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Abstract
Based on the complementary potential energy variational principle, in this work, we proposed a stress-driven homogenization
procedure to compute overall effective material properties for elastic composites with locally heterogenous micro-structures.
We have developed a novel incremental variational formulation for homogenization problems of both infinitesimal and finite
deformations where the macro-stress-based complementary potential energy is obtained for hyperelastic materials for a global
minimization problem with respect to fine-scale displacement fluctuation field. The point of departure of our approach is a
general complementary variational principle formulation that can determine material responses of elastic composites with
heterogeneous micro structures. We have implemented the proposed stress-driven computational homogenization procedure
with the finite element method. By comparing the numerical results with the analytical method and the strain-driven homog-
enization method, we find that the stress-driven homogenization offers the lower bound estimate of materials properties for
elastic composites.

Keywords Computational homogenization · Micro-structure · Micromechanics · Complementary variational principle of
elasticity · Two-scale homogenization method

1 Introduction

There are hardly any perfectly homogeneous materials at
macroscale, and this is the case for both materials from
nature as well as synthetic materials. At macroscale, contin-
uum solids have complex microstructure, which determines
their overall material properties. Commonly, we categorize
microstructure of inhomogeneous materials into two types:
materials with periodic microstructure and materials with
randomly distributed microstructure. There are two classes
ofmost commonmicrostructure that are often seen in various
composite materials:
(1) the deterministic microstructure with periodicity, and (2)
the statistical microstructure with random distributions.

With the developments of micromechanics and homoge-
nization theories, many homogenization methods for finding
effective material properties of composite materials have
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been developed over the past half century, e.g. [1–5]. In
particular, since 1980s, there is a rapid development in
computational homogenization methods e.g. [6,7]. The com-
putational homogenization method for composite materials
also may be divided into two main categories: (1) Compu-
tational asymptotic homogenization method or multiscale
computational homogenization, which is aimed for com-
posite materials with periodic microstructure, e.g. [8,9], and
(2) Computational micromechanics method, which is mainly
aimed for composite materials with random microstructure,
even though it may also be applied to materials with periodic
microstructure e.g. [10,11].

In computationalmicromechanicsmethods, amain appro-
ach is to use the variational principle of composite continua
to develop the homogenization procedure. Today, computa-
tional variational homogenization has become an important
approach to find the effective properties of composites.

In his pioneer work [12], Eshelby first proposed an effec-
tive eigenstrain method to estimate fluctuation strain in a
heterogeneous solid due to an ellipsoid inclusion, which can
then be utilized to find the close-form expression of effective
material properties of composites at macroscale. The equa-
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tions as well as the solution of the eigenstrain method are
beautiful frommathematics perspective, but they are severely
limited because of the associated simplifications, idealiza-
tion, and assumptions made in the theory. For example, in
theoretical micromechanics, we have to assume that the rep-
resentative volume element (RVE) is infinitely large, and the
inhomogeneities insider RVE must be ellipsoid in shape,
and the elastic composite must be linear elastic and under
small deformation, etc. among others. Due to these restric-
tions in theoretical micromechanics, many researchers have
been focusing on developing various micromechanics meth-
ods that are capable of predicting effectivematerial properties
for finite representative volume element (RVE) with inclu-
sions or second phases in arbitrary shape and for nonlinear
composite materials e.g. [5,13]. It turns out that the compu-
tational micromechanics may be the best approach to solve
such complex realistic homogenization problem, because it
provides precise homogenization solutions for engineering
problems, and the overall material property predictions can
converge to real material properties in the framework of gen-
eral micromechanics modeling, as the numerical model is
refined.

From the perspective of modeling and simulation, in their
seminal works, Suquet and his collaborators [14,15] have
set the foundation for computational micromechanics. Later,
Miehe and his co-workers have systematically developed
the finite element method based computational variational
homogenization approach to solve various homogeniza-
tion problems for hyperelastic and elastoc-plastic composite
materials e.g. [10,11,16]. Their results represent the state-of-
the-art computational homogenization technology in compu-
tational micromechanics as well as computational composite
materials.

In micromechanics homogenization theory, usually we
impose two types of boundary conditions (BCs) to a given
RVE: (1) the prescribed strains or displacements on the
boundary of an RVE, and (2) the prescribed stress or traction
on the boundary of an RVE. The two boundary conditions
correspond two types of the Hill-Mandel lemmas (see [5]).
In computational homogenization theory, we usually refer
the homogenization with the prescribed strain BC as the
strain-driven homogenization and refer the homogenization
of the prescribed stress BC as stress-driven homogenization.
In general, the strain-driven computational homogeniza-
tion is based on the minimum potential energy principle,
and the stress-driven homogenization should be based on
the complementary potential energy principle. In analyti-
cal micromechanics, these correspond to two well-known
overall material property estimates: the Vogit bound and the
Reuss bound (see [5] for details). However, in computational
homogenization, since stress is the primary variable in the
complementary potential principle, and in practice most of
finite element methods are based on displacement formula-

tion, thus, to the best of authors’ knowledge, there has been
no rigorous or purely stress-driven computational homoge-
nization.

In fact, most work done by Miehe and his co-workers
are the strain-driven homogenization for elastic and inelas-
tic composites based on the variational formulation of the
minimum potential energy principle. In [11], they conducted
a computational two-scale analysis for the treatment of a
homogenizedmacro-continuumwith locally attachedmicro-
structure of inelastic constituents. The key contribution of the
work is the development of a direct incremental variational
formulation that can determine the fine-scale displacement-
fluctuation field in inelastic micro-structures. In [16], Miehe
developed computational algorithms to compute the homog-
enized stresses and overall material tangent moduli of the
composite material undergoing finite strain deformation,
and they constructed a family of algorithms and matrix
representations of overall properties of discretized micro-
structures which are motivated by a minimization of the
average incremental energy. Indeed, in [16], Miehe also pro-
posed a stress-driven computational formulation by using an
approach of Lagrangian multiplier, and however, it appears
to us that he did not do implement it. The formulation was
later implemented by van Dijk [17] and Javili et al. [18]. In
particular, Javili et al. found a way to eliminate the possible
rigid-body motions induced by the traction-only boundary
condition. The main shortcoming of the Lagrangian mul-
tiplier approach is that it is not a minimum or extreme
variational principle, and it is only a stationary variational
principle. Even though, one may find the valid results for
a given computational homogenization problem, that result
may not provide a lower bound estimate for the overall mate-
rial properties, like the lower bound estimate such as the
Reuss bound in theoretical micromechanics. In the appli-
cations of composite materials, the lower bound estimate
is much important than the upper bound estimate, because
it provides a criterion for safety and reliability in material
designs.

Different from Miehe’s Lagrangian multiplier approach,
in the present work, we develop a novel stress-driven varia-
tional homogenization method based on the complementary
strain energy of a composite material system; on the other
hand, the primary variable of the complementary varia-
tional principle is still the displacement field. To make it
clear, the main novelty of the present work is that we have
developed a stress-driven homogenization method based the
minimum complementary variational principle whose pri-
mary unknown is still displacement field.

The highlights of this work are the development of a
family of displacement-based complementary variational
homogenization algorithms and the discretized finite element
formulations for finding effective elastic material properties
for both linear elastic and hyperelastic composites under
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both small deformation and finite deformation. In particu-
lar, by comparing the homogenization results obtained by
the present method with the results of the strain-driven
homogenization, we have shown that the present stress-
driven computational method provides a lower bound for the
effective material properties of the composites.

The paper is organized as follows: In Sect. 2, we
shall present several stress-driven complementary variational
homogenization formulations and their finite element for-
mulations. In Sect. 3, we shall demonstrate finite element
implementation and computational results, and we conclude
the study in the last Section of the paper.

2 Stress-driven complementary variational
homogenizationmethod and its finite
element formulation

Different fromMiehe and his collaborators’ work, we devel-
oped a stress-driven homogenization method to compute
the effective material properties based on an incremental
variational formulation. We are able to implement the corre-
sponding variational formulation and compute homogenized
material properties based on finite element method (FEM).

2.1 Some basic concepts of micromechanics
homogenization theory

Before starting the derivation of stress-driven complemen-
tary potential energy, we first introduce basic continuum
kinematic relations, microscopic and macroscopic quantities
and average field in an RVE.

Figure 1 shows that the material configuration B0 corre-
sponds to a RVE which is mapped to its spatial configuration
through the non-linear deformationϕ. The localmacroscopic
response is determined through homogenizing the response
of the corresponding micro-structure obtained from solving
the associated boundary value problem.

In the reference configuration, the position of an arbitrary
material node is denoted as X . The surface normal vector
on boundary ∂B0 in reference coordinate is denoted as N . In
the current configuration, the position of an arbitrarymaterial
node is denoted as x. The surface normal vector on boundary
∂Bt in current coordinate is denoted as n.

The deformation between these two configurations can be
characterized by deformation gradient F, which is defined
as

F = ∂x
∂X

(1)

To associate amicrolevel tensor fieldwith a tensorial quantity
at macrolevel, we first define the average operator< · >. The

average value of a microlevel tensor field T (x) of a material
point ensemble is defined as:

TM =< T >x= 1

V

∫
V
T (x)dVx . (2)

in which the integration is over the volume of the RVE, V ,
with respect to x.

Accordingly, we can have relations between microscale
quantities and macroscale quantities, for example,

PM = 1

V0

∫
V0

PdVx, FM = 1

V0

∫
V0

FdVx

σ M = 1

V

∫
V

σdVx, and εM = 1

V

∫
V

εdVx ,

(3)

where PM is the macroscopic 1st Piola-Kirchhoff (PK-I)
stress, P is microscopic PK-I stress, FM is macroscopic
deformation gradient, F is microscopic deformation gra-
dient, σ M is macroscopic Cauchy stress, σ is microscopic
Cauchy stress, and εM is macroscopic strain. Note that ε

is microscopic strain, V0 is the undeformed volume in ref-
erence configuration, and V is deformed volume in current
configuration.

2.2 Stress-driven homogenization for linear elastic
composites

To start, we first introduce the Hill-Mandel complemen-
tary virtual work theorem: Assume that the condition that
the density of macroscale complementary virtual work at a
heterogeneous material point equals the average comple-
mentary virtual work inside the corresponding RVE holds,

δσ M : εM = 1

V

∫
V

δσ : εdV , (4)

it will lead to:

δWM
c = δW̄c ⇒ WM

c (σ M ) = W̄c(σ
∗) , (5)

if the RVE is subjected to the following boundary condition:

t̄ = σ M · n, ∀x ∈ ∂V . (6)

where σ M and εM aremacroscopic Cauchy stress and strain,
σ and ε are microscopic stress and strain, σ ∗ is true solution
of stress distribution, WM

c is macroscopic complementary
potential energy, W̄c is averaged microscopic complemen-
tary potential energy. For the detailed proof of the above
Hill-Mandel theorem, interested readers can consult [5].

Based on the Hill-Mandel Complementary Virtual
Work Theorem and the Legendre-Fenchel transformation,

123



640 Computational Mechanics (2021) 67:637–652

Fig. 1 Graphical summary of
computational homogenization

we propose the following complementary variational princi-
ple,

W̄c(σ
∗) = sup

σ∈S(σ ∗)

{
σ M : εM − 1

V

∫
V
W (ε)dVx

}

= sup
σ∈S(σ ∗)

{
σ M
i j

1

V

∫
V

εi j dVx − 1

2V

∫
V

σi jεi j dVx

}

= sup
σ∈S(σ ∗)

{
1

V

∫
V

{ε}T dV
{
σ M

}

− 1

2V

∫
V

{ε}T [D] {ε} dVx

}
, (7)

where S(σ ∗) is all possible Cauchy stress fields, i.e.

S := {
σ |σ ∈ L2, σ · n = t = σ M · n on ∂V

}

where ε = C : σ and C = D−1 is the elastic compliance
tensor. In above equation, W̄c is the averaged complementary
potential energy, which is equal to macro-complementary
potential energy; W is the micro-complementary potential
energy, σ M is the macro-stress, and V is the total volume of
RVE.

We can slightly change Eq. (7) into the following form,

W̄c(u∗) ≤ sup
u∈U

{
σ M : εM − 1

V

∫
V
W (ε)dVx

}

= sup
u∈U

{
1

V

∫
V

{ε}T dV
{
σ M

}

− 1

2V

∫
V

{ε}T [D] {ε} dVx

}

≤ sup
uh∈U

{
1

V
(

Ne∑
e=1

{ε}T Ve)
{
σ M

}

− 1

2V

Ne∑
e=1

({ε}T [D] {ε} Ve)
}

(8)

where ε = 1
2 (∇ ⊗ uh + (∇ ⊗ uh)T ) and U is the space for

all the admissible displacement fields,

U = {
u

∣∣∣ u ∈ H1,u = εM · x on ∂V and εM = C : σ M ,

C = D−1} .

In Eq. (8), uh is a finite element displacement interpolation
field; Ve is the elementary volume in FEM discretization, Ne

is number of elements and {·} is the vectorial form and [D]
is the matrix form of elastic tensor.

To obtain the effective elastic tensor that can character-
ize the constitutive response of the linear elastic composite
material, we first derive the matrix formulation of the effec-
tive material elastic tensor based on FEM discretization.

First, we introduce a FEM discretization to the RVE, and
discretized displacement field, and then find the expression
for FEM nodal strains,

{ε} = [B] {d}

where d is the total nodal displacement, which can be decom-
posed into two parts: d = εM · x + wd . The first term
εM · x represents the averaged nodal displacement or macro
nodal displacement field; the second term wd represents
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the fine-scale nodal fluctuation displacement field, such that
wd = 0, on ∂V .

Substituting it into Eq. (7), we have the following equation
for discrete representation of the complementary potential
energy,

W̄c(d∗) ≤ sup
d∈V

{
{d}T ANe

e=1(
[
Be]T Ve)

{
σ M

}

− 1

2V

Ne∑
e=1

(
[
Be] {

de
}
)T [D]

[
Be] {

de
} · Ve

}

= sup
d∈V

{
{d}T ANe

e=1(
[
Be]T Ve)

{
σ M

}

− 1

2V
{d}T ANe

e=1(
[
Be]T [D]

[
Be] Ve) · {d}

}

= sup
d∈V

{
{d}T ANe

e=1(
[
Be]T Ve)

{
σ M

}

− 1

2V
{d}T ANe

e=1

[
K e] {d}

}

= sup
d∈V

{
{d}T ANe

e=1(
[
Be]T Ve)

{
σ M

}

− 1

2V
{d}T [K ] {d}

}

(9)

where V is a finite dimensional linear space, such that
V := {

d|d ∈ R
n, d = d0 on ∂V

}
; K is the global stiff-

ness matrix, K e is element stiffness matrix, d∗ is the true
nodal displacement field, d is the possible nodal displace-
ment field, and

[
Be

]
is element stress–strain matrix, ANe is

element assembly symbol.
To find the true nodal displacements, we need to take varia-
tion of W̄c(d):

δW̄c(d) = ∂W̄c

∂d
δd = 0

Therefore, the necessary condition for solution existence of
the supremum W̄c is:

∂W̄c

∂d
= 0 (10)

Substituting the finite element displacement interpolation
field into Eq. (10), we can derive the total nodal displace-
ments as follows,

∂W̄c

∂d
= 1

V
ANe

e=1(
[
Be]T Ve) ·

{
σ M

}

− 1

V
ANe

e=1(
[
K e]) {d} = 0

⇒ {d} = [K ]−1ANe
e=1(

[
Be]T Ve) ·

{
σ M

}
.

(11)

Based on Eq. (11), the effective compliance tensor for linear
elastic composite materials is derived as,

DM := D̄ = ∂εM

∂σ M

= 1

V

∫
V

∂ε

∂σ M
dVx = 1

V

Ne∑
e=1

∂ε

∂σ M
Ve

= 1

V

Ne∑
e=1

[
Be] {

d,σ M

}e
Ve

= 1

V
ANe

e=1(
[
Be] Ve) · {

d,σ M

}

(12)

where Ne is the total number of elements.
Based on Eq. (11), we have obtained d,σ M given as below,

{
d,σ M

} = [K ]−1ANe
e=1(

[
Be]T Ve) (13)

SubstitutingEq. (13) intoEq. (12),we can obtain the effective
macro-compliance tensor as follows,

DM = D̄

= 1

V
ANe

e=1(
[
Be] Ve) [K ]−1ANe

e=1(
[
Be]T Ve), (14)

where DM is called the macro-compliance tensor, which is
the inverse of effective elastic tensor. K is the global stiff-
ness matrix. Therefore, the effective elastic tensor CM can
be derived as,

CM = C̄ = DM,−1 .

2.3 Stress-driven homogenization for hyper-elastic
material

Tobeginningwith,wefirst prove the existence of a solution to
the stress-driven homogenization for nonlinear elastic solids
under small deformation.

Proof Similar to the linear elastic case, the Hill-Mandel
ComplementaryVirtualWorkTheorem is applied on non-
linear case in terms of nonlinear constitutive relation. Again,
we assume that the RVE is prescribed with traction boundary
condition,

t̄ = σ M · n, ∀x ∈ ∂Ωt (15)

where t̄ is applied traction force on the boundary ∂Ωt .
The total potential energy of the system is shown:

Π =
∫

Ω

W (ε)dV −
∫

∂Ωt

t̄ · ud A
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=
∫

Ω

W (εi j )dV −
∫

∂Ωt

t̄i ui d A (16)

whereΠ is the total potential energy of the continuum,W (ε)

is the strain energy density, u is the displacement field on
the continuum, Ω is the continuum domain, ∂Ωt is traction
boundary of the continuum domain.

Due to the relation of traction and macro-stress shown
below:

∫
∂Ωt

t̄i ui d A =
∫

∂Ωt

σ M
i j n j ui d A = σ M

i j

∫
Ω

εi j dV

Eq. (16) can be transformed into:

Π =
∫

Ω

W (ε)dV − σ M
∫

Ω

εdV (17)

The true strain ε∗ is inserted into the total energy of system
equation and based on following derivation:

∫
Ω

σ : ε∗dV =
∫

Ω

σ : ∇u∗dV

=
∫

Ω

∇ · (σ T · u∗) − divσ · u∗dV

=
∫

∂Ω

σ · u∗ · nd A = σ M :
∫

Ω

ε∗dV

(18)

The infimum inequality is shown as below:

Π(ε∗) =
∫

Ω

W (ε∗) − σ : ε∗dV

=
∫

Ω

−Wc(ε
∗)dV ≤ Π(ε) (19)

Therefore, we have the inequality:

∫
Ω

Wc(ε
∗)dV ≥ −Π(ε)

⇒
∫

Ω

Wc(ε
∗)dV = sup

d∈V
(−Π(ε)) (20)

It then proves that the existence of a extreme solution to the
following optimization problem,

W̄c = 1

V

∫
Ω

Wc(ε
∗)dV = 1

V
sup
d∈V

(−Π(ε))

= 1

V
sup
d∈V

[
−

∫
Ω

W (ε)dV + σ M :
∫

Ω

εdV

]

= 1

V
sup

σ∈S(σ ∗)

[∫
Ω

Wc(σ )dV

]
.

(21)


�

Since the existence of extreme solution of complementary
potential has been proved, the necessary condition of the
variational principle of complementary potential energy can
be stated as follows,

δW̄c = ∂W̄c

∂d
δd = 0 ⇒ ∂W̄c

∂d
= 0 (22)

It may be noted that the complementary potential energy has
been modified in terms of displacement variables,

W̄c(d∗) = sup
d∈V

{
σ M : εM − 1

V

∫
Ω

W (ε)dV

}

= sup
d∈V

{
1

V

∫
Ω

{ε}T dV
{
σ M

}

− 1

V

∫
Ω

W (ε)dV

}

≤ sup
d∈V

{
1

V

Ne∑
e=1

({ε}T Ve)
{
σ M

}

− 1

V

Ne∑
e=1

W (ε)Ve

}

(23)

By using finite element discretized strain field represen-
tation {ε} = [B] {d}, the necessary condition for existence a
maximizer d� is ∂W̄c

∂d = 0, which can be expressed as,

1

V
ANe

e=1(
[
Be]T Ve)·

{
σ M

}
− 1

V
ANe

e=1

(
∂W

∂ {d}Ve
)

= 0 (24)

Due to the nonlinearity of ∂W̄c
∂d , one is to linearize the nec-

essary condition ∂W̄c
∂d = 0. Based on first order Taylor

expansion, the linearized necessary condition is:

W̄ c
,d(d) + W̄ c

,dd(d)Δd = 0

⇒ Δd = −
[
W̄ c

,dd(d)
]−1

W̄ c
,d(d)

(25)

Therefore, the total nodal displacement field can be solved
by the Newton-Raphson iteration algorithm,

di+1 = di + Δdi

= di −
[
W̄ c

,dd

]−1
W̄ c

,d until ‖W̄ c
,d(d

i )‖ < tol

(26)

Remark The displacement field solution d is unique, if we
apply suitable displacement boundary condition that can
eliminate rigid body motion.
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The discretized formulation for ∂W̄c
∂{d} is given as follows,

∂W̄c

∂ {d} = 1

V
ANe

e=1(
[
Be]T Ve) {σ }M

− 1

V
ANe

e=1

([
Be]T {

∂W

∂ε

}T

Ve

)
(27)

The discretized formulation of ∂2W̄c

∂d2
can be shown as:

∂2W̄c

∂d2
= − 1

V
ANe

e=1

([
Be]T {

∂2W

∂ε2

}T [
Be] Ve

)
(28)

Based on above equation, the true total nodal displacement
d∗, which is a maximizer of the averaged complementary
potential energy W̄c, can be found. We can then derive the
FEM formulations for macro-strain εM and the effective
compliance tensor of composites DM ( D̄) as follows,

εM = ∂W̄c

∂σ M

= 1

V

Ne∑
e=1

{ε}T Ve (29)

DM = D̄

=
∂W̄ c

,σ M

∂σ M
= W̄ c

,σ M d d,σ M (30)

in which

W̄ c
,σ M d = 1

V

∂
Ne∑
e=1

{ε} Ve
∂d

= 1

V
ANe

e=1

[
Be] Ve (31)

and

d,σ M =
(
1

V
ANe

e=1

[
Be]T {

∂2W

∂ε2

} [
Be] Ve

)−1

(
1

V
ANe

e=1

[
Be]T Ve

)
(32)

Therefore the discretized formulation for the effective com-
pliance tensor is:

DM = D̄

=
(
1

V
ANe

e=1

[
Be] Ve

) (
1

V
ANe

e=1

[
Be]T {

∂2W

∂ε2

}

· [Be] Ve)−1
(
1

V
ANe

e=1

[
Be]T Ve

)
(33)

The computational procedure of the proposed homoge-
nization method is summarized in the Box 1.

Box.1 Discretization of extreme problem of homogenization
at small deformation.

1. Database
{
σ M , dn

}
given. Initialize nodal dis-

placements dn+1 = dn .
2. Evaluate extreme function:

W̄c(σ
∗) = sup

d∈V

{
1
V

Ne∑
e=1

{ε}T Ve − 1
V

Ne∑
e=1

W (ε)Ve

}

and its derivatives,

W̄ c
,σ M d

= 1
V ANe

e=1(
[
Be

]
Ve)

W̄ c
,σ M = 1

V

Ne∑
e=1

({ε}T Ve)

W̄ c
,dd = − 1

V ANe
e=1(

[
Be

]T {
∂2W
∂ε2

}T [
Be

]
Ve)

W̄ c
,d =

1
V ANe

e=1(
[
Be

]T
Ve)

{
σ M

}− 1
V ANe

e=1(
[
Be

]T {
∂W
∂ε

}T
Ve)

d,σ M =(
1
V ANe

e=1

[
Be

]T {
∂2W
∂ε2

} [
Be

]
Ve

)−1(
1
V ANe

e=1

[
Be

]T
Ve

)

3. Convergence check: if (

∥∥∥W̄ c
,d

∥∥∥ ≤ tol) go to 5.

4. Newton update of nodal displacement:

di+1
n+1 = din+1 −

[
W̄ c

,dd

]−1 [
W̄ c

,d

]

5. Set macro-strain and compute macro-moduli:

εMn+1 = W̄ c
,σ M and

CM,−1
n+1 = DM

n+1 = D̄n+1 = W̄ c
,σ M d

d,σ M

2.4 Stress-driven homogenization for finite
deformation

In this section, the stress-driven homogenization based on
incremental variationalmethod is extended from small defor-
mation to finite deformation.

Consider a finite motion of a continuum composites
ϕ(X, t) : Ω0 → Ωt . Thus the deformation gradient of
the motion can be defined as:

F = ∂x
∂X

= ∇ϕ (34)

We first assume that composite material is quasi-convex with
respect to F. A function W is said to be quasi-convex with
respect to F if

W (F) ≤ 1

V0

∫
Ω0

W (F + ∇Xχ)dX,
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∀F ∈ R
3×3, χ ∈ W 1,∞

0 (V ;R3) (35)

in which, χ is a perturbation of ϕ(X, t). The quasi-convexity
of functional W implies that

(n ⊗ N) : ∂2FFW : (n ⊗ N) ≥ 0 (36)

where n, N ∈ R
3. This condition is called the Legendre-

Hadamard or strong ellipticity condition.
Wenowprove the existence of an extremumsolution to the

complementary potential energy under finite deformation.

Proof For finite deformation, we may have the following
minimum potential energy principle:

Π(u∗) = inf
u∈V

π(u), ∀u ∈ V (37)

whereV is the function space for all admissible displacement
fields.

Π =
∫

Ω0

W (F)dV −
∫

∂Ωt

p̄ · ud A (38)

where p̄ is applied traction in the reference coordinate. Such
transformation relation is introduced:
∫

∂Ωt

p̄ · ud A =
∫

∂Ωt

PMN · ud A = PM
∫

∂Ωt

∇XudV

where PM is the macroscale 1st Piola-Kirchhoff stress.
The potential energy of the system can be given as follows,

Π =
∫

Ω0

W (F)dV − PM
∫

Ω0

∇XudV (39)

The principle of minimum potential energy will lead to such
equation:

Π(u∗) =
∫

Ω0

W (F∗)dV − PM
∫

Ω0

∂u∗

∂X
dV (40)

where F∗ is deformation gradient due to true displacement
u∗.

Considering such transformation relation shown below

∫
Ω0

P : ∇Xu∗dV =
∫

Ω0

∇X · (PT u∗) − DivP · u∗dV

=
∫

∂Ωt

PN · u∗d A −
∫

Ω0

DivP · u∗dV

=
∫

∂Ωt

PN · u∗d A

= PM
∫

∂Ωt

u∗ ⊗ Nd A

= PM :
∫

Ω0

∇Xu∗dV ,

we have found that
∫

Ω0

P : ∇Xu∗dV = PM :
∫

Ω0

∇Xu∗dV . (41)

Substituting it into Eq. (40), we have following relations,

Π(F∗) =
∫

Ω0

W (F∗)dV − PM :
∫

Ω0

∇Xu∗dV

=
∫

Ω0

W (F∗)dV −
∫

Ω0

P : ∇Xu∗dV

=
∫

Ω0

−Wc(F∗)dV ≤ Π(F) .

(42)

Therefore, one can find the following inequality,

∫
Ω0

Wc(F∗)dV ≥ −Π(F)

⇒
∫

Ω0

Wc(F∗)dV = sup
d∈V

(−Π(F)) . (43)

Based on above equation, the averaged complementary
potential energy can be found as,

W̄c = 1

V0

∫
Ω0

Wc(F∗)dV = 1

V0
sup
d∈V

(−Π(F))

= sup
d∈V

1

V0

[
−

∫
Ω0

W (F)dV + PM :
∫

Ω0

∇XudV
]

= sup
P∈S(P∗)

1

V0

∫
Ω0

Wc(P)dV

(44)

where S(P∗) is the space for all admissible 1st Piola-
Kirchhoff stress tensors. 
�

Since that the existence of extremal solution of com-
plementary potential energy is proved, one can derive the
corresponding FEM discretization formulation, which can
be expressed as,

W̄c(P∗) ≤ sup
d∈V

{
PM : 1

V0

∫
Ω0

∇XudV

− 1

V0

∫
Ω0

W (F)dV

}

= sup
d∈V

{
1

V0

∫
Ω0

{
∂u
∂X

}T

dV
{
PM

}

− 1

V0

∫
Ω0

W (F)dV

}

≤ sup
d∈V

{
1

V0

( Ne∑
e=1

{
∂u
∂X

}T

Ve

){
PM

}
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− 1

V0

Ne∑
e=1

W (F)Ve

}
. (45)

The FEM discretization of displacement u is shown as:

{
∂u
∂X

}
= [B] {d} (46)

where d represents the total nodal displacement which can
be decomposed as d = (FM − 1)·X + wd . The first term,
(FM − 1)·X , represents the averaged nodal displacement
field or the prescribed boundary displacement field, and the
second term, wd , represents the fine-scale nodal fluctuation
displacement.

To find the extremal nodal displacement solution to the
macro-complementary potential energy, we take a variation
on the averaged complementary potential energy W̄c shown
as follows,

δW̄c = ∂W̄c

∂d
δd = 0 . (47)

It then leads to the necessary condition of incremental vari-
ational problem:

∂W̄c

∂d
= 0 (48)

The FEM discretization formulation of necessary condition
is shown as,

∂W̄c

∂d
= 1

V0
ANe

e=1(
[
Be]T Ve) ·

{
PM

}

− 1

V0
ANe

e=1

(
∂W

∂d
Ve

)

= 0 (49)

Because of the nonlinearity of above formulation of W̄ c
,d ,

we need to linearize it to obtain an iterative solution of the
total nodal displacement solution to the extreme complemen-
tary potential energy of system.
The first order Taylor expansion is used to have linearized
formulation of W̄ c

,d

W̄ c
,d = W̄ c

,d(d
i ) + W̄ c

,dd(d
i )Δdi = 0

⇒ Δdi = −
[
W̄ c

dd(d
i )

]−1
W̄ c

,d(d
i )

(50)

Therefore, the Newton-Raphson iterative algorithm for solv-
ing total nodal displacement is,

di+1 = di + Δdi = di −
[
W̄ c

,dd

]−1
W̄ c

,d until

‖W̄ c
,d(d

i )‖ ≤ tol (51)

Remark The displacement field solution, d, is unique if we
apply the displacement boundary condition that eliminates
the rigid body motion.

The FEM discretization formulation of ∂W̄c
∂d is given as fol-

lows,

∂W̄ c

∂d
= 1

V0
ANe

e=1(
[
Be]T Ve)

{
PM

}

− 1

V0
ANe

e=1

([
Be]T {

∂W

∂F

}T

Ve

)
(52)

The discretized formulation of ∂2W̄ c

∂d2
is shown below,

∂2W̄c

∂d2
= − 1

V0
ANe

e=1

([
Be]T {

∂2W

∂F2

}T [
Be] Ve

)
. (53)

Based on these formulations, we can solve the total nodal
displacement d, the average displacement gradient ∂̄u

∂X , as
well as the effective compliance tensor D̄(DM ) of compos-
ites,

∂u
∂X

= ∂W̄ c

∂ PM

= 1

V0

Ne∑
e=1

{
∂u
∂X

}T

Ve (54)

DM = D̄

=
∂W̄ c

,PM

∂ PM
= W̄ c

,PM d
d,PM (55)

in which the discretized formulations of W̄ c
,PM d

and d,PM

are shown as follows,

W̄ c
,PM d

= 1

V0

∂

∂d
(

Ne∑
e=1

{
∂u
∂X

}
Ve)

= 1

V0
ANe

e=1(
[
Be] Ve) (56)

d,PM =
[
1

V0
ANe

e=1

[
Be]T {

∂2W

∂F2

} [
Be] Ve

]−1

(
1

V0
ANe

e=1

[
Be]T Ve

)

=
([

−W̄ c
,dd

]T)−1

W̄ c
,d PM (57)

Therefore, we have the discretization formulation of D̄(DM )

as follows,

DM = D̄

=
(

1

V0
ANe

e=1

[
Be] Ve

)
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([
1

V0
ANe

e=1

[
Be]T {

∂2W

∂F2

} [
Be] Ve

]−1
)

·
(

1

V0
ANe

e=1

[
Be]T Ve

)
. (58)

The main computation steps of the proposed computa-
tional homogenization procedure are summarized in the Box
2.

Box.2 Discretization of extreme problem of homogenization
at finite deformation.

1. Database
{
PM , dn

}
given. Initialize nodal dis-

placements dn+1 = dn .
2. Evaluate extreme function:

W̄c(P∗) = sup
d∈V

{
1
V0

Ne∑
e=1

{
∂u
∂X

}T
Ve − 1

V0

Ne∑
e=1

W (F)Ve

}

and its derivatives:

W̄ c
,PM d

= 1
V0
ANe

e=1(
[
Be

]
Ve)

W̄ c
,PM = 1

V0

Ne∑
e=1

(
{

∂u
∂X

}T
Ve)

W̄ c
,dd = − 1

V0
ANe

e=1(
[
Be

]T {
∂2W
∂F2

}T [
Be

]
Ve)

W̄ c
,d = 1

V0
ANe

e=1(
[
Be

]T
Ve)

{
PM

} −
1
V0
ANe

e=1(
[
Be

]T {
∂W
∂F

}T
Ve)

d,PM =(
1
V0
ANe

e=1

[
Be

]T {
∂2W
∂F2

} [
Be

]
Ve

)−1(
1
V0
ANe

e=1

[
Be

]T
Ve

)

3. Convergence check: if (

∥∥∥W̄ c
,d

∥∥∥ ≤ tol) go to 5.

4. Newton update of nodal displacement:

di+1
n+1 = din+1 −

[
W̄ c

,dd

]−1 [
W̄ c

,d

]

5. Set macro-strain and compute the macroscale elas-
tic moduli:

FM
n+1 = W̄ c

,PM and

CM,−1
n+1 = C̄

−1
n+1 = D̄n+1 = W̄ c

,PM d
d,PM

3 Numerical examples

In this Section, we shall present several benchmark homog-
enization examples for both linear elastic material and
hyper-elastic material under both small deformation and
finite deformation. Furthermore, we shall make a compar-
ison of the numerical results obtained by using the present

method with that obtained from the strain-driven homoge-
nization variational method, which offers an upper bound
for the effective material properties.

3.1 Linear elastic composite material

We first consider an RVE of a linear elastic composite,
and the cubic shaped RVE with edge size is 4.0 and an
ellipsoid inclusion with semi-axis radius a = 0.5, b =
0.4, c = 0.3 is set up (Tables 1, 2). The inclusion mate-
rial is G1 = 80, 000, K1 = 23, 000 and the matrix is
G2 = 40, 000, K2 = 11500. The ellipsoid configuration
and matrix configuration are shown in Fig. 2.

The effective elastic tensors based on strain-driven and
stress-driven are shown in Tables 1, 2.

From the tables shown above, one may find that stress-
driven homogenization method is able to estimate the effec-
tive elastic tensor, which can be approximated from the
homogenized stress–strain relation.

For the computational homogenization method we are not
restricted by geometry of inclusion, therefore one can also
consider matrix as a hollow sphere and the inclusion as a
concentric sphere as shown in Fig. 3.

For the matrix material, G1 = 25, 000, K1 = 23, 000,
the inclusion sphere G2 = G1z1, K2 = K1z2. z1 and z2 are
ratios that control the bulk modulus and shear modulus of
inclusion material. Due to the arbitrary shape of inclusion
of computational homogenization, we can have the effective
bulk modulus κ̄ and effective shear modulus μ̄with different
volume fraction of inclusion. The results are shown in Fig. 4.

From the numerical results presented above we may con-
clude that the stress-driven estimate is inside the domain
of the Hashin-Shtrikman bounds. It proves the validity of
stress-driven computational homogenization theory. Gener-
ally speaking, effective κ̄ , μ̄ from stress-driven are lower
than that from strain-driven homogenization. It means that
stress-driven homogenization offers a lower bound solution
for material constants of composites. This observation is
coincident with our previous derivation of supreme extremal
solution of stress-driven homogenization. Besides, when
volume fraction is below 0.8 the stress-driven curve tends
to approximate to the lower bound of Hashin-Shtrikman
while when volume fraction exceeds 0.8 the stress-driven
curve tends to approach to the Hashin-Shtrikman upper
bound. Furthermore, the strain-driven homogenization has
the similar tendency and it even exceeds the domain of
Hashin-Shtrikman bounds (Fig. 4).
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Table 1 Effective elastic tensor
of strain-driven homogenization 64402.551 −14968.627 −14962.809 −2.581 2.143 3.182

−14968.627 64360.385 −14949.057 −2.825 −3.430 −2.246

−14962.809 −14949.057 64338.088 2.018 −2.948 4.163

−2.581 −2.825 2.018 39701.135 3.673 −2.512

2.143 −3.430 −2.948 3.673 39677.593 −2.233

3.182 −2.246 4.163 −2.512 −2.233 39691.081

Table 2 Effective elastic tensor
of stress-driven homogenization 65648.776 −15132.611 −15134.662 1.628 −0.48 −3.384

−15132.611 65455.212 −15131.409 1.918 −0.599 1.332

−15134.662 −15131.409 65421.233 0.206 −1.115 −1.280

1.628 1.918 0.206 40301.124 0.368 −0.611

−0.480 −0.599 −1.115 0.368 40256.816 0.622

−3.384 1.332 −1.280 −0.611 0.622 40292.333

Fig. 2 a Undeformed ellipsoid
inclusion; b undeformed
rectangular cuboid

Fig. 3 a Undeformed spherical
inclusion; b undeformed hollow
spherical matrix
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Fig. 4 a κinclusion
κmatri x

= 10; b κinclusion
κmatri x

= 100; c μinclusion
μmatri x

= 4; d μinclusion
μmatri x

= 50

3.2 Homogenization of hyperelastic composite
material under small deformation

For the hyper-elastic material, an ellipsoid with semi-axis
a = 0.8, b = 0.96, c = 1.12 and a matrix with edges
2.0× 2.0× 3.0 are set up. The ellipsoid inclusion and cubic
matrix are shown in Fig. 5.

We now consider a special class of nonlinear com-
posite materials, in which both the inclusion and matrix
are isotropic and homogeneous, and they have the same
form of nonlinear constitutive relation as shown below,

W = 1

2
κ I 21 (ε) + μI 22 (ε) (59)

in which, I1(ε) = trace(ε) and I2(ε) = 1
2 (trace(ε)

2 −
trace(ε2)).

For this type of nonlinear materials, the micro-stress can be
found as,

∂W

∂ε
= κ I1(ε)1 + 2μI2(ε)

(
I1(ε)1 − ε

)
, (60)

and the corresponding fine-scale elastic tensor can be derived
as,

∂2W

∂ε2
= κ1 ⊗ 1 + 2μ

[
(I 21 + I2)1 ⊗ 1

−I1(1 ⊗ ε + ε ⊗ 1) − I21
4s + ε ⊗ ε

]
(61)

where 1 is the second order identity, 14s is the fourth order
identity and1⊗ε and ε⊗1 are respectively the tensor product
of micro-strain and second order identity.
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Fig. 5 Hyperelastic material
RVE: a Undeformed ellipsoid
inclusion; b undeformed matrix

Fig. 6 stress–strain curves

Assume that the matrix material parameters are κ1 = 120,
μ1 = 30 and the inclusion material parameters are κ2 = 90,
μ2 = 20.

Due to the nonlinearity of material constitutive relation,
the material properties constants are variables depending on
deformation (See: Fig. 6, Tables 3, 4). Therefore, we plot the
stress–strain curve to show its constitutive response:

In the following example, we compare the effective elastic
tensor obtained from the stress-driven homogenization with
that obtained from the strain-driven homogenization.

From the calculated stress–strain curves and effective
elastic tensors, it is found that the constitutive relation of
stress-driven is within the domain of matrix and inclusion
bounds and the stress-driven homogenization offers a lower
bound while strain-driven homogenization offers an upper
bound. This is consistent with the supremum and infimum
extremal solutions of stress-driven and strain-driven varia-

tional derivation. Based on these tables, we can find that
the effective elastic tensor of strain-driven has a good agree-
ment with stress-driven homogenization result. Accordingly,
based on the microscale material property, the macroscale
material properties have been shown in two effective elastic
tensor tables.

3.3 Hyper-elastic material under finite deformation

In engineering applications, it is very rare to have a hyper-
elastic material whose constitutive relation is quasi-convex.
Therefore, a polyconvex stress potential in [16] is chosen in
this numerical example.
We assume the constitutive response of the micro-structural
constituents to be isotropic and governed by this form:

W (F; X) = μ

2

[
‖F‖2 − 3

]
+ μ

β

[
(detF)−β − 1

]
(62)

which satisfies the material stability condition:

W (F) ≤ 1

V

∫
V
W (F + ∇Xχ)dx,

∀F ∈ R
3×3,χ ∈ W 1,∞

0 (V ;R3) (63)

The constitutive response is governed by two material
variables μ and β := κ/μ − 2/3, where κ ∈ R+ denotes
the bulk modulus and μ ∈ R+ the shear modulus.

Our theory is validated by setting up such a model: a
two-phase composites with stiff inclusions embedded into
a soft matrix and κM = 17.5, μM = 8.0 for the matrix
and κI = 100κM , μI = 100μM for the inclusion. To
make a comparison with strain-driven homogenization [16],
we also have a composite with a circular inclusion embed-
ded into the center of a soft matrix. The side length of
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Table 3 Effective elastic tensor
of stress-driven homogenization 119.607 128.684 126.894 0.467 −1.134 −0.146

[0.5ex] 128.684 119.784 128.024 0.301 0.353 −0.298

126.894 128.024 119.862 0.2654 −0.218 0.018

0.467 0.301 0.265 −3.698 −0.140 −0.104

−1.134 0.353 −0.218 −0.140 −4.332 −0.125

−0.146 −0.298 0.018 −0.104 −0.125 −3.539

Table 4 Effective elastic tensor
of strain-driven homogenization 120.279 128.807 128.863 −0.398 0.994 0.220

[0.5ex] 128.807 118.363 127.875 −0.465 0.865 0.328

128.863 127.875 118.984 −0.336 0.788 0.387

−0.398 −0.465 −0.336 −4.704 0.071 0.017

0.994 0.865 0.788 0.071 −4.427 −0.101

0.220 0.328 0.387 0.017 −0.101 −4.875

Fig. 7 a Deformed mesh of extension mode based on stress-driven homogenization; b Deformed mesh of shear mode based on stress-driven
homogenization

the matrix h = 1.0, the diameter of the inclusion d =
0.4.

In ourmethod, amacroscopic plane-stress extensionmode
is applied:

PM = [
PM
11 ; PM

22 ; PM
12 ; PM

21

] = [8.4; 2.0; 0.0; 0.0] and a
shear mode:

P = [
PM
11 ; PM

22 ; PM
12 ; PM

21

] = [0.0; 0.0; 4.0; 4.0].
Comparing with strain-driven method, from Tables 3 and

4, we find that our method offers a lower bound of material
response. And the deformed mesh of extension mode and
shear mode for different mico-to-macro transition based on
stress-driven homogenization are shown in Fig. 7, where the
red circle represents inclusion part (Tables 5, 6).

4 Conclusions and discussions

In this work, we present a stress-driven computational
homogenization procedure tofind the effectivematerial prop-
erties of both linear elastic and hyperelastic composite mate-
rials with arbitrary microstructure. A consistent variational
framework for construction computational homogenization
formulations for linear elastic and hyperelastic composite
solids under both small andfinite deformationhas beendevel-
oped. For the broad class of generalized composite media,
an incremental variational formulation for general material
responses is set up. The existence of a quasi-hyperelastic
stress potential energy allowed the computation homogeniza-
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Table 5 The stress-driven method for P and F

extension
F P

1.36 0.0 8.40 0.0
0.00 0.947 0.0 2.0

shear
F P

1.0 0.33 0.0 4.0
0.0302 1.0 4.0 0.0

Table 6 The strain-driven method for P and F [16]

extension
F P

1.4 0.0 8.398 0.0
0.0 1.0 0.0 2.09

shear
F P

1.0 0.4 −0.12 4.075
0.0 1.0 4.104 −0.079

tion approach to be applied to a fair large class of hyperelastic
materials. Under the macro stress-driven condition, we have
developed an incremental variational formulation for the
global homogenization problem where a quasi-hyperelastic
macro-stress potential is obtained from a global minimiza-
tion problemwith respect to the fine scale displacement filed.

The main novelty of this work are three: (1) The unknown
variable in the proposed stress-driven homogenization for-
mulation is not stress but displacement, which circumvents
the main difficulty in stress-driven complementary varia-
tional principle formulation. This is the main reason why
we succeeded; (2) We have shown that the stress-driven
computational homogenization approach proposed in this
work indeed provides a lower bound for effective material
properties, and (3) We are able to apply the stress-driven
homogenization method to find the effective material prop-
erties of nonlinear hyperelastic composite materials under
finite deformations. This is the case that even the strain-driven
homogenization method has difficulty to do.

Finally based on the analysis of the numerical simulation
results obtained in this work, we have reached to the follow-
ing conclusions:

(1) The numerical results obtained by using the proposed
stress-driven homogenization method are shown that
they are in a good agreement with the results of the
Hashin-Shtrikman lower and upper bounds [19,20] for
linear elastic composite materials (see Fig. 4).

(2) The stress-driven homogenization method provides the
lower bound estimate of the effective material prop-
erties of linear elastic composites, whereas the strain-
driven homogenization offers the upper bound estimate

of effective elastic material properties of linear elas-
tic composites, and the combination of them can give
a more accurate numerical estimate of effective mate-
rial properties than the Hashin-Shtrikman’s analytical
predictions;

(3) Based on the numerical results obtained in nonlin-
ear homogenization, we find that the effective material
properties are boundedwithin the certain range between
thematerial properties of the inclusion andmatrixmate-
rials, which suggests that the variational principle based
stress-driven homogenization formulation can predict
the nonlinear effective material properties;

(4) The stress-driven homogenization based on the incre-
mental variational formulation offers the lower bound
estimate of effective material properties for nonlin-
ear hyperelastic composites, while the strain-driven
homogenization offers the upper bound estimate of
effective material properties of nonlinear hyperelastic
materials, and,

(5) By using the polyconvex potential function, the stress-
driven homogenization method under finite deforma-
tion also offers a lower bound estimate of the material
response comparing to the results obtained from the
strain-driven homogenization.
To close the presentation, we would like to empha-
size that the computational procedure developed in this
work can be applied to any shaped RVEs with arbitrary
of inclusions of any shape and any number. However,
it is noteworthy that irregular shape of domain (both
RVE as well as inclusions) will require finer mesh and
therefore it may require more computational costs. Fur-
thermore, we believe that this method is also applicable
to the homogenization of fiber-reinforced composite
problems under elastic range with finite deformation.
Moreover, this method may be able to extended to
some inelastic cases because it is an incremental for-
mulation. However for the case of the composites with
fiber/matrix debonding, it may need additional numer-
ical techniques.
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