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Abstract
This paper presents a Lagrangian approach to simulating multibody dynamics in a tensegrity framework with an ability
to tackle holonomic constraint violations in an energy-preserving scheme. Governing equations are described using non-
minimum coordinates to simplify descriptions of the structure’s kinematics. To minimize constraint drift arising from this
redundant system, the direct correction method has been employed in conjunction with a novel energy-correcting scheme that
treats the total mechanical energy of the system as a supplementary constraint. The formulation has been extended to allow
tensegrity structures with compressible bars, allowing for further discussion on potential choices for softer bar materials. The
benchmark example involving a common tensegrity structure demonstrates the superiority of the presented formulation over
Simscape Multibody in terms of motion accuracy as well as energy conservation. The effectiveness of the energy correction
scheme is found to be increasing with the extent of deformations in the structure.

Keywords Multibody dynamics · Tensegrity · Non-minimum coordinates · Direct correction method · Energy-preserving
scheme · Compressible bars

List of symbols
νk Poisson’s ratio of kth bar material (com-

pressible)
Ψk Force density of kth bar (compressible)
σk Force density of kth string
λ Lagrange multipliers
hk Angular momentum of kth bar
B Bar matrix
bk kth bar
Cb Connectivity matrix of bars
Cs Connectivity matrix of strings
F Non-conservative force matrix
f d,k Damper force in kth string
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ωk Angular velocity of kth bar
I bk Moment of inertia of kth bar
L pm Location matrix of point masses
N Nodalmatrix describing the tensegrity struc-

ture
ni Position of i th node
P Point mass matrix
pk kth point mass
q Coordinates in vector form
R(q) Ideal constraints
S String matrix
sk kth string
c Damping coefficient
E Total energy of the system
Kbk Stiffness of kth bar (compressible)
Ksk Stiffness of kth string
lbk Length of kth bar
lsk Natural length of kth string
rk Radius of kth bar (compressible)
T Total kinetic energy
Vg Potential energy due to gravity
Vs Potential energy of strings
W f Work done by force f
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1 Introduction

A tensegrity system is an arrangement of axially-loaded ele-
ments (no element bends, even though the overall structure
bends), that we loosely characterize as a network of bars
and cables. The bars take compressive axial loads and the
cables handle tensile loads. Since failure due to axial stresses
happens at higher loads than at bending, a tensegrity struc-
ture has a higher strength-to-weight ratio. Famous architect
Buckminster Fuller in the 60s coined the term tensegrity,
combining thewords tensile and integrity. Since then, tenseg-
rity principles have found applications in diverse domains.
Tensegrity systems have been widely adopted in architec-
ture. Ingber [20] explained the behavior of cells by modeling
them as tensegrity structures. He further showed that tenseg-
rity structures exist at all detectable scales of the human body.
Tensegrity icosahedrons are used to model biologic organ-
isms from viruses to vertebrates, their cells, systems, and
subsystems. Biotensegrity [10,26,27,41] is quite an active
area of research. Beyond architecture and biology, tensegrity
principles are gaining popularity in robotics. NASA is con-
sidering a new terrestrial robot design based on tensegrity
principles [1]. Tensegrity structures, through use of pre-
stresses in the bars and cables, can also achieve controlled
stiffness in the structure, whichmakes it attractive in applica-
tions such as soft-robotics [39], robotic locomotion [38,44],
and prosthetics [40]. In essence, tensegrity principles can be
applied in the design of any structurewheremass is premium,
a high strength-to-weight ratio is critical, and structural stiff-
ness needs to be tailored in both space and time. These
include several applications from various engineering sec-
tors such as aerospace (morphing airframes), energy (wind
turbine blades, off-shore structures) as well as biomedical
engineering (stents, minimally invasive surgical tools) and
many more. Clearly, a framework is required that can effi-
ciently model the dynamics of tensegrity structures directly
from the topology of bars and cables.

The dynamics of tensegrity systems is governed by multi-
body dynamics, given by a set of ordinary differential
equations. This paper develops a Lagrangian formulation
for deriving these differential equations directly from the
given topology of members (bars and strings), and their mass
and geometric properties. Three key features of classical
tensegrity systems are: a) actuations only occur via cables
(though this assumption can be relaxed through the intro-
duction of soft, compressible bars which can actuate through
axial deformation), b) bar-to-bar connections are pin joints,
and c) the bars do not spin about their respective longitudinal
axes. These properties are exploited to simplify the equations
of motion. However, the Lagrangian framework presented
here is general enough to allow modeling of general multi-
body systems with actuated joints.

The demand for more accurate simulating tools for multi-
body dynamics is being challenged quite positively by
the open-source community. Physics engines such as Bul-
let [8] and the Open Dynamics Engine (ODE) [46] have
become common in robotics applications. NASA’s Tenseg-
rity Robotics Toolkit (NTRT) [32] is based on the Bullet
engine. They rely on non-minimal coordinate descriptions,
while other popular engines, e.g. Simscape Multibody [31],
MuJoCo [49], DART [25] and Simbody [43] favor using gen-
eralized coordinates for describing the kinematics of bodies.
This is because they mostly focus on robotics applications,
where the configuration space is naturally reduced in the
presence of joints and other constraints [13]. However, we
have opted to use the Cartesian coordinate system to describe
the motion of bodies, most notably, for two reasons. Skelton
observed [45] that in three dimensions, a minimal coordi-
nates approach is prone to singularities developed in the
mass matrix, and therefore, the dynamics necessitates an
excess coordinates description. Additionally, non-minimal
descriptions of vector kinematics allows us to write elegant
differential-algebraic equations (DAE), free of trigonometric
terms.

To fully express a rigid body motion in Cartesian coor-
dinates, equations describing constraints are written at the
acceleration level and augmented to the equations of motion
to develop a mass-descriptor form of a set of index-1 DAEs.
Since only acceleration level constraints are tackled in the
equations, position and velocity level constraints are vio-
lated due to errors from numerical integration. Numerous
advances have been made in the past few decades addressing
this very issue. A prominent method is that of generalized
coordinates partitioning [19,50] in which, utilizing Gauss-
Jordan reduction, independent variables are identified and
integrated numerically while dependent variables are pre-
served through the constraint equations. Baumgarte [4], on
the other hand, instead of bypassing the problem, introduced
two extra terms to the constraint equations so that the viola-
tions can be stabilized in the sense of Lyapunov. This method
has been studied in different frameworks, such as in adap-
tive mechanisms [7], optimal sense [3], and digital control
theory [28]. Stabilization allows for greater computational
speed whereas coordinate partitioning is known for its supe-
rior error control characteristics, and methods that combine
these two techniques [36,37] to tap into these advantages
have been developed as well.

However, parameter selection in the Baumgarte tech-
nique is a challenging task [2,14], as systems implemented
with the wrong feedback parameters have been found to
become unstable. Coordinate partitioning was also shown
to be superior to Baumgarte’s method in stabilizing con-
straint violations during kinematic analyses [34]. Therefore,
other methods were looked into, the most common being
one in which constraint violation is eliminated directly by
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adding appropriate correction terms to the generalized coor-
dinates after eachnumerical integration.Usinggeometric and
energy conservation constraints, Yoon et al. chose corrected
positions (constrained through geometry) and velocities
(constrained through energy) to be linear in the Jacobian of
the constraints [53]. Yu and Chen developed an algorithm
to obtain the corrected terms with the constraints at position
and velocity level (both constrained through geometry) by
using the Moore–Penrose inverse [54]. Citing inconsistency
of units and dimensions in generalized coordinates, Blajer
added an inverse of the mass matrix to the corrections of
[53] as a weight matrix [5]. However, Zhang et al. compared
the above two formulations in benchmark examples showing
that the violation of constraints performed in the same order
[55].

Furthermore, compared with the Baumgarte technique,
the applied direct correction method performs more effi-
ciently in the context of constraint violations at the position
and velocity level [15,30,55]. However, the extent of inac-
curacy in the motion, which can be determined from the
violations of the energy constraints is still unclear [5,6,53].
Therefore, inspired by [30,54], oneof the contributions of this
paper is to present a novel methodology that attains explicit
elimination of not only position and velocity constraints, i.e.
holonomic constraints, but also energy variations, i.e. non-
holonomic constraints. The Lagrangian formulation lends
itself favorably to an equilibrium analysis of the motion and
any corresponding violations in energy conservation. Instead
of considering corrected terms of position and velocity sepa-
rately,we formulate a set of equations linear in these variables
with energy constraints and solve the variables simultane-
ously in the sense of minimal norm.

Additionally, we have extended the formulation to sup-
port modeling of compressible bars in a tensegrity structure,
i.e, the constraints on bar lengths have been relaxed to allow
longitudinal deformation, and in conjunction, a transverse
change. This further means that the velocity of a compress-
ible bar would no longer have to be perpendicular to the
vector along its length. Accordingly, the kinetic energy has
been amended to account for the change in bar lengths
and a potential energy term has been added to account for
the hitherto insignificant elasticity in the bar. This exten-
sion for compressible bars would prove tremendously useful
when analysing pneumatic tensegrity systems, like the self-
deploying inflatable compression struts introduced in [9],
or for examining compliant multistable tensegrity structures
like in [47]. Further, the axial elasticity of the bars could pro-
vide a passive actuation mechanism as an alternative to the
conventional prestressing and pulling of cables, and there-
fore warrants a framework that could facilitate the dynamics
analysis of such systems.

Recently, Goyal and Skelton [18] developed a dynam-
ics formulation for tensegrity systems using Newton and

Euler’s laws, in which the cables are treated as a finite num-
ber of point masses connected with massless strings. Instead
of introducing Lagrange multipliers, they combine the bar
length constraints with rotational dynamics by implement-
ing the pseudo-inverse technique. Additionally, a reduced
order model has been derived through an intricate use of
the singular value decomposition, which avoids other geo-
metrical constraints. Furthermore, a new algorithm has been
introduced to tackle bar length correction, which enforces the
length of the bars in the structure to be fixed and its velocity
vector to be orthogonal to the bar vector. However, in our
paper, we treat all physical limits as constraints and correct
the violations simultaneously.

The contributions of this paper are presented as follows.
Firstly, a Lagrangian formulation based on Cartesian coordi-
nates is used for deriving DAEs of the governing equations
of motion in a tensegrity framework for both rigid and elas-
tic bars. In addition, a general approach for linearization of
the equations is determined analytically. Further, a novel
technique for improving the accuracy of the simulation is
developed to ensure that the errors in states arising from
numerical integration are corrected on the position and veloc-
ity levels according to both geometric and energy constraints.
Finally, the formulation has been extended to tensegrity sys-
tems featuring compressible bars, thereby allowing a deeper
analysis into the kinds of materials that could be substituted
in place of conventional metallic bars.

The following sections describe the formulation in much
greater detail: the nomenclature used in developing the equa-
tions, the Lagrangian method for deriving the governing
DAEs in the presence of constraints, an elaborate description
of the holonomic constraint equations, the direct correction
method deployed to ensure that these constraints are not
violated at any given time, the proposed energy correction
algorithm to nullify energy gain/loss occurring numerically,
linearization of the governing equations to facilitate work in
control, and finally, the modifications required for tensegrity
structures with compressible bars. A summary has been pro-
vided at the end of each of Sects. 2 and 3 to assist in grasping
the salient details of the formulation. The results for several
examples are comparedwith those fromSimscapeMultibody
(MATLAB’s multi-body package) and presented at the end
to discuss the validity of the formulation and the benefits of
the approaches proposed in the paper.

2 Derivation of tensegrity dynamics

2.1 Nomenclature

The notations used in the derivation of the tensegrity dynam-
ics are defined as follows, first introduced in [17,21].
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1. Let ni ∈ R
3×1 be the position of the i th node.

2. Let N ∈ R
3×n be the nodal matrix defined by

N := [n1 n2 · · · nn
]
,

where n is the number of nodes in the tensegrity system.
3. Let C ∈ R

m×n be the connectivity matrix that defines
the tensegrity system, where m members are defined
by connecting n nodes. Specifically, if the kth mem-
ber is defined by connecting nodes ni and n j , then
C(k, i) = −1, C(k, j) = 1, and C(k, ·) = 0 other-
wise. Moreover, we can partition the m members to bars
and strings, resulting in a partitioned connectivity matrix

C :=
[
Cb

Cs

]
,

where Cb ∈ R
nb×n defines the nb bar connections and

Cs ∈ R
ns×n defines the ns string connections.

Observing the connectivitymatrixCb, we derive amatrix
L pm ∈ R

n pm×n describing locations of n pm pointmasses.
Thesemasses are placed at nodes where only strings con-
nect. Specifically, if the kth point mass is positioned at
the node ni , then

L pm (k, i) = 1, and L pm (k, ·) = 0 otherwise.

4. The bars, strings and point masses are then defined as

B := NCT
b ∈ R

3×nb ,

S := NCT
s ∈ R

3×ns ,

P := NLT
pm ∈ R

3×n pm .

The kth column of B represents the kth bar, denoted by
bk . Similarly, the kth column of S represents the kth
string, denoted by sk , and the kth column of P repre-
sents the kth point mass, denoted by pk . Let θk , ηk , and
φk be vectors inR

nb ,Rns , andRn pm respectively with the
kth elements equal to one and the rest zero. Therefore,
we can compactly write

bk := NCT
b θk = Xkq,

b̄k := X̄kq,

sk := NCT
s ηk = Y kq,

pk := NLT
pmφk = Pkq,

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(1)

where

Xk :=
(
(θTk Cb) ⊗ I3

)
, (2)

X̄k := 1

2

(
(θTk |Cb|) ⊗ I3

)
, (3)

Y k :=
(
(ηT

k Cs) ⊗ I3
)

, (4)

Pk :=
(
(φT

k L pm ) ⊗ I3
)

, (5)

and q := vec(N) represents the Cartesian coordinates
and ⊗ denotes the Kronecker product.

5. Let F ∈ R
3×n be the non-conservative force matrix

defined by

F := [ f 1 f 2 · · · f n
]
,

where f i ∈ R
3 is the total force acting on the i th node,

and accordingly, the force matrix can be vectorized as
f := vec (F) ∈ R

3n . Here we assume a general condi-
tion where all the nodes have external forces acting on
them. In practice, all nodesmay not be loaded.We can set
those fi to zero in the above expression. These external
forces can be used to model disturbances and other loads
acting on the tensegrity structure.

2.2 Kinematics

Consider the motion of kth bar defined by nodes bk := n jk −
nik . The center of mass of the bar is given by

b̄k := n jk + nik
2

, (6)

and its velocity is given by

˙̄bk := Ṅ jk + Ṅ ik

2
. (7)

To determine the angular velocity of the bar we first relate
the velocities of n jk and nik using

ṅ jk = ṅik + ωk × bk,

or

ḃk := ṅ jk − ṅik = ωk × bk .

Taking cross product with bk on both sides we get

bk × ḃk = bk × (ωk × bk).

Using the result from triple cross product

a × (b × c) = b(a · c) − c(a · b),

we get

bk × ḃk = ωk(bk · bk) − bk(ωk · bk). (8)
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For tensegrity systems, ωk · bk = 0, i.e. the bar does
not spin about its body axis. This is an important difference
between tensegrity systems and general multi-body systems.

Therefore, for tensegrity systems,we canwrite the expres-
sion for angular velocity

ωk = bk × ḃk
bTk bk

.

Noting that bTk bk = l2bk , where lbk is the length of the bar and
is a constant, we can write

ωk = bk × ḃk
l2bk

.

Let the body axis be defined by (b̂k, b̂2, b̂3). We can
then write the angular velocity in terms of the body axis of
the bar as ωk := ω2 b̂2 + ω3 b̂3 where ω2, ω3 are respective
components.

Assuming, the bar to be a cylinder with radius rk and
length lbk , the moment of inertia of the rod in this body-fixed
principal frame is

I bk := diag
[
mbk r

2

2
mbk
12 (3r2k + l2bk )

mbk
12 (3r2k + l2bk )

]
.

The angular momentum hk of the bar is therefore

hk := I bk
[
0 ω2 ω3

]T

= mbk

12
(3r2k + l2bk )(ω2 b̂2 + ω3 b̂3)

= mbk

12
(3r2k + l2bk ) ωk,

= (3r2k + l2bk )mbk

12l2bk
bk × ḃk .

If rk can be ignored, then hk ≈ mbk
12 bk × ḃk . Often, hollow

cylinders are used. In that case, we can substitute the appro-
priate inertiamatrix in the expression for angularmomentum.

The inertial position coordinates of kth point mass are
given by pk := nik and its velocity given by ṗk := ṅik .

2.3 Dynamics using Lagrangian approach

LetL := T −V be the Lagrangian, defined over coordinates
q, with components qi . The equations of motion are then
given by

d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi
− λT (t)

∂R(q)

∂qi
= f T

∂q
∂qi

where R(q) : R3n �→ R
m = 0 depict ideal constraints that

satisfy the principle of D’Alembert, first stated by Lagrange

[22]. On the right, f is the non conservative force acting on
the system such as externally applied forces, damper forces
or disturbances. From the definition of the coordinate q, one
can notice that ∂q

∂qi
is the i th column of an identity matrix

I3n . We can therefore write the equation of motion as

d

dt

(
∂L
∂ q̇i

)
− ∂L

∂qi
− λT (t)

∂R(q)

∂qi
= fi ,

where fi is the i th element of f .
Substituting L := T − V , we get the equations of motion

d

dt

(
∂T

∂ q̇i

)
+ ∂

∂qi

(
V − λT R(q)

)
= fi ,

for i = 1, · · · , 3n; or in terms of q as

d

dt

(
∂T

∂ q̇

)
+ ∂

∂q

(
V − λT R(q)

)
= f T . (9)

2.3.1 Total kinetic energy

Total kinetic energy of the system is

T :=
nb∑

k=1

(
1

2
mbk

˙̄bk · ˙̄bk + 1

2
hk · ωk

)

+
n pm∑

k=1

(
1

2
m pk ṗk · ṗk

)

The kinetic energy of the kth bar is

Tbk = 1

2

(

mbk
˙̄bTk ˙̄bk + Ibk

l4k
(bk × ḃk) · (bk × ḃk)

)

,

where Ibk := mbk
12 (3r2k + l2bk ). Simplifying

(bk × ḃk) · (bk × ḃk) =(bk · bk)(ḃk · ḃk)
− (bk · ḃk)(ḃk · bk)

=l2bk (ḃk · ḃk),

we get

Tbk = 1

2

(

mbk
˙̄bk · ˙̄bk + Ibk

l2bk
ḃk · ḃk

)

.

Using (1), we can write Tbk in terms of q̇ as

Tbk = 1

2
q̇T
[

mbk X̄
T
k X̄k + Ibk

l2bk
XT
k Xk

]

︸ ︷︷ ︸
:=Mbk

q̇ = 1

2
q̇T Mbk q̇.

123



144 Computational Mechanics (2021) 67:139–165

The kinetic energy of the kth point mass is

Tpk = 1

2

(
m pk ṗk · ṗk

)

Using (1), we can write Tpk , in terms of q̇ as

Tpk = 1

2
q̇T
[
m pk P

T
k Pk

]

︸ ︷︷ ︸
:=M pk

q̇ = 1

2
q̇T M pk q̇

�⇒ T =
nb∑

k=1

Tbk +
n pm∑

k=1

Tpk

= 1

2
q̇T
( nb∑

k=1

Mbk

)

︸ ︷︷ ︸
:=Mb

q̇ + 1

2
q̇T
(n pm∑

k=1

M pk

)

︸ ︷︷ ︸
:=Mp

q̇

= 1

2
q̇T
(
Mb + Mp

)

︸ ︷︷ ︸
:=M

q̇

= 1

2
q̇T Mq̇. (10)

2.3.2 Gravity potential energy

Total gravitational potential energy of the system is

Vg := −
nb∑

k=1

mbk (g · b̄k) −
n pm∑

k=1

m pk (g · pk)

= − gT
( nb∑

k=1

mbk X̄k +
n pm∑

k=1

m pk Pk

)

︸ ︷︷ ︸
:=GT

q = −GT q, (11)

where g := [0 0 −9.806
]T

is the gravity vector.

2.3.3 Potential energy of strings modeled as springs

We can model the strings as springs. In this case, the spring
energy is

Vs := 1

2

ns∑

k=1

Kk
(‖sk‖ − lsk

)2
, (12)

adds to the potential energy of the system. In this case,
lsk is the natural length of the spring and Kk is the spring
constant. In this formulation, we have to be mindful about
‖sk‖ − lsk ≥ 0, because the strings can only exert tensile
force (unidirectional), unlike regular springs. Force density
σk , is defined as

σk := Kk

(
1 − lsk

‖sk‖
)

, (13)

which is the control variable. In the implementation, if the
condition ‖sk‖ − lsk ≥ 0 is violated for any string at any
point in time, the corresponding force density is set to zero
at that instant.

The spring energy in terms of σk can be written as

Vs : = 1

2

ns∑

k=1

(
σ 2
k

Kk

)

‖sk‖2

= 1

2

ns∑

k=1

(
σ 2
k

Kk

)

sTk sk

= 1

2
qT
( ns∑

k=1

σ 2
k

Kk
Y T
k Y k

)

q

= 1

2
qT

⎛

⎜
⎝
[
Y T
1 Y1 · · · Y T

nsYns

]

︸ ︷︷ ︸
:=Y

(
σ 2

K
⊗ I3n

)
⎞

⎟
⎠ q,

= 1

2
qTY

(
σ 2

K
⊗ I3n

)
q (14)

where σ 2 := [σ 2
1 · · · σ 2

ns

]T
, K := [K1 · · · Kns

]
.

2.3.4 Damper force

We assume a damper force between two nodes where the
string/spring exists and the force is proportional to the chang-
ing rate of the string/spring length. Thus the kth damper can
be modeled as

f d,k = −c
d‖sk‖
dt

sk
‖sk‖ , (15)

= −c
sTk ṡk
‖sk‖

sk
‖sk‖ , (16)

= −c
(ṡTk sk)sk
sTk sk

(17)

where c is the damping coefficient and the direction of the
force is always parallel to the string/spring. One should
notice that the damper force disappears whenever the string
is slack, that is f d,k = 0 if ‖sk‖ − lsk ≤ 0, but the
damper force always exists in the spring. To represent the
total damper force acting on a node, one can utilize (4) and
obtain f d = ∑ns

k=1 Y
T
k f d,k . Considering damper force as

one of the members in external force, it can be added to f in
(9).
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2.3.5 Equations of motion

We are now ready to derive the equations of motion. From
(10), we have

d

dt

(
∂T

∂ q̇

)
= q̈T M,

from (11), we have

∂Vg
∂q

= −GT ,

and finally from (14), we have

∂Vs
∂q

= ∂

∂q

(
1

2

ns∑

k=1

σ 2
k

Kk
sTk sk

)

= 1

2

ns∑

k=1

(
∂

∂q

(
σ 2
k

Kk

)

sTk sk + 2
σk

2

Kk
sTk

∂sk
∂q

)

= 1

2

ns∑

k=1

(

2lskσk
sTk

‖sk‖3Y k‖sk‖2 + 2
σk

2

Kk
sTk

∂sk
∂q

)

=
ns∑

k=1

(

lskσk
sTk

‖sk‖Y k + σk
2

Kk
sTk

∂sk
∂q

)

=
ns∑

k=1

σk

(

lsk
sTk

‖sk‖ +
(
1 − lsk

‖sk‖
)
sTk

)

Y k

=
ns∑

k=1

σkqTY T
k Y k

= qTY (σ ⊗ I3n) (18)

Therefore, the equations of motion are given by

q̈T M − GT + qTY(σ ⊗ I3n) − λT ∂R
∂q

= f T ,

or with transpose

Mq̈ −
(

∂R
∂q

)T

λ = −(σ T ⊗ I3n)Y T q + G + f . (19)

We next look at the constraint equation R(q) = 0, and
compute

d2R(q)

dt2
= d

dt

(
dR(q)

dt

)
,

= d

dt

(
∂R
∂q

q̇
)

,

=
(

∂R
∂q

)
q̈ +

⎡

⎢
⎢⎢
⎣

q̇T
(

∂2R1
∂q2

)
q̇

...

q̇T
(

∂2Rm
∂q2

)
q̇

⎤

⎥
⎥⎥
⎦

,

where
(

∂R
∂q

)
is a Jacobian of R(q) and

(
∂2Ri
∂q2

)
is the Hessian

of Ri (q). Therefore, d2R(q)

dt2
= 0 implies

−
(

∂R
∂q

)
q̈ =

⎡

⎢⎢⎢
⎣

q̇T
(

∂2R1
∂q2

)
q̇

...

q̇T
(

∂2Rm
∂q2

)
q̇

⎤

⎥⎥⎥
⎦

. (20)

Combining (19) and (20), we get the final equation

⎡

⎣ M −
(

∂R
∂q

)T

−
(

∂R
∂q

)
0

⎤

⎦
(
q̈
λ

)
=

⎡

⎢⎢⎢⎢⎢
⎣

−(σ T ⊗ I3n)Y T q + G + f

q̇T
(

∂2R1
∂q2

)
q̇

...

q̇T
(

∂2Rm
∂q2

)
q̇

⎤

⎥⎥⎥⎥⎥
⎦

.

(21)

Defining,

Rq := ∂R
∂q

,

ξ1 := −(σ T ⊗ I3n)Y T q + G + f ,

ξ2 :=

⎡

⎢⎢⎢
⎣

q̇T
(

∂2R1
∂q2

)
q̇

...

q̇T
(

∂2Rm
∂q2

)
q̇

⎤

⎥⎥⎥
⎦

,

we can analytically express q̈ and λ as

q̈ = M−1
[
ξ1 − RT

q

(
RqM−1RT

q

)−1

(
ξ2 + RqM−1ξ1

)]

= ξ(q, q̇, σ , f ),

λ = −
(
RqM−1RT

q

)−1 (
ξ2 + RqM−1ξ1

)
. (22)

In this formulation, numerical difficultiesmay occurwhen
solving the above equations of motion. Here we assume that
the mass matrix M is invertible since the kinetic energy
is always positive. Small inertia can also cause numerical
ill conditioning. In addition, redundant constraints can also
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cause singularity in RqM−1RT
q . Such constraints can fur-

ther lead to non-uniqueness of computed reaction forces and
accelerations. These results may be unit-sensitive as well
[51]. In such cases, a weighted Moore–Penrose generalized
inverse may be used in a meaningful manner to derive the
force distribution on the constrained structure [29].

2.3.6 Ideal constraints

Ideal constraints, as stated earlier, are those that satisfy
D’Alembert’s principle. In the current derivation, we only
consider holonomic constraints, that is, they reduce the
dimension of the space of accessible configurations, but do
not restrict motion and paths within the reduced dimen-
sion [35]. Mathematically, the constraint equations can be
expressed as R(q) = 0, where q is a function of time. Com-
monly constraints will include bar-length constraints that are
quadratic in q, and boundary conditions on q that will be lin-
ear in q. Bar length constraints are of the type bTk bk−l2bk = 0,

which in terms of q are qT XT
k Xkq − l2bk = 0.

Therefore, for these two cases

R(q) :=

⎡

⎢⎢⎢⎢
⎣

Aq − b
qT XT

1 X1q − l2b1
...

qT XT
nbXnbq − l2bnb

⎤

⎥⎥⎥⎥
⎦

= 0. (23)

Therefore,

Rq :=
(

∂R
∂q

)
=

⎡

⎢⎢⎢
⎣

A
2qT XT

1 X1
...

2qT XT
nbXnb

⎤

⎥⎥⎥
⎦

, (24)

and

⎡

⎢
⎢⎢
⎣

q̇T
(

∂2R1
∂q2

)
q̇

...

q̇T
(

∂2Rm
∂q2

)
q̇

⎤

⎥
⎥⎥
⎦

=

⎡

⎢
⎢⎢
⎣

0
2q̇T XT

1 X1q̇
...

2q̇T XT
nbXnb q̇

⎤

⎥
⎥⎥
⎦

.

2.4 DAE correction

The holonomic constraints are converted to differential equa-
tions by differentiating them twice. This results in constraints
on acceleration, which are satisfied exactly. However, the
position and velocity constraints get violated due to errors in
numerical integration. In addition to the constraints, numer-
ical errors also violate energy conservation. For this reason,
inspired by the direct correction approach in [30,54], we use
the idea of constraint variations and derive a system of linear

equations to correct for errors in numerical integration. To
account for energy conservation, we also include variation in
the total system energy in the formulation.

Considering the vector of coordinates and its time deriva-
tive that need to be corrected for the original constraints,

qc = qu + δq, (25)

where qu denotes the uncorrected position, obtained from
numerical integration, qc the corrected position, and δq is
the correction required to satisfy the constraint. Therefore

R(qc) = R(qu + δq) = R(qu) + Rqδq = 0, (26)

where Rq is a Jacobian matrix defined in (24).
Similarly, the time derivative of the holonomic constraint

should satisfy

dR
dt

= ∂R
∂q

q̇ = 0. (27)

With

q̇c = q̇u + δq̇, (28)

we get

[
Rq(qu) + ∂Rq

∂q
δq
] (

q̇u + δq̇
) = 0, (29)

where ∂Rq
∂q is a third-order tensor and can be represented in

a matrix form

∂Rq

∂q
δq =

[
∂Rq

∂q1
δq · · · ∂Rq

∂q3n
δq
]

.

Ignoring higher order terms in (29), we get

Rq q̇u + Rqδq̇ +
(

∂Rq

∂q
δq
)
q̇u = 0, (30)

where the third term can be reformulated as
(

∂Rq

∂q
δq
)
q̇u =

[
∂Rq

∂q1
δq · · · ∂Rq

∂q3n
δq
]
q̇u,

=
3n∑

i=1

∂Rq

∂qi
q̇ui δq,

=
(

3n∑

i=1

∂Rq

∂qi
q̇uαi

)

δq,

= Qδq,

where Q :=
(∑3n

i=1
∂Rq
∂qi

q̇uαi

)
, and αi is the i th column of

the identity matrix I3n .
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Then (30) becomes

Rq q̇u + Rqδq̇ + Qδq = 0. (31)

Combining (26) and (31), we obtain the following system
of linear equations

[
Rq 0
Q Rq

] [
δq
δq̇

]
=
[ −R
−Rq q̇u

]
. (32)

Since the matrix in (32) has fewer rows than columns
(2m < 6n), it doesn’t have full column rank and there exist
infinite solutions. In [30], the author applied Moore–Penrose
inverse to minimize the 2-norm of the solution. However, the
corrections in δq and δq̇ from such a formulation, modifies
the potential and kinetic energy of the system and violates
the conservation of mechanical energy. In this work, we
extend the work in [30], by explicitly constraining the energy
change, due to δq and δq̇, to be zero. This will result in an
additional linear equation in δq and δq̇. The derivation of
that constraint equation is as follows. We consider a gen-
eral formulation, where the work done by external forces are
accounted for.

The total energy of the system is defined as

E(q, q̇) := T (q̇) + Vs(q) + Vg(q), (33)

and energy conservation states that the total energy at any
time t is the sum of the total energy at initial time and the
work done by non conservative forces, i.e.

E(q, q̇) = E(q0, q̇0) +
∫

C
f · dq, (34)

where (q0, q̇0) is the initial condition, f is the external force,
which can be either state or time dependent, and the integra-
tion is done over path C connecting q0 to q.

Let the work done by force f be W f , i.e.

W f =
∫

C
f · dq,

=
∫ t

t0
f T

dq(τ )

dτ
dτ. (35)

Here we treatW f as an additional state variable, and aug-
ment the state-dynamics in (22), with

Ẇ f = f T ˙q(t). (36)

Integration of (36) results in the time evolution ofW f , which
will also incur errors due to numerical integration, and hence
must be corrected like q, and q̇. Similar to the correction for

q and q̇, we consider

Wc
f = Wu

f + δW f . (37)

Due to numerical errors in integration of dynamics and
(35), (34) will not be satisfied. Therefore, the corrections
δq, δq̇, and δW f must be such that (34) is satisfied with the
corrected quantities qc, q̇c, and W f c , i.e,

E(qc, q̇c) = E(q0, q̇0) + Wc
f . (38)

Substituting qc, q̇c, in T (q̇c), Vg(qc), Vs(qc), and retain-
ing linear terms only, we get

T (q̇c) = T (q̇u + δq̇) ≈ T (q̇u) + ∂T

∂ q̇

∣∣
∣∣
q̇u

δq̇ (39)

Vg(qc) = Vg(qu + δq) ≈ Vg(qu) + ∂Vg
∂q

∣
∣∣∣
qu

δq, (40)

Vs(qc) = Vs(qu + δq) ≈ Vs(qu) + ∂Vs
∂q

∣∣∣∣
qu

δq. (41)

Therefore, (38) becomes

[(
∂Vg
∂q

∣∣∣
qu

+ ∂Vs
∂q

∣∣∣
qu

)
∂T
∂ q̇

∣∣∣
q̇u

−1

]⎛

⎝
δq
δq̇

δW f

⎞

⎠

= E(q0, q̇0) − E(qu, q̇u) + Wu
f . (42)

Combining (32) and (42), we arrive at a final linear system
of equations

⎡

⎢⎢
⎣

Rq 0 0
Q Rq 0(

∂Vg
∂q

∣∣∣
qu

+ ∂Vs
∂q

∣∣∣
qu

)
∂T
∂ q̇

∣∣∣
q̇u

−1

⎤

⎥⎥
⎦

︸ ︷︷ ︸
:=Ac

⎡

⎣
δq
δq̇

δW f

⎤

⎦

=
⎡

⎣
−R

−Rq q̇u

E(q0, q̇0) − E(qu, q̇u) + Wu
f

⎤

⎦

︸ ︷︷ ︸
:=bc

, (43)

and the minimum norm corrections δq, δq̇, and δW f are
determined using pseudoinverse of Ac, i.e.

⎡

⎣
δq
δq̇

δW f

⎤

⎦ = AT
c (AcAT

c )−1bc. (44)

These corrections are done after every integration in each
time step once the 2-norm of the constraints violations or the
energy violation is greater than a given threshold γ . Further,
since the constraints and energy equation are approximated
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through linearization, the solution to (43) does not fully sat-
isfy the nonlinear equations (23) and (34) depending on the
error coming from the integration. So, an iteration method
presented in Algorithm 1 is used to ensure the performance
of the corrections.

Algorithm1:An iterationmethod tominimize the con-
straints and energy violations.
input : uncorrected terms qu , q̇u and Wu

f
output: corrected terms qc, q̇c and Wc

f

while ‖R‖2 > γ or E − E0 − W f > γ do
implement (44);
update qc, q̇c and Wc

f by (25), (28), (37);

update ‖R‖2, E and W f with corrected term;
end

2.5 Linearization

The nonlinear dynamics of the system can be written as

q̈ = ξ(q, q̇, σ , f ), (45)

where q, q̇ are the states, σ is control, and f is external force
(or disturbance). Let q0, q̇0, σ 0 and f 0 be the state, control,
and external loading aboutwhich linearization is desired. The
linear system is therefore

δq̈ = ∂ξ

∂q
|q0,q̇0,σ 0, f 0δq + ∂ξ

∂ q̇
|q0,q̇0,σ 0, f 0δq̇

+ ∂ξ

∂σ
|q0,q̇0,σ 0, f 0δσ + ∂ξ

∂ f
|q0,q̇0,σ 0, f 0δ f . (46)

From (22) the first term in (46) is represented by

∂ξ

∂q
= M−1

[
∂ξ1

∂q
− ∂RT

q

∂q
M̃ ξ̃ − RT

q
∂ M̃
∂q

ξ̃

− RT
q M̃

∂ ξ̃

∂q

]

,

where

M̃ = (RqM−1RT
q )−1

ξ̃ = (ξ2 + RqM−1ξ1)

∂RT
q

∂q
M̃ ξ̃ =

[
∂RT

q

∂q1
M̃ ξ̃ · · · ∂RT

q

∂q3n
M̃ ξ̃

]

,

RT
q

∂ M̃
∂q

ξ̃ =
[
RT
q

∂

∂q1
M̃ ξ̃ · · · RT

q
∂

∂q3n
M̃ ξ̃

]
,

RT
q M̃

∂ ξ̃

∂q
=
[
RT
q M̃

∂

∂q1
ξ̃ · · · RT

q M̃
∂

∂q3n
ξ̃

]
,

∂ M̃
∂qi

= − M̃
∂
(
RqM−1RT

q

)

∂qi
M̃.

Since only ξ2 is dependent on q̇, the second term in (46)
is

∂ξ

∂ q̇
= −M−1RT

q M̃
∂ξ2

∂ q̇
.

Finally, ξ1 depends on the control σ and external force f ,
the third term and fourth term in (46) are

∂ξ

∂σ
= M−1

[
∂ξ1

∂σ
− RT

q M̃ RqM−1 ∂ξ1

∂σ

]

and

∂ξ

∂ f
= M−1

[
I − RT

q M̃ RqM−1
]
.

To determine ∂ξ1
∂σ

, using the Kronecker identity

(BT ⊗ A)vec (C) = vec (ACB)

we write

(σ T ⊗ I3n)Y T q = (σ T ⊗ I3n)vec
(
Ŷ
)

= vec
(
Ŷσ
)

= Ŷσ ,

where Ŷ ∈ R
3n×nu such that vec

(
Ŷ
)

= Y T q, which is a

rearrangement of the elements of column vector Y T q into a
matrix of dimension 3n × nu . Therefore,

∂ξ1

∂σ
= ∂

∂σ
(−(σ T ⊗ I3n)Y T q) = − ∂

∂σ

(
Ŷσ
)

= −Ŷ .

(47)

Defining,

A :=
[

0 I
∂ξ
∂q |q0,q̇0,σ 0, f 0

∂ξ
∂q̇ |q0,q̇0,σ 0, f 0

]

, (48)

Bσ :=
[

0
∂ξ
∂σ

|q0,q̇0,σ 0, f 0

]
, (49)

B f :=
[

0
∂ξ
∂ f |q0,q̇0,σ 0, f 0

]

, (50)
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we can write the linear system as

ẋ = Ax + Bσ δσ + B f δ f , (51)

where

x :=
[
δq
δq̇

]
.

The linear system in (51) is not a minimum realization,
due to the algebraic constraints on δq. Controlling tenseg-
rity systems using modern control theory, requires minimum
realization. The system can be transformed to a minimum
realization using standard techniques [16,23,24,33].

2.6 Summary

Section 2 presented a detailed description of the derivations
required to arrive at the final set of equations governing
the dynamics of our multibody tensegrity system in the
Lagrangian framework. A gist of the approach is presented
as follows.

1. Input: For the tensegrity system under analysis, pro-
vidematerial, geometric, and connectivity properties that
would fully describe the structure under stasis.

2. Structure Generation: Construct a tensegrity structure
with the following matrices: N , C , X , Y , P which
describe the nodal configuration and the appropriately
defined connectivity matrices for bars, strings, and the
point masses.

3. Lagrangian Dynamics: Compute the following quanti-
ties in order: total kinetic energy, total potential energy,
constraint equations, and non-conservative forces.

T = 1

2
q̇T Mq̇

V = Vg + Vs

= −GT q + 1

2
qTY

(
σ 2

K
⊗ I3n

)
q

R(q) =

⎡

⎢⎢⎢⎢
⎣

Aq − b
qT XT

1 X1q − l2b1
...

qT XT
nbXnbq − l2bnb

⎤

⎥⎥⎥⎥
⎦

= 0.

f = f ext + f d

4. Equations of Motion: The first equation describes the
governing equations of motion while the second one

describes the additional constraint equations.

Mq̈ −
(

∂R
∂q

)T

λ = −(σ T ⊗ I3n)Y T q + G + f .

−
(

∂R
∂q

)
q̈ =

⎡

⎢⎢⎢
⎣

q̇T
(

∂2R1
∂q2

)
q̇

...

q̇T
(

∂2Rm
∂q2

)
q̇

⎤

⎥⎥⎥
⎦

5. Correction: Correcting for position,

R(qc) = R(qu) + Rqδq = 0,

Correcting for velocity,

Rq q̇u + Rqδq̇ +
(

∂Rq

∂q
δq
)
q̇u = 0,

Correcting for energy,

E(qc, q̇c) = E(q0, q̇0) + Wc
f

6. Linearization: The nonlinear dynamics given by:

q̈ = ξ(q, q̇, σ , f ),

can be linearized into:

ẋ = Ax + Bσ δσ + B f δ f

where

x :=
[
δq
δq̇

]

3 Tensegrity systems with compressible bars

3.1 Dynamics

Since bars are assumed to be rigid, the holonomic constraint
R is a must to ensure that the bar lengths stay fixed dur-
ing simulation. However, in reality, the bar is not perfectly
rigid but compressible with a large Young’s modulus, which
allows us to release the constraints and treat the bar as an
elastic body. In this section, we allow for bars to deform
longitudinally and, in accordance with the Poisson effect,

transversely as well, i.e., ṙk = −νkrk
l̇bk
lbk

, where rk and lbk
are the radius and length of kth bar respectively, and νk is
Poisson’s ratio. It must be stated that this elasticity does not
allow for bending of the bar in any case.
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One should note that l̇bk is no longer zero due to the flexi-

bility of the bar. Specifically, l̇bk = bTk ḃk
lbk

, which implies that

the velocity vector of the bar is not perpendicular to the bar
vector and yields that

ḃk = l̇bk b̂k + ωk × bk

where b̂k is the unit vector along the axis of the bar repre-
sented by bk . Taking cross product on both sides with bk

bk × ḃk = 0 + bk × (ωk × bk)

= ωk(bk · bk) − bk(ωk · bk)

The assumption for tensegrity systemswith regards to the bar
not spinning about the body axis holds, i.e., (ωk · bk) = 0,
and hence,

ωk = bk × ḃk
l2bk

which is the same expression for angular velocity as that for
the rigid bar case. However, when computing the rotational
kinetic energy of the bar, we observe

Tbk = 1

2

(

mbk
˙̄bTk ˙̄bk + Ibk

l4k
(bk × ḃk) · (bk × ḃk)

)

,

where now,

(bk × ḃk) · (bk × ḃk) = l2bk (ḃk · ḃk) − (lbk l̇bk )
2.

The kinetic energy of the kth bar therefore becomes

Tbk = 1

2
q̇T Mbk q̇ − 1

2

(
Ibk
l2bk

l̇2bk

)

,

and the total kinetic energy is

T = 1

2
q̇T Mq̇ − T f

where T f = 1
2

∑nb
k=1

Ibk
l2bk

l̇2bk . On comparing the differences

with (10), we note that M is no longer a constant matrix and
there exists an extra term T f , so

∂T

∂ q̇
= q̇T M − ∂T f

∂ q̇

= q̇T M − 1

2

nb∑

k=1

Ibk
l2bk

(2l̇bk
∂ l̇bk
∂ q̇

)

= q̇T M −
nb∑

k=1

Ibk
l2bk

qT XT
k Xk

lbk
l̇bk

= q̇T M − qT M f ,

where M f =∑nb
k=1

Ibk X
T
k Xk l̇bk
l3bk

, and

d

dt

(
∂T

∂ q̇

)
= q̈T M + q̇T Ṁ − q̇T M f − qT Ṁ f , (52)

where

Ṁ =
nb∑

k=1

[
d

dt

(
Ibk
l2bk

)

XT
k Xk

]

=
nb∑

k=1

[

−2

(
Ibk
l3bk

)

XT
k Xk l̇bk + d Ibk

dt

1

l2bk
XT
k Xk

]

,

and

Ṁ f =
nb∑

k=1

[
d Ibk
dt

XT
k Xk l̇bk
l3bk

− 3

(
Ibk X

T
k Xk

l4bk

)

l̇2bk

+l̈bk
Ibk X

T
k Xk

l3bk

]

,

with

l̈bk = d

dt

[
qT XT

k Xk q̇

lbk

]

= q̇T XT
k Xk q̇

lbk
+ q̈T XT

k Xkq

lbk
− qT XT

k Xk q̇

l2bk
l̇bk ,

and

d Ibk
dt

= mbk

12
(6rkṙk + 2lbk l̇bk ).

Rearranging (52) where the terms associated with q̈ are com-
bined together, we arrive

d

dt

(
∂T

∂ q̇

)
= q̈T Mq̈ + q̇T Mq̇ + qT Mq, (53)

where

Mq̈ = M −
nb∑

k=1

XT
k Xkq

lbk

qT Ibk X
T
k Xk

l3bk
,

Mq̇ = Ṁ − M f ,

Mq = −
nb∑

k=1

[
d Ibk
dt

XT
k Xk l̇bk
l3bk

− 3

(
Ibk X

T
k Xk

l4bk

)

l̇2bk

+
(
q̇T XT

k Xk q̇

lbk
− qT XT

k Xk q̇

l2bk
l̇bk

)
Ibk X

T
k Xk

l3bk

]

.
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Considering the elasticity of the bars, a potential energy
termwill also be required. Similar to the expression for poten-
tial energy in strings, we can model this term as

Vb = 1

2

nb∑

k=1

Kbk

(‖bk‖ − lbk (0)
)2

,

where Kbk is the stiffness of the kth bar which is usually a
large value, and lbk (0) is the rest length of the kth bar. For
solid bars under tension or compression,

Kbk = Abk Ebk

lbk (0)

where Abk is the area of the bar under consideration and Ebk
is its Young’s modulus. Then,

∂Vb
∂q

=
nb∑

k=1

Kbk

[

qT XT
k Xk − qT XT

k Xk

lbk
lbk (0)

]

= qT
nb∑

k=1

Kbk

[

XT
k Xk − XT

k Xk

lbk
lbk (0)

]

= qT X(Ψ ⊗ I3n) (54)

where Ψ ∈ R
nb , Ψk = Kbk

[

1 − lbk (0)

lbk

]

, and X =
[XT

1 X1 · · · XT
nbXnb ].

Substituting (52) and (54) into (9), the equations ofmotion
are given by

Mq̈q̈ − RT
q λ = −

[
MT

q + (Ψ T ⊗ I3n)XT

+(σ T ⊗ I3n)Y T
]
q

− MT
q̇ q̇ + G + f + f d := ξ3, (55)

where the holonomic constraints R do not contain bar length
constraints anymore, but a few more terms are added to the
governing equation to capture the elasticity of the bars.

3.2 Impact on structural stiffness

Under equilibrium, the equations are:

−RT
q λ = −

[
(Ψ T ⊗ I3n)XT + (σ T ⊗ I3n)Y T

]
q

+ G + f − ∂Mq̇

∂q
q̇ − MT

q q (56)

Note that compressibility allows for actuation of the
tensegrity structure through pre-stressing of bars. Suppose,
in a regular tensegrity structure with rigid bars, we wished

to replace the tension-bearing cables in the structure with
compression-bearing bars.

qTY(σ ⊗ I3n) = −qT X(Ψ ⊗ I3n)

where the negative sign indicates a change from tension to
compression.

The stiffness of the tensegrity structure comes from the
strings as well as the compressible bars present in the struc-
ture. Stiffness is:

K sys = ∂

∂q

(
∂Vs
∂q

∣∣∣
∣
q=qeq

+ ∂Vb
∂q

∣∣∣
∣
q=qeq

)T

= ∂

∂q

⎛

⎝
ns∑

k=1

σkqTY T
k Y k +

nb∑

j=1

Ψ jqT XT
j X j

⎞

⎠

T

=
ns∑

k=1

(
σkY T

k Y k + ∂σk

∂q
Y T
k Y kq

)

+
nb∑

j=1

(
Ψ jXT

j X j + ∂Ψ j

∂q
XT

j X jq
)

=
ns∑

k=1

(
σkY T

k Y k + Ksk l0sk
||sk ||3 Y T

k Y kqqTY T
k Y k

)

+
nb∑

j=1

(
Ψ jXT

j X j + Kb j l0b j
||b j ||3 XT

j X jqqT XT
j X j

)

l0sk and l0b j are the natural lengths of the kth string and j th
bar respectively. Clearly, there is a linear dependence of the
stiffness matrix on the individual stiffnesses of the bars and
the cables present in the structure. This allows for flexibility
in choosing the material of the bars as well. The stiffer the
bar material (steel or aluminium and the like), lower will be
the deflection, and vice-versa.

3.3 Linearization of augmented Lagrangian system

Consider the set of equations:

Mq̈(q)q̈ − RT
q λ = ξ3(q, q̇, σ ,Ψ , f ),

−Rq q̈ = ξ2

Note that in the absence of bar length constraints, R(q) :=
[Aq − b] = 0 and ξ2 = 0. Therefore, Rq :=

(
∂R
∂q

)
=

A (a constant). This means that the above set of dynamics
equations reduces to:

Mq̈(q)q̈ − RT
q λ = ξ3(q, q̇, σ ,Ψ , f ),

−Rq q̈ = 0
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Table 1 User-defined properties
of the 3 models

Model Attribute
T-bar Arm Ball

Gravity (m/s2) 0 −9.806 −9.806

Bars: length (m) 5 1 1

Bars: radius (m) 0.05 0.01 0.01

Bars: density (kg/m3) 500 1300 1300

Springs: stiffness (N/m) 100 – –

Springs: rest length percentage (% of initial) 90 (vertical only) – –

Strings: Young’s modulus (GPa) 2 2 2

Strings: radius (m) 0.001 0.001 0.001

External force (N) 0 300 × sin(t) 300 × sin(t)

1 2

34

(a) A 2-bar structure in 2 dimensions.
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1112131415
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(b) A robotic arm in 2 dimensions.
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(c) A ball in 3 dimensions.

Fig. 1 Structures of the exampleswhere red lines indicate strings, black
lines indicate rigid bars, squares indicate point masses, black dots are
fixed nodes, white dots are free nodes, and numbers are node notations.
(Color figure online)

Linearizing this set of equations at [q0, q̇0], [σ 0, Ψ 0], and
f 0, i.e., the state, control, and external loading that satisfy
equilibrium conditions,

(
∂Mq̈

∂q
q̈
)

δq + Mq̈δq̈ − RT
q δλ

= ∂ξ3

∂q
|q0,q̇0,σ 0,Ψ 0, f 0δq + ∂ξ3

∂ q̇
|q0,q̇0,σ 0,Ψ 0, f 0δq̇

+ ∂ξ3

∂σ
|q0,q̇0,σ 0,Ψ 0, f 0δσ + ∂ξ3

∂Ψ
|q0,q̇0,σ 0,Ψ 0, f 0δΨ

+ ∂ξ3

∂ f
|q0,q̇0,σ 0,Ψ 0, f 0δ f .

Rqδq̈ = 0

Since at equilibrium, q̈ = 0, the first term in the first equation
above can be eliminated. Further,

∂ξ3

∂q
= −

[
MT

q + (Ψ T ⊗ I3n)XT + (σ T ⊗ I3n)Y T
]

− ∂MT
q̇

∂q
q̇ + ∂ f d

∂q
,

∂ξ3

∂ q̇
= −∂MT

q

∂ q̇
q − MT

q̇ − ∂MT
q̇

∂ q̇
q̇ + ∂ f d

∂ q̇

where

∂MT
q̇

∂q
q̇ = ∂ Ṁ

T

∂q
q̇ − ∂MT

f

∂q
q̇

=
nb∑

k=1

[

−2
Ibk X

T
k Xk q̇

l3bk

∂ l̇bk
∂q

− 2
l̇bk X

T
k Xk q̇

l3bk

∂ Ibk
∂q

− 6
Ibk l̇bk X

T
k Xk q̇

l4bk

∂lbk
∂q

+ XT
k Xk q̇

l2bk

∂
d Ibk
dt

∂q

123



Computational Mechanics (2021) 67:139–165 153

0 50 100 150 200
Time (s)

-2

-1

0

1

2
E

rr
or

 in
 X

×10 -9

0 50 100 150 200
Time (s)

-2

-1

0

1

2

E
rr

or
 in

 Z

×10 -9

(a) Minimum Realization vs Proposed Method
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(b) Minimum Realization vs Simscape Multibody

Fig. 2 Difference in motion of node 3 between minimum realization, the proposed method and Simscape Multibody in the example of the 2-bar
structure shown in Fig. 1a
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Fig. 3 Bar length constraint violations observed in the example of the 2-bar structure described in Fig. 1a

−2
d Ibk
dt

XT
k Xk q̇

l3bk

∂lbk
∂q

]

−
nb∑

k=1

[
Ibk X

T
k Xk q̇

l3bk

∂ l̇bk
∂q

−3
Ibk l̇bk X

T
k Xk q̇

l4bk

∂lbk
∂q

+ l̇bk X
T
k Xk q̇

l3bk

∂ Ibk
∂q

]

=
nb∑

k=1

XT
k Xk q̇

[

−3
Ibk
l3bk

∂ l̇bk
∂q

− 3
Ibk l̇bk
l4bk

∂lbk
∂q

+ 1

l2bk

∂
d Ibk
dt

∂q
− 2

d Ibk
dt

1

l3bk

∂lbk
∂q

− 3
l̇bk
l3bk

∂ Ibk
∂q

⎤

⎥
⎥
⎦

Since f d,k = −cl̇sk
sk
lsk

is the damping force present in the

kth string, ∂ f d
∂q =∑ns

k=1 Y
T
k

∂ f d,k
∂q where

∂ f d,k

∂q
= −c

(
Y kq
lsk

∂ l̇sk
∂q

+ l̇skY k

lsk
− l̇skY kq

l2sk

∂lsk
∂q

)
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Here,

∂lbk
∂q

= qT XT
k Xk

lbk
∂ l̇bk
∂q

= q̇T XT
k Xk

lbk
− q̇T XT

k Xkq

l2bk

∂lbk
∂q

∂ Ibk
∂q

=
∂

(
mbk

12

(
3r2k + l2bk

))

∂q

= mbk lbk
6

∂lbk
∂q

d Ibk
dt

∂q
=

∂
[
mbk
12

(
6rkṙk + 2l̇bk lbk

)]

∂q

= mbk

12

(

6rk
∂ ṙk
∂q

+ 2l̇bk
∂lbk
∂q

+ 2lbk
∂ l̇bk
∂q

)

∂ ṙk
∂q

=
∂

(

−νkrk l̇bk
lbk

)

∂q

= −νkrk
lbk

∂ l̇bk
∂q

+ νkrk l̇bk
l2bk

∂lbk
∂q

∂lsk
∂q

= qTY T
k Y k

lsk
∂ l̇sk
∂q

= q̇TY T
k Y k

lsk
− q̇TY T

k Y kq

l2sk

∂lsk
∂q

∂MT
q

∂ q̇
q = −

nb∑

k=1

⎡

⎣ 1

l3bk
XT
k Xkq l̇bk

∂
d Ibk
dt

∂ q̇

+d Ibk
dt

XT
k Xkq

l3bk

∂ l̇bk
∂ q̇

−6
Ibk X

T
k Xkq l̇bk
l4bk

∂ l̇bk
∂ q̇

+
(
Ibk X

T
k Xk

l3bk

)(
2XT

k Xkq

lbk
q̇T

−qqT XT
k Xk l̇bk
l2bk

− qqT XT
k Xk q̇

l2bk

∂ l̇bk
∂ q̇

)]

∂MT
q̇

∂ q̇
q̇ = ∂ Ṁ

T

∂ q̇
q̇ − ∂MT

f

∂ q̇
q̇

=
nb∑

k=1

[

−2

(
Ibk
l3bk

)

XT
k Xk q̇

∂ l̇bk
∂ q̇

+ 1

l2bk
XT
k Xk q̇

∂
d Ibk
dt

∂ q̇

⎤

⎦
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Fig. 4 Energy violation (34) observed in the example of the 2-bar struc-
ture shown in Fig. 1a

−
nb∑

k=1

Ibk X
T
k Xk q̇

l3bk

∂ l̇bk
∂ q̇

=
nb∑

k=1

[

−3

(
Ibk
l3bk

)

XT
k Xk q̇

∂ l̇bk
∂ q̇

+ 1

l2bk
XT
k Xk q̇

∂
d Ibk
dt

∂ q̇

⎤

⎦

As before, for every kth string,

∂ f d,k

∂ q̇
= −c

Y kq
lsk

∂ l̇sk
∂ q̇

hence,
∂ f d
∂ q̇

=
ns∑

k=1

Y T
k

∂ f d,k

∂ q̇

Here,

∂ l̇bk
∂ q̇

= qT XT
k Xk

lbk

∂
d Ibk
dt

∂ q̇
= ∂

∂ q̇

(mbk

12
(6rkṙk + 2lbk l̇bk )

)

=
[
mbk

12
(−6r2k νk

lbk
+ 2lbk )

]
∂ l̇bk
∂ q̇

=
[
mbk

12
(−6r2k νk

l2bk
+ 2)

]

qT XT
k Xk

∂ l̇sk
∂ q̇

= qTY T
k Y k

lsk
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(a) Motion Error of Node 3.
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(b) Energy violation (35).
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Fig. 5 Motion error, constraint and energy violations if simulated at 10−14 tolerance without any correction in the example of the 2-bar structure
shown in Fig. 1a
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Fig. 6 Computation times for the 2-bar structure example, simulated
at different tolerances

∂ξ3

∂σ
can be computed as described in the procedure in

(47). Therefore,

∂ξ3

∂σ
= −Ŷ

where Ŷ ∈ R
3n×ns such that vec

(
Ŷ
)

= Y T q, which is a

rearrangement of the elements of column vector Y T q into a
matrix of dimension 3n × ns . Similarly,

∂ξ3

∂Ψ
= X̂

where X̂ ∈ R
3n×nb such that vec

(
X̂
)

= XT q, which is a

rearrangement of the elements of column vector XT q into a
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(b) Energy violation of (35).
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(c) Bar 1 Length Error.
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(d) Bar 2 Length Error.

Fig. 7 Motion error, constraint and energy violations if simulated at 10−10 tolerance with and without energy correction in the example of the 2-bar
structure shown in Fig. 1a

matrix of dimension 3n × nb. Finally,

∂ξ3

∂ f
= I

Let

ξ4 = ∂ξ3

∂q
δq + ∂ξ3

∂ q̇
δq̇ + ∂ξ3

∂σ
δσ + ∂ξ3

∂Ψ
δΨ + ∂ξ3

∂ f
δ f

Then, since at equilibrium, q̈ = 0, equations are reduced to:

[
Mq̈ −RT

q
−Rq 0

] [
δq̈
δλ

]
=
[
ξ4
0

]

The matrix on the left is invertible, irrespective of configu-
ration. This means,

[
δq̈
δλ

]
=
[
Mq̈ −RT

q
−Rq 0

]−1 [
ξ4
0

]
(57)

Let

Mα =
[
Mq̈ −RT

q
−Rq 0

]−1

, and

Mβ = Mα(1 : 3n, 1 : 3n),

i.e., Mβ is derived from the first 3n rows and columns of
Mα . Reducing (57), we get:

δq̈ = Mβξ4
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(b) Energy violation of (35).
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(c) Bar 1 Length Error.
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Fig. 8 Motion error, constraint and energy violations if simulated at 10−6 tolerance with and without energy correction in the example of the 2-bar
structure shown in Fig. 1a

Defining,

A :=
⎡

⎣
0 I

Mβ

∂ξ3

∂q
|q0,q̇0,σ 0,Ψ 0, f 0 Mβ

∂ξ3

∂ q̇
|q0,q̇0,σ 0,Ψ 0, f 0

⎤

⎦

Bu :=
⎡

⎣
0 0

Mβ

∂ξ3

∂σ
|q0,q̇0,σ 0,Ψ 0, f 0 Mβ

∂ξ3

∂Ψ
|q0,q̇0,σ 0,Ψ 0, f 0

⎤

⎦

B f :=
⎡

⎣
0

Mβ

∂ξ3

∂ f
|q0,q̇0,σ 0,Ψ 0, f 0

⎤

⎦

we can write the linear system as

ẋ = Ax + Buδu + B f δ f , (58)

where x :=
[
δq
δq̇

]
and u :=

[
δσ

δΨ

]
.

Again, note that (58) is not a minimal realization of the
tensegrity system due to the presence of the constraints act-
ing on δq, despite the relaxation of bar length constraints.
Linear constraints may still be acting on the system, thereby
rendering it non-minimal.

3.4 Summary

Section 3 presented a detailed description of the derivations
that had to be amended in the general multibody system
approach to account for compressibility in bars. A gist of
the approach is presented as follows.
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Fig. 9 Motion error of Node 3 if simulated at 10−10 tolerance with and
without energy correction at different rest lengths in the example of the
2-bar structure shown in Fig. 1a

1. Energies: Additional terms will be introduced into the
kinetic and potential energies to account for flexibility in
bars.

T = 1

2
q̇T Mq̇ − T f

Vs = 1

2
qTY(

σ 2

K s
⊗ I3n)q + 1

2
qTY(

ψ2

K b
⊗ I3n)q

Here, T f is the kinetic energy injected to account for
longitudinal deformation in the bar, i.e., l̇bk is no longer
zero. In the absence of nonlinear bar length constraints,
for a generic system,

R(q) := [Aq − b
]

2. Equations of Motion: The governing equations of
motion have now been amended to:

Mq̈q̈ − RT
q λ = −

[
MT

q + (Ψ T ⊗ I3n)XT

+(σ T ⊗ I3n)Y T
]
q

− MT
q̇ q̇ + G + f + f d

Linearization follows the same approach described as
before, but the introduction of elasticity necessitates re-
evaluation of state and control matrices.

4 Example

In this section, we model a simple tensegrity structure in
2 dimensions as an example to demonstrate the accuracy
of the constraints and motion trajectories using the pro-
posed approach. We also compare our results with those
obtained using a commercial tool, i.e. Simscape [31]. In
addition, a robotic arm and a ball based on tensegrity struc-
tures as two examples are presented to show the efficiency
of the method applied to models with higher complexity.
The user-defined properties are listed in Table 1. In particu-
lar, corrected numerical integration is utilized by Matlab to
these different models. The equation of motion (21) is inte-
grated based on the Dormand-Prince method [11,42] with
relative and absolute tolerances of 10−10, both constraint
correction and energy correction turned on, and the given
threshold γ = 10−10.

First of all, a 2D tensegrity structure built using 2 bars
and 4 springs shown in Fig. 1a is used, where the nodes at
the bottom are fixed and the left and right springs are pre-
stressed at 90% of the rest length of the springs. Secondly, a
robotic arm built from 3 sets of squares is shown in Fig. 1b,
where strings made of nylon are prestressed so that the struc-
ture is in equilibrium under gravity. An external force of a
time-dependent sinusoidal function is applied vertically to
the tip of the arm. Thirdly, a 3D ball with a payload is shown
in Fig. 1c, where 6 bars and 32 strings are used. Here too,
strings are prestressed so that the structure can be in equi-
librium under gravity. A time-dependent external force of a
sinusoidal function is given to the top 3 nodes in different
directions, i.e. along x, y, z axes respectively (in order of
numbering).

Figure 2a shows the discrepancies between the motion
trajectories obtained using the proposed approach and the
minimum realization, where we consider the latter as the
benchmark since the equations of motion are derived using
generalized coordinates that preserve the geometric con-
straints and the relative and absolute tolerance of numerical
integration is 2.2 × 10−14 (This is the minimum value
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Fig. 10 Motion trajectories of the particular nodes in the example of the arm shown in Fig. 1b
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Fig. 11 Bar length errors in the example of the arm shown in Fig. 1b, where the value of zero is set to the minimum positive double precision
number
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of relative tolerance that can be chosen in Matlab.) and
10−14 respectively, while Fig. 2b shows the differences
between Simscape and minimum realization, where Sim-
scape is with the same numerical method and tolerance as
minimum realization. Comparing the figures, we observe
that our proposed method produces the motion 107 times
closer to the benchmark than Simscape, which indicates a
significant improvement in accuracy. Figures 3a, b and 4
present the magnitude of constraint violations in bar length
and total energy, which shows that the proposed method of
constraint correction reduces the violation of the energy to
around 10−11 and keeps the bar length constraint violations
at about 10−12 simultaneously. One can observe that the
bar length violations in the simulation produced using Sim-
cape are of a smaller magnitude. This is because it utilizes
generalized coordinates, thereby automatically satisfying the
bar length constraints. The differences in motion seem to
be increasing in time, but in fact, simulating for very long
durations would show them to be within bounds, as can also
be said by observing the total energy variation. Since the
energy is always stable fromFig. 4, themotionmust be stable
and therefore, the differences are all bounded. The attached
video TEST_TBAR.mp4 demonstrates the motions of the 2-
bar structure with 3 approaches in real time.

We also compared the time required to run a 10 s sim-
ulation in each of the approaches being compared here.
Simscape Multibody required ∼ 1.1 s on average to run a
T-bar simulation, while the proposed approach required ∼
2.4 s with correction built in. We expect to see a bigger dif-
ference when simulating a model with higher complexity, as
with more bars present in the structure, more computational
effort would be required to prevent constraint violation. The
computational advantage of Simscape could also be due to
several code optimizations, and an underlying mixture of
programming engines including C and Fortran that gives it
the additional speed up. These are implementation details
that can be accounted in our formulation as well. Our code
currently does not have any speed optimization, and we will
address it in our future work. Nonetheless, our framework
allows for easier modeling of tensegrity structures, which
becomes prohibitively complex in Simscape.

It is important to note here that, when simulating tenseg-
rity systemswith non-minimumcoordinates atmachine-level
precision tolerance settings (at the expense of speed), the
user might be tempted to do away with correction altogether.
However, the solution, while still being accurate in its motion
trajectory for short time lengths, drifts away from the con-
straint space and consequently, tends to become inaccurate
if simulated for long durations. As Yoon [52] points out, it
is a necessary condition for accurate simulation that both
geometric and energy constraints be satisfied during inte-
gration. Hence, it would be advisable to keep the correction
algorithm turned on at all times. Fig. 5a shows how accu-
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Fig. 12 Energy violation (34) of the arm shown in Fig. 1b

rately the non-minimum formulation performs without the
need for correction at the tolerance settings of 10−14, and the
constraint and energy violations as presented in Fig. 5b–d
present the extent of the associated constraint drift. Figure 6
shows the plot for computation times for the T-bar example,
simulated at different tolerance settings ranging from 10−6

to 10−14. This goes to show that if computation speeds are a
higher priority than accuracy, it would bemuchmore prudent
to perform simulations at lower tolerance settings like 10−9

or 10−10 with correction turned on than to do it at 10−14

without any correction at all.
To investigate the impact of the energy preservation

scheme of the T-bar, we simulated the T-bar example at 2 dif-
ferent tolerance settings (10−6 and 10−10), and at 3 different
rest lengths(50%, 70%, and 90%). We found a considerably
stronger effect at a higher tolerance setting than at a lower
one, for the same rest length 50%, as indicated by the order
of magnitude of motion errors in Figs. 8a and 7a respectively.
Figures 7c, d and 8c, d demonstrate the consistency of the
direct constraint correction scheme in stabilizing geometric
constraint violations below a specified norm bound, despite
a large difference in the order of magnitude of tolerance. In
Fig. 9a, b, the T-bar example is simulated at a tolerance of
10−10 for rest lengths of 50%, 70%, and 90%. Evidently,
larger deformations in the 50% case bring energy correction
into play more effectively.

For the example of the robotic arm, Fig. 10a shows the
motion of node 5, node 8 and node 10 for 20 s. Since we’ve
simulated the structure with nylon strings (Young’s modulus:
2 GPa), the structure appears to be chattering intermittently.
Figures 11 and 12 show the constraint violations of bar length
and energy. The order of the violations testifies to the stability
of the constraints for problems involving intricate geome-
tries. One can observe that the bar length constraints of bars
#3, #6, #11 amd #14 are violated more than others in the
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(a) Motion of nodes 4,7,8,13.
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(b) Energy violation of (35).

Fig. 13 Motion and energy violations in the example of the ball shown in Fig. 1c
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Fig. 14 Bar length errors in the example of the ball shown in Fig. 1c, where the value of zero is set to the minimum positive double precision
number

observed time period and nodes #4,#7,#12,#14 in Fig. 10b
are vibrating in higher frequencies, which implies a positive
correlation between constraint variations and motion fre-
quencies. Figure 13a depicts themotion of the 3-dimensional
ball which is in accordance with the high stiffness of the
strings. Preserving the order of constraint violations as
observed in the second example, Figs. 14 and 13b demon-
strate the ability of the implemented correction method to
maintain stability of the constraints despite an increase in
complexities associated with 3 dimensions. The videos cap-
turing the real-time motion of the structures and the relevant
code to generate simulations are publicly available [48].

Further, we redo the constrained T-bar dynamics, but sub-
stitute the rigid bars in the structure with compressible ones.
While this elasticity allows us to relax the bar length con-

straints during simulation, the DAE becomes a stiff problem,
requiring us to choose a solver from the stiff ODE suite, e.g.
[42].Aswecanobserve fromFig. 15, the difference inmotion
from simulations of a T-bar with compressible bars against
a T-bar with rigid bars but without any constraint correction
implemented, is of the order of 10−7.

Figure 16 shows the motion of the unfixed nodes in the
sameT-bar structure being simulatedwith compressible bars,
but this time, the bars are assumed to be of a different
material. High Density Poly Ethylene (HDPE), a polymer-
basedmaterial used to construct pneumatic struts in inflatable
tensegrity systems [9], replaces conventionally used metals
like steel or aluminium. The mean computation time for sim-
ulating a T-bar for 10 s using soft HDPE bars was ∼ 39.18 s,
while that for using aluminium bars was ∼ 502.2 s, a differ-
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Fig. 15 Difference in motion for the Tbar shown in Fig. 1a, but with compressible bars, compared against Tbar with rigid bars but no correction
applied
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Fig. 16 Motion plots for the Tbar shown in Fig. 1a, using compressible bars made of HDPE

ence of nearly 1100%. Evidently, using a softer bar material
speeds up the computation by a significant margin.

Finally, we sought to investigate the characteristics of the
two systems (soft vs metallic) from a control engineer’s per-
spective. The linearized models help us analyse the norms of
the system [12], which in this case, implies the relationship
between the size of the output signal’s energy or amplitude to
that of the input signal’s energy. Even though the linearized
model may differ significantly from the true nonlinear model
at points far away from equilibrium, they allow us to draw
preliminary inferences regarding metrics like system robust-
ness to disturbance. Table 2 summarizes the properties of the
two types of bars we used for simulating the T-bar using the

compressible formulation. The resulting observations con-
cerning the system norms and corresponding input–output
relationships are also present in the table. On being subjected
to a doublet force of amplitude 10 N (Fig. 17), observe the
deflection of the free nodes in Fig. 18. Clearly, the T-bar with
rigid metallic bars exhibits larger deviations when subject
to the same force, when compared to the T-bar with softer
bars. Note that due to the large difference in stiffnesses of the
bars and the strings in the T-bar structure, the eigenvalues of
the resulting compliance matrix do not differ meaningfully
when we replace the conventionally used aluminium bars
with those made of HDPE, as can be seen in Fig. 19. This
essentially means that given a certain force, amplitudes of
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Fig. 17 Compressible T-bar using soft and metallic bars subjected to
doublet force of 10 N

static deflection would be remarkably similar for either kind
of bar material. In such scenarios, given budgetary consider-
ations on structural weight, it would be worth investigating
whether replacing stiff metallic bars with bars made of softer
materials would yield comparable strength for lower mass.

5 Conclusions

Informally characterized as a network of axially loaded bars
and cables, tensegrity structures are an increasingly popular
subset of multibody systems finding applications in several
diverse domains ranging from space robotics to biological
modeling. In this paper, equations ofmotion for analysing the
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Fig. 19 Eigenvalues of the compliance matrix for the T-bar in Fig. 1a
using soft and metallic bars

dynamics of tensegrity structures were developed in Carte-
sian coordinates, i.e., a non-minimum set of coordinates,
using Lagrangian mechanics.

The use of non-minimum coordinates necessitates an
active effort to prevent constraint violations, since numer-
ical errors creep up on the constraint space when integrating
the governing equations of motion of an overparameterized
system.A direct correction approachwas employed to ensure
that constraints are adhered to, not only in position and
velocity, but also in total mechanical energy. Simulations
comparing our approach with the commercially available
Simscape Multibody illustrate the superiority of our formu-
lation in terms of numerical accuracy. The correctionmethod
ensures stability of constraints in 3-dimensional complex
tensegrity systems as well. The differences with and with-
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Fig. 18 Deviation of free nodes from equilibrium for the Tbar shown in Fig. 1a, using compressible bars made of HDPE and Aluminium
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Table 2 Comparison of soft and
metallic bars in the
compressible T-bar example

Type of bar Attribute
Soft Metallic

Material HDPE Aluminium

Density (kg/m3) 960 2700

Young’s modulus (GPa) 1 68

Total mass (kg) 75.39 212.05

Norms of linear system:

||G||2 0.1059 0.1752

||G||∞ 0.1718 0.4832

Input–output relationships from nonlinear response:

||y||∞
||u||2 4.79e−4 5.3e−4

||y||2
||u||2 7.22e−4 8.14e−4

out correction grow as the structure exhibits larger motion
amplitudes, or more commonly when the error of numeri-
cal integration is unchecked for long simulation time spans.
Further, a linearization of the associated equations of motion
was derived to facilitate future work in control.

We also considered compressible bars, wherein bars are
no longer geometrically constrained. This will allow a deeper
investigation into advanced compliant tensegrity structures
that might incorporate softer bars in their architecture. We
conducted one such analysis comparing a linearized com-
pressible system with 2 different kinds of bars, one made
using soft HDPE and the other with conventionally used
aluminium. It revealed the limited effect of bar rigidity on
the amplitudes of static deflection, an interesting insight
that raises further questions concerning bar material choices
given strength and mass considerations.
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