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Abstract
This paper proposed a new topology optimization method based on geometry deep learning. The density distribution in 
design domain is described by deep neural networks. Compared to traditional density-based method, using geometry deep 
learning method to describe the density distribution function can guarantee the smoothness of the boundary and effectively 
overcome the checkerboard phenomenon. The design variables can be reduced phenomenally based on deep learning repre-
sentation method. The numerical results for three different kernels including the Gaussian, Tansig, and Tribas are compared. 
The structural complexity can be directly controlled through the architectures of the neural networks, and minimum length is 
also controllable for the Gaussian kernel. Several 2-D and 3-D numerical examples are demonstrated in detail to demonstrate 
the effectiveness of proposed method from minimum compliance to stress-constrained problems.

Keywords  Topology optimization · Deep learning · Geometry complexity · Stress-constrained

1  Introduction

Lightweight designs are desirable in many industrial appli-
cations and structural optimization is an effective way to 
achieve this. Topology optimization is an important tool to 
obtain the optimal design of engineering structures. Because 
of its importance in engineering designs, this subject has 
drawn great attention by academia for more than twenty 
years, and remarkable progress has been made since the 
pioneering work of Bendsoe and Kikuchi [1]. In recent 
years, many topology optimization methods have been pro-
posed, such as the solid isotropic material with penalization 
(SIMP), the level-set method (LSM) [2], and the moving 
morphable components (MMC) [3], etc. Because of the 
simple material distribution description, the SIMP method 
gained much popularity for structural design in engineer-
ing. The SIMP method is a pixel-based method, where the 
material layout is fully described by pixels. Because of 
the pixel-based description, numerical problems are often 
occurred such as checkboards, staggered boundaries, and 

mesh dependency [4]. Although pixel-based material layout 
has already achieved remarkable progress in recent years, 
there still exist several challenges such as controlling the 
structural complexity and ensuring manufacturability of an 
optimal design [5]. To resolve the above problems, several 
new geometry representation methods have been proposed 
in recent years. To control design complexity in an explicit 
geometrical way, a moving morphable component (MMC) 
approach was proposed by Guo et al. [3]. In Guo’s work, all 
components are described by level set function and allowed 
to move, overlap and merge freely, where XFEM analysis 
based on a fixed mesh is carried out to solve physical prob-
lems. Based on the MMC approach, those researchers [6–8] 
further extended MMC to treat 3-D problems and solve 
more complex physical problem such as stress constraint 
and multi-material problems. Recently, Tortorelli et al. [9] 
proposed a geometry projection method for the continuum-
based topology optimization made of discrete elements. This 
method is in the context of density-based topology optimiza-
tion, and hence standard finite element analysis (FEA) and 
nonlinear programming algorithm can be applied, where 
a differentiable mapping from discrete element to density 
field is realized in this paper. Furthermore, Zhang et al. 
[10] developed this method to solve stress constraint prob-
lem, where the optimal design is based on optimizing an 
assembly of discrete geometric components such as bars or 
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plates. Lately, Watts and Tortorelli [11] extended the geo-
metric projection method to 3-D and design unit cell for 
lattice materials based on inverse homogenization, where a 
negative Poisson’s ratio lattice material is achieved. White 
et al. [12] proposed a novel method to represent the density 
field with a truncated Fourier representation, where the num-
ber of decision variables are reduced significantly. Recently, 
Gao et al. [13] proposed an effective method to apply den-
sity distribution function, in combination with isogeomet-
ric topology optimization, to describe the material layout, 
where the smoothness and continuity of the optimal design 
are demonstrated in details. The methods mentioned above 
can be classified as dimension reduction method. From the 
mathematical view, solving these problems is equivalent to 
finding an appropriate density field representation method-
ology to take the place of traditional pixel-based method.

In recent years, introducing the deep learning method 
to resolve physical problem such as physics-informed deep 
learning method is a hot and advanced topic [14–23]. For 
topology optimization, some new methods are proposed to 
apply deep learning in design as described in Ref. [24–26]. 
In computer graphics, the 3D computer vision and robotic 
communities have come up with multiple approaches to 
represent 3D geometry for rendering and reconstruction. 
Fidelity, efficiency, and compression capabilities are the 
three key factors to balance when choosing among differ-
ent representation methods. Recently, deep learning for 
3D geometric representations draws great attentions from 
academy [27, 28]. In general, data-driven 3D representa-
tion learning approaches can be classified into three cat-
egories: point-based, voxel-based and mesh-based methods. 
For point-based method, a point cloud is a lightweight 3D 
representation which can closely relate to the geometric raw 
data, and hence is a natural choose for 3D geometric repre-
sentation. PointNet [29], for example, apply the max-pool 
operations to extract and represent geometry. Mesh-based 
learning methods [30] using parameterization algorithm to 
represent 3D surface through morphing 2D planes. How-
ever, this mesh-based method is often sensitive to input 
mesh quality. Voxels, using 3D grids to describe volumes, 
are the most natural extension into 3D domain; however, 
voxel-based approaches cannot preserve fine shape details 
and their normal are not smooth. Furthermore, using voxel 
approach to represent geometry can generally handle low 
resolutions ( 1283 or below), and memory requirements of 
this method increase cubically. Recently, a new geometry 
representation called the deep signed distance function 
(DeepSDF) [31] is proposed to describe modeling shapes 
as the zero iso-surface boundaries, and a deep feed-forward 
network is trained to represent SDFs. In this way, the CAD 
surface is implicitly represented by zero level-set, and 
Marching Cubes [32] is applied to generate geometry model 
through raycasting of the surface mesh. The purpose of the 

present work is proposing the deep representation learning 
(DRL) method, which incorporates geometry deep learning 
into existing density-based topology optimization method. 
The density field is described by a deep feed-forward neural 
network to ensure the enough smoothness and continuity of 
material layout.

Recently, Zhou et al. [33] proposed a so-called general-
ized discrete cosine transform (DCT) compression-based 
density method to achieve an efficient topology optimiza-
tion, which does not need any additional filter for optimiza-
tion and design variables can be phenomenally reduced. As 
described by Zhou et al. [33], the number of design variables 
is positive correlative to the computation time. However, the 
computation time is not linearly dependent on the number of 
design variables, because the time cost of FEA calculation 
is not reduced in this method. From this perspective, there 
is not much differences in computational time if the FEA 
analysis is time-consuming in that reducing the design vari-
ables mainly decreases the time for optimization solver to 
update. Similar methods based on Fourier transformation is 
also reported by White et al. [12], and a new method called a 
material-field series-expansion method [34] is also proposed 
recently. A dual mesh method proposed by White et al. [35] 
uses Bernstein polynomials on a coarse mesh to reduce the 
number of design variables and provide length scale control 
and allow for AMR. In fact, some other methods such as 
using IGA [13] to represent density distribution shares some 
similarity with respect to above methods. The major advan-
tages of these methods come from a) capability of avoiding 
the checkerboard patterns and mesh dependency b) enough 
smoothness at boundary and dimension reduction c) Adap-
tive mesh refinement causes problems for traditional SIMP 
since the number of design variables is not constant. This 
is an advantage of the method proposed in this paper, the 
design has been decoupled from the analysis mesh. d) Effec-
tively reduce design variables. One of the major reasons 
to reduce the design variables is to build surrogate model 
for physical problem for topology optimization, which is 
reported in recent literature [36]. As described in this paper, 
an effective non-gradient method is proposed using material-
field series expansion to represent density field. Because the 
number of design variables can be reduced significantly, it is 
possible to build a surrogate model for physical problem (the 
cost of building surrogate model is dependent on the number 
of variables). This material-field series expansion method 
combined with kriging-based optimization method success-
fully achieve a non-gradient method for topology optimiza-
tion from linear problems to nonlinear problems as shown 
in Ref [36]. The method proposed in our paper is a new 
density field representation method compared to material-
field series expansion method, which can be potentially com-
bined with kriging-based optimization algorithm to achieve 
non-gradient optimization. This point will be investigated 
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in the future. Above methods are indeed using function to 
describe the material distribution instead of pixel. From this 
point, the core novelty of this paper is to propose a general-
ized function description method for topology optimization 
design. As described in previous paragraph, the deep neural 
networks have ability to approximate any complex functions. 
Thus, we proposed a deep learning-based method to achieve 
a generalized description of density distribution, which is a 
generalization formulation of above methods.

The paper is organized as follows. In Sect. 2, we describe 
the deep learning algorithm for geometry representation. 
Section 3 describes the topology optimization formulation 
based on deep geometry representation. In Sect. 4, several 
typical numerical cases are presented to demonstrate the 
effectiveness of proposed algorithm, followed by conclu-
sions in Sect. 5.

2 � Geometry description based on deep 
representation learning

In computer-aided design, B-rep (boundary representation) 
[37] is a general way to represent shapes. In this way, a 
geometry is represented as collection of connected surface 
elements, which formulate the boundary between solid and 
void. Compared to B-rep representation method, implicit 
surface modeling method [38, 39] describes the geometry by 
implicit function, and the level set of the function represents 
boundary surface, whereas B-rep method usually consists of 
piecewise surface patches. Geometry description based on 
implicit surfaces provide a straightforward way (metamor-
phosis [40]) to fillet and round surfaces, which is a pow-
erful tool to join two geometry with sufficient continuous. 
Moreover, implicit geometry modeling method is simpler to 
determine whether a point is inside, outside, or on a surface. 
This facilitates the construction of complex geometry such 
as lattice or porous media. Another advantage of implicit 
surface is memory requirement is far less than B-rep [41, 
42], because the geometry is described by spatial continu-
ous functions f (x, y, z) , where x, y, z are spatial coordinates 
and the zero-level set of f (x, y, z) represents the isosurface 
of geometry. A Stanford bunny [43], which serves as a 
computer graphics 3D test model, is shown in Fig. 1. For 
density-based topology optimization method, a geometry 
model is generally described by voxels. Voxels, which non-
parametrically described geometry with 3D grids of values, 
are used commonly in density-based topology optimization. 
The voxel representation method suffers from huge comput-
ing costs and memory requirement [44], while it is difficult 
to obtain high-fidelity shapes using the voxel model because 
the rendered normal is not smooth.

Recently, modern representation learning techniques have 
been developed to automatically extract a set of features that 

compactly represent geometry without loss of fidelity. Sev-
eral representation learning techniques are proposed such as 
Generative Adversial Networks [45], Auto-encoders [46], 
and Optimizing Latent Vectors [47]. In this paper, a new 
geometry representation method is employed to describe 
the design shape, while the feedforward neural networks are 
trained to represent the implicit surface. To demonstrate this 
idea in detail, a general implicit surface can be expressed as,

The implicit surface is the set of spatial coordinates 
{x, y, z} that satisfy above equation, and the implicit sur-
face is the level set of density field F(x, y, z) . Some typical 
implicit surfaces are shown as following (Fig. 2),

However, analytical expression for implicit geometry is 
limited and difficult to achieve free-form topology optimiza-
tion. In this paper, a new implicit geometry representation 
method is proposed. Instead of applying analytical expres-
sion to describe a geometry, a deep feedforward neural net-
work [49–51] is implemented here to substitute the implicit 
function F(x, y, z) in Eq. (1). Deep feedforward networks 
[49, 52, 53], also known as multilayer perceptions, are 
the foundation of most of the deep learning models such 
as convolutional neural networks (CNNs) [54]. The main 
goal of a feedforward network is to approximate a function. 
For example, a spatial function g = F(x, y, z) maps the 3D 
coordinate {x, y, z} to a value g . Similarly, a feedforward 
network defines a mapping function gn = Fnetworks(x, y, z,�) 
from input coordinate to output gn . Note that the parameters 
� need to be trained to achieve the best function approxima-
tion. In fact, deep networks can represent certain functions 
far more efficiently than shallow ones, and the fitting capa-
bility increase significantly with greater depth [55]. Assume 
that a Stanford bunny can be represented by a density field 
(voxel representation), which is described by an implicit 
function. To directly obtain the analytical implicit geometry 
expression for this Stanford bunny is difficult; however, deep 
neural networks can be employed to approximate the implicit 

(1)F(x, y, z) = 0

Fig. 1   Model for stanford bunny
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geometry function, which shares some similarity with Deep-
SDF [56]. The objective here is to find a compact repre-
sentation for the spatial density distribution of the Stanford 
bunny shown in Fig. 1. The Stanford bunny is represented 
by 100 × 100 × 100 voxels. The input of deep feedforward 
networks is spatial coordinates of a voxel, and the output is 
density value at the present coordinates. Thus, the number 
of training data is 1 × 106 . The activation kernel is chosen as 
Tansig (Hyperbolic tangent sigmoid transfer function [57]) 
neuron. The optimization formulation for deep geometry 
representation can be written as,

where Fnetworks represent neural network, and the � is the 
parameters of network. D(x, y, z) represents density value 
of Stanford bunny at point (x, y, z) and operator ‖⋅‖2 denotes 
2-norm. N is total number of voxels.

Figure 3 illustrates three feedforward networks with three 
hidden layers are chosen with different neurons in each layer 
for comparison. The Levenberg–Marquardt backpropagation 

(2)

⎧⎪⎨⎪⎩

Find ∶ �

Min ∶
N∑
i=1

Fnetworks

�
xi, yi, zi,�

�
− D

�
xi, yi, zi

�
2

algorithm [58] is implemented to train the networks based 
on the objective function Eq. (2). The training results are 
presented in Fig. 4. Obviously, the network with 5 × 5 × 5 
hidden layers is only able to represent coarse configuration, 
and lots of geometry details are missing. However, the net-
work with 40 × 40 × 40 hidden layers is able to represent 
geometry with a high fidelity. Mean squared error (MSE) is 
applied to measure the error between the objective density 
field (Stanford bunny) with respect to density field repre-
sented by trained neural networks.

3 � Topology optimization formulation based 
on deep representation learning

3.1 � Density field described by deep feedforward 
networks

For density-based method, the material distribution is trans-
formed to spatial arrangement of finite elements. The finite 
element method (FEM) formulation is formulated by assem-
bling the discrete elements with different density. For the 
well-established solid isotropic material with penalization 

Fig. 2   implicit surface a Torus 
(
x2 + y2 + z2 + R2 − a2

)2
− 4R2

(
x2 + y2

)
= 0 , b Genus 2y

(
y2 − 3x2

)(
1 − z2

)
+
(
x2 + y2

)2
−
(
9z2 − 1

)(
1 − z2

)
= 0 and  

c Schwarz’s P surfaces [48] (cos (�x) + cos (�y) + cos (�z))2 − t2 = 0

Fig. 3   The architecture of feedforward networks a 5 × 5 × 5(freedom ∶ 81) , b 20 × 20 × 20 (freedom ∶ 921) , c 40 × 40 × 40(freedom ∶ 3441)



453Computational Mechanics (2020) 66:449–469	

1 3

(SIMP) approach, the spatial arrangement of density is rep-
resented by mesh, which results in optimized layout with 
staggered boundary (i.e. Lego effect). Thus, a substantial 
effort in post-processing is needed to generate a smooth 
CAD model, which may compromise geometric precision 
along the boundary. Since mesh are utilized to represent the 
structural topology, the number of design variables is usually 
quite large for three-dimensional design, and many mature 
optimization techniques are not applicable for large-scale 
problem [59]. To resolve the above issues, a new density 
representation method using deep feedforward network is 
described in this section. As described in Sect. 2, a complex 
geometry can be represented by a deep feedforward network 
with high fidelity, and smoothness of surface can be guaran-
teed. Thus, it is a natural choice to apply deep feedforward 
network to represent the density field in the design domain. 
A requirement should be satisfied to ensure a well-justified 
density field, i.e., the bounds of element densities are within 
[0, 1] . Like the formulation in Sect. 2, a density function in 
design domain is described by a deep feedforward network, 
and the input for the network are all the point coordinates. 
The output is density value at a given point. To ensure the 
output density is in the bounds [0, 1] , a mapping function M 
is applied as follows,

Note that the parameter � is chosen as 0.5 in this paper. 
An example is presented here to demonstrate the func-
tionality of mapping function M . Consider a two-dimen-
sional problem, the density field �(x, y) is described by a 
20 × 20 × 20 feedforward network with Tansig activation 
function. Thus, the mathematical formulation of density 
field can be expressed as:

(3)M =
(tanh (�x) + 1)

2
(� = 0.5)

where ℕ denotes feedforward networks, and the � is param-
eter. The architecture of deep layered network composes 
many hidden layers. Denoting the output of hidden layers by 
h(l)(x) , a network with L hidden layers can be expressed as,

where a(l)(x) is a linear operation, expressed as,

where W(l) is weight matrix and b(l) is bias vector for the 
lth layer. The weight matrix W(l)(l = 1, 2,…L) and bias 
b(l)(l = 1, 2,…L) can be combined into a single parameter 
� . h(l)(l = 1, 2,…L) are hidden-layer activation functions 
(kernel functions).

3.2 � Minimum compliance

In this section, the deep representation learning (DRL) is 
adopted to develop the topology optimization formulation 
of compliance minimization [60]. The density field is rep-
resented by a deep neural network in the design domain. 
Hence, the TO will iteratively optimize the density field 
through updating the parameters of the network in the design 
domain until the material layout has the best stiffness per-
formance. Here, the weights of the feedforward network are 
defined as the design variables for evolving the density field 
in the design domain during the optimization. Thus, the opti-
mization problem can be expressed as:

(4)�(x, y) = M(ℕ(x, y,�))(2Dproblem)

(5)�(x, y, z) = M(ℕ(x, y, z,�))(3Dproblem)

(6)ℕ(x, y, z,�) = ℕ
(
a(L+1)

(
h(L)

(
a(L)(…h(1)(a(1)(x, y, z)

)))

(7)a(l)(x) = W(l)x + b(l)

Fig. 4   Stanford bunny represented by deep feedforward neural networks a 5 × 5 × 5(freedom ∶ 81;MSE ∶ 0.2075) , b 20 × 20 × 20(freedom ∶ 921,MSE ∶ 0.007952) ,  
c 40 × 40 × 40(freedom ∶ 3441,MSE ∶ 0.001617)
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where the � are the parameters of the deep feedforward net-
work, and C is the objective function defined by the struc-
tural compliance. Φ is the density distribution in the design 
domain Ω , and Vprescribe is the prescribed volume fraction. 
In the finite element model, u is the unknown displacement 
field, � is the strain, and D is the elastic tensor matrix.

3.3 � Minimum compliance with stress constraint

For the minimum compliance with stress constraint prob-
lem, the von Mises stress is always used for local stress 
measurement and as stress constraint in the optimization. 
However, constraining the local stress is numerically expen-
sive in practice. Thus, a p-norm approach is implemented 
here to approximate the local stress constraint. In recent 
years, several modified methods have been proposed to 
accurately control the local stress [10, 61–68]. For sim-
plicity, we apply a well-developed method to constrain the 
local von Mises stress as described in Ref. [69]. In this 
method, the p-norm measure �PN is adopted to formulate 
the constraint. Thus, the problem in Sect. 3.2 can be refor-
mulated as:

where p is the p-norm parameter, �e is element von Mises 
stress, �PN is p-norm measure, and �PN  is the global stress 
limit. ve is element e solid volume. A good choice for p 
can make the algorithm perform well and provide an ade-
quate approximation of the maximum stress value. In this 
paper, p = 10 is applied in all stress-constrained numerical 
examples.

3.4 � Design sensitivity analysis

For gradient-based optimization, the sensitivity analysis 
of the objective with respect to the design variables, i.e., 
weights of the feedforward network, are needed. To derive 
the sensitivity of the objective function, the chain rule will 
be employed. The adjoint method [70] can be used to obtain 
the sensitivity with respect to the density field Φ:

(8)

⎧
⎪⎪⎨⎪⎪⎩

Find ∶ �

Min ∶ C(u,Φ) =
1

2
∫
Ω

�(u)TD(Φ(�))�(u)dΩ

s.t ∶

�
1

�Ω� ∫
Ω

Φ(�)dΩ − Vprescribe ≤ 0

(9)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Find ∶ 𝜃

Min ∶ C(u,Φ) =
1

2
∫
Ω

�(u)TD(Φ(�))�(u)dΩ

S.t ∶

⎧⎪⎪⎨⎪⎪⎩

1

�Ω� ∫
Ω

Φ(�)dΩ − Vprescribe ≤ 0

𝜎PN =

�
N∑
e=1

�
ve𝜎

vM
e

�p
� 1

p

≤ 𝜎PN

⎛⎜⎜⎝

�
N∑
e=1

�
ve𝜎

vM
e

�p
� 1

p

− 𝜎PN < 0

⎞⎟⎟⎠

where � is the adjoint vector computed from the adjoint 
equation K� = −f  , and K is the assembled stiffness matrix, 
see Ref. [60]. Based on the chain rule, the sensitivity of 
objective C with respect to design variables w can be 
expressed as:

where the density field � can be expressed as M(ℕ) . The 
sensitivity of M(ℕ) with respect to the network weights w 
can be readily obtained using the algorithmic differentiation 
(AD) technique [71, 72] implemented in the open-source 
software CasADi [73]. For sensitivity analysis of the p-norm 
stress, similar derivation can be achieved based on chain 
rule as follows:

where the analytical sensitivity derivation based on the 
adjoint method of ��PN

��

 can be found in Ref. [74].

3.5 � The relationship between geometry complexity 
with respect to architecture of neural networks

The architecture of neural networks is close related to the 
fitting ability, and how to design a deep neural network to 
satisfy a certain requirement is a hot topic in recent years. 
To investigate the relationship between the geometry com-
plexity with respect to architecture of neural networks, sev-
eral numerical experiments are conducted in this section. 
To simplify the problem, the geometry complexity is meas-
ured using standard deviation of density field as follows,

where N is the total number of density points, and 𝜙̄ is mean 
value of density field, which can be expressed as,

The relationship between the number of holes with 
respect to standard deviation can be found in Fig. 5. For 
number of holes less than 9 × 9 , the density standard devia-
tion increases with increasing number of holes, which means 
that the geometry complexity increases with more holes. The 
mean squared error (MSE) loss can be defined as,

(10)
�C

��

= �
T �K

��

u

(11)
�C

�w
=

�C

��

⋅

��

�w

(12)
��PN

�w
=

��PN

��

⋅

��

�w

(13)s =

√√√√ 1

N − 1

N∑
i=1

(
𝜙i − 𝜙̄

)2

(14)𝜙̄ =

∑N

i=1
𝜙i

N
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where the 𝜙̂i denotes the target density value, and �i is den-
sity value computed from neural networks. MSE defines the 

(15)MSE =
1

N

N∑
i=1

|||𝜙i − 𝜙̂i
|||
2

error between target density field and density field obtained 
from networks.

To verify that the geometry fitting ability is increasing 
with larger neural networks, several numerical experiments 
are conducted here. We apply different neural networks 
architecture to approximate objective geometry with dif-
ferent complexity. Figure 6 shows a square with one hole, 
which works as target density field. Four different neural 
networks are implemented to fitting this simple geometry. 
The fitting results (level set function,� = 0.5 ) are shown 
in Fig. 7. Obviously, for one hidden layer, the MSE value 
decreases with increasing the number of neurons. Compared 
with shallow neural networks (one hidden layer), the net-
works with three hidden layers show better fitting ability 
with MSE = 1.327 × 10−8. For squares with three or five 
holes (Figs. 8 and 10), the fitting results are plotted in Figs. 9 
and 11. The numerical results show that networks with more 
hidden layers and neurons have more powerful geometry 
fitting ability with lower MSE values. Another finding is 
that the networks can capture the major geometry feature 
once the MSE value is less than 1 × 10−2 from numerical 
experiments. For example, comparing Fig. 11d, g, networks 
with one hidden layer (15 neurons) cannot capture the major 
geometry features with MSE = 4.727 × 10−2 , while networks 
with three hidden layers MSE = 9.638 × 10−3 is able to cap-
ture major geometry features with some small defects at the 
boundary. The same conclusion can be drawn from Fig. 12. 
As shown in Fig. 12, we compare the fitting ability of two 
different networks. The horizontal axis represents number 
of holes, and the vertical axis denotes mean squared error 
(MSE). Apparently, the larger networks with more neurons 
in each layer have better fitting ability with lower MSE val-
ues. For example, if we use 1 × 10−2 as MSE threshold to 
work as a standard to determine whether fitting results is 
sufficient to approximate the target geometry, it is evident 
to observe that networks with 20 neurons in each layer can 
fit up to the square with 9 × 9 holes. However, the smaller 
networks with 10 neurons has lower fitting ability, which 

Fig. 5   The relationship between standard deviation with respect to 
number of holes in each direction

Fig. 6   One hole in each direction

Fig. 7   Geometric fitting results with different networks
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can only fit up to the square with 4 × 4 holes. As shown in 
Fig. 5, standard deviation of density field is an approach to 
measure the geometry complexity. To further examine the 
geometry complexity with respect to networks architecture, 
the relationship between standard deviation and networks 
(three hidden layers) is plotted in Fig. 13. If we choose the 
MSE = 1 × 10−2 as the threshold, the max standard devia-
tion value for the networks with 5 neurons in each layer is 
0.16, while max standard deviation value can reach 0.38 for 
the networks with 20 neurons. Therefore, standard deviation 
can work as a complexity measurement when designing net-
works. Meanwhile, the Fig. 13 can also work as a guidance 
when choosing the size of the neural networks to achieve 

a certain geometry complexity. More works will be done 
to incorporate the standard deviation of density field as a 
complexity constraint in optimization in the future.

4 � Numerical examples

In this section, several 2D and 3D numerical examples are 
demonstrated in detail to present the effectiveness of the pro-
posed method. The classic MBB beam is first investigated 
to illustrate the benefits of the proposed DRL method. The 
box constraints are chosen as [−10, 10] for both weights and 
biases during optimization.

4.1 � Compliance optimization for MBB design

The MBB-beam [75] is a popular test and benchmark 
problem in topology optimization. The symmetry is used 
for design, and the right half of the beam is modelled. The 
design of the MBB beam with the loading and boundary 
conditions is illustrated in Fig. 14. The design domain is 
uniformly meshed by 300 × 100 elements. The prescribed 
volume fraction is set as 30%. The elastic constants are cho-
sen as follows: elastic modulus E = 1 and Poisson’s ratio 
� = 0.3 . The initial weights of the network are computed to 
generate uniformed density distribution in design domain. 

Fig. 8   Three holes in each direction

Fig. 9   Geometric fitting results with different networks ( 3 × 3 holes)
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For comparison, different network architectures are gener-
ated as shown in Fig. 15. The activation function is chosen 
as Tansig (Hyperbolic tangent sigmoid), and networks are 
fully connected. For the 2D problem, the inputs are spatial 
coordinates {x, y} , and output is density field. For networks 
with 20 × 20 × 20 hidden layers, the evolution of density 
field is presented in Fig. 20, and optimized design is plot-
ted in Fig. 21. For shallow neural networks with only one 
layer, the evolution of density field and optimal design is 
plotted in Figs. 16 and 17. For 20 × 20 hidden layers, the 
evolution history and optimal design are demonstrated in 
Figs. 18 and 19. It can readily be found that the different 
architectures result in different optimal topologies, and 

shallow network can generate simple optimal layout with 
less geometric complexity. As shown in the density evolu-
tionary progress, the density field is smoother and less small 
sharp features are found using shallow neural networks. This 
can be easily explained in that networks with more hidden 
layers present better fitting ability, which leads to more com-
plex geometric topology. The optimal compliance for differ-
ent designs is 454.75 (Hidden Layers: 20), 391.82 (Hidden 
Layers: 20 × 20 ), and 336.45 (Hidden Layers: 20 × 20 × 20 ) 
respectively. The number of design variables for different 
architectures are 81, 501 and 921. Compared with voxel-
based density method, the design variables reduce signifi-
cantly. At present, the number of neurons is chosen based on 
experience and fully connected networks are used in density 
representation. However, the regularization method [76] of 
neural networks may be implemented to prune the topol-
ogy structure. The regularization method is a technique that 
makes modification to the connectivity of networks such that 
the model generalizes better and reduces overfitting. In regu-
larization, the coefficients of weights are penalized through 
modifying the objective function so that a sparse optimal 
result of weights is obtained. In such manner, some neurons 
in the network will be dropped so that the network has better 
compact representation. In this paper, we will not discuss the 
regularization of neural networks, and more research will be 
devoted to regularization in the future.

Fig. 10   Five holes in each direction

Fig. 11   Geometric fitting results with different networks ( 5 × 5 holes)
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In this part, different neuron activation functions are 
implemented to examine the effect of activation function on 
the optimal design. Three activation functions implemented 
in this paper are Tansig (Hyperbolic tangent sigmoid trans-
fer function), Gaussian [77], and Tribas (Triangular basis 

Fig. 12   Geometric fitting results with different networks ( 5 × 5 holes)

Fig. 13   Geometric fitting ability (Three Hidden Layers)

Fig. 14   MBB beam example

Fig. 15   Architectures of feedforward networks
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function [78]). The mathematical properties of the three 
typical activation functions are plotted in Fig. 22. Note that 
the Tribas function is made of piece-wise linear function so 
that the spatial density distribution is piece-wise smooth as 
shown in Fig. 23. The optimal design obtained using Tribas 
is simpler geometrically compared to the Tansig kernel, the 

Fig. 16   Evolution of density field (hidden layers structure: 20)

Fig. 17   Optimal design (hidden layers structure: 20 compliance: 
454.75)

Fig. 18   Evolution of density field (hidden layer structure: 20 × 20)
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main reason lies in that the nonlinearity of Tansig is higher 
than Tribas (Fig. 24).

The Gaussian kernel, which is widely used in probability 
theory, shows excellent fitting capacity for highly nonlinear 
problems. The graph of Gaussian kernel is a characteristic 
symmetric “bell curve” shape, and the width of the “bell” is 
controlled by a parameter called the standard deviation [79]. 
The Gaussian kernel is continuous and infinitely differenti-
able, which is a significant difference from Tribas. Using the 
Gaussian kernel, the minimum feature of optimal design can 
be controlled through kernel width as shown in Fig. 25. In 
the Fig. 25, four different values of kernel width are chosen 
to generate four optimized designs. The minimum length of 
optimal design increases after increasing kernel width from 
0.25 to 2. The evolution history for four different designs 
are plotted in Figs. 26, 27, 28 and 29. Evidently, the net-
works with smaller kernel width has more detailed feature 
as shown in Fig. 29. However, for large kernel width, the 
detailed feature or noise cannot be found in optimization 
as shown in Fig. 26. This can be explained based on image 
processing theory. In image processing, an image can be 

blurred by a Gaussian function, which is known as Gaussian 
smoothing. The Gaussian function can be applied to reduce 
image noise and reduce detail. Mathematically, a Gaussian 
smoothing is a low pass filter, which has the effect of reduc-
ing the high-frequency components of function. This can be 
proven based on Weierstrass transform [80], and the kernel 
width can directly control property of low pass filter. Thus, 
the geometry details can be effectively controlled through 
kernel width. Strict mathematical proven will be done in 
the future to verify our numerical results. In fact, several 
effective minimum feature control methods are proposed in 
recently years based on conventional density-based method 
[5, 81–93]. Compared to these methods, our method pro-
vides an alternative way to control the minimum feature 
based on deep representation learning.

4.2 � Stress constrained optimization 
for two‑dimensional L‑bracket design

To further verify the effectiveness of the proposed method, 
the compliance minimization with stress constraint prob-
lem is considered in this section. The L-bracket is modeled 
by a 100 × 100 finite element mesh with 50 × 50 section 
removed as shown in Fig. 30. The boundary condition and 
force are demonstrated in Fig. 30. A vertical load F = 4 
is applied uniformly on four nodes, and element size is 
unity in this numerical example. The elastic constants 
are chosen as follows: elastic modulus E = 1 and Pois-
son’s ratio � = 0.3 . The p-norm value for this numerical 

Fig. 19   Optimal design (hidden layer structure: 20 × 20 compliance: 
391.82)

Fig. 20   Evolution of density field (hidden layers: 20 × 20 × 20)
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example is chosen as p = 10 . The volume fraction is cho-
sen as 0.3, and stress constraint (SC) in the p-norm is set to 
𝜎pnorm < 2

(
SC ∶ 𝜎pnorm − 2 < 0

)
 . The neural network with 

three hidden layers of size 20 × 20 × 20 is implemented to 
represent the density distribution, and the Gaussian kernel is 
chosen as the activation function. Considering that the stress 
constraint optimization is highly nonlinear, a small moving 

limit of 0.005 in the MMA algorithm [94] is employed in 
the optimization. At the beginning of the optimization, the 
stress concentration occurs at the sharp corner, and the 
sensitivity at this region is negative so that the material in 
this area tends to be removed. The final optimal result is 
plotted in Fig. 31. Note that round corners are generated to 

Fig. 21   Optimal design (hidden layers structure: 20 × 20 × 20 com-
pliance: 336.45)

(a) Tansig   (b) Gaussian     (c) Tribas

Fig. 22   Graph of activation function a Tansig, b Gaussian, c Tribas

Fig. 23   Evolution of density field (Kernel: Tribas, hidden layers: 20 × 20 × 20)

Fig. 24   Optimal design (hidden layers: 20 × 20 × 20 , Tribas, Compli-
ance: 445.77)
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Fig. 25   Optimal design with different kernel width (hidden layers: 20 × 20 × 20 , Gaussian kernel)

Fig. 26   Evolution history with kernel width 2 (hidden layers: 20 × 20 × 20 , Gaussian kernel)

Fig. 27   Evolution history with kernel width 1 (hidden layers: 20 × 20 × 20 , Gaussian kernel)

Fig. 28   Evolution history with kernel width 0.5 (hidden layers: 20 × 20 × 20 , Gaussian kernel)

Fig. 29   Evolution history with kernel width 0.25 (hidden layers: 20 × 20 × 20 , Gaussian kernel)
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reduce stress concentration, and the optimized material lay-
out boundary becomes smooth. The evolutionary history of 
density distribution is shown in Fig. 32. The stress contour 
and distribution for the final optimal design is presented in 
Fig. 33. The stress distribution of optimal design is uniform 
and smooth, and the maximum stress are in the region near 

loading points as plotted in Fig. 33. The convergence his-
tory is shown in Fig. 34. Note that after optimization, the 
stress constraint is satisfied, which the compliance decreases 
significantly to around 1/3 of initial design. Because of the 
local stress singularity, the local oscillation of convergence 
curve can be observed in Fig. 34.

Fig. 30   2D L-bracket example

Fig. 31   Optimal design for stress constrained optimization

Fig. 32   Evolution of density field (Kernel: Gaussian, hidden layers: 20 × 20 × 20)



464	 Computational Mechanics (2020) 66:449–469

1 3

4.3 � Compliance optimization for three dimensional 
MBB design

In this section, a three-dimensional MBB example is pre-
sented for compliance optimization. The MBB is modeled 
by a 600 × 150 × 150 hexahedral mesh, and the dimen-
sion of the design is demonstrated in Fig. 35. A uniform 
line force F = 1 is applied on the mid-top of the rectangle 
domain. The neural network with three hidden layers of size 
20 × 20 × 20 is implemented to represent the density field 
in the design domain. Note that three inputs are needed to 
represent coordinates x, y and z . In the actual FEM analysis, 
only half of the design domain is modeled considering the 
geometric symmetry. The elastic constants are chosen as 
follows: elastic modulus E = 1 and Poisson’s ratio � = 0.3 . 
The first numerical result is obtained using the Tansig ker-
nel. The optimization converges after 60 iterations and the 
density evolution history is plotted in Fig. 36. To make a 
comparison, a Gaussian kernel is also employed, and the 

optimization progress is demonstrated in Fig. 37. The opti-
mization converges after 80 iterations.

4.4 � Stress constrained optimization 
for three‑dimensional L‑bracket design

To test the proposed algorithm in a three-dimensional case, 
a three-dimensional L-bracket example is plotted in Fig. 38. 
The dimensions of the L-bracket, boundary and loading con-
ditions are found in Fig. 38. A distributed edge force F = 3 
is applied to the finite element model. The design domain 
is meshed with 100 × 100 × 40 uniform trilinear hexahedral 
elements with element size of h = 1 . The material proper-
ties are the same as in the previous example. The p-norm 
stress constraint is set to be SC ∶ 𝜎pnorm − 5 < 0 , and volume 
fraction constraint is chosen as 0.3. Due to the presence of 
a sharp comer in the initial design, the stress is expected 
to concentrate at the corner with a high value. The neural 
network with three hidden layers of size 20 × 20 × 20 and 
Tansig kernel as the activation function is implemented to 
implicitly represent the density field. The moving limit of 
MMA algorithm is chosen as 0.005. The optimization con-
verges after 120 iterations, and optimized density field is 

Fig. 33   Stress distribution of 
optimal design (Kernel: Gauss-
ian, hidden layers: 20 × 20 × 20)

Fig. 34   Convergence history

Fig. 35   3D MBB example
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presented in Fig. 39. The final optimization result is trans-
formed into a CAD model as shown in Fig. 42, where the 
stress distribution is plotted in Fig. 40. Apparently, the sharp 
corner disappears after optimization, and stress distribution 
tends to be uniform in the optimal structure. To validate the 
design, the commercial software ANSYS is applied to imple-
ment stress analysis. The tetrahedron mesh with 10 nodes is 
used to discretize the design (Total mesh number:142785), 
the discretized finite element model and stress contour is 
plotted in Fig. 43. Stress optimization is a highly nonlinear 
optimization problem due to its local effects. This example 
successfully demonstrates that the deep learning method can 
represent complex geometry by generating effective opti-
mal layout with significant decrease of design variables, i.e., 
from the original number of design variables of 400,000 to 
941. The deep neural networks demonstrate excellent data 
compression ability. There are no small intricate features 
are found in optimal design, and the final optimal design 

are represented in an implicit way. Meanwhile, no staggered 
phenomenon on the surface occurs due to the implicit rep-
resentation method. The convergence history is plotted in 
Fig. 41.

5 � Conclusion

In this paper, a density field representation algorithm based 
on deep learning is proposed to generate optimal design for 
compliance and stress constrained problems. The main con-
clusions are as follows,

(a)	 The density field is represented by a neural network 
so that the design variables are reduced phenomenally 
compared to the conventional voxel-based optimization 
method.

Fig. 36   Evolution of density field for MBB design (Tansig kernel)

Fig. 37   Evolution of density field for MBB design (Gaussian kernel)
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(b)	 Different kernel functions influence the optimized 
design, and the geometry complexity is directly related 
to the topology of neural networks. The simple optimal 
geometry is obtained with shallow neural networks.

Fig. 38   3D L-bracket example

Fig. 39   Optimized material layout (Kernel: Tansig, hidden layers: 
20 × 20 × 20 ) a front view, b rear view

Fig. 40   Stress distribution a 
front view, b rear view

Fig. 41   Convergence history

Fig. 42   CAD model a front view, b rear view
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(c)	 No filtering technique is needed in the proposed algo-
rithm, and optimal designs are free from chessboard 
pattern [95].

(d)	 Because the topology is represented in an implicit 
way, there is no staggered boundary found in the final 
design.

From the future perspective, the method proposed in this 
paper open a new opportunity to achieve a combination 
of deep learning with topology optimization in a geomet-
ric way. In fact, deep neural networks are only one of the 
deep learning models. In recently years, more powerful and 
sophisticated deep learning model are proposed (e.g., gen-
erative adversarial network [45] and convolutional neural 
network [96]). The method proposed in this paper is a real 
“marriage” between deep learning and topology optimiza-
tion. Future work will focus on applying more deep learning 
models to represent density field such as CNN and GAN. 
Meanwhile, future directions include employing the clas-
sification method (e.g. decision tree algorithm [97], random 
forest [98]) for geometry representation to directly generate 
0–1 solution in the design domain.
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port from National Science Foundation (CMMI-1634261).
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