. The loading velocity is set to 0.05 mm/sec. The time
step is set to 0.01 sec in the first 200 steps since the level of
the damage is still low and 0.002 for the rest of simulations
in order to properly track the crack evolution.

The obtained phase field profile for this case indicates that
the crack is initiated at the two notches which is the same
observation as the reference case with a fixed mesh (this is
the case which we consider as the most accurate). Then, the
two crack branches propagate toward the center untilmerging

and leading to the final failure. It can also be observed that
the evolution of the refined zone in the mesh follows the
phase field evolution starting from the crack initiation until
the complete failure.

Figure 17 shows the crack and mesh topology evolution
with a base element size of 0.15 mm. The obtained crack-
ing sequence is very similar to the case of a 0.2 mm mesh
presented earlier. However, the specimen is completely frac-
tured at a lower displacement as compared to the case of a
0.2 mm mesh size.

Figure 18 shows the phase field and mesh topology evolu-
tion with a remeshing indicator function that is based on the
equivalent plastic strainwith a threshold value equals to 0.06.
The initial element size is 0.2 mm. Remeshing is initiated at
an early stage in which the zone where the crack is expected
to propagate is fully remeshed before the crack initiation, i.e.,
the maximum value of the phase field is not yet equal to 1. It
can be also observed that the refined zone is wider than the
cases where the phase field is used as an indicator function.
This observation is confirmed with the final number of ele-
ments in this case which is reported in Table 3 as compared
to the case where a phase field remeshing indicator function
is used with the same initial element size.

Figure 19 shows the evolution of the equivalent plastic
strain at two different displacements where three remeshing
indicator functions are used: phase field, equivalent plastic
strain and normalized yielding functions. It can be observed
that the error of the equivalent plastic strain with respect to
the reference case is reduced when a plastic strain threshold
is used. This can be related to the fact that when themesh size
is reduced earlier, more accurate calculation of the equiva-
lent plastic strain is obtained since the strain localization is
properly captured; hence the phase field evolution becomes
more accurate.
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Fig. 16 Phase field evolution at
various deformation stages on
the deformed configuration for a
fine mesh with base element size
0.2 mm. The phase field is used
to trigger the remeshing with a
threshold of 0.06. The mesh
topology is shown at each stage.
a u = 0.2698 mm. b u = 0.2796
mm. c u = 0.3535 mm

Fig. 17 Phase field evolution at
various deformation stages on
the deformed configuration with
base element size 0.15 mm. The
phase field is used to trigger the
remeshing with a threshold of
0.06. The mesh topology is
shown at each stage. a u =
0.2297 mm. b u = 0.2547 mm. c
u = 0.3180 mm
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Fig. 18 Phase field evolution at
various deformation stages on
the deformed configuration with
base element size 0.2 mm. The
equivalent plastic strain is used
to trigger the remeshing with a
threshold of 0.06. The mesh
topology is shown at each stage.
a u = 0.2249 mm. b u = 0.2421
mm. c u = 0.2592 mm

Table 3 Double notched specimen performance analysis

Threshold η Threshold value Base element size [mm] Initial nb. of elements Final nb. of elements CPU time [hour] Energy error %

Fixed mesh 182900 182900 2.25

PF 1 0.06 0.15 23663 48193 0.8 50.7

PF 0.8 0.06 0.2 13046 41904 0.7 54.86

EQP 0.8 0.06 0.2 13046 70677 1.05 20

EQP 0.8 0.001 0.2 13046 148300 1.97 4.9

NYF 1.25 0.0001 0.2 13046 36113 0.93 2.7

The normalized yielding function NY F defined in Eq. 21
is used as another remeshing indicator function.

NY F = f trial

σ V M (u, d)
(21)

with this indicator function, the number of elements is
reduced over time since the stress far from the crack lips
(damaged region) is degraded due to the creation of the crack
surface as shown in Fig. 20.

The Force vs. Displacement curves are shown in Fig. 21
and. Comparing the results when remeshing is used for two
mesh sizes with the reference case shows that the initial ele-
ment size plays an important role in determining the moment
at which the softening phase begins. Furthermore, when the
mesh adaptation is based on the phase field variable, the ele-
ment size in the region of interest will be only modified when
the plastic energy exceeds the threshold W0, i.e., the phase

field evolution is mainly governed by the plastic strains. The
values of plastic strain will not be close enough to the ref-
erence case as to accurately contribute to the phase field
evolution, hence the crack initiation is delayed. So, it seems
convenient in such case to adapt themesh based on the plastic
strain or yielding function rather than the phase field variable
so that the evolution of plastic strains becomes more conser-
vative.

Table 3 shows the performance analysis for different cases
along with the fixed mesh case. It can be seen that a reduc-
tion of the equivalent plastic strain threshold to 0.001 leads
to results very close to the reference case with a fixed mesh
at a computational cost reduced by a about 12%. In addition,
when the normalized yielding function is used, the compu-
tational time is reduced by a factor of 59 % while the results
are very close to the reference case with a fixed mesh. In
addition, an energy error is found in the same table for each
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Fig. 19 Evolution of equivalent plastic strain at two different displacements. Comparison is carried out between the reference case with no
remeshing, remeshing with phase field (PF) threshold, two equivalent plastic strain thresholds (EQP) and normalized yielding function (NYF)

Fig. 20 Evolution of number of
elements for different remeshing
cases along with the reference
case (Fixed mesh)

threshold type. The energy error is calculated as follows

Energy error % =
∫ rmax
0 (Fremesh − Fref ) dr∫ rmax

0 Fref dr
(22)

where Fremesh is the force obtained with remeshing, Fref is
the force obtained from the reference case with a fixed mesh,
r is the displacement and rmax is themaximumdisplacement.
The energy error helps in quantifying the energy loss for each
method. It can be seen that the normalized yielding function
gives the lowest possible energy loss among the others which
proves its accuracy.

To conclude, the proposed adaptive remeshing strategy
provides a flexible compromise between accuracy and com-
putational cost. Depending on the application, whether the
phase field or the equivalent plastic strain can be used to
trigger remeshing. When the normalized yielding function is
used, the obtained results are very close to the reference case

with a significant reduction in the computation time; hence
this criterion seems to be the most suitable to be used.

5 Conclusion and perspectives

The main advantage of the phase field model is the ability to
model fracture processes without any special treatment for
the crack initiation and propagation. In order to enhance the
efficiency of the computational model, an adaptive isotropic
remeshing strategy is coupled with a phase field model of
ductile fracture. The proposed strategy offers a robust tool
for predicting initiation and propagation of complex crack
path in highly ductile materials. This paper analysed both
qualitatively and quantitatively two applications with differ-
ent levels of complexity: a straight crack path between two
notches having the same sizes and a diagonal crack formed
in a non symmetric notched specimen.
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Fig. 21 Force vs. Displacement
curves for different remeshing
cases along with the reference
case (Fixed mesh). NY F is the
normalized trial yield function

Two different field transfer operators are used in order
to efficiently remap the mechanical fields: (i). the nearest
point interpolation; (ii). the Galerkin smoothingmethod. The
former is considered as the simplest approach since a direct
interpolation is done for each integration point, however its
accuracy is dependent on the size of mesh and the gradient
of remapped field. While the latter is more computationally
expensive since a smoothing step is needed to transform the
P0 field to a P1 field. The results presented in this paper show
some differences using both mapping techniques. However,
a lower amount of data diffusion is usually obtained using
the Galerkin smoothing method.

In order to minimize the data loss in the transfer process,
two different thresholds were used: (i). a remeshing indicator
function threshold that is used to locate the regions where the
mesh should be refined; (ii). a volume quality threshold that
controls the number of remeshing operations so that the data
loss is minimized and the numerical strategy becomes more
conservative.

A comparison is carried out between the results when a
phase field, equivalent plastic strain and normalized yielding
stress indicator functions are used. Results have shown that
in some cases where the contribution of the plastic strain in
the phase field evolution is delayed, the mesh in the dam-
aged region will be refined lately; hence the evolution of the
plastic strain will not be accurate. On the other hand, when
both the equivalent plastic strain and normalized yielding
functions are used to trigger the remeshing, the mesh will be
refined at an early stage, so the evolution of the plastic strain
will be conservative for an accurate prediction for the crack
initiation and propagation. Unfortunately, when the equiva-
lent plastic strain is used, the remeshed region becomeswider
with higher number of elements; hence the computation time
is increased as shown in the performance tables for all the
examples. On the other hand, when the normalized yielding
function is used, the final number of elements is decreased

due to the localization of plastic strains around the damaged
region. The recorded CPU times vary with each threshold
depending on the threshold type and value, but it can be seen
that the normalized yielding function gives the best possible
precision with respect to the reference case with a fixedmesh
with the lowest computational time.

Several extensions are possible in the future to the devel-
oped framework. For example, testing the ability of themodel
to predict complex fracture modes in metal forming applica-
tions for which crack paths are not known a priori. In such
applications, the plastic strains are very large and special
treatment of the crack driving force is needed to include the
effect of stress triaxiality. An adaptive time scheme would
also be interesting in order to obtain the most efficient solu-
tion from the computational point of view when combined
with mesh adaptivity.

A Weak formulation of the problem

In this section, the weak form of the phase field for ductile
fracture and mechanical equations is demonstrated within
the framework of mixed velocity/pressure formulation. The
strong form of mechanical equations is written as

ρ
∂ 	v
∂t

= 	∇ · s − 	∇ p + ρ 	g (Conservation of linear momentum)

(23a)

	∇ · 	v = − ṗ

κ
(Conservation of mass) (23b)

	v = 	̄v0 on ∂�v (Dirichlet boundary condition) (23c)

	t = 	̄t0 on ∂�t (Neumann boundary condition) (23d)

∂�h = ∂�v ∪ ∂�t
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where s is the deviatoric part of the Cauchy stress tensor,
p is the pressure, 	v is the velocity vector, κ is the bulk’s
modulus, ρ is the material density and 	g is the body force
vector per unit mass. The boundary conditions are illustrated
in Fig. 1. �h is the solid domain in the current configuration,
∂�v and ∂�t are the predefined boundaries for Dirichlet and
Neumann boundary conditions, respectively. The finite ele-
ment method is used to solve the system of Eqs. 5 and 23.
Following the standard Galerkin formulation by multiplying
the strong form of partial differential equations by the appro-
priate test functions leads to the weak form of the following
problem: Find (	vh , ph and dh) ∈ Vh ⊗ Ph ⊗ Dh

∫
�h

(
ρ

∂ 	vh
∂t

· 	vh∗ + s( 	vh) : ε̇( 	vh∗) − ph 	∇ · 	vh∗ − ρ 	g · 	vh∗) d�h

=
∫

∂�t̄

	t0 · 	vh∗ d∂�h (24a)

∫
�h

p∗
h

	∇ · 	vh + p∗
h ṗh
κ

d�h = 0 (24b)
∫

�h

Gc

lc
d∗
h dh +

∫
�h

Gc lc ∇d∗
h · ∇dh d�h −

∫
�h

d∗
h H d�h = 0

(24c)

∀ 	v∗
h , p

∗
h, d

∗
h ∈ V0

h ⊗ P0
h ⊗ D0

h (24d)

Vh =
{
vh ∈ (H1)dim(�h), 	vh = 	v0 on ∂�e,∀e ∈ Ne

}

Ph =
{
ph ∈ (C0)dim(�e) ∩ L2, ph ∈ P1 in

�e, ph = p0 on ∂�e,∀e ∈ Ne

}

Dh =
{
d∗
h ∈ (C0)dim(�h) ∩ H1, dh ∈ P1 in

�e, dh = d0 on ∂�e,∀e ∈ Ne

}

V0
h =

{
v∗
h ∈ V0

h , 	vh = 0 on ∂�e,∀e ∈ Ne

}

P0
h =

{
p∗
h ∈ P0

h , ph = 0 on ∂�e,∀e ∈ Ne

}

D0
h =

{
d∗
h ∈ D0

h, dh = 0 on ∂�e,∀e ∈ Ne

}

the test functions are chosen to be the variations of the
unknown variables so that the kinematic admissibility con-
ditions are satisfied at the boundaries. �h is the volume of a
finite element mesh at the current configuration so that

�h =
⋃
e

�e (e ∈ Ne)

where Ne is the number of elements in the mesh.

A.1 Finite elementmodel

In order to ensure the well-posedness and stability of the
numerical solution, a bubble function is introduced to enrich
the velocity field. The bubble function should have a value of
1 at the center of the element and vanishes at the boundaries,
the resulting velocity and pressure fields of an element in the
mesh can be expressed as

	vh = 	vl + 	vb =
Nn∑
k=1

Nk
l 	vl k +

Ne∑
j=1

Nk
b 	vbk (25a)

ph =
Nn∑
k=1

Nk
l P

k (25b)

dh =
Nn∑
k=1

Nk
l d

k (25c)

ph =
Nn∑
k=1

Nk
l P

k

dh =
Nn∑
k=1

Nk
l d

k

where Nk
l and Nk

b are the base and bubble interpolation func-
tions associated with node k, respectively. Ne and Nn are the
number of elements and nodes respectively. The resulting
system of equations can be written as

∫
�h

ρ
∂ 	vl
∂t

· 	vl∗ + s( 	vl) : ε̇( 	vl∗) − ph 	∇ · 	vl∗ − ρ 	g · 	vl∗ d�h

=
∫

∂�t̄

	t0 · 	vl∗ d�h (26a)

∫
�h

ρ
∂ 	vb
∂t

· 	vb∗ + s( 	vb) : ε̇( 	vb) − ph 	∇ · 	vb d�h

=
∫

�h

ρ 	g · 	vb∗ d�h (26b)

∫
�h

p∗
h

	∇ · ( 	vl + 	vb) + p∗
h ṗh
κ

d�h = 0 (26c)

∫
�h

Gc

lc
d∗
h dhd�h +

∫
�h

Gc lc
∂dh
∂ 	x · ∂d∗

h

∂ 	x d�h (26d)

−
∫

�h

d∗
h H d�h = 0

L0
l =

{
	vl∗ ∈ (C0)dim(�e) ∩ V0

l , 	vl∗ ∈ P1 in�e, 	vl∗

= 0 on ∂�e,∀e ∈ Ne

}

L0
b =

{
	vb∗ ∈ (C0)dim(�h), 	vb∗ ∈ P1 in�e, 	vb∗

= 0 on ∂�e,∀e ∈ Ne

}

123



782 Computational Mechanics (2021) 67:763–783

with the following properties taken into account:
∫
∂�t̄

	t0 ·
	vl∗ d�h = 0 since the bubble function vanishes at the bound-
aries, the inertial contribution of the bubble part is neglected
so that

∫
�h

ρ
∂ 	vl
∂t · 	vb∗ d�h = ∫

�h
ρ

∂ 	vb
∂t · 	vl∗ d�h = 0 and∫

�h
s( 	vb) : ε̇( 	vl∗) d�h = ∫

�h
s( 	vl) : ε̇( 	vb∗) d�h = 0 due

to the orthogonality property of the bubble and nodal spaces.
The time derivative of the velocity is approximated as follows

∂ 	vl,b
∂t

= 	v t+�t
l,b − 	vl,b t

�t

where �t is the time step. Substituting Eq. 25 in 26, the final
form of the residual equations can bewritten on the following
form:

Rll + Rlp = 0 (27a)

Rbb + Rbp = 0 (27b)

R pl + R pb + R pp = 0 (27c)

Rdd + Rdl = 0 (27d)

where Rxy is the residual force vector of coupled set of
unknowns x and y. The system of equations in 27 will be
solved in a staggered manner. A Newton Raphson nonlinear
solver is used to solve the system of the first three equations
before each remeshing step. Then, the fourth equation will
be solved independently. It is worth noting that the system
of Eqs. 27a, 27b and 27c are condensated so that the final
unknowns become the velocities and pressures at the nodes
without the need to explicitly solving for the bubble veloci-
ties.
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