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Abstract
The work is devoted to a coupling method for the finite element method (FEM) and the distance potential discrete element
method. In this work, a well-defined distance potential function is developed. Meanwhile, a holonomic and precise algorithm
for contact interaction is established, accounting for the influence of the tangential contact force. In addition, the measurement
of deformation behaviors of each discrete element is handled by the FEM,where the couplingmodel and the conversionmethod
of the equivalent nodal force accounting for the influence of contact forces are proposed to generate the corresponding equations
of motion. Finally, the velocity verlet algorithm is applied enabling the significant simplification for the calculation of the
equations of motion. The proposed approach provides an accurate contact interaction avoiding the influence of the element
shape and reflect the movement procedure of multiple deformable bodies precisely. This viewpoint is proved by the classical
benchmark cases.

Keywords Discrete element method · Finite element method ·Distance potential function ·Contact forcemodel ·Deformation
behaviors

1 Introduction

The discrete element method (DEM) offers an efficient tool
for tracing mechanical behaviors of discontinuous media.
Initially, the underlying rigid-body assumption is adopted in
theDEM. This assertion shows its rationality for the systems,
such as joined rock masses and block collections, since the
deformation of such media is mainly caused by the sliding
and rotation of blocks and evolution of discontinuous inter-
faces. However, the system consisted of multiple deformable
bodies usually involves with the large displacement and
rotation, and investigations conducted in these phenomena
gain more popularity in typical applications of the com-
putational mechanics [1, 2]. Accordingly, a model capable
of representing the interactions and the deformation proper-
ties is extremely indispensable for modeling the complicated
behaviors of the discontinuous system.
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In recent times, an increasing number of models are set
up by coupling the DEM with continuous approaches to
capture the actual behavior of the system associated with
geometric information and contact mechanical properties. A
typical simplified model is suggested by Cundall and Strack
[3–5]. The main idea refers to the idealized discontinuous
mathematical model, that deformable blocks are represented
by the triangular elements and joints are modelled as con-
tact surfaces between different blocks [6]. On the basis, the
finite difference method is applied to consider the deforma-
bility. The normal and tangential contact springs are adopted
as a reasonable mathematical representations of the contact
physics [4, 5]. As a result, different mathematical models,
such as point-to-point, point-to-edge, and edge-to-edge, are
not robust and generally very complex, but are necessarily
according to the different contact situations [7, 8]. Further-
more, due to the non-determinacy of the normal contact force
at a corner, it cannot dealwith the point-to-point contact state.
This also results in an inconsistent contact force, which can
cause energy imbalance and numerical errors. One common
practice to overcome the corner singularity is to employ a
corner rounding procedure, so that blocks can slide past one
another in a smooth way [9]. Nevertheless, this practice has
a negative effect on the accuracy and robustness.

The combined finite-discrete element method (FDEM),
developed byMunjiza andOwen [10], makes a revolutionary
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change on the model of contact interaction. Entirely differ-
ent from the standard DEM, the FDEM defines a potential
function with the area calibration function. The distance pen-
etration applied in the standard DEM is represented by the
overlapping area. Accordingly, the contact interaction is per-
formed by the distributed contact force instead of the central
contact force, hence the calculation of contact forces in the
FDEM becomes convenient and uniform by an integral of
the potential function on the embedded area without dis-
cussions of different contact situations completely, whilst
the energy conservation and momentum balance properties
are preserved. Furthermore, each discrete block is defined
by a continuum mesh of finite element zones, with each
zone behaving according to a prescribed linear or nonlinear
stress–strain law. Meanwhile, the No Binary Search (NBS)
method [11], which is noted for its linear properties for the
contact detection both in dense and loose packs of blocks, is
developed to reduce the CPU requirement of contact prob-
lems and improve the efficiency [12].

The FDEM still suffers from some deficiencies, even
though diverse applications have been carried out to validate
the performance of this approach [13–18]. As the potential
function in the FDEM is defined as the normalized pene-
trated area, the potential magnitude is not identical at all time
even with a same penetration and overlapping area in a same
element. Consequently, the contact interaction may undergo
deviations [19]. The principal reason for this phenomenon
fundamentally boils down to the inherent deficiency of the
potential definition, which lacks a clear physical meaning
and a measurement for the penetration between contact ele-
ments [20]. Besides, the numerical model does not indicate
the influence of the tangential contact force [7]. Another
severe drawback is that this potential function has a strict
restriction on the element type and cannot be applied in
an arbitrary polygonal element [12]. Moreover, the stress
and strain inside the discrete elements are assumed constant,
as the linear triangular finite elements, e.g. the first-order
elements, have disadvantages of the corresponding theoreti-
cal formulation. Even though the higher-order interpolation
functions for the triangular elements have been combined
with other approaches to address the shortcomings of their
constant strain counterparts [21], its implementation is still
limited, due to the high cost in the computational resources.

In order to overcome the presented disadvantages, a
distance potential function-based FEM-DEMmethod is pro-
posed in this work. The basic idea of the proposed method
is motivated by the limitations of the FDEM owning to the
intrinsic defects of the potential function, the omission of
the tangential force, and the low accuracy for characterizing
the stress and deformation behaviors. Furthermore, the dis-
placement interpolation function, the stiffness matrix, and
the integration algorithm of load vector for polygonal ele-
ments have been developed [22], which make it possible to

directly calculate the stress and strain of complex elements.
In this approach, a novel definition of distance potential func-
tion is developed relying on the defined distance calibration
function, and a complete calculation of the normal contact
interaction is performed as an integration of this distance
potential function on the boundaries of the overlapping area.
The proposed method also provides a precise definition of
the tangential direction and the computational algorithm. In
addition, the coupling model of the presented method and
the conversion method of the equivalent nodal force for the
uncoupled contact interaction from the equations of motion
are applied. Finally, the typical combination of the distance
potential function based DEM and the finite element formu-
lation is presented together with the velocity verlet method
[23]. The new distance potential function is based on the
normalized penetrated distance. In comparison with the defi-
nition in the FDEM, this distance potential function exhibits
a clear physical meaning and presents an accurate measure-
ment of penetration for the contact elements. Accordingly,
both the magnitude of the distance potential function and
numerical solution of the contact interaction are calculated
regardless of the element shapes. Moreover, a much wider
range of choices for the finite element types, for instance the
four-node quadrilateral element, which has been driven to
improve the computational accuracy of the stress and defor-
mation, are available, due to the extension of the element
shapes.

This paper is organized as follows. The motivation and
methodology are illustrated in Sect. 2, including the main
issues existed in the FDEM and the counterplans in this
paper, followed by mathematical models of the discrete ele-
ment method in which the distance potential function and
the algorithm of contact interactions are provided in Sect. 3.
Then the numerical model of the distance potential-based
FEM-DEM method is discussed in Sect. 4. Subsequently,
several illustrative verifications are reported to validate the
presented method in Sect. 5. At the end of this paper, con-
clusions are provided in Sect. 6.

2 Motivation

2.1 Basic idea of the FDEM

As described in the FDEM [12], the discrete element is dis-
cretized with a mesh consisting of triangular finite elements.
Each employed finite element mesh captures the deformabil-
ity of a single discrete element.

The contact detection algorithm, namely the NBSmethod
[11], then is applied in this case for an investigation of all
the finite element pairs in contact. Subsequently, the contact
interaction is based on the assumption that the contact trian-
gular elements, βt and βc, penetrate each other, resulting in
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Fig. 1 The sub-triangles divided by the point p

a distributed normal contact force f n. It is associated with
the shape and size of the overlapping area, and the detail
formulation is given as

f n � kn

∮
�

n�(ϕc − ϕt)d�, (1)

where ϕc and ϕt are the potential function at the point in βt

and βc, respectively, � is the boundary of the overlapping
area, n� is the outward unit normal vector of �, and kn is the
normal stiffness.

Value of this potential function of the point in the element
is defined as

ϕ � min

{
3A1

A
,
3A2

A
,
3A3

A

}
, (2)

where Ai , i � 1, 2, 3 is the area of the corresponding sub-
triangles, as shown in Fig. 1, and A represents the area of the
element.

The computed contact force is applied together with all
other forces to the simulated body, and the central difference
method (CDM) is adopted to solve the equation of motion
[24]

Mü+Cu̇ + f int � f ext + f c, (3)

whereM andC are themassmatrix and the damping diagonal
matrix, respectively, u̇ and ü are the vectors of velocity, and
acceleration, respectively, f int, f ext and f c are the equivalent
nodal force vectors contributed by the deformation of the
element, the external force, and the contact force between
the contact finite elements.

Finally, the strain and stress distributions in the
deformable body are evaluated from the computed displace-
ment of each body.

2.2 Some issues in the FDEM

The FDEM exhibits a completely unified contact model for
various contact types and provides a feasible coupling way

for theDEMand the FEM tomeasure the deformation behav-
ior of discrete blocks. However, there are still three critical
problems listed as follows,when it is applied to solve the con-
tact interaction between the deformable polygonal blocks.

1. The potential function is defined for the regular trian-
gular element, and it cannot be applied in the arbitrary
triangular element. As described in Eq. (2), the potential
function is a function of dimensionless embedding area,
and itself provides a measurement of the embeddedness
between the contact elements. Accordingly, points with
a same penetration in the same element ought to have the
same potential value. Nevertheless, the potential value is
commonly determined associated on the geometrical fea-
tures of the element. As shown in Fig. 2, the distribution
of the potential value is exhibited, and three points, p1,
p2, and p3 with a same penetration distance are selected.
However, high differences are indicated in every point in
Fig. 2a. The potential values of the points are given by
Eq. (2) according to the area of the corresponding sub-
triangles as illustrated in Fig. 2b. Because the lengths
of the boundaries of the element are not equivalent, ϕ

(p1) �� ϕ(p2) �� ϕ(p3), even the same penetration dis-
tance for each point in the same element. The size-effect
of the boundaries of the element can be observed clearly.

2. The smooth deficiency of the potential function in the
polygonal element. Figure 3 exhibits the distribution of
the potential magnitude in an arbitrary quadrilateral ele-
ment. The presence of discontinuities along the interfaces
can be observed from the illustration. It presents a strict
restriction of the potential function to the element type
and cannot be used to compute the contact interaction
between polygonal elements.

3. The accuracy loss in the description of the stress and
strain distribution in the element. For a variety of reasons,
the FDEM is based on the triangular finite element. The
first-order element has both the advantages and disad-
vantages of the corresponding theoretical formulations.
Although in many cases they are capable of producing
good results, they cannot reflect the distribution of the
stress and strain inside the element.

2.3 The proposed deformable distance potential
discrete element method

As the kind of numerical errors mainly come from the poten-
tial definition, a reasonable and generalized definition of
a potential function for the arbitrary polygonal elements
becomes the key issue. The potential function ought to be
defined as signed distance function and itself provides an
exact measurement of the embeddedness between the con-
tact elements. It is a straightforward choice to establish the
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Fig. 2 The potential distribution in triangular elements shown in (a), and three points p1, p2, and p3 with a same penetration shown in (b)
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Fig. 3 The distribution of the potentialmagnitude in an arbitrary quadri-
lateral element

potential function according to the penetration distance. In
this way, points with the same penetrated distance have the
same potential magnitude within the same element.

In this case, a distance calibration function is adopted,
and the potential function is described as a dimensionless
distance function, namely the distance potential function.
The distance potential distributions with a constant gradi-
ent in varied blocks are presented in Fig. 4. It is worthwhile
to notice that distance potential value is achieved without
influence of the element shape. Moreover, it can be used in
the arbitrary polygonal elements. Consequently, the high-

accuracy element, e.g. the convex polygonal element [22], is
employed to provide the precise deformation characteristics
of the simulated body. As a result, it can avoid errors in the
calculation of both potential and normal contact force as dis-
cussed in Sect. 2.2. The solution process of different types of
elements is basically the same, so this article uses four-node
quadrilateral elements as an example to explain in detail.

3 Mathematic model of distance potential
discrete element method

In this section, mathematic models of contact forces in the
presented method are illustrated. Quadrilateral blocks, dis-
cretized with a quadrilateral finite element respectively, are
selected to account for the computing process.

In this work, the model is established in accordance with
the energy conservation [25].Assuming the contact elements,
βc and βt, move along any closed path L, the total work W
produced by the normal contact force can be expressed as

W �
∮
L
fndL, (4)

Apparently,W satisfiesW � 0,when the contact is elastic.
In consequence, f n has to be potential vector, and it can be
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Fig. 4 The distance potential distribution in varied elements
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expressed as the negative value of the gradient of the scalar
function (potential function)

f n � −kn∇ϕ (5)

3.1 The distance potential discrete elementmethod

The most notable difference between the distance potential
discrete element method and the FDEM lies in the choice of
the potential function in Eq. (5). Instead of the area calibra-
tion function as described in Eq. (2), this newly presented
method employs the radius of the maximal inscribed circle
of the element, r , and a novel distance potential function ϕd

is defined as

ϕd � 1
rmin{hi }, ϕd ≤ 1 , (6)

where hi stands for the distance between the point inside the
element and each boundary of the element. The distribution
of the distance potential function in the arbitrary quadrilateral
element is shown in Fig. 5.

Due to the arbitrary element shapes, the definition of
the distance potential function results in an internal polyg-
onal area, namely the singular area, surrounded by a set of
points with a same distance r to the corresponding bound-
ary, as shown in Fig. 5a. It can be obtained geometrically
by translating the nodes along the angle bisector of the ele-
ment as illustrated in Fig. 5b. Points in the singular area are
not defined by the distance potential function. In accordance
with the basic assumption of the DEM, the penetration will
not happen in this area, due to the large value of the normal
contact stiffness. Consequently, the singular area is not of
significance for the solution procedure.

The distance potential value is equal to 1 on the bound-
aries of the singular area, and 0 on the bases of the element.
The strong smoothness deficiency and nonlinear distribution
of the distance potential function exhibited in Fig. 5a. Never-
theless, the element is discretized into sub-polygonal blocks
by the angle bisectors, as shown in Fig. 5c, in which the
invariable gradient and a linear distribution of the distance
potential function are achieved.

By introducing the Eqs. (1) (5) and (6), the normal contact
force between the contact pairsβc andβt, as shown in Fig. 6a,
can be described as an integration of the distance potential
function over the boundaries of the overlapping area

f n �
N�∑
i�1

{
ni,nkn

∫
�i

[
ϕd,c − ϕd,t

]
d�i

}
, (7)

whereϕd,c andϕd,t are the value of distance potential function
belonging to the blocks βc and βt respectively, ni,n is the
outward unit normal vector of the boundary �i , kn represents
the normal contact stiffness according to the definition by

Munjiza, and N� stands for the number of the boundaries of
the overlapping area.

A local coordinate system given by (υ, ν) is introduced
to minimize the necessary numerical operations. Figure 6b
shows the local coordinate system established on edge �1.
Distribution of the distance potential value between the inter-
action points, e.g. pi , i � 1, . . . , 4 shown in Fig. 6b, is along
the straight line and linear. Consequently, Eq. (7) is simplified
as

f n � kn

N�∑
i�1

ni,n

Nint∑
j�1

1

2

{[
ϕd,c

(
p j

)
+ ϕd,c

(
p j+1

)]

−[
ϕd,t

(
p j

)
+ ϕd,t

(
p j+1

)]}
l p j p j+1, (8)

where l p j p j+1 is the distance between the interaction points
p j and p j+1, and Nint is the total number of the interaction
points.

3.2 Tangential contact interaction algorithm

Due to the ambiguity of the tangential direction and omission
of the influence from the tangential contact force, the FDEM
often introduces an inevitable numerical error into the com-
putation, which may cause an enormous distortion or a total
simulation failure. Thus, the determination method for the
tangential contact force is necessary for a precise simulation
result. In the standard method [20], the tangential force asso-
ciated with the tangential incremental displacement at time
t + �t

t+�t f s �
Ns∑
j�1

(t f s + ks�δs
)
j , (9)

is implemented as components on the boundaries of the
block, where t+�t f s and

t f s are the tangential force at time
t + �t and t, respectively, ks is the tangential contact stiff-
ness, �δs is the tangential increment displacement of each
boundary, and Ns is the total number of the boundaries.

The general expression, however, has a severe drawback
with false tangential force. As shown in Fig. 7, block βc

impacts block βt in a direction opposite that of y axis. Ini-
tially, blocks βc and βt are stacked in such way that they
contact but there are no overlap and contact force between
them. Then βc is prescribed to move along the Y axis transla-
tionally only. The tangential forces f t,ac and f t,ab, along the
entire path which can be obtained by Eq. (9). However, this is
inconsistent with the physical intuition, because the relative
tangential displacement increment is not occurred between
the blocks. In addition, it can be observed that f t,ac and f t,ab
have components along the normal direction,which affect the
computation of the normal contact force. Otherwise an enor-
mous computer memory (RAM) is necessary to record both
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the normal and tangential force and increment displacement
at each time step for all boundaries of every block.

One possible way to remedy these deficiencies is that the
calculation for tangential force is achieved by following the
solution of the total normal contact force. The value of the
tangential force is determined by the total tangential incre-
ment displacement, and the direction of the tangential force is
perpendicular to the total normal contact force and the load-
ing position is almost identical with the total normal contact
force. Consequently, excessive computer memory require-
ments and the errors analyzed for the first method can be
eliminated completely.

The relative velocity v of βc to βt is

t+�tv � (t+�t u̇c − t+�t u̇t
)
+

(t+�tωc × t+�t rc − t+�tωt × t+�t r t
)
,

(10)

where t+�t u̇c, t+�t u̇t, t+�tωc and t+�tωt are the translational
and angular velocities of blocks βc and βt at time t + �t ,
respectively.

Then the incremental tangential displacement�δs is given
by

�δs � �δ − (
�δ · n̂n

) · n̂n � [t+�tv − (t+�tv · n̂n
) · n̂n

]
�t,
(11)

where �δ is the incremental displacement between βc and
βt, and n̂n is the unit direction vector of total normal contact
force.

And the tangential contact force is obtained as

t+�t f s � t f s + ks�δs, (12)

It is highlighted, however, that the unit direction vector
n̂n is updated every time step. In order to account for the
direction of the tangential force, Eq. (12) must be corrected
as

t+�t f s � Rt f s + ks�δs (13)
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contact surface

finite elementsdiscrete blocks

Fig. 8 Numerical model of the distance potential function-based FEM-
DEM method

where R is the rotation matrix that rotates the normal vector
at time t to the normal vector at time t + �t .

The magnitude of the tangential contact force is checked
with the Coulomb friction law relating to the total normal
contact force t+�t f n

t+�t f s � nsmin
(∣∣t+�t f s

∣∣, μ
∣∣t+�t f n

∣∣), (14)

where μ is the friction coefficient.

4 Numerical model of the distance potential
function-based FEM-DEMmethod

In this section, the specific technologies used to accomplish
the distance potential function-based FEM-DEM coupled
method are illustrated. The coupling model is provided to
deal with the contact relationship. Afterwards, the descrip-
tion of the equivalent nodal force of the contact force is
illustrated. Finally, governing equations and the numerical
scheme are established in an explicit way.

4.1 Couplingmodel for the distance potential
function-based FEM-DEMmethod

The developed model is shown in Fig. 8. The object in the
computational domain is cut into discrete blocks of various
shapes in terms of the internal discontinuous surfaces. The
blocks are modeled by discrete elements, and the surfaces
between the blocks are represented by the contact surfaces.
Each discrete element is further discretized into four-node
quadrilateral elements, as shown in Fig. 8.

Thus, the contact detection and the computing of the
contact force are performed between the outermost finite ele-
ments, as shown in Fig. 9b. Then the contact force is assigned
to the nodes of the contact finite elements according to the
principle of static equivalence, which will be discussed in
detail in Sect. 4.2. Therefore, the calculation of the contact
forcemaintains a high degree of accuracywith complete con-
sideration of the deformation of the block. However, it would
bring about the enormous number of the contact detected ele-
ments and the rapid increment of computing time.

4.2 The equivalent nodal force

Simulations of the deformable blocks is enabled by com-
bining the DEM and FEM. In this case, the discrete blocks
are discretized into the quadrilateral elements, as described
in Fig. 9a, and calculations of contact interactions are per-
formed among the contact finite elements, which are made
distinct from other finite elements, as shown in Fig. 9b.

As mentioned above, the discrete blocks have been dis-
cretized into finite elements and the FEM is applied here to
represent the deformation characteristics. Therefore, the con-
version method of the equivalent nodal force for the contact
force is extremely necessary for this problem. According to
the principle of static equivalent [26], the contact forces on
the nodes of the contact elements, βc and βt, as shown in
Fig. 10, are given by

f ci � FcNi , (15)

where f ci stands for the equivalent nodal forces, Ni rep-
resents the shape functions, and Fc is obtained as Fc �
f n + f s.

4.3 Governing equations and the numerical scheme

Geometric nonlinearities, in this instance, including nonlin-
ear aspects of deformation are arose from large displacements
and large strains for each individual discrete element. The
nonlinear finite element method is naturally adopted to
address these nonlinear problems [27]. The node coordinates
of the finite-element meshes describing the deformable dis-
crete element is updated at each time step according to the
governing equation (3). The time discretized formulation of
the governing equation is shown as follows

M t+�t ü+C t+�t u̇ + t+�t f int � t+�t f ext +
t+�t f c (16)

where t+�t u̇ and t+�t ü are the vector of velocity, and accel-
eration at time t + �t , respectively, t+�t f int,

t+�t f ext and
t+�t f c represent the equivalent nodal force vectors due to the
deformation of the element, the external force, and the con-
tact force between the contact finite elements at time t +�t .

Since the variables t+�t u̇, t+�t ü, t+�t f int and
t+�t f c are

coupled which are unknown at time t + �t , it is a benefi-
cial attempt to use the explicit method [28]. In this part, the
velocity verlet algorithm [23] is applied to solve the Eq. (16).
The detailed formulations are as follows,

Predicting stage:

t+�tup � tu + �u � tu + �t t u̇ +
1

2
�t2t ü, (17)

t+�t u̇p � t u̇ +
1

2
�t t ü, (18)
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Fig. 9 a Discrete element
discretized into finite elements,
and b the contact finite elements
defined in this case

discrete elements contact finite elements

(a) (b)

detail

Fig. 10 Calculation of the
equivalent nodal force
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Correcting stage:

t+�t u� t+�tup, (19)

t+�t u̇ � t+�t u̇p +
1

2
�t t+�t ü. (20)

During this stage, the displacement and the new positions
of the nodes at time t+�t are calculated according toEq. (17),
and the velocity at mid-step is determined by using Eq. (18)
[23]. Accordingly, the equivalent nodal force vector of the
contact force t+�t f c can be compute according to Eqs. (8)
(14) and (15). And the internal force vector t+�t f int related
to the configuration is met [27, 29]

t+�t f int �
∫
0Ωe

BT
0

(t S + �S
)0dΩ (21)

or

t+�t f int �
∫
tΩe

BT
t

(tτ + �S
)tdΩ, (22)

where B0 and Bt are the strain–displacement matrix corre-
sponding to the configurations at time 0 and t, respectively,
t S and tτ are the matrixes of 2nd Piola–Kirchhoff stress and
Cauchy stress at time t, respectively, and �S is the incre-
mental 2nd Piola–Kirchhoff stress related to the incremental
displacement �u.

The recursion equations of Eq. (16) can be concluded as

M t+�t ü � t+�t f ext +
t+�t f c − C t+�t u̇p + t+�t f int. (23)

Finally, the acceleration at time t +�t is solved according
to Eq. (23), and the velocity move completed using Eq. (20).

In this work, it is based on a dynamic algorithm that solves
the equations of the motion of the block system through an
explicit scheme, and the stiffness matrix does not need to
be generated in the solving process. In order to clarify the
implementation process of this method, the technical scheme
is presented in Fig. 11.

5 Verification and application

In this section, several numerical cases are presented to ver-
ify the correction and accuracy of the proposed method.
Firstly, the superiority of the presented method in capturing
the normal and tangential contact forces is illustrated by two
standard problems, including the impact simulation and the
sliding test. Afterwards, the ability of reflecting the strain and
stress fields for each discrete block is proved by discussing
the dynamic response of a beam subjected to the impact load-
ing and the instant stress inside the irregular multi bodies in
contact. Finally, the verified method is applied to simulate
the hopper flow.

5.1 Impact simulation between triangular elements

The presented method provides an accurate contact force.
To verify this assertion, a benchmark concerning the impact
procedure of two triangular blocks is studied. In this example,
the rigid block is assumed, due to an intuitive interpretation
for the contact force. The models used herein are shown in
Fig. 12. Twokinds ofmodels are exhibited here, including the
perfectly and incompletely symmetrical triangular couples,
βc and βt denoted as the case 1, and βc and β ′

t denoted as
the case 2, respectively. The blocks are arranged vertically
along the Y axis. The blocks βt and β ′

t are fixed, while the
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Fig. 11 The technical scheme of the proposed method

block βc falls toward βt and β ′
t along the Y axis, respectively.

The density of blocks is 2000 kg
/
m3 and the initial velocity

of block βc is set as 0m/ s. The vertical acceleration due to
the gravity is taken to be 9.81m

/
s2 in a direction opposite

that of the Y axis. The normal stiffness, kn � 20 GPa is
considered. Influences of the friction and energy degradation
are neglected.

Initially, block βc free falls toward βt. When βc begins to
contact with βt, βc gradually decreases its velocity to a stand-
still following the increment of the penetration. Meanwhile,
the embedded area and the normal contact force achieve the
maximum value. Then block βc turns around and returns
to the initial position ultimately. The vertical and horizontal
displacements of βc by the proposed method are shown in
Figs. 13 and 14, respectively. The simulation with the pro-
posed method follows the expected motion. The main reason
is owing to the symmetrical geometric construction of the
contact area respect to the Y axis, same physical parameters,
and more importantly the same contact forces on �1 and �2

caused by the penetration, as illustrated in Fig. 15.
The results also exhibit that the movement behavior of

βc is consistent with the existing analysis in the case 2. The
vertical displacement of βc, shown in Fig. 13, is symmetri-
cal along the Y axis, as the identical penetrations between

Y

X

tβ

tβ′

cβ

45° 45°

45° 45°

1 2

Fig. 12 Numerical models for this impact simulation

the contact blocks in the right and left side. Besides, the dis-
placement along the X axis is not generated, due to the load
distribution. These observations indicate that the defined dis-
tance potential function is a signed distance function. Thus,
both the distance potential value and the contact force inside
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Fig. 13 Simulation results by the proposed method and the FDEM for
the impact cases, where a the vertical displacement of block βc, and
b the detailed time evolution of the displacement of block βc by the
proposed method
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Fig. 14 Time evolution of the horizontal displacement of βc calculated
by the proposed method and the FDEM

an element are calculated without influence of the element
shape. In Fig. 15 the difference of the contact forces by using
the proposed method between the two cases is shown. This
is due to the change of the element shape. For the different
blocks, the embeddedness is quite different with each other,
even though the same penetration distance is assumed. Thus,
it is seen that a slight deviation of the vertical displacements
of βc obtained by the proposedmethod is generated as shown
in Fig. 13b.

As a comparison, the tests with the same setting are also
conducted by using the FDEM. The results are presented in
Figs. 13a and 14. It is clearly that the motion trajectory is the
same before and after the collision in the case 1, however, it
shows the opposite result in Fig. 13 for the case 2, and the
horizontalmovement ofβc is observed during the simulation.
As explained in Sect. 2.2, the normal contact forces on�1 and
�2 are unequal with each other, and they result in a horizontal
deflection of βc after it impacts with β ′

t . The discrepancy
caused by element shape can be observed clearly.

5.2 Friction test

In this section, the processes of a block sliding on an inclined
surface with an initial velocity and the recording of the
rebound trajectory of the triangular block are analyzed as
benchmark tests of a friction problem for this proposed
method.

The simplified physical model applied in the first friction
test is shown in Fig. 16. In the beginning, the block is placed
on the inclined surface with a dip angle θ� 30

◦
. The initial

velocity of the sliding block is set as 6m/ s. The density of the
block is 2500 kg

/
m3. The normal stiffness, kn � 2.0 GPa,

and the tangential stiffness, ks � 1.25 GPa, are assigned to
the blocks. Various friction coefficients μ � 0.2, 0.4, 0.6,
are implemented to set up the slide path artificially. The sim-
ulation results are compared with the theoretical value.

Figure 17 shows the velocity and displacement of the
sliding block. The results exhibit an explicit conversion
procedure of the kinetic energy of the block with differ-
ent frictional coefficients. In this detailed description of a
comprehensive test, it is seen that results calculated by the
proposed method agree well with the theoretical values.

The following simulation provides a comparison between
the proposed method and the developed method by Yan [20].
As shown in Fig. 18, βt is fixed on the ground and βc falls
toward βt driven by the gravity. The physical properties of
the blocks are the same, which the density are 2000kg

/
m3,

the normal stiffness is 2.0 GPa, and the tangential stiffness,
ks � 1.25 GPa, is used here. The initial velocity of βc is set
as 0m/ s. The friction coefficient, μ� 0.1, is assumed.

As the relative tangential displacement between the blocks
βc and βt is not occurred during the movement process, βc

turns into a reverse motion and ultimately returns the origi-
nal position after impacts with block βt, due to the moving
power without losing energy. As a result, tangential forces
and the energy loss caused by the tangential forces are not
included in this case. Figure 19 presents the displacement
of βc. It is worthwhile to notice that the displacement of βc

obtained by the proposedmethodmaintains a constant ampli-
tude, while its peak value decreases gradually simulated with
the developed method by Yan, as shown in Fig. 20, due to
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Fig. 15 Normal contact forces
on �1 and �2 obtained by two
methods for the impact cases
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Fig. 16 Numerical model for the sliding test

losing energy caused by the false tangential force by Eq. (8),
as exhibited in Fig. 21.

Based on above discussion, the precision of the tangential
contact force by the proposed method is deduced.

5.3 The vibration tests for the beam
under the impact load

The vibration test cases for the cantilever and the statically
indeterminate beam responding the dynamic load [30] are
simulated to verify the accuracy of the proposed method in
solving the problem in the context of elasticity.

The first case is now presented in this section to inves-
tigate vibration procedure of the cantilever beam subjected
to the impact load. The test beam is with a length of 10 m
and a height of 1 m, as shown in Fig. 22. The load is placed
0.2 m apart from the right side of the beam, whose maxi-
mum is 1.5×107 N, and the rise time, t0� 0.5 s, is assigned,
shown in Fig. 23. The density of the beam is 2000 kg

/
m3,

the Young’s modulus is 20 GPa, and the Poisson’s ratio is set
as 0.2. Influence of the element size is also considered in this
case and the calculated model is discretized into structured
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Fig. 17 Velocities and displacements obtained by a the proposed
method and b the theoretical equations

quadrilateral elements of the size 0.05 m, 0.1 m, and 0.2 m,
respectively.

For a comparison, the simulation is also pursued by
ADINA. The deflection at point A is shown in Fig. 24. It
illustrates that the simulation results obtainedby theproposed
method with different element sizes are in good agreement
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Fig. 18 Numerical model consisted of two triangular blocks
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Fig. 19 Vertical displacement obtained by the proposed method and the
improved FDEM by Yan [20]
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Fig. 20 Time evolution of the tangential fore obtained by the two meth-
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with that calculated by ADINA, when the element is small
enough.

The following simulation is performed to validate the
capability of the proposedmethod to capture the deformation
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Fig. 21 Kinetic energy as a function of time calculated by the twometh-
ods

behavior and prediction stress inside the individual block.
The tested beammodel is constructedwith 1000 quadrilateral
finite elements with the size 0.1 m×0.1 m, namely (span×
high) as shown in Fig. 25. The material properties are same
with the description in the first case. The initial velocity of
the projectile is set as -1 m/s. The impactor is just on the top
of the beam. Initially, they are stacked in such way that they
contact, but there are no overlap and contact force between
them. The test with the same setting is also simulated by
ADINA.

The results are presented in Figs. 26 and 27. The curve
at the point A obtained by the proposed method is almost
coincident with that byADINA. Figure 28 presents themajor
principal stress σ1 of the beam at about 0.7 ms and 1.5 ms,
respectively. The stress distributions simulated by the two
methods are similar with each other. Thus, the accuracy of
the newly presented method in this work is further proved.

5.4 Multi-bodies contacting test

This section provides the results of a study, carried out by
the proposed method, on the plane Hertzian contact stress
between two cylinders, as shown in Fig. 29. The results are
compared, following the analysis, to the calculated stress
based on Hertz’s theory (1881–1882). The cylinder body βI

of radius R1 in contact with βII, is compressed with a uni-
formly distributed force F . In contact between the cylinders,
the contact force is linearly proportional to the indentation
depth [31]. The half-width b of the contact area is obtained
as

b �

√√√√√√
4F

[
1−ν21
E1

+
1−ν22
E2

]

πL
(

1
R1

+ 1
R2

) , (24)

where E1 and E2 are the elasticity modulus of cylinders βI

and βII, respectively, ν1 and ν2 represent the Poisson’s ratios,
and L is the length of contact.
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Fig. 22 The cantilever beam
model subjected to impact load
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Fig. 23 The impact load acting on the beam
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Fig. 24 Deflection at point A for several element sizes

Therefore, themaximumcontact pressure pmax along can
be achieved as follows

pmax � 2F

πbL
. (25)

The analytical model is realized considering a plane per-
pendicular on the cylinder axis as shown in Fig. 30. The
model is discretized into 8776 finite elements. The size of
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Fig. 26 Time evaluation of the vertical displacement at the point A
obtained by the two methods
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Fig. 27 Comparison of the major principal stress at point A

coarse mesh utilized is 0.02 m, whereas the fine mesh is
1×10−4 m. The mechanical properties of the materials are
E1 � E2 � 20 GPa and ν1 � ν2 � 0.21. The normal
load F � 1 × 108 N and unit length of contact are applied.
The contact stiffness used in this case is kn � 20 GPa.
Influence of gravity and friction are not included. There-
fore, the maximum contact pressure according to Eq. (25),
pmax � 3.87101 × 109 Pa, can be obtained.

Fig. 25 Element configuration
of the tested beam 4.75
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Support

A

Unit: m
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Fig. 28 Snapshots of major
principal stress at a t � 0.7 ms
and b t � 1.5 ms
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Fig. 29 Model of the contact cylinders

The simulation results are presented in Fig. 31. It worth-
while to notice that the distribution of the displacement and
minor principle stress fields σmin are symmetrical to the
direction of the force and the contact point. The maximum
of the stress is in the contact point, which agrees well with
the theoretical value calculated according to Eq. (25).

The following simulation is on the basis of the uniaxial
compression test, consisted of disks and irregular blocks, to
demonstrate the proposed method in dealing with the multi-

bodies system under compression. Quite evidently the stress
is consistent with theHertz’s equation for the simplified case.
However, for the cases including a larger number of contacts,
as shown in Fig. 32, the stress is not simple enough to be
represented by the universal formula [32].

This test is performed by the proposed method. The stress
states of the blocks are presented in Fig. 32. The stress fields
exhibit strong heterogeneity and are varying with the contact
conditions. When they contact with each other, significant
stress concentrations appear in the contact point. The dis-
appearance of the contact force and the stress field can be
observed, if they are separated from each other. It further
demonstrates the capability of the developed method in cap-
turing the conditions in the process of contact.

5.5 Simulation of the hopper flow

In this section, the proposedmethod is introduced to an appli-
cation of the study of the jamming phenomenon of granular
flow. This simulation is pursued on the basis of the investiga-
tion of Galindo-Torres [33]. It has been demonstrated that the
particles may became jammed, when the opening is smaller
than a critical value, and the nonconvex particles are expected
to jam more easily than convex particles [34].

In the framework of current simulation, the geometry of
the hopper is shown in Fig. 33. The test is carried out using
the quadrilateral and cross-shaped blocks. All the blocks
are considered as rigid blocks. The density of the blocks is
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Fig. 30 Modeling and meshing
contact between the two
cylinders with parallel axes
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Fig. 31 The vertical displacement and the minor principal stress fields obtained by the proposed method

assumed as 2000 kg
/
m3. The normal stiffness kn � 2.0 GPa

and damping coefficient 0.0005 are applied. The influence of
friction between the blocks and wall is neglected. Blocks are
assigned a random arrangement in hopper and driven by the
gravity. The snapshots on the discharge processes for the dif-
ferently shaped blocks are shown in Fig. 34. It should be

note that the opening is large enough and the quadrilateral
blocks can free fall from the hopper, while the jamming of
the cross-shaped blocks is produced by arches formed near
the aperture.

Simulations are also carried out to explore the influence
of the elasticity modulus. The blocks are assigned value of
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Fig. 32 Stress field inside the
contact blocks, where a σxx ,
b σyy , and c σxy
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Fig. 33 Geometry properties of
the model used in this example
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Fig. 34 Simulation of the
hopper flow using the rigid
structured quadrilateral blocks
and cross-shaped blocks by the
proposed method

Young’s modulus of 1.2 GPa, 0.5 GPa, and 0.3 GPa, respec-
tively, and the Poisson’s ratio 0.2. The detail description of
on the simulation results is shown in Fig. 35. The state of
the rest illustrates variation of the behavior of the discharge
flow. In the instance E � 2.4 GPa, the deformation is not
significantly and the jamming is still produced formed near
the aperture, as illustrated in Fig. 35a. For the case shown
in Fig. 35b, the flow is jammed after few blocks discharged,
whereafter, the emptying process of the hopper for the blocks
are observed, due to the loss of the stability of the arch caused
by the excessive deformation of the blocks. As exhibited in
Fig. 35c, emptying process presents that the jamming is not
generated, when the elasticity modulus is small enough. It is
seen that the deformation characteristics of the blocks plays
a critical role in the macroscopic flow behavior and the pro-
posed method is a powerful tool to model the behavior of the
particle flows consisted of multiple deformable bodies.

6 Conclusions

The main challenges in simulating the motion of the system
consisted of multiple deformable bodies include the repre-

sentation of the contact interactions and the description of
the stress and strain fields inside the individual blocks. In the
currentwork, a novel distance potential function-basedFEM-
DEM method is proposed. The newly presented method has
constructed a basic function of the distance potential func-
tion, and a complete normal contact force calculation model,
including themagnitude and the direction. For simulating the
sliding procedure of the discontinuous system, a fundamen-
tal algorithm of the tangential contact force is developed in
detail relying on the displacement increment method and the
classicalMohr–Coulomb type friction algorithm by coupling
the rotation transformation algorithm. With the conversion
method of the equivalent nodal force, the calculated contact
forces are applied together with other nodal forces in order to
generate the corresponding equations ofmotion. The velocity
verlet algorithm is adopted to simplify the calculation of the
equations of motion and update the strain and stress fields at
each time step. Compared with the FDEM, the contact forces
are calculated regardless of the element shape, and the stress
and strain fields are with high precise, due to much wider
range of choices for element types. The advantages of the
proposed method are verified by some benchmark examples.
The results show that this computational method is clear,
precise, and stable for 2D models.
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Fig. 35 Simulation of the
hopper flow using the
deformable blocks for several
elasticity modulus, where
a E � 2.4 GPa, b E � 0.5 GPa,
and c E � 0.3 GPa
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