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Abstract
This paper extends the nonsmooth Relaxed Variational Approach (RVA) to topology optimization, proposed by the authors in
a preceding work, to the solution of thermal optimization problems. First, the RVA topology optimization method is briefly
discussed and, then, it is applied to a set of representative problems in which the thermal compliance, the deviation of the heat
flux from a given field and the average temperature are minimized. For each optimization problem, the relaxed topological
derivative and the corresponding adjoint equations are presented. This set of expressions are then discretized in the context
of the finite element method and used in the optimization algorithm to update the characteristic function. Finally, some
representative (3D) thermal topology optimization examples are presented to asses the performance of the proposed method
and the Relaxed Variational Approach solutions are compared with the ones obtained with the level set method in terms of
the cost function, the topology design and the computational cost.

Keywords Thermal topology optimization · Relaxed variational approach · Relaxed topological derivative · Closed-form
optimality criteria · Pseudo-time sequential analysis

1 Introduction

1.1 Motivation and background

During the last decades, a variety of topology optimization
methods have been proposed in the literature. With no aim
of being exhaustive, we could classify them into (i) homog-
enization methods, (ii) density based optimization (SIMP)
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methods, (iii) level set approaches, and (iv) evolutionary
methods, among others. For further information the reader
is addressed to reviews in [6,21,22,24]. Albeit these tech-
niques were initially focused on structural problems, along
time several of them have been extended to other problems,
thus including thermal problems and a number of different
applications in this field, e.g.:

(a) Thermal compliance minimization focused on maximiz-
ing thermal diffusion in steady-state problems.Bendsøe
and Sigmund [3] implemented the SIMP method for
thermal optimization problem as an extension of struc-
tural optimization.This sameproblemwas also addressed
with ESO-based methods by Li et al. [13]. Subsequently,
Ha and Cho [11] suggested a level set method for the
minimization of the thermal compliance via a Hamilton–
Jacobi equation. Later, Zhuang et al. [30] implemented
the aforementioned problem using a topological deriva-
tive method. Alternatively, Gersborg-Hansen et al. [9],
for the Finite Volume Method (FVM) together with a
SIMP method, Gao et al. [8], for the ESO method, and
Giusti et al. [10], for the topological derivative method,
have developed the corresponding algorithms to include
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design-dependent effects of heat sources.1 Furthermore,
Iga et al. [12] and Yamada et al. [27] included the heat
convection effects in the design for maximizing thermal
diffusivity using a homogenization design method and
the modified phase-field method reported in [26], respec-
tively.

(b) Maximum/average temperatureminimization looking for
designs that reduce the temperature of thermal devices,
while increasing their durability. With this goal in mind,
researchers have proposed different objective functions
to minimize either the average temperature or the maxi-
mum temperature in the design domain. Zhang and Liu
[28] reported that the p − norm of the temperature field
in the design domain, approximates reasonably well the
maximum temperature for a large enough p. Marck et
al. [16] proposed theminimization of the average temper-
ature and its variance, via a SIMPmethod, by creating the
Pareto front of the multi-objective thermal problem, thus
leading to a reduction in the achieved temperature while
avoiding temperature peaks. On the other side, Burger
et al. [4] minimized the average internal temperature in
the whole design domain, by dissipating the generated
heat through the introduction of distributed heat sources
within the design domain. For the transient case, the min-
imization of the maximum temperature throughout the
entire operating period was analyzed by Wu et al. [25]
via the SIMP method.

(c) Multiple heat actions optimizationwhich can be regarded
as multi-objective problems where the cost function
corresponds to the weighted sum of individual cost func-
tions for each of the heat actions. In this context Li
et al. [13,14] optimized some printed circuit boards
(PCB) with the ESO method subjected to multiple heat
source, by considering a functional proportional to the
heat flux. Years later, Zhuang et al. [30] proposed the
optimization of some thermally conductive structures via
a level set method by optimizing the weighted average of
the quadratic temperature gradient.

(d) Multi-material thermal optimization thermal topology
optimization has been also carried out taking into account
three ormore differentmaterials. Later, Zhuang et al. [31]
proposed a multi-material topology optimization for the
heat conduction problem via a level set method. Later,
Zhuang and Xiong [29] used the SIMP method to opti-
mize transient heat conduction problems.

(e) Heat flux manipulation optimization problems a pre-
cursor work on the field is the one Narayana and
Sato [18], wheremultilayered optimized designs for ther-
mal problems were presented. Dede et al. [5] proposed a
homogenization-based method which optimizes the ori-

1 The magnitude of the heat source changes according to the material
of the point.

entation of a micro-structure by modifying the effective
conductivity tensor at each point. Following this line,
Peralta et al. [20] suggested a homogenization-based
optimization, where the error in guiding the heat flux in
given path is minimized, and successfully accomplished
the optimization of a thermal concentrator. Finally,
Fachinotti et al. [7] extended the idea to black-and-white
designs via a SIMP optimization.

This work focuses on applying the Relaxed Variational
Approach (RVA) to topology optimization, proposed by the
authors in a previous work [19], to thermal problems. The
distinctive feature of RVA is that it keeps the original non-
smooth character of the characteristic function, the design
variable, describing the material topology (χ : Ω → {0, 1})
but, in spite of this, a variational analysis can be conducted
and, then, closed-form solutions of the problem (equivalent
to the Euler equations in smooth variational problems) can be
readily obtained. The approach relies on the use of a specific
topological sensitivity, the Relaxed Topological Derivative
(RTD), as an efficient and simple approximation to the
geometrical (or exact) topological derivative (TD), which
is consistently derived in the considered relaxed optimiza-
tion setting.2 Then, a robust and efficient Cutting&Bisection
algorithm is proposed for solving the obtained algebraic,
non-linear, solutions in a sequential pseudo-time framework.

The goal here is, thus, to explore the possible extension
of the benefits of the RVA, reported in [19] for structural
problems, to the realm of thermal problems, typically:

– Avoid checkerboard patterns and mesh-dependency in
the optimized solution.

– Display black-and-white solutions, instead of blurry
black-gray-and-white solutions, for thematerial distribu-
tion,without resorting to a posteriori filtering techniques.

– Achieve precise local optima, in a reduced number of iter-
ations of the non-linear solution algorithm, thus leading
to relevant diminutions of the associated computational
cost.

– Involve general and easy-to-derive sensitivities of the
cost function in the resulting optimization algorithm.

– Allow the control of the minimum width of the mate-
rial filaments in the optimized layout, thus incorporating
manufacturing constraints in the designs and precluding
classical element/cell-size-dependence in the obtained
solutions, thus removing the well-known ill-posedness
of the problem.

For this purpose three representative thermal optimiza-
tion problems are explored in this work (a) maximization of
thermal diffusion, without boundary dependent properties,

2 Based on a bi-material (soft/hard) approximation, or ersatz approach.
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in steady-state thermal scenarios, (b) thermal cloaking based
on minimization of the deviation of the heat flux with respect
to a target one and (c) thermal cloaking based on minimiz-
ing the average temperature on a surface around the cloaked
object.

The remaining of this paper is structured as follows: in
Sect. 2, the considered Relaxed Variational Approach (RVA)
to topologyoptimization is summarized in order to, both, sup-
ply to the reader the indispensable information and providing
the work with the necessary completeness. Then, in Sect. 3,
a detailed specification of the RVA for thermal optimization
problems is presented. Subsequently, a general optimization
algorithm is described in Sect. 4. The resulting formulation is
then assessed, by its application to a set of thermal problems,
first in terms of their formulation, in Sect. 5 and, then, in
terms of their numerical application to specific 3D problems
in Sect. 6. Finally, Sect. 7 concludes with some final remarks.

2 Relaxed variational approach (RVA) to
topology optimization: a summary

2.1 Topology domain representation

Let the analysis domain3, Ω , denote a fixed smooth open
domain of Rn (n = 2 or 3), whose boundary ∂Ω is also
smooth, composed in turn by two smooth open subdomains,
Ω+,Ω− ⊂ Ω , with Ω

+ ∪ Ω
− = Ω and Ω+ ∩ Ω− =

∅.4 The first subdomain, Ω+, stands for the hard material
domain, made of a hard (high-conductive) material (M+),
while subdomain, Ω−, denoted as the soft material domain,
is occupied by a soft (low-conductive) material (M−). These
two subdomains are surrounded by their respective bound-
aries, ∂Ω+ and ∂Ω−, with ∂Ω+ ∩ ∂Ω− = Γ (see Fig. 1).

The standard nonsmooth characteristic function, χ(x) :
Ω → {0, 1}, defining the topology of the analysis domain,5

is then defined as{
Ω+ := {x ∈ Ω / χ(x) = 1}
Ω− := {x ∈ Ω / χ(x) = 0} . (1)

Alternatively, the topology can be implicitly defined
through a smooth function (termed discrimination function

3 Albeit the name design domain. is commonly used in topology opti-
mization forΩ , in this work distinction is made of the analysis domain,
the whole domain considered in the analysis, and the design domain,
the subset of Ω where the topology is going to be optimized (there-
fore changed from an initial layout). The reason is that, in some of the
considered problems, a certain part of Ω is endowed with a fixed, pre-
determined, topology thus not being properly part of the design domain.
4 (·) denotes the closure of the open domain (·).
5 The characteristic function, χ , is considered as the design variable in
the topology optimization problem.

Ω
∂Ω

∂Ω+

∂Ω–

Ω+

Γ

Ω–

Fig. 1 Representation of the analysis domain, Ω , comprising two dis-
joint sub-domains Ω+ and Ω−. The external boundary of Ω , ∂Ω , is
represented by a black dashed line, while the sub-domains boundaries,
∂Ω+ and ∂Ω−, are, respectively, depicted by long green and short red
dashed lines. Finally, the common sub-domains border, Γ , is repre-
sented by a blue dotted line. (Color figure online)

in Oliver et al. [19]) ψ(x) : Ω → R, ψ ∈ H1(Ω), defined
as

{
ψ(x) > 0 ⇐⇒ x ∈ Ω+

ψ(x) < 0 ⇐⇒ x ∈ Ω− . (2)

Then, the two aforementioned subdomains are implicitly
defined through ψ(x) (see Fig. 2) as

{
Ω+ := {x ∈ Ω / ψ(x) > 0}
Ω− := {x ∈ Ω / ψ(x) < 0} , (3)

and the characteristic function, χψ(x) : Ω → {0, 1},
defining the topology of the analysis domain, can be then
expressed as

χψ(x) = H(ψ(x)) , (4)

where H(·) stands for the Heaviside function evaluated at
(·).6

According to Eqs. (3) and (4), the bi-valued characteris-
tic function, χ(x), takes the value 1 when the discrimination
function is positive (ψ(x) > 0), i.e. when x ∈ Ω+, and the
value 0 when ψ(x) < 0, i.e. when x ∈ Ω−. This bi-valued
(black-and-white) (black=1, white=0) character of χ , is a
fundamental feature of the RVA, and it is always held along
the mathematical derivations keeping the nonsmooth char-
acter of the design variable. However, the image-set {1, 0} is
modified to {1, β}, by introducing the, here termed, relaxed
Heaviside function

Hβ(x) =
{
1 for x > 0

β for x < 0
x ∈ R ; β << 1 . (5)

6 Henceforth, the subindex ψ of the characteristic function, χψ , will
be omitted.
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Fig. 2 Topology representation in terms of the discrimination function,
ψ(x)

Remark 1 In single-material topologyoptimization, the value
χ(x) is commonly used to define the material property value
E, at point x, in terms of the reference material property
value E , through E(x) = χ(x)mE ; with m > 1. Then,
χ = 1 in Ω+ naturally defines a solid material with prop-
erties E = χmE = E , hereas the value χ = 0 in Ω−,
made of no-material (voids), defines null material properties
E(x) = χ(x)mE = 0 in that domain. In the present relaxed
variational approach, instead, the shift of the low limit of
χ to β (0 < β << 1), in Eq. (5), relaxes that setting to a
bi-material approach, with Ω containing two different solid
materials: (1) a hardmaterial, inΩ+, with regular solid prop-
erties E = χmE = E , and (2) a soft material, in Ω−, with
very low material properties E = χmE = βmE , which are
scaled to values close to zero by the factor χ = β << 1.7

This qualifies the RVA as a relaxed or ersatz/bi-material
approach. This fact will be retrieved later on in this work
(see, for instance, Eqs. (14) and (15)).

The topology optimization goal is, then, to minimize a
functional or cost function J (χ) subjected to one or more
constraints and governed by the state equation, i.e.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

min
χ∈Uad

J (χ) ≡
∫

Ω

j(χ, x) dΩ (a)

subject to:

C(χ) ≡
∫

Ω

c(χ, x) dΩ = 0 (b)

governed by:

state equation (c)

(6)

7 Thus, the single-material and the bi-material formulations converge
asymptotically as β → 0.

where Uad stands for the set of admissible solutions for
χ . Furthermore, C(χ) represents the constraint functional,
which, in all the examples in this paper, will be the vol-
ume constraint,8 and the state equation will correspond to the
energybalance in the domainΩ ,whichwill be described later
in this paper (see Eq. 13). Functionals (6)a, b are assumed to
pertain to the following family

F(χ) : L2(Ω) → R; F(χ) ≡
∫

Ω

f (χ, x) dΩ , (7)

the kernel f (·, ·) being sufficiently smooth, for differentia-
tion purposes.

2.2 Relaxed topological derivative (RTD)

The RVA defines the Relaxed Topological Derivative (RTD),
as the sensitivity of the functional in Eq. (7). The RTD is
derived as the change of the functional in terms of χ(x̂), as
thematerial at point x̂ is exchanged, per unit of themeasure of
a perturbed domain around x̂. It can be computed in terms of
the classical Fréchet derivative, ∂(·)

∂χ
(x̂), of the integral kernel,

i.e.

δF(χ)

δχ
(x̂) =

[
∂ f (χ, x)

∂χ

]
x=x̂

Δχ(x̂) , (8)

where Δχ(x̂) is termed the exchange function and stands for
the signed variation of χ(x̂), due to that material exchange,
i.e.

Δχ(x) =
{

−(1 − β) < 0 f or x ∈ Ω+

(1 − β) > 0 f or x ∈ Ω− . (9)

Details on the derivations can be found in [19].

2.3 Closed-form algebraic solutions

After some algebraic operations, the optimality condition for
the constrained topology optimization problem canbewritten
as

δL(χ, λ)

δχ
(x) = δJ (χ)

δχ
(x) + λ

δC(χ)

δχ
(x)

=
(

∂ j (χ, x)
∂χ

Δχ(x) + λ sgn(Δχ(x))
)

> 0 ∀x ∈ Ω ,

(10)

8 The present Cutting&Bisection algorithm is only intended for sin-
gle constrained topology optimization problems. Furthermore, along
this paper, only equality, pseudo-time evolving volume constraints are
considered.
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whereλ stands for aLagrangemultiplier enforcing restriction
C(χ) = 0, and L stands for the Lagrangian function of the
optimization problem (see [19] for additional information).
Then, a closed-form solution for the topology in Eq. (4) can
be computed as

{
ψ(x) := ξ(χ, x) − λ

χ(x) = Hβ(ψ(x))
in Ω , (11)

where ξ(χ, x) is termed the pseudo-energy9 and it shall be
specifically derived for each considered problem. Equations
(11) constitute a closed-form-algebraic (non-linear fixed-
point equation) solution of the problem, which are solved,
for χ(x) and λ, via the Cutting&Bisection algorithm pro-
posed in [19]. The resulting global algorithm is sketched in
Box I, where the constraint equation is expressed in terms
of the pseudo-time t ∈ [0, T ], in the context of a time
advancing strategy. Notice that the parameter T stands for
the pseudo-time corresponding to the final volume of the
proposed topology optimization (pseudo-time dependent)
procedure and must be set by the user.

Remark 2 The discrimination function ψ(x) in Eq. (11)
is subsequently smoothed through a Laplacian smoothing,
whose parameter ε determines the minimum filament width
of the resulting topology, thus removing the possible mesh
dependency of the results and the ill-posedness of the prob-
lem. The reader is addressed to reference [19] for further
details.

Box I: Topology optimization: closed-form solution
method

Problem10 :⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

χ∗ = argmin
χ∈Uad

J (he)(χ)

s.t . C(χ) ≡ t − |Ω−(χψ)|
|Ω| = 0; t ∈ [0, T ]

state equation

(a)

Lagrangian:

L(χ, λ) = J (he)(χ) + λC(χ) (b)

Optimality criterion:⎧⎨
⎩

δL(χ, λ)

δχ
(x) = − (ξ(x, χ) − λ)

C(χ) = 0
(c)

9 The pseudo-energy, ξ(x, χ), has normally dimensions of energy.
10 From now on, superscript (·)(he) refers to results obtained from
approximations via finite element calculations of typical mesh-size he.

Shifting and normalization11 :⎧⎪⎪⎨
⎪⎪⎩

ξ̂ (x) = ξ(x) − Δshi f t

Δnorm
∀x ∈ Ω+

ξ̂ (x) = ξ(x)
Δnorm

∀x ∈ Ω−
(d)

Closed-form solution:⎧⎪⎨
⎪⎩

ψχ(x, λ) := ξ̂ (x, χ) − λ

χ(x, λ) = Hβ

[
ψχ(x, λ)

]
C(χ(x, λ)) = 0

(e)

Topology:⎧⎪⎨
⎪⎩

Ω+(χ) := {x ∈ Ω / ψχ(x, λ) > 0}
Ω−(χ) := {x ∈ Ω / ψχ(x, λ) < 0}
Γ (χ) := {x ∈ Ω / ψχ(x, λ) = 0} (12)

3 Formulation of the state problem

In the context of the relaxed (bi-material) approach referred
to in Remark 1, both the unknowns (temperatures) and data
of the optimization problem (material properties) depend on
the topology layout, that is, on the characteristic function,
χ . Then, let Ω be the analysis domain, whose boundary
∂Ω is made of three mutually disjoint subsets, ∂Ω =
∂θΩ ∪ ∂qΩ ∪ ∂hΩ , as depicted in Fig. 3, with ∂θΩ of
nonzero Lebesgue measure. Boundaries ∂θΩ , ∂qΩ and ∂hΩ

are, respectively, those subsets of ∂Ω , where temperature,
θ(x), heat fluxes, q(x) = q(x) ·n and convective heat fluxes,
h (θ(x) − θamb(x)) = q(x) · n, are prescribed.

The steady-state thermal problem, for the temperature
distribution θ(x, χ), states the heat energy balance in the
analysis domain, Ω , and it can be formulated as

⎡
⎢⎢⎢⎢⎢⎢⎣

Find θ(x, χ), such that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− ∇ · q(x, χ) + r(x, χ) = 0 in Ω

q(x, χ) · n = q(x) on ∂qΩ

θ(x, χ) = θ(x) on ∂θΩ

q(x, χ) · n = h (θ(x, χ) − θamb(x)) on ∂hΩ

,

(13)

where q(x, χ) stands for the heat flux, r(x, χ) is the heat
source function andq(x) stands for the prescribedheat fluxon
the boundaries ofΩ . Additionally, h denotes the heat transfer

11 Shifting and normalization operations in terms of Δshi f t and Δnorm
(standing, respectively, for the minimum value and the range of ξ at
t = 0) are introduced for the purposes of providing algorithmic time
consistency to the problem at t = 0. It can be proven that those opera-
tions do not alter the problem solution.
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Fig. 3 Thermal problem sketch:
a fixed analysis domain Ω with
boundary conditions (in which
the temperature θ(x), the normal
heat flux q(x) or the convective
heat flux qh(x) can be
prescribed at ∂θΩ , ∂qΩ and
∂hΩ , respectively) and b Hard
and soft material domains, Ω+
and Ω−, respectively, with the
same boundary conditions

n

S

∂qΩ

Ω+

∂hΩ

∂θΩ

q̅
q̅h

θ‾

θamb‾

r

n

S

∂qΩ

Ω

∂hΩ

∂θΩ

q̅
q̅h

θ‾

θamb‾

r

(a) (b)

Ω–

coefficient, θamb(x) corresponds to the ambient temperature
imposed at ∂hΩ and n defines the unit outwards normal.

The conductive material is governed by the Fourier’s law,
i.e. q(x, χ) = −κ (x, χ) · ∇θχ (x), where κ stands for
the symmetric second order thermal conductivity tensor and
∇θχ (x) is the thermal gradient tensor.12 Both, the conduc-
tivity, κ (x, χ), and the heat source, r(x, χ), are postulated,
in terms of the characteristic function, χ , (see Remark 1) as
follows:

{
κχ (x) = χmκ

κ (x)κ (x) ; mκ > 1

rχ (x) = χmr
r

(x)r(x) ; mr ≥ 1

(14)

(15)

with

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

χκ(x) = Hβκ (χ) :=
{
1 if x ∈ Ω+

βκ if x ∈ Ω−

χr (x) = Hβr (χ) :=
{
1 if x ∈ Ω+

βr if x ∈ Ω− ,

(16)

(17)

where χκ and χr stand for the relaxed characteristic func-
tions for the thermal conductivity, κ , and the heat source,
r , respectively. Associated to the relaxation factor, β, of
every property, we define the contrast factor, α, through

β(·) = α
1/m(·)
(·) �⇒ α(·) = β

m(·)
(·) . Different values of m(·)

may be required for the topology optimization procedure,
depending on the material interpolation.

Alternatively, the thermal problem stated in Eq. (13) can
be written in variational form as

12 κ = κ I for isotropic conductive materials.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Find the temperature field θθθχ ∈ U(Ω) such that

a(w, θχ ) = l(w) ∀w ∈ V(Ω)

where

a(w, θχ ) =
∫

Ω

∇w(x) · κ χ (x) · ∇θχ (x) dΩ

+
∫

∂hΩ

h w(x)θχ (x) dΓ ,

l(w) = −
∫

∂qΩ

w(x)q(x) dΓ

+
∫

∂hΩ

h w(x)θamb(x) dΓ

+
∫

Ω

w(x)rχ (x) dΩ ,

(18)

(19)

(20)

where the set of admissible temperature fields is U(Ω) :={
θ(x) / θ ∈ H1(Ω), θ=θ on ∂θΩ

}
, and the spaceof admis-

sible virtual temperature fields is given by V(Ω) :={
w(x) / w ∈ H1(Ω), w=0 on ∂θΩ

}
. Equations (18) to (20)

are discretized via the Finite Element Method as shown in
“Appendix A”.

4 Optimization algorithm

The algorithm to obtain the optimal characteristic func-
tion distribution, χ(x),13 is based on the Cutting&Bisection
technique, shown in Algorithm 2, in the context of the
pseudo-time-advancing strategy. The strategy, described in
[19], is sketched in Algorithm 1. The number of time-steps
of this methodology is related to the robustness and compu-
tational cost of the problem: the more time-steps, the more
robust the solution is, although the computational cost of the
optimization is higher. Then, it is up to the user to impose a
feasible time evolution based on his/her own experience.

For practical purposes, the Laplacian regularization is
applied to the pseudo-energy density, ξ (sensitivity), instead

13 The solution χ , resulting from the optimization process, must lie in
the subset of admissible solutions, Uad , corresponding to the tackled
single-material (state) thermal problem (i.e. for β → 0). Then, the
subset is defined as Uad = {χ / Ω+(χ) ⊂ Ω, ∂θΩ ∩ ∂Ω+(χ) �=
∅, ∂qΩ ⊂ ∂Ω+(χ), ∂hΩ ⊂ ∂Ω+(χ)}.
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ξ χ
(x

)
(a) (b) (c)

ξ χ
(x

)

ξ χ
(x

)

Fig. 4 Cutting and bisection iterative algorithm. Visual representa-
tion for different λ: a cutting plane at λ1 = 0.15, b Cutting plane
at λ2 = 0.35 and c Cutting plane at λ3 = 0.50. As it can be observed,

the ratio of soft domain, |Ω−|
|Ω| , increases with the Lagrange multiplier.

Therefore, |Ω−(λ1)| < |Ω−(λ2)| < |Ω−(λ3)|

Algorithm 1: Optimization algorithm
Data: Given the mesh, state equation, boundary conditions and objective

function
Result: Find χn for T := {t0, t1, . . . , tn , . . . , T }
begin

Initialization of the design variables;
for n ← 1 to nsteps do

Initialization of step n;
i ← 0;
while Topology and Lagrange multiplier tolerances are not satisfied
do

Solve the equilibrium equation using FEM;
Compute the relaxed topological sensitivity (RTD) using the
adjoint method;
Modify the sensitivity (Shifting and normalization);
Regularize the sensitivity by a Laplacian smoothing;
Compute the Lagrangian multiplier using a bisection algorithm
(algorithm 2);
Update the discrimination function;
Update the characteristic function;
i ← i + 1;

end
χn ← current characteristic function;

end
end

of the discrimination function, ψ = ξ − λ , since the regu-
larization does not affect the (constant) Lagrange multiplier
λ. In this way, it is required only once for each iteration
of the algorithm 1 (outer loop), instead of at every iteration
of the Cutting & Bisection algorithm 2 (inner loop). This
minor modification translates into a significant reduction in
the computational cost of the bisection algorithm.

Algorithm 2: Cutting&Bisection iterative algorithm
Data: Given the mesh, the regularized energy density ξτ (x, χ) and the

pseudo-time tn
Result: Find λn such that the constraint equation is fulfilled
begin

j ← 0;
while Volume constraint is not satisfied do

Update the Lagrangian multiplier;
Compute the corresponding discrimination function;
Compute the corresponding characteristic function;
Compute the corresponding volume constraint;
j ← j + 1;

end
end

In addition, the procedure to compute the Lagrange multi-
plier, imposing the constraint equation of (12)a, is illustrated
in Fig. 4. A modified Marching Cubes method, detailed

in [19], is used to numerically compute the 0-level iso-surface
of thediscrimination function,ψ . Through this technique, the
element hard-phase volume can be obtained, along with the
constraint value, C.

5 Topology optimization problems

5.1 Thermal compliance problem

Let us now consider themaximal thermal diffusivity (minimal
thermal compliance) topology optimization problem. This
goal can be achieved by minimizing the negative of the total
potential energy, i.e.:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

min
χ∈U ad

J (θχ (x, t)) ≡ −
(
1

2
aχ (θχ , θχ ) − l(θχ )

)

≡ 1

2
l(θχ (x, t)) (a)

subject to:

C(χ, t) := t − |Ω−|(χ)

|Ω| = 0 ; t ∈ [0, 1] (b)

governed by:

a(w, θχ ) = l(w) ∀w ∈ V(Ω) , ∀θχ ∈ U(Ω) (c)

. (21)

This problem belongs to the class of problems considered
in Eq. (6) with

J (θχ ) ≡ 1

2
l(θχ )

= 1

2

( ∫
Ω

rθχ dΩ −
∫

∂qΩ

qθχ dΓ

−
∫

∂hΩ

hθambθχ dΓ
)

= 1

2
aχ (θχ , θχ )

≡ 1

2

( ∫
Ω

∇θχ · κ χ · ∇θχ dΩ

−
∫

∂hΩ

hθχθχ dΓ
)

=
∫

Ω

Uχ dΩ −
∫

∂hΩ

hθχθχ dΓ

(22)
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where Eqs. (19) and (20) have been considered for w ≡ θχ ,
and Uχ can be identified as the actual thermal energy density
(Uχ = 1

2∇θχ · κχ · ∇θχ ). Comparing Eqs. (22) and (6), we
can identify

j(χ, x) ≡ 1

2
∇θχ · κχ (x) · ∇θχ = Uχ (x) . (23)

The corresponding finite element discretization counter-
part of the problem in Eq. (21) reads

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

min
χ∈Uad

J (he)(θχ (t)) ≡ 1

2
fT θ̂χ (t) (a)

subject to:

C(χ, t) := t − |Ω−|(χ)

|Ω| = 0 ; t ∈ [0, 1] (b)

governed by:

Kχ θ̂χ = f (c)

,

(24)

where he stands for the typical size of the finite element
mesh, and fT θ̂χ (t) denotes the thermal compliance. Bear in
mind that the discretization of the state equation for the ther-
mal problem (A.4) has been also considered in the previous
minimization problem.

5.1.1 Topological sensitivity of the cost function

The adjoint method [15] for sensitivity analysis is used in this
paper to compute the relaxed topological derivative (RTD) of
the cost-function, J (he)(θχ ), in Eq. (24)a, without explicitly
computing the sensitivity of the nodal temperaturefield (∂θχ/

∂χ ).

Let J (he)
(χ) be the extended cost function of J (he)(χ)

defined as

J (he)
(χ) = 1

2
fT θ̂χ − ŵT

(
Kχ θ̂χ − f

)
, (25)

where ŵ stands for the solution of the adjoint state problem.
Then, the sensitivity of the cost function results, after using
the RTD, in the following

δJ (he)
(χ)

δχ
(x̂) =

(
1

2
fT − ŵT

Kχ

)
δθ̂χ

δχ
(x̂)

+
(
1

2

δfTχ
δχ

(x̂)θ̂χ − ŵT δKχ

δχ
(x̂)θ̂χ + ŵT δfχ

δχ
(x̂)

)
.

(26)

After some algebraic manipulation, accounting for the
adjoint state equation, one arrives to

δJ (he)
(χ)

δχ
(x̂) =

[
δfTχ
δχ

(x)θ̂χ − θ̂
T
χ

δKχ

δχ
(x)θ̂χ

]
x=x̂

. (27)

Finally, Eq. (27) is discretized using the FEM expressions
of Eqs. (B.1)–(B.4), as detailed in “Appendix B”, as

δJ (he)
(θχ )

δχ
(x̂) = mr

(
χr (x̂)

)mr−1 Ur (x̂)Δχr (x̂)

− 2mκ

(
χκ(x̂)

)mκ−1 U(x̂)Δχκ(x̂) ,

(28)

where U(x̂) is the nominal heat conduction energy density
and Ur (x̂) is the nominal heat source energy density, which
are respectively written as

⎧⎨
⎩U(x̂) = 1

2

(∇θχ · κ · ∇θχ

)
(x̂) (a)

Ur (x̂) = (
rθχ

)
(x̂) (b)

. (29)

5.1.2 Closed-form solution

In Box II, the pseudo-energy density, ξ(x, χ), to be consid-
ered for the closed-form solution in Box I, is presented.

Box II: Topology optimization of thermal compli-
ance problems

Problem:⎡
⎢⎢⎢⎢⎢⎣

χ∗ = argmin
χ∈Uad

J (he)(χ) := fT θ̂θθχ

s.t . C(χ, t) := t − |Ω−|(χ)

|Ω| = 0 ; t ∈ [0, 1]
Kχθ̂θθχ = f

(a)

Energy density:

ξ(x, χ) = γ1(x, χ)U(x) − γ2(x, χ)Ur (x) (b)

where⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

U(x̂) = 1

2

(∇θχ · κ · ∇θχ

)
(x̂) ≥ 0

Ur (x̂) = (
rθχ

)
(x̂)

γ1 = 2mκ (χκ(x))mκ−1 Δχκ(x)

γ2 = mr (χr (x))mr−1 Δχr (x) (30)

5.2 Thermal cloaking in terms of heat flux

Wenowconsider an objectwhose thermal propertiesmaydif-
fer from the properties of the surrounding material Ω . Then,
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the main objective is to thermally cloak the object, colored
in black (see Fig. 5), from being detected by an external ther-
mal detecting device, measuring the deviation between the
constant heat flux, theoretically observed on the 3D homoge-
neous domainΩ , and the actual flux in the non-homogeneous
domain containing the cloaked object. Under the assumption
that there is no body that alters the flux, the heat flux enter-
ing across the left face of Ω should be constant and equal to
that exiting across the right face. In addition, the unperturbed
domain presents a known homogeneous heat flux field. Thus,
the goal of this topology optimization problem is to find the
optimal topology of the surrounding cloaking device, Ωdev ,
displayed in dark gray, that mitigates the perturbation of the
object in the heat flux field so as to resemble the original
homogeneous heat-flux.

The problem setting is illustrated in Fig. 5, in which
the constant given heat flux is prescribed via the equivalent
Dirichlet conditions on both vertical sides, i.e. the tempera-
ture is prescribed to a high value, θh , and a low value, θc, at
the left and right sides, respectively (see Fig. 5a). Adiabatic
conditions are assumed on the other two boundaries. Fig-
ure 5b depicts the setting and boundary conditions when the
object to be hidden is placed inside the analysis domain, Ω .
The corresponding topology optimization problem is writ-
ten as the minimization of the deviation (measured through a
L2-norm) between the constant heat flux and the actual heat
flux in domain Ωc ≡ Ω \ Ωdev , which reads as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

min
χ∈Uad

J (θχ (x, t)) = ∥∥qχ (x, θχ ) − q(x)
∥∥
L2(Ωc)

=
(∫

Ωc

∣∣qχ (x, θχ ) − q(x)
∣∣2 dΩ

) 1
2

(a)

subject to :
C(χ, t) := t − |Ω−|(χ)

|Ω| = 0 ; t ∈ [0, 1] (b)

governed by:

a(w, θχ ) = l(w) ∀w ∈ V(Ω) , ∀θχ ∈ U(Ω) (c)
(31)

where, in Eq. (31)a, qχ (x, θχ ) stands for the heat flux vector,
which depends on the topology, whereas q(x) corresponds
to the prescribed (original) heat flux at the same point.

This problem belongs to the class of problems with the
functional considered in Eq. (7), which can be generalized
as

Fχ ≡
(∫

Ω

f (χ, x) dΩ

)p

(32)

where p > 0 stands for an exponential factor. Then, the
relaxed topological derivative (RTD) proposed in Eq. (8) can

be rewritten as

δF(χ)

δχ
(x̂) = p F(χ)p−1

[
∂ f (χ, x)

∂χ

]
x=x̂

Δχ(x̂) . (33)

Therefore, the functional (31)a is related to (32) by

J (θχ ) ≡
(∫

Ωc

∣∣qχ (x, θχ ) − q(x)
∣∣2 dΩ

) 1
2

=
(∫

Ω

1Ωc (x)
∣∣−κχ (x) · ∇θχ (x) − q(x)

∣∣2 dΩ

) 1
2

(34)

with p = 1/2. Comparing Eqs. (34), (32) and (6) we can
readily identify

j(χ, x) ≡ 1Ωc (x)
∣∣qχ (x, θχ ) − q(x)

∣∣2 ∀x ∈ Ω , (35)

with 1Ωc (x) : Ω → {0, 1} being the indicator function of
the subdomain Ωc ⊂ Ω , which is equal to 1 for any point
contained in Ωc, and 0 for any point outside the subdomain
Ωc.

Let us now discretize the cost function, J (θχ (t)), using
the FEM expressions defined in “Appendix A”, which yields
to

min
χ∈Uad

J (he)(θχ (t))

≡
(∫

Ω

1Ωc (x)
∣∣∣−κχ (x)B(x)θ̂

(1)
χ − q(x)

∣∣∣2 dΩ

) 1
2

,

(36)

where the constraint equation and the state equation are iden-
tical to those shown in Eq. (31)b, c.

5.2.1 Topological sensitivity of the cost function

Mimicking the procedure described in Sect. 5.1.1, we include
the discretized version of the state Eq. (31)c into the dis-
cretized cost function (36), in order to express the extended

cost function, J (he)
(χ), as

J (he)
(χ)=

(∫
Ω

1Ωc (x)
∣∣∣−κχ (x)B(x)θ̂

(1)
χ − q(x)

∣∣∣2 dΩ

) 1
2

− ŵT
(
Kχ θ̂

(1)
χ − f (1)

)
,

(37)

where ŵ is the solution of the adjoint state problem. Once
the extended cost function is defined, we proceed to derive it
using the Relaxed Topological Derivative as
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∂θΩ∂θΩ Ω

∂qΩ

∂qΩ

q̅=0

q̅=0

(a)

θh‾ θc‾

∂θΩ∂θΩ Ω

∂qΩ

∂qΩ

q̅=0

q̅=0

(b)

Ωc

θh‾ θc‾

Ωdev
κ(θh-θc)‾ ‾

Δxq̅ =

∂θΩ∂θΩ Ω

(c)

Ωc

θh‾ θc‾

Ωdev

f (2)(x) =C1(χ,x,θχ
(1))κχ(x)B(x)

x

y

x

y

x

y

System (I) System (II)

Object

Fig. 5 Thermal cloaking problem: a homogeneous problem setting
where a constant uniform heat flux over all the domain Ω is observed,
b topology optimization domain with boundary conditions of system
(I), and c topology optimization domain with boundary conditions of

system (II). The objective is to minimize the perturbation of an object
placed in the center of the domain Ω . For that reason, it is surrounded
by a cloaking device, in dark gray, which must be optimized

δJ (he)
(χ)

δχ
(x̂) = −

(
ŵT

Kχ + C1κχ∇
) δθ̂

(1)
χ

δχ
(x̂)

− C1
δκχ (χ)

δχ
(x̂)∇θ(1)

χ (x̂)

− ŵT δKχ

δχ
(x̂)θ̂

(1)
χ + ŵT δf (1)χ

δχ
(x̂)

(38)

where C1

(
χ, x̂, θ(1)

χ

)
is

C1

(
χ, x̂, θ(1)

χ

)
=

1Ωc (x̂)
(
qχ

(
x̂, θ(1)

χ

)
− q(x̂)

)
J (he)(χ)

. (39)

We must now solve the adjoint state problem of Eq. (38)

for ŵ = θ̂
(2)
χ . Thus, in contrast to the first optimization prob-

lem, that has been shown in Sect. 5.1, the original thermal
system (I) has to be supplemented with an auxiliary thermal
system (II) (see Fig. 5). Both systems are governed by the
thermal problem (Eq. (A.4)) with the same stiffness matrix

Kχ but different actions and solutions θ̂
(1)
χ and θ̂

(2)
χ , respec-

tively, defined as

⎧⎨
⎩
Kχ θ̂

(1)
χ = f (1) (system I)

Kχ θ̂
(2)
χ = f (2) (system II)

(40)

where

f (2) = −
∫

Ω

NT (x)
δJ (he)

(
θ

(1)
χ

)
δθχ

(x) dΩ

= −
∫

Ω

NT (x)C1

(
χ, x, θ(1)

χ

)
κχ (x)B(x) dΩ .

(41)

By simplifying the first term of Eq. (38), and after
some algebraic manipulations, detailed in “Appendix C”, the
relaxed topological sensitivity of the cost function can be
expressed as a sum of energy densities, i.e.

δJ (he)
(χ)

δχ
(x̂) = +2γ1(x, χ)U1−2(x̂)

− γ2(x, χ)Ur (x̂) + γ1(x, χ)Uq(x̂) ,

(42)

where U1−2(x̂), Ur (x̂) and Uq(x̂) are, respectively, the nom-
inal heat conduction energy density, the nominal heat source
energy density and the nominal heat flux energy density,
which are given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U1−2(x̂) = 1

2

(
∇θ(1)

χ · κ · ∇θ(2)
χ

)
(x̂) (a)

Ur (x̂) =
(
rθ(2)

χ

)
(x̂) (b)

Uq(x̂) =
(
C1κ · ∇θ(1)

χ

)
(x̂) (c)

(43)

and

{
γ1(x, χ) = (1 − βκ)mκ (χκ(x))mκ−1

γ2(x, χ) = (1 − βr )mr (χr (x))mr−1
. (44)

5.2.2 Closed-form solution

The problem-dependent energy density, ξ(x, χ), of the orig-
inal functional J (he) (Eq. 36) is illustrated in Box III,
analogously to Box II.
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Box III: Topology optimization of heat flux cloaking

Problem:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

χ∗ = argmin
χ∈Uad

J (he)(χ)

=
(∫

Ω

1Ωc (x)
∣∣∣−κχ (x)B(x)θ̂θθ

(1)
χ − q(x)

∣∣∣2 dΩ

) 1
2

s.t . C(χ, t) := t − |Ω−|(χ)

|Ω| = 0 ; t ∈ [0, 1]

Kχθ̂θθ
(i)
χ = f (i) ; i = {1, 2}

(a)

Energy density:

ξ(x, χ) = γ1(x, χ)
(
2U1−2(x) + Uq(x)

)
− γ2(x, χ) Ur (x) (b)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1−2(x̂) = 1

2

(
∇θ(1)

χ · κ · ∇θ(2)
χ

)
(x̂)

Ur (x̂) =
(
rθ(2)

χ

)
(x̂)

Uq(x̂) =
(

1Ωc (x)
(
qχ

(
θ

(1)
χ

)
−q

)
κ ·∇θ

(1)
χ

J (he)
(
χ,θ

(1)
χ

)
)

(x̂)

γ1(x, χ) = (1 − βκ)mκ (χκ(x))mκ−1

γ2(x, χ) = (1 − βr )mr (χr (x))mr−1 (45)

5.3 Thermal cloaking in terms of temperature
average and variance

Let us now consider a hot object whose temperature is higher
than the environment temperature, θamb. The goal is to cloak
the object for an external thermal detecting device, located at
some distance from it (like a thermal camera). The cloaked
object might be then easily detected if the temperature along
a virtual plane, between the object and the observer, changes
significantly with respect to the ambient temperature. Thus,
the goal is to find the optimal layout of a surrounding cloaking
device, which minimizes the perturbation of the temperature
on this plane.

The setting of the problem is sketched in Fig. 6, in which
Ω represents the region of concern, the small black region,
placed at the center, represents the object to be cloaked, and
the surrounding ellipsoid, colored in gray, corresponds to
the cloaking device, Ωdev . In addition, the vertical left edge,
referred as the cloaking port, ∂cΩ , illustrates the plane where
the temperatures are measured by the observer. The tempera-
ture of the object is prescribed at a high temperature θ > θamb

on its surface, ∂θΩ , and natural convective boundary condi-
tions are applied on the left and right edges, ∂hΩ . On the
other two faces, adiabatic conditions are considered.

The optimal topology will be achieved with a multi-
objective optimization via two cost functionals. The first
functional addresses the minimization of the average tem-
perature on the cloaking port, ∂cΩ , while the second is
responsible of minimizing the variance of the temperature
on the same face, ensuring an homogeneous temperature on
the left edge. The topological optimization problem, evalu-
ated via a weighted sum of the functionals, is expressed as

Ω

∂cΩ

Ωdev

∂hΩ
∂hΩ

Ω

∂qΩ

∂qΩ

q̅=0

q̅=0

θ‾

θamb‾ θamb‾

x

y

x

y

(a) (b)

∂θΩ

Object

Fig. 6 Average and variance temperature minimization: a represen-
tation of the subdomains surrounding the object to be cloaked (the
cloaking device, Ωdev , is displayed in dark gray, while the left edge,
where the average value and the variance of the temperature are min-
imized, is denoted by ∂cΩ) and b problem setting with boundary

conditions. The domain,Ω , corresponds to the control volume in which
optimization will be carried out, which includes the object prescribed at
a high temperature, θ . The left and right sides are subject to convective
boundary conditions, while adiabatic conditions are assumed on top and
bottom sides of the domain
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

min
χ∈Uad

J (θχ ) = ωJav(θχ ) + (1 − ω)Jvr(θχ ) (a)

subject to :
C(χ, t) := t − |Ω−|(χ)

|Ω| = 0; t ∈ [0, 1] (b)

governed by :
a(w, θχ ) = l(w) ∀w ∈ V(Ω) , ∀θχ ∈ U(Ω) (c)

(46)

where Jav(θχ ) corresponds to the objective function of
the average temperature minimization, while Jvr(θχ ) cor-
responds to the objective function of the temperature vari-
ance minimization. The coefficient ω represents the weight
between these two objective functions. Therefore, we are
simultaneously optimizing, for a given weighting coefficient
ω, both functionals and achieving an optimal trade-off from
these objective functions. If this weight is changed, a dif-
ferent optimal solution will be obtained. Thus, given a set
of weight values, the optimal solutions of each optimization
problem define the classical Pareto front [2].

According to Marler and Arora [17], a convenient trans-
formation of the original objective functions is through its
ranges. This normalization is given as follows

J̃i (χ) = Ji (χ) − J ◦
i

J max
i − J ◦

i
for i = {av,vr} (47)

where J̃i (χ) represents the transformed objective function,
J ◦
i denotes the utopia point14 and J max

i corresponds to
themaximum objective function value.15 This normalization
yields non-dimensional objective functions values between
zero and one. We have chosen to normalize the function-
als with respect to the minimum value when minimizing
only each objective functional Ji (χ) (Utopia point) and the
maximum value obtained from the minimization of the other
functional Ji (χ

∗
j ). Therefore, two extra optimization prob-

lems must be done for ω = 1 and ω = 0. From the first
problem, J ◦

av and J max
vr are obtained, and from the second,

J max
av and J ◦

vr .
According to this scalarization approach, the transformed

optimization problem is written as follows

14 The utopia point J ◦
i defined as J ◦

i = minχ Ji (χ) ∀χ ∈ Uad is
an unattainable optimal point and it may be prohibitively expensive to
compute. In these cases, an approximation is used.
15 The maximum objective function value corresponds either to the
maximum value that minimizes the other objective functions, J max

i =
max j Ji (χ

∗
j ) j �= i , or the absolute maximum of Ji (χ).

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

min
χ∈Uad

J̃ (θχ ) = ω
Jav(θχ ) − J ◦

av

J max
av − J ◦

av

+ (1 − ω)
Jvr(θχ ) − J ◦

vr

J max
vr − J ◦

vr
(a)

subject to :
C(χ, t) := t − |Ω−|(χ)

|Ω| = 0; t ∈ [0, 1] (b)

governed by :
a(w, θχ ) = l(w) ∀w ∈ V(Ω) , ∀θχ ∈ U(Ω) (c)

(48)

Thanks to the use of a multi-objective scheme, the
topological sensitivity of both terms may be computed inde-
pendently, as it will be shown below.

5.3.1 Average temperature minimization

Let us now focus on the first objective function which deals
with the minimization of the average temperature over the
cloaking port, ∂cΩ , by designing the cloaking device (drawn
in gray in Fig. 7). The corresponding optimization problem,
subjected to the same constraint equation and ruled by the
thermal state equation of Eq. (46), is given as

min
χ∈Uad

Jav(θχ ) = C2

∫
∂cΩ

θχ(x) dΓ

= C2

∫
∂Ω

1∂cΩ(x) θχ (x) dΓ ,

(49)

where the integrated temperature is normalized with the cor-

responding Lebesgue measure, C2 =
(∫

∂cΩ
dΓ

)−1
, and

1∂cΩ(x) stands for the the indicator function on the subset
∂cΩ , to enforce the minimization over the whole boundary.

Discretizing the topology optimization problem (49) via
the finite element method, we finally obtain

min
χ∈Uad

J (he)
av (θχ ) = C2

∫
∂Ω

1∂cΩ(x)N(x)θ̂
(1)
χ dΓ

= C21T∂cΩ θ̂
(1)
χ ,

(50)

whose extended functional is then derived according to Sect.
2.2 in order to compute the topological sensitivity of the
cost function. Following the same steps as in Sect. 5.1.1, and

applying the adjoint method with ŵ = −C2θ̂
(2)
χ to avoid

computing the temperature derivative with respect to the
design variable, one finds that problem (50) also requires
the resolution of an auxiliary state equation (system (II)) in
addition to the original state equation (system (I)), which
read as
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Fig. 7 Average temperature
minimization: a problem setting,
b system (I) (half-domain), and
c system (II), where g := f (2)

(half-domain). The optimal
design of the cloaking device, in
gray, must achieve a reduction
in the average temperature of
the left surface, ∂cΩ
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(1)
χ = f (1) (system I)

Kχ θ̂
(2)
χ = f (2) (system II)

(51)

where

f (2) = −1∂cΩ = −
∫

∂Ω

NT (x)1∂cΩ(x) dΓ . (52)

Introducing the solution of the two state equations, θ̂
(1)
χ

and θ̂
(2)
χ , into the corresponding relaxed topological deriva-

tive of the cost function, and after some algebraic manipula-
tions, detailed in “Appendix D”, one obtains the expression
of the pseudo-energy density, expressed as

ξav(x, χ) = γ1(x, χ) U1−2(x) + γ2(x, χ) Ur−2(x) , (53)

where U1−2(x̂) and Ur−2(x̂) correspond respectively to the
nominal heat conduction energy density and the nominal heat
source energy density, and γ1(x, χ) and γ2(x, χ) are respec-
tively the coefficient of these energy densities, which depend
on the characteristic function and the properties of the mate-
rial. In summary

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

U1−2(x̂) = 1

2

(
∇θ(2)

χ · κ · ∇θ(1)
χ

)
(x̂) (a)

Ur−2(x̂) =
(
rθ(2)

χ

)
(x̂) (b)

γ1(x, χ) = −2C2(1 − βκ)mκ (χκ(x))mκ−1 (c)

γ2(x, χ) = C2(1 − βr )mr (χr (x))mr−1 (d)

. (54)

5.3.2 Temperature variance minimization

The second objective function deals with theminimization of
the temperature variance over the cloaking port, ∂cΩ , so the
main goal is to design a cloaking device that homogenizes the

temperature on a desired surface. This optimization problem
is written as follows

min
χ∈Uad

Jvr(θχ ) = C3

∫
∂cΩ

(
θχ (x) − Jav(θχ )

)2
dΓ

= C3

∫
∂Ω

1∂cΩ(x)
(
θχ (x) − Jav(θχ )

)2
dΓ ,

(55)

where the coefficientC3 is equal to the inverse of themeasure

of the surface, i.e. C3 =
(∫

∂cΩ
dΓ

)−1
, and, as commented

before, the temperature variance is only minimized on a part
of the boundary of the domain described by the indicator
function of the surface ∂cΩ , 1∂cΩ(x).

Applying the FEMdiscretization (A.1) to expression (55),
we finally reach to

min
χ∈U ad

J (he)
vr (θχ )

= C3

∫
∂Ω

1∂cΩ(x)
(
N(x)θ̂

(1)
χ − N(x)IJ (he)

av

(
θ(1)
χ

))2
dΓ

= C3

(
θ̂

(1)
χ − IJ (he)

av

(
θ(1)
χ

))T
M∂cΩ

(
θ̂

(1)
χ − IJ (he)

av

(
θ(1)
χ

))
(56)

with

M∂cΩ =
∫

∂Ω

NT (x)1∂cΩ(x)N(x) dΓ , (57)

where I represents an all-ones vector with the same length

as θ̂
(1)
χ . Equation (56) is subject to the volume constraint

in Eq. (46)b and governed by the thermal state Eq. (46)c.
Now, mimicking the procedure followed for the first func-
tional of Eq. (46)a in Sect. 5.3.1, we proceed to compute
the RTD of the expression (56) via the adjoint method with

ŵ = −C3θ̂
(3)
χ , and introducing the RTD of the average tem-
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perature J (he)
av

(
θ

(1)
χ

)
with the corresponding adjoint state

problem, Eq. (51)-(system (II)).
Finally, one can obtain three state equations, being the

first two equations mutual to both optimizations problems.
Thus, the original thermal system (I) is supplemented with
two auxiliary thermal system: (II) and (III) (where g in Fig. 7
corresponds to f (2) for the first auxiliary system, while it is
equal to f (3) for the second auxiliary system), which are
described by

Kχ θ̂
(i)
χ = f (i) ; i = {1, 2, 3} (58)

with

f (3) = −2MT
∂cΩ

Tχ

(
θ(1)
χ

)
= −2

∫
∂cΩ

NT 1∂cΩ(x)
(
θ(1)
χ (x) − J (he)

av

(
θ(1)
χ

))
dΓ ,

(59)

where Tχ

(
θ

(1)
χ

)
corresponds to θ̂

(1)
χ − IJ (he)

av

(
θ

(1)
χ

)
.

After replacing the solutions of both auxiliary systems,

θ̂
(2)
χ and θ̂

(3)
χ , into the RTD of J (he)

vr (θχ ) and simplifying the
consequent terms, the corresponding spatial energy density,
ξ(x, χ), can be written as

ξvr(x, χ) = γ3U1−2(x) + γ4Ur−2(x)

+ γ5U1−3(x) + γ6Ur−3(x)
(60)

where U i− j (x̂) is the nominal heat conduction energy den-
sity for i-th and j-th temperature fields (i, j = {1, 2, 3}) and
Ur−k(x̂) corresponds to the nominal heat source energy den-
sity for the k-th temperature field (k = {1, 2, 3}), which are
respectively written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1−2(x̂) = 1

2

(
∇θ(2)

χ · κ · ∇θ(1)
χ

)
(x̂)

Ur−2(x̂) =
(
rθ(2)

χ

)
(x̂)

U1−3(x̂) = 1

2

(
∇θ(3)

χ · κ · ∇θ(1)
χ

)
(x̂)

Ur−3(x̂) =
(
rθ(3)

χ

)
(x̂)

, (61)

and γi for i = {3, 4, 5, 6} are the corresponding coefficients,
defined as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ3(x, χ) = 4C3C2(1 − βκ)mκ (χκ(x))mκ−1A (a)

γ4(x, χ) = −C3C2(1 − βr )mr (χr (x))mr−1A (b)

γ5(x, χ) = −2C3(1 − βκ)mκ (χκ(x))mκ−1 (c)

γ6(x, χ) = C3(1 − βr )mr (χr (x))mr−1 (d)

,

(62)

where

A =
(
Tχ

(
θ(1)
χ

))T
M∂cΩI . (63)

For additional details, the reader is addressed to “Appendix
E” where intermediate steps are presented.

5.3.3 Temperature multi-objective minimization

Topological sensitivity of the cost function Taking into
account the expressions obtained in Sects. 5.3.1 and 5.3.2,
we can define the energy distribution of the original prob-
lem (Eq. 46) as a linear combination of Eqs. (53) and (60),
yielding to

ξ(x, χ) = ω ξav(x, χ) + (1 − ω) ξvr(x, χ) , (65)

where the parameterω adjusts theweight of each objective
function (or sensitivity). As previously mentioned, the sen-
sitivity corresponds to the weighted sum of the sensitivities
of the two problems.

Since each term of the original multi-objective problem
(46) has been normalizedwith its range (Eq. 47), the sensitiv-
ity of the scalarized multi-objective problem (48)a includes
some extra terms with respect to Eq. (65) to account for it,
i.e. the sensitivity is expressed as

ξ̃ (x, χ) = ωC4 ξav(x, χ) + (1 − ω)C5 ξvr(x, χ) , (66)

where⎧⎪⎪⎨
⎪⎪⎩
C4 = 1

J max
av − J ◦

av

C5 = 1

J max
vr − J ◦

vr

. (67)

As explained before, each topology optimization problem
requires auxiliary thermal systems. We must solve two and
three thermal systems for the average temperature minimiza-
tion and the temperature varianceminimization, respectively.
However, the auxiliary thermal system of the first minimiza-
tion problem (50) is included into the second minimization
problem (56). Therefore, only the following 3 thermal sys-
tems must be solved,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Kχ θ̂
(1)
χ = f (1) (a)

Kχ θ̂
(2)
χ = f (2) = −1∂cΩ (b)

Kχ θ̂
(3)
χ = f (3) = −2MT

∂cΩ

(
θ̂

(1)
χ − IJ (he)

av

(
θ(1)
χ

))
(c)

(68)

Closed-form solution The energy distribution, ξ(x, χ),
of this topology optimization problem is stated in Box IV.
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Box IV: Topology optimization for average and variance temperature minimization

Problem:⎡
⎢⎢⎢⎢⎢⎣

χ∗ = argmin
χ∈Uad

J̃ (he)(χ) = ωJ̃ (he)
av (χ) + (1 − ω)J̃ (he)

vr (χ)

s.t . C(χ, t) := t − |Ω−|(χ)

|Ω| = 0 ; t ∈ [0, 1]

Kχθ̂θθ
(i)
χ = f (i) ; i = {1, 2, 3}

(a)

Energy density:

ξ(x, χ) =ωC4
[
γ1 U1−2(x) + γ2 Ur−2(x)

]
+ (1 − ω)C5

[
γ3 U1−2(x) + γ4 Ur−2(x) + γ5 U1−3(x) + γ6 Ur−3(x)

] (b)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1−2(x̂) = 1

2

(
∇θ(2)

χ · κ · ∇θ(1)
χ

)
(x̂) U1−3(x̂) = 1

2

(
∇θ(3)

χ · κ · ∇θ(1)
χ

)
(x̂)

Ur−2(x̂) =
(
rθ(2)

χ

)
(x̂) Ur−3(x̂) =

(
rθ(3)

χ

)
(x̂)

γ1(x, χ) = −2C2(1 − βκ)mκ (χκ(x))mκ−1 γ2(x, χ) = +C2(1 − βr )mr (χr (x))mr−1

γ3(x, χ) = +4C3C2(1 − βκ)mκ (χκ(x))mκ−1A γ4(x, χ) = −C3C2(1 − βr )mr (χr (x))mr−1A
γ5(x, χ) = −2C3(1 − βκ)mκ (χκ(x))mκ−1 γ6(x, χ) = +C3(1 − βr )mr (χr (x))mr−1

A =
(
Tχ

(
θ(1)
χ

))T
M∂cΩI (64)

This function combines the energy distributions presented in
Eqs. (53) and (60).

6 Representative numerical simulations

In this section, a number of 3D numerical examples to assess
the performance of the proposed methodology are presented.
Unless otherwise specified, all simulations are done using an
isotropic thermal material with a normalized conductivity
κ = 1W/(Km) and a null heat source (r = 0W/m3). When
needed, the heat transfer coefficient is set to h = 1W/(Km2)

and the ambient temperature is fixed to θamb = 283.15K.
The material contrast factor and the corresponding exponent
are set to α = 10−3 and m = 516, respectively. The used
relaxation factor is β = 2.51 · 10−1. Tolχ = 10−1, Tolλ =
10−1 and TolC = 10−3 are the used tolerances. In all cases,
eight-node hexahedral (Q1) finite elements are used in the
solution of the thermal state equation.

16 The exponential parameters mi are set on the basis of the authors’
experience.

6.1 Thermal complianceminimization. 3D thermal
conductor

This example refers to the minimization of the thermal com-
pliance, as explained in Sect. 5.1, in a thermal component,
e.g. heat pipes for a CPU heat sink, in a cubic domain sub-
ject to specific Dirichlet conditions. The aim is to display
the potential of the present methodology for obtaining the
optimal topology for heat conduction in a complex analysis
domain.

The analysis domain, illustrated in Fig. 8, is a cube,
1 × 1 × 1 m, with a rectangular hole all the way across
it, with dimensions 0.1 × 0.5 × 1m, located in the center
and oriented in the z direction. A small prismatic volume,
0.1 × 0.2 × 0.2m, is set in the center of the domain as
part of the initial domain. The radii of the left and right cir-
cular areas, highlighted in Fig. 8c, are Rh = 0.075 m and
Rc = 0.05 m, respectively. The domain is discretized with a
structured mesh of 120 × 120 × 120 hexahedral elements
(mesh size he = 8.3 · 10−3 m), which leads to 1.648.512
hexahedra (see Fig. 8b).

It is assumed that the four areas, colored in red and located
on the left surface,with a prescribed temperature of θh = 293
Kare connectedwith fourCPU’s IHS.The other nine areas, at
temperature θc = 278 K, colored in blue, and located on the
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Fig. 8 Thermal heat conductor: a Setup of the analysis domain, b
Detailed mesh based on hexahedral finite elements and c Boundary
conditions of the problem. The temperature is prescribed to θh at the

four circular regions on the left face (colored in red) while it is set to
θc at the nine circular regions on the right face (colored in blue). The
other surfaces are assumed to be adiabatic

(a) (b)

x
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z

Fig. 9 Thermal heat conductor. Thermal compliance minimization: a Cost function and topology evolution, b Topology for t = |Ω−(χ)|
|Ω| = 0.75

right face, are coupled to the cooling system (heat sink). Adi-
abatic boundary conditions are assumed on the other faces.

For the Laplacian smoothing (see “Appendix A”), a value
of τ = 1 is used, resulting in a parameter ε = 8.3 · 10−3

m. The time interval of interest [0, 0.95] is discretized in 19
equally spaced steps.

In Fig. 9a, the evolution of the cost-function,Jχ , and some
representative optimal topologies are illustrated in terms of

the pseudo-time, (t = |Ω−(χ)|
|Ω| ). As it could be expected,

while the soft material increases, the cost function decreases.

In Fig. 9b, an intermediate optimal design, when the hard
material is the 25% of the total analysis domain, is pre-
sented. The topologies in Fig. 9a showhow the hot regions are
connected with the cold ones, minimizing the thermal com-
pliance. In the limit case of imposing very little conductive
material (high values of t), the obtained optimal topology
connects the hot and cold faces with only four (thin) heat
pipes (see also Online Resource 1).

Let us nowmodify this numerical example in order to con-
sider a not null heat source (r �= 0) inside the design domain,
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(a) (b)

x
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Fig. 10 Thermal heat conductor. Thermal compliance minimization including heat source: a Cost function and topology evolution, b Topology for

t = |Ω−(χ)|
|Ω| = 0.8

Ω . Then, a heat source of r = 1kW/m3 is considered in the
small prismatic volume, located at the center of the domain
(see Fig. 8), which cannot be removed from the hard mate-
rial domain. The contrast factor for the heat source is set to
α = 1e−3, and the exponent is set tom = 1. Both the bound-
ary conditions and themesh dicretization are kept unchanged
with respect to the definition of the example. In addition, the
same value of τ is used for the Laplacian smoothing. Never-
theless, the time interval of interest [0, 0.85], in this case, is
discretized in 17 equally spaced steps.

Mimicking Fig. 9, Fig. 10a illustrates the evolution of the
cost-function throughout the topology optimization in terms
of the pseudo-time, t , along with some optimal topologies.
The optimal topology for t = 0.8 is displayed in Fig. 10b.
Due to the incorporation of the heat source in the central
prismatic volume, a major change in the optimal topologies
between the two presented situations is observed. In the last
situation, the volume, in which the heat source is added, is
also connected to the cold regions on the right side of the
domain in order to dissipate asmuch heat as possible. In addi-
tion, the connection between hot and cold regions, observed
in Fig. 9 for high values of t , gets removed in favor of a better
connection to the heat source.

6.2 Thermal cloaking optimization

6.2.1 Thermal cloaking via heat flux manipulation. 3D heat
flux cloaking device

The optimization of a 3D thermal cloaking device, surround-
ing the object to be cloaked, is now addressed. The goal is to
design the optimal topology of the cloaking device by means

of the manipulation of the heat flux around it, as detailed in
Sect. 5.2. This problem, inspired in the pioneering work by
Fachinotti et al. [7], can be considered a 3D extension of this
work, with the heat flux prescribed to a given constant value.
For the solution of the problem, a square prismatic domainΩ ,
with dimensions 0.09 × 0.18 × 0.09 (in meters), is defined
and discretized with a structured mesh of 100 × 200 × 100
hexahedral elements (Fig. 11). The non-dimensional regu-
larization parameter τ is equal to 0.1 and the pseudo-time
interval [0, 0.08] is discretized in 8 steps.

Domain, Ω , is partitioned in three distinct regions, as
illustrated in Fig. 11: (1) the cloaked object is an ellipsoid,
colored in green, located at the center of the analysis domain
(the principal axes of the ellipsoid are d1 = 0.02m and
d2 = d3 = 0.0128m, the main axis being oriented 45◦
with respect to the x and y axes); (b) a sphere of diame-
ter d = 0.065m, shaded in orange, corresponding to the
cloaking device to be designed (design domain, Ωdev), and
(c) the remaining part of the analysis domain, colored in
gray in Fig. 11c. Regions 1 and 3 correspond to domain
Ωc ≡ Ω \ Ωdev , and the optimization goal is to keep the
original homogeneous heat flux constant and unaffected by
the cloaking device in these regions.

The conductivity in Ωc and Ωdev is κ = 0.57 W/(mK)
and κ = 403W/(mK), respectively. In order to obtain a con-
ductivity of κ = 0.22W/(mK) in the soft phase of region 2,
a contrast factor of α = 5.459 · 10−4 is considered, equiva-
lently, m = 5 and β = 0.886 are also considered.

The temperatures on the left and right surfaces of the
domain are prescribed to θh = 321.85K and θc = 283.15K,
respectively. The other surfaces are assumed to be adiabatic.
Under these boundary conditions and assuming an homoge-
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Fig. 11 Heat flux cloaking
device: a Analysis domain, with
boundary conditions and
dimensions, b Detailed mesh
and c Dimensional details. The
cloaked object in green, placed
at the center of the domain, is
surrounded by the cloaking
device, Ωdev , in orange, whose
design is optimized. The
temperature on the left surface is
set to θh , while the right one is
set to θc
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Fig. 12 Heat flux cloaking device: a Cost function and topology evolution, and b Topology for t = |Ω−|
|Ω| = 0.08

neous isotropic thermal material of κ = 0.57W/(mK) for
the whole domain, the homogeneous temperature gradient
in the x-direction results in a constant horizontally heat flux
q = [245.1, 0, 0]W/m2, which corresponds to the target
heat flux in Ωc.

In Fig. 12a, the evolution of the cost function, including
some representative optimal topologies, is presented.Adetail
of the optimal layout for t = 8% is illustrated in Fig. 12b.
In Figs. 13a–d, the topology design evolution of the cloak-
ing device is plotted for different intermediate time steps17

17 Removing an octant of the total domain as well as the hard material
for a better visualization of the topology.

(see also Online Resource 2). Figures 13e–h represent the
isotherms and the optimal topology layout of both mate-
rial phases, obtained at the slice parallel to the x-y plane,
and centered along z-axis. As it can be observed in the fig-
ure, isotherms tend to reach an homogeneous temperature
gradient configuration18 as t increases (and, thus, more low-
conductivity material is used in the cloaked domain). Also
it can be observed that the optimal design of the cloaking
device, and the way it works, are, by no means, obvious.
The incoming horizontal heat flux is modified, by the com-

18 The isotherms for the homogeneous case are vertical, equally spaced,
isolines from θh to θc.
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Fig. 13 Heat flux cloaking device: figures a–d: 3D viewof intermediate
topologies, in terms of the soft (low conductive) material counterpart, at
steps 0, 1, 5 and 8, respectively. Figures e–h: evolution of the isotherms

and layout of the cloaking device at the middle x-y plane, for the same
representative steps. (Color legend: blue→soft material, orange→hard
material and green→cloaked object). (Color figure online)

bination of the low and high conductive materials in Ωdev ,
into two different structures: a low-conductive shell and a
low-conductive toroid-like domain. The thickness of the shell
structure increases along time, and stronglymodifies the heat
flux near the left and right faces of the cloaking device Ωdev ,
as it can be observed in Figs. 13f, g. The toroid surrounds the
cloaked object and controls the heat flux inside it, see Fig.
13b.

6.2.2 Thermal cloaking via average and variance
temperature minimization. 3D thermal cloaking
device

Now, a thermal cloaking device is again designed but, this
time, aiming at minimizing the average and variance temper-
ature, on a virtual plane at the surface of the analysis domain,
in which the values and distribution of temperature are mea-
sured by an external device (a thermal camera, for instance).
The cloaking device, in Ωdev , should mitigate the distortion
produced on the virtual plane by the (hot) cloaked object.
The setup of the problem is displayed in Fig. 14. The dimen-
sions of the prismatic domain, Ω , are the same than in the
previous example, but a slightly finer finite element mesh is
used (150 × 300 × 150 linear hexahedral elements). Taking
advantage of the symmetries, only a quarter of the domain is
discretized.

The domain is again partitioned in three different regions,
see Fig. 14c. The innermost region is a sphere of radius R =
0.01m (the hot object to be cloaked, colored in green), which
is completely surrounded by region 2, an ellipsoid shaded
in orange (the cloaking device, Ωdev), of dimensions dx =
dz = 0.035m and dy = 0.14m (see Fig. 14). The remaining
volume ofΩ defines region 3. Thematerial properties of each
region are the same as the ones described in Sect. 6.2.1. The
conductivity of regions 1 and 3 is set to κ = 0.57 W/(mK),
while it is set to κ = 403W/(mK) for the hard material in
Ωdev . The contrast factor in Ωdev is α = 5.459 · 10−4. The
temperature of the cloaked object is set to θ = 313K. Left
and right surfaces are subjected to a convective flux described
by h = 1W/(Km2) and θamb = 283K. The other surfaces
are assumed to be adiabatic (see Fig. 14d). The regularization
parameter is τ = 0.1, and the time interval [0, 0.05] is split
into 10 equally spaced pseudo-time steps.

Following the scheme detailed in Sect. 5.3, the optimiza-
tion problem (46) has to be solved three times (for ω = 0,
ω = 1, and ω = 0.5, respectively). From the results of
the first two optimizations, the values of J ◦

av = 308.6K ,
J max

vr = 7.4 · 10−2K2, J max
av = 310.4K and J ◦

vr =
9 · 10−3K2, have been determined. In this specific case, the
results of the second problem are not required, since themax-
imum average temperature is obtained in the first iteration
and the utopia point of the variance can be approximated as
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Fig. 14 Thermal cloaking device: a Analysis domain with its dimen-
sions, b Detail of the mesh, c Details of dimensions and d Boundary
conditions. The cloaked object, in green, prescribed to a high temper-

ature θ is surrounded by the cloaking device, in orange, which must
distribute the heat to minimize the average and the variance of the tem-
perature on the left face, ∂cΩ . (Color figure online)

(a) (b)

x

y

z

Fig. 15 Thermal cloaking device: a Cost function and topology evolution, and b Topology for t = |Ω−|
|Ω| = 0.05

J ◦
vr = 0K 2. Finally, completing the objective function (48)

with the previous parameters, the third optimization problem
is solved for ω = 0.5.

The cost function evolution and intermediate topologies
are displayed in Figs. 15 and 16. In Figs. 16a–e, the design
evolution of the cloaking device shows how the hardmaterial
(colored in orange),which initially completelyfills the design
domain, is progressively replaced by an insulating material
(the low-conductive, soft, material colored in blue), see also
Online Resource 3. The final optimal layout of the cloak-

ing device, presented in Fig. 15b, where half of the domain
has been removed for the sake of clarity, resembles a sort of
“spine”, linked with the rest of the domain at its right side
while the links at the left side are scarce and limited to the
top and bottom of the “spine”. Therefore, the internal heat
generated by the cloaked object is, on one hand, transmitted
to the top and bottom regions of the left surface (∂cΩ) and,
on the other, to the complete right surface where the heat is
dissipated by natural convection. The distribution of temper-
atures obtained on the left surface, see Figs. 16f–j, confirms
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Fig. 16 Thermal cloaking device: figures a–e: 3D view of intermediate
configurations, illustrated by the soft and hard materials of the cloaking
device, for steps 0, 3, 6, 8 and 10. Figure f–j: Evolution of the tempera-

ture field of the left y-z plane, for the same representative pseudo-time
steps. (Color legend: blue→soft material, orange→hard material and
green→sphere). (Color figure online)

that as the hard (high-conductive) material tends to vanish,
the temperature resulting in an uniform temperature distri-
bution approaching the ambient temperature, θamb. This “a
posteriori” analysis, explains the role of that, by no means
obvious, resulting thermal cloaking analysis.

6.3 Computational assessment. Variational
closed-form solution versus level set method

This section, is devoted to analyze the computational per-
formance of the nonsmooth relaxed variational approach
to topology optimization, based on the Relaxed Topological
Derivative (RTD), used in this work for thermal problems,
with respect to a level set method driven by the same Relaxed
Topological Derivative. To illustrate the comparison, the
example described in Sect. 6.1 is analyzed with both meth-
ods. The comparisons are established in terms of the cost
function values and the relative computational cost, which,
in turn, is evaluated in terms of the number of iterations that
each method requires to converge with the same tolerances
(Tolχ = 10−1 and TolC = 10−3).19 For a fair comparison,
the time interval [0, 0.9] and the number of steps, 18, are
used for both methods.

19 The comparison is done in terms of the number of iterations, instead
of the computational time, as the computational cost per iteration is
almost equivalent for the two approaches. Additionally, the number of
iterations remains independent of the platform.

The level set function, φ(x), in the level set method, is
updated through a time-evolving (Hamilton–Jacobi) equa-
tion [1], while the volume constraint is satisfied by means of
a Lagrangian multiplier updating scheme20 [23]. The time
evolution process continues until both the topology, defined
via the characteristic function, and volume tolerances are sat-
isfied. Therefore, the level set function is iteratively updated
as follows (see [19] for more details)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ(i+1)(x) = φ(i)(x) − Δt

Δχ(i)(x)
δL(χ(i), λ(i))

δχ(i)
(x) (a)

χ(i+1) = Hβ

(
φ(i+1)(x)

)
(b)

λ(i+1) = λ(i) + ρ C(χ(φ(i))) (c)

,

(69)

where
δL(χ(i), λ(i))

δχ(i)
(x) corresponds to the relaxed topolog-

ical derivative (RTD) of the Lagrangian and ρ ∈ R
+ is a

suitable penalty value.
We emphasize that the parameter Δt , in Eq. (69)a, has a

remarkable effect in the convergence rate of this method. For
very small values, the method will require many iterations
until convergence is achieved while, for large values of Δt ,

20 The Cutting& Bisection algorithm in Sect. 4 is then replaced by the
standardAugmented Lagrangian update, see Eq. (69)c. At convergence,
the volume constraint is fulfilled at he prescribed tolerance.

123



280 Computational Mechanics (2020) 66:259–286

Fig. 17 Thermal heat
conductor. Non-smooth
variational closed-form method
vs level set method: a
Cost-function evolution, and b
Computational cost in terms of
the number of iterations

Closed-form solution method
Level set method

(a)

(b)

Closed-form solution method
Level set method

results oscillate or even diverge. This parameter has to be
tuned for every problem to find the optimal (convergent and
large enough) value of Δt . After this, a value of Δt = 1 ·
10−1 has been established for the considered problem as the
optimal one for the comparison purposes. The penalty is set
to ρ = 5 · 10−2.

The results of the comparison, as for the cost function is
concerned, are depicted in Fig. 17. The cost function evo-
lution, displayed in Fig. 17a, shows close results for both
methods, although the result for some steps may be slightly
different. However, significant improvements, in terms of the
total computational cost, are obtained using the closed-form
solutions of the proposed approach, with respect to level set
method. This is represented in Fig. 17b, where the accumu-
lative number of iterations is illustrated. From these results,
it can be concluded that the nonsmooth variational approach,
is more than an order of magnitude (up to 15 times) faster

than the level set method, while obtaining similar results in
terms of optimal topologies and cost function. Moreover, the
computational cost (number of required iterations) seems to
be uniform along the steps for the nonsmooth closed-form
solution approach.

7 Concluding remarks

In this paper, the nonsmooth variational approach to relaxed
topology optimization, proposed in Oliver et al. [19] for
structural problems, has been extended and applied to solve
thermal topology optimization problems involving the analy-
sis of 3D heat conducting components and thermal cloaking
devices. From this work the following conclusions can be
displayed:
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• The RVA technique can be readily extended from struc-
tural problems to thermal ones. One, evident, reason for
this is that, in spite that the physics, and technical appli-
cations in both sets of problems are very different, the
mathematical settings in which they are inserted are sim-
ilar. However, problems like thermal cloaking, tackled in
this work, which have not a clear counterpart in structural
analysis, have been successfully solved here.

• The Cutting&Bisection technique used to solve the
resulting, fixed point algebraic closed-form, equations
has been tested here beyond the original structural sce-
nario, in which they were overall positive or negative.
Here, the technique has proven to efficiently work both
for constant-sign energy densities (Sect. 5.1) but, also,
in sign-changing cases (Sects. 5.2 and 5.3). This dissi-
pates one of the unknowns pending on this subject. The
success of this algorithm strongly relies on the unique-
valued character of the energy functions, ξ , as it happens
in all considered problems of this work.

• As in the structural problems case, the obtainment of the
closed-form optimality criteria solutions only requires
the formulation of the cost function, the correspond-
ing energy density, and a pseudo-time (volume-driven)
advancing scheme. The Relaxed Topological Derivative,
as sensitivity for the optimization problem, can be sys-
tematically and simply derived via the classical adjoint
method, as proven in the presented applications.

• The presented numerical examples confirm that the pro-
posed approach provides smooth black-and-white topol-
ogy designs, also for thermal optimization problems.
Mesh-size dependency and checkerboards effects are
effectively removed by the the minimum material fila-
ment size control via the Laplacian smoothing technique,
so that post-processfiltering algorithms are not necessary.

• In Sects. 6.2.1 and 6.2.2 the approach proves amenable
to achieve complex non-trivial topology layouts, far from
being intuitive, and even impossible to obtain without
suitable numerical computational methods.

• In alignment with what was reported in [19] for structural
optimization, the computational cost of the considered
method for thermal optimization problems turns out to
be much smaller (more than 15 times for the test consid-
ered here) when compared with an, equivalent, level set
method (Hamilton–Jacobi update scheme based on the
same Relaxed Topology Derivative).

In summary, the considered topological optimization
methodology, based on

(1) Optimizing the distribution of the nonsmooth character-
istic function in a variational setting,

(2) Resorting the easy-to-deriveRelaxedTopologicalDeriva-
tive as sensitivity, and

(3) Obtaining closed-form optimality criteria, to be numeri-
cally solved using a robustCutting&Bisection algorithm,
in a pseudo-time advancing scheme.

When applied to complex thermal problems, the proposed
methodology exhibits the same encouraging features than in
structural problems. Its extension to other families of topol-
ogy optimization problems is an ongoing research that will
be presented in future works.
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Appendix A: Finite element discretization

The finite element method (FEM) is used to discretize and
solve the state-equation (18) and the required adjoint prob-
lems. The temperature field in Ω is approximated via C0

shape functions as follows21:

θχ (x) ≡ Nθ (x)θ̂χ (A.1)

where Nθ (x) is the, temperature, shape-function matrix and
θ̂χ corresponds to the nodal temperature vector. Equivalently,
the gradient of θχ (x) is expressed as

∇θχ (x) ≡ B(x)θ̂χ (A.2)

where B(x) denotes the gradient matrix. Then, introducing
expressions (A.1) and (A.2) into the Fourier’s law, the heat
flux, qχ (x), can be written as

qχ (x) ≡ −κχ (x) B(x)θ̂χ . (A.3)

Finally, the state Eq. (18), once the previous expressions
are replaced, yields to

Kχ θ̂χ = f (A.4)

21 Voigt’s vector/matrix notation is used in what follows.
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with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Kχ =
∫

Ω

BT (x) κχ (x) B(x) dΩ

−
∫

∂hΩ

NT
θ (x)hNθ (x) dΓ

f =
∫

Ω

NT
θ (x)rχ (x) dΩ

−
∫

∂qΩ

NT
θ (x)q(x) dΓ

−
∫

∂hΩ

NT
θ (x)hθamb(x) dΓ

, (A.5)

whereKχ and f stand for the stiffness matrix and the external
forces vector, respectively.22

A Laplacian smoothing is used to smooth the topology,
control the filament size and avoid checkerboard patterns.
The smooth discrimination function, ψτ , corresponds to the
solution of{

ψτ (x) − ε2Δxψτ (x) = ψ(x) in Ω

∇xψτ (x) · n = 0 on ∂Ω
, (A.6)

where, Δx(x, n) and ∇x(x, n) stand for the Laplacian and
gradient operators, respectively, and n is the outwards nor-
mal to the boundary of the analysis domain, ∂Ω . The FE
discretization of Eq. (A.6), considering ψτ (x) = N(x)ψ̂τ ,
leads to the following system

ψ̂τ = G̃
−1f(ψ) (A.7)

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G̃ = M̃ + ε2K̃ →

→

⎧⎪⎪⎨
⎪⎪⎩
M̃ =

∫
Ω

NT (x)N(x) dΩ

K̃ =
∫

Ω

∇NT (x)∇N(x) dΩ

(a)

f(ψ) =
∫

Ω

NT (x)ψ(x) dΩ (b)

(A.8)

where N(x) stands for the standard interpolation matrix and
ψ̂τ is the vector of nodal values of the field ψτ (x).

Appendix B: Thermal compliance
minimization: cost function derivative

The topological sensitivity of the thermal compliance opti-
mization problem (Eq. 24) is computed in detail in this

22 From now on, the sub-index θ of Nθ shall be omitted.

section via the adjoint method and the Relaxed Topological
Derivative (RTD). Let first rephrase the objective function,
J (he)(χ), to incorporate the state Eq. (A.4)

J (he)
(χ) = 1

2
fT θ̂χ − ŵT

(
Kχ θ̂χ − f

)
︸ ︷︷ ︸

=0

, (B.1)

where ŵ corresponds to the solution of the adjoint state prob-
lem, as aforementioned. Computing theRTDof Eq. (B.1) and
reordering terms, one arrives to

δJ (he)
(χ)

δχ
(x̂) =

(
1

2
fT − ŵT

Kχ

)
δθ̂χ

δχ
(x̂)

+
(
1

2

δfTχ
δχ

(x̂)θ̂χ − ŵT δKχ

δχ
(x̂)θ̂χ + ŵT δfχ

δχ
(x̂)

)
.

(B.2)

Substituting ŵ ≡ 1

2
θ̂χ in Eq. (B.2), and considering the

state Eq. (A.4), the expression can be simplified to

δJ (he)
(χ)

δχ
(x̂) = 1

2
(fT − θ̂

T
χKχ )︸ ︷︷ ︸

=0

δθ̂χ

δχ
(x̂)

+
(

δfTχ
δχ

(x̂)θ̂χ − θ̂
T
χ

δKχ

δχ
(x̂)θ̂χ

)

=
[

δfTχ
δχ

(x̂)θ̂χ − θ̂
T
χ

δKχ

δχ
(x)θ̂χ

]
x=x̂

.

(B.3)

Then, considering Eqs. (14)–(17) and replacing the cor-
responding terms into Eq. (B.3), the Relaxed Topological
Derivative of Eq. (B.1) can be expressed as

δJ (he)
(χ)

δχ
(x̂) = ∂rχ

∂χ
(x̂)N(x̂)θ̂χΔχr (x̂)

− θ̂
T
χB

T (x̂)
∂κχ

∂χ
(x̂)B(x̂)θ̂χΔχκ(x̂)

=
[
∂rχ
∂χ

N(x)θ̂χ

]
x=x̂

Δχr (x̂)

−
[
∇θTχ (x)

∂κχ

∂χ
∇θχ (x)

]
x=x̂

Δχκ(x̂)

=
[
mrχ

mr−1(x)r(x)N(x)θ̂χ

]
x=x̂

Δχr (x̂)

−
[
mκχmκ−1(x)∇θTχ (x)κ (x)∇θχ (x)

]
x=x̂

Δχκ(x̂) ,

(B.4)

which is then written in terms of energy densities, to recover
Eq. (28), as
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δJ (he)
(θχ )

δχ
(x̂) = mr

(
χr (x̂)

)mr−1 Ur (x̂)Δχr (x̂)

− 2mκ

(
χκ(x̂)

)mκ−1 U(x̂)Δχκ(x̂) ,

(B.5)

where U(x̂) is the nominal heat conduction energy density
and Ur (x̂) is the nominal heat source energy density, as
described in Eq. (29).

Appendix C: Thermal cloaking via heat flux
manipulation: cost function derivative

This section describes step-by-step the topological sensitivity
computation of the thermal cloaking optimization problem
(34), mimicking the procedure explained in “Appendix B”.

Let us then define the extended cost function, J (he)
(χ), i.e.

J (he)
(χ) =

(∫
Ω

1Ωc (x)
∣∣∣qχ

(
x, θ(1)

χ

)
− q(x)

∣∣∣2 dΩ︸ ︷︷ ︸
E
(
χ,θ

(1)
χ

)

) 1
2

− ŵT
(
Kχ θ̂

(1)
χ − f (1)

)
︸ ︷︷ ︸

=0

,

(C.1)

which is subsequently derived through the RTD, yielding to

δJ (he)
(χ)

δχ
(x̂) =1

2

1

J (he)(χ)

δE(χ)

δχ
(x̂) − ŵT δKχ

δχ
(x̂)θ̂

(1)
χ

− ŵT
Kχ

δθ̂
(1)
χ

δχ
(x̂) + ŵT δf (1)χ

δχ
(x̂)

(C.2)

where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δE(χ)

δχ
(x̂) =

[
2 1Ωc (x)

(
qχ

(
x, θ(1)

χ

)
− q(x)

) δqχ (χ)

δχ
(x)

]
x=x̂

,

δqχ (χ)

δχ
(x̂) = − δκ χ (χ)

δχ
(x̂)∇θ(1)

χ (x̂) − κ χ∇ δθ (1)
χ

δχ
(x̂) .

(C.3)

Introducing expressions (C.3) into Eq. (C.2), and manipulat-
ing the terms, we obtain

δJ (he)
(χ)

δχ
(x̂)

=
(
−ŵT

Kχ−C1

(
χ,x̂,θ

(1)
χ

)
κχ∇

)
︸ ︷︷ ︸

=0

δθ̂
(1)
χ

δχ
(x̂)

−C1

(
χ, x̂, θ(1)

χ

) δκχ (χ)

δχ
(x̂)∇θ(1)

χ (x̂)

−ŵT δKχ

δχ
(x̂)θ̂

(1)
χ + ŵT δf (1)χ

δχ
(x̂) , (C.4)

with

C1

(
χ, x̂, θ(1)

χ

)
=

1Ωc (x̂)
(
qχ

(
x̂, θ(1)

χ

)
− q(x̂)

)
J (he)(χ)

. (C.5)

Now, the adjoint problem of Eq. (C.4) is solved for ŵ ≡
θ̂

(2)
χ , leading to

δJ (he)
(χ)

δχ
(x̂) = −C1

(
χ, x̂, θ(1)

χ

) δκχ (χ)

δχ
(x̂)∇θ(1)

χ (x̂)

−
(
θ̂

(2)
χ

)T δKχ

δχ
(x̂)θ̂

(1)
χ +

(
θ̂

(2)
χ

)T δf (1)χ

δχ
(x̂) . (C.6)

After applying the RTD to the corresponding terms, Eq.
(C.6) reads as

δJ (he)
(χ)

δχ
(x̂) =

[(
θ̂

(2)
χ

)T
NT (x)

∂rχ
∂χ

(x)
]
x=x̂

Δχr (x̂)

−
[(

θ̂
(1)
χ

)T
BT (x)

∂κχ

∂χ
(x)B(x)θ̂

(2)
χ

]
x=x̂

Δχκ(x̂)

−
[
C1

(
χ, x, θ(1)

χ

) ∂κχ

∂χ
(x)B(x)θ̂

(1)
χ

]
x=x̂

Δχκ(x̂) .

(C.7)

Subsequently, relations (14) and (15) are considered in Eq.
(C.7), which yields to

δJ (he)
(χ)

δχ
(x̂) =

[
mrχ

mr−1
(
θ̂

(2)
χ

)T
NT (x)r(x)

]
x=x̂

Δχr (x̂)

−
[
mκχmκ−1

(
∇θ(1)

χ

)T
(x)κ (x)∇θ(2)

χ (x)
]
x=x̂

Δχκ(x̂)

−
[
mκχmκ−1C1

(
χ, x, θ(1)

χ

)
κ (x)B(x)θ̂

(1)
χ

]
x=x̂

Δχκ(x̂) .

(C.8)

Finally, Eq. (C.8) can be reformulated, in terms of pseudo-
energies, as

δJ (he)
(χ)

δχ
(x̂) = mr

(
χr (x̂)

)mr−1 Ur (x̂)Δχr (x̂)

− 2mκ

(
χκ(x̂)

)mκ−1 U1−2(x̂)Δχκ(x̂)

− mκ

(
χκ(x̂)

)mκ−1 Uq(x̂)Δχκ(x̂) , (C.9)

where U1−2(x̂) is the nominal heat conduction energy den-
sity, Ur (x̂) is the nominal heat source energy density and
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Uq(x̂) corresponds to the nominal heat flux energy density,
as defined in Eq. (43).

Appendix D: Average temperature
minimization: cost function derivative

Let us now proceed with the computation of the topological
sensitivity of the average temperature minimization problem

(50). As before, let J (he)
av (χ) be the extended cost function,

considering the state equation through the Lagrange multi-
plier vector, ŵ, defined as

J (he)
av (χ) = C21T∂cΩ θ̂

(1)
χ − ŵT

(
Kχ θ̂

(1)
χ − f (1)

)
︸ ︷︷ ︸

=0

, (D.1)

where C2 =
(∫

∂cΩ
dΓ

)−1
.

Applying the RTD to Eq. (D.1) and reordering its terms,
one obtains

δJ (he)
av (χ)

δχ
(x̂) =

(
−ŵT

Kχ + C21T∂cΩ
) δθ̂

(1)
χ

δχ
(x̂)

−ŵT δKχ

δχ
(x̂)θ̂

(1)
χ + ŵT δf (1)χ

δχ
(x̂) ,

(D.2)

which is then simplified by choosing ŵ ≡ −C2θ̂
(2)
χ , yielding

to

δJ (he)
av (χ)

δχ
(x̂) = C2

((
θ̂

(2)
χ

)T
Kχ + 1T∂cΩ

)
︸ ︷︷ ︸

= 0

δθ̂
(1)
χ

δχ
(x̂)

+ C2

(
θ̂

(2)
χ

)T δKχ

δχ
(x̂)θ̂

(1)
χ

− C2

(
θ̂

(2)
χ

)T δf (1)χ

δχ
(x̂)

= C2

((
θ̂

(2)
χ

)T δKχ

δχ
(x̂)θ̂

(1)
χ

−
(
θ̂

(2)
χ
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(D.3)

Equation (D.3) is finally discretized using the expressions
in Sect. 1, which then reads as

δJ (he)
av (χ)

δχ
(x̂) = C2
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χ

)T
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NT (x̂)

∂rχ
∂χ

(x̂)Δχr (x̂)

= C2

[
mκχmκ−1(x)

(
θ̂

(2)
χ

)T
BT (x)κ (x)B(x)θ̂

(1)
χ

]
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Δχr (x̂) . (D.4)

The Relaxed Topological Derivative of the cost function
(50) can be finally expressed in terms of energy densities as

δJ (he)
av (χ)

δχ
(x̂) = 2C2mκ

(
χκ(x̂)

)mκ−1 U1−2(x̂)Δχκ(x̂)

− C2mr
(
χr (x̂)

)mr−1 Ur−2(x̂)Δχr (x̂) ,

(D.5)

where U1−2(x̂) and Ur−2(x̂) are, respectively, the nominal
heat conduction energy density and the nominal heat source
energy density, both defined in Eq. (54).

Appendix E: Temperature variance
minimization: cost function derivation

Let us now address the corresponding RTD computation of
the cost function for theminimization of the temperature vari-
ance (Eq. 56), starting by defining the extended cost function
as

J (he)
vr (χ) = C3

(
Tχ

(
θ(1)
χ

))T
M∂cΩTχ

(
θ(1)
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)
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(
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(1)
χ − f (1)

)
︸ ︷︷ ︸

=0

,
(E.1)

where Tχ

(
θ

(1)
χ

)
and M∂cΩ are respectively defined as

Tχ

(
θ(1)
χ

)
= θ̂

(1)
χ − IJ (he)

av

(
θ(1)
χ

)
,

M∂cΩ =
∫

∂Ω

NT (x)1∂cΩ(x)N(x) dΓ .

Applying theRTD toEq. (E.1) and rearranging the expres-
sion, one arrives to
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=
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123



Computational Mechanics (2020) 66:259–286 285

Then, the adjoint state equation can be readily identified

from Eq. (E.2) and solved for ŵ ≡ −C3θ̂
(3)
χ , resulting in
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(E.3)

which can be, after inserting the RTD of J (he)
av (χ) (D.3),

expressed as
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(E.4)

Replacing the RTD of the stiffness matrix and the force
vector into Eq. (E.4), one arrives to
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(E.5)

where A
(
θ

(1)
χ

)
is equal to

(
Tχ

(
θ

(1)
χ

))T
M∂cΩI. Now we

introduce the definition of the conductivity and the heat
source with respect to the topology (Eqs. (14) and (15)) into
expression (E.5), yielding to
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Finally, the sensitivity
δJ (he)

vr (χ)

δχ
at point x̂ can be written

as a sum of actual energies, which yields to

δJ (he)
vr (χ)

δχ
(x̂) = −4C3C2mκ

(
χκ(x̂)

)mκ−1 U1−2(x̂)Δχκ(x̂)
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− C3mr
(
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)mr−1 Ur−3(x̂)Δχr (x̂) ,

(E.7)

where U i− j (x̂) is the nominal heat conduction energy den-
sity for i-th and j-th temperature fields (i, j = {1, 2, 3}) and
Ur−k(x̂) corresponds to the nominal heat source energy den-
sity for the k-th temperature field (k = {1, 2, 3}).
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