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Abstract
A novel technique to formulate arbritrary faceted polyhedral elements in three-dimensions is presented. The formulation
is applicable for arbitrary faceted polyhedra, provided that a scaling requirement is satisfied and the polyhedron facets are
planar. A triangulation process can be applied to non-planar facets to generate an admissible geometry. The formulation adopts
two separate scaled boundary coordinate systems with respect to: (i) a scaling centre located within a polyhedron and; (ii) a
scaling centre on a polyhedron’s facets. The polyhedron geometry is scaled with respect to both the scaling centres. Polygonal
shape functions are derived using the scaled boundary finite element method on the polyhedron facets. The stiffness matrix
of a polyhedron is obtained semi-analytically. Numerical integration is required only for the line elements that discretise the
polyhedron boundaries. The new formulation passes the patch test. Application of the new formulation in computational solid
mechanics is demonstrated using a few numerical benchmarks.

Keywords Scaled boundary finite element method · Polyhedra element · Shape functions · Octree

1 Introduction

The finite element method (FEM) has, since its introduc-
tion, become the most dominant approach for computational
analysis in many science and engineering applications. The
governing equations of the physical phenomena are for-
mulated on standard simplex shapes such as triangles and
quadrilaterals for two dimensions; and hexahedra and tetra-
hedra for three-dimensions, result in simple and efficient
computations. However, the limitations on the shapes of the
elements introduce some difficulties when modelling prob-
lems with topological changes e.g. fracture [44,55]. Often,
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re-meshing is employed to generate a compatible mesh
for the simulations to continue. This potentially result in
ill-shaped elements, further leading to computational inaccu-
racies and instabilities. On another aspect of computational
mechanics, the task of designing of complex components is
usually made more complicated by the limited types of ele-
ments available in standard FEM libraries. It is not unusual
to invest weeks of human effort to construct a suitable mesh
for analysis. A possible alternative to reduce the compu-
tational burden required for mesh generation is to develop
formulations that relax- the requirement of the shapes of
the elements that can be used for the analysis. This can
be achieved using two approaches: (i) meshless methods
and (ii) polygonal (two-dimensional) or polyhedral (three-
dimensional) elements.

The meshless method was initially developed to model
astrophysical problems by Gingold and Monaghan [23] and
Lucy [35]. Its application in computationalmechanics gained
popularity in the mid-1990’s with the introduction of the
Element Free Galerkin method [5]. Since then different vari-
ants of meshless methods have been proposed including for
example, the Reproducing Kernel Particle method [33], the
meshless local Petrov-Galerkin method [3], the meshfree
radial point interpolationmethod [31], the hp-cloudmeshless
method [30] and the generalised-strain mesh-free method
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[39]. A detailed discussion on the various formulations of
meshless methods is reported by Babǔska et al. [4]. Con-
ceptually, the meshless methods formulate the governing
equations over subsets of nodes. A computational mesh is
not required and it is sufficient that only the information of
the nodal positions are specified to define the geometry of the
computational domain. Although this successfully reduces
the computational burden required for pre-processing, the
meshless methods introduce additional complications in the
solution process such as difficulty in enforcing the Dirichlet
boundary conditions, resolving regionswith differentmateri-
als and discontinuities and the need for high quadrature rules
required to integrate the shape functions and their derivatives.
Various techniques have to be used to alleviate these prob-
lems associated with the meshless methods e.g. [6,13,25,57].

The idea for the possible development of arbitrary shaped
elements was conceptualised by Wachspress [53]. However,
the development of arbitrary shaped elements did not gain
popularity until the development of interpolants based on
generalised barycentric coordinates [36], mean valued coor-
dinates [19], natural neighbour shape functions [51] and
harmonic coordinates [27]. The shape functions developed
using these approaches are conforming and linearly com-
plete, thereby guaranteeing convergence of the method in the
limit where the mesh size approaches zero. The development
of such class of shape functions for three-dimensional prob-
lems in the form of polyhedral elements has been recently
pursued. Polyhedral element formulations based on barycen-
tric interpolants [55], Waschspress shape functions [28] and
harmonic shape functions [7] have been recently reported.
Unstructured polygonal/polyhedral meshes have been shown
to produce reliable solutions with superior accuracy [18].
Examples of existing approaches reported on polyhedral
meshes include the smoothed finite element method (SFEM)
[20], the virtual nodemethod [42], the virtual elementmethod
(VEM) [21], Trefftz method [45] and the discontinuous
Galerkin method [11] to name a few.

TheVEM[15] is an alternative approach to develop polyg-
onal/polyhedral finite elements and is seen as a generalization
of finite elements over polytopes. The VEM is derived from
mimetic finite differences [9]. One of the salient features
of the VEM is that it does not require an explicit form of
the basis functions to compute the terms in the stiffness
matrix and force vector when the approximation order is
linear. In the VEM, the space within an element contains
certain polynomials that guarantee accuracy and certain addi-
tional functions (non-polynomial) that esures stability. With
a suitable choice of polynomial basis functions and of the
number of degrees-of-freedom, the VEM is conforming and
provides consistent approximations to the element strain
energy for generic deformation modes. The computation of
the stiffnessmatrix in theVEMinvolves computing boundary
integrals and integral of polynomials over a polygonal region.

One approach is to divide the polygonal face into quadri-
laterals as discussed in [21]. The other approach involves
triangulating the face Aldakheel et al. [1]. The computation
of the non-polynomial part that ensures stability involves
sub-trangulating the polyhedral element. For more details,
interested readers are referred to Aldakheel et al. [1] (c.f
Section 3.2.3). Polyhedral formulation of the VEM for three-
dimensional analysis has been reported for diffusion [10],
elasticity [14,21], elastoplasticity [1] and thermo-plasticity
[2]. More recently, the formulation of a high-order VEM
[16] has also been reported in the literature.

The SFEM [32] is an alternate approach to formulate
polyhedral elements. In the SFEM, the mesh is (in general)
divided into smoothing domains. The smoothing domains,
through the divergence theorem, transforms the volume inte-
gral required for computing the stiffnessmatrix into a surface
integral. Therefore, only the information on the boundaries
of the subcells are required to compute the stiffness matrix.
The smoothing domains may be constructed from a subset of
nodes or edges over a patchof elements [29] or fromcells over
a patch of elements [20]. Natarajan et al. [37] also showed
the equivalence of polygonal/polyhedral elements formu-
lated from the SFEMand theVEMunder specific conditions.

Other approaches that can be used to formulate polyhedral
finite elements include the use of polynomial-based interpo-
lation [44], the Voronoi cell FEM [22] and the finite volume
method [12]. The polynomial-based interpolation proposed
by Rashid and Selimotic [44] is formulated in terms of the
physical coordinates and does not strictly satisfy the dis-
placement compatibility condition between adjacent element
interfaces. The method however, passes the patch test in the
limit when the size of the element approaches zero. The
Voronoi cell FEM is based on the hybrid stress formulation
and requires careful care when selecting the number of coef-
ficients for the stress interpolation to avoid spurious energy
modes corresponding to a singular stiffness matrix. While
the finite volume method is more commonly used in com-
putational fluid dynamics simulations many attempts have
been made to broaden its application in computational solid
mechanics. The formulation of the finite volume method
on polyhedral meshes [12] showed superior efficiency when
compared with low order FEM approaches.

The scaled boundary finite element method (SBFEM)was
developed by Song and Wolf [49]. It is a semi-analytical
method that has niche applications in problems involving
singularities and unbounded media, where the FEM experi-
ences difficulties in accurately capturing the physics of these
problems. The SBFEM is also sufficiently flexible in that it
provides an alternative approach to formulate polygonal [40]
and polyhedral elements [38,47,52]. The approaches adopted
by Talebi et al. [52] and Saputra et al. [47] are similar. The
facets of the polyhedral elements are defined by polygonal
surfaces that are further discretised using triangular and/or
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quadrilateral finite elements. The polyhedral formulationwas
used in conjunction with octree meshes to take advantage of
the computational efficiency of the octree decomposition in
mesh generation and solution process. The approach adopted
by Natarajan et al. [38] follows a different technique. Polyg-
onal shape functions based on Wachspress interpolants are
employed instead of triangular and/or quadrilateral discreti-
sation. In these approaches, numerical integration is adopted
over the surfaces of the triangular, quadrilateral or polygonal
elements on the polyhedral facets. An analytical integration
is adopted within the polyhedral domain.

The objective of this study is to present a new technique
to construct polyhedral elements based on the SBFEM. This
technique, like that of Natarajan et al. [38] and Zou et al. [58],
employs polygonal shape functions to discretise the facets of
the polyhedrals in the mesh. The shape functions are in a
form of rational polynomials and require special numerical
integration over the facets to achieve a desired accuracy. In
this work, instead of the Wachspress shape functions, semi-
analytical polygonal shape functions are derived from the
SBFEM on each facet of the polyhedron. This is achieved
by introducing a second scaled boundary coordinate system
on the facets of a polyhedron. The scaling of the geome-
try of a polyhedron is therefore performed twice: (i) with
respect to the scaled boundary coordinate on the polygonal
surfaces and; (ii) with respect to the scaled boundary coor-
dinate at the scaling centre of the polyhedron. As a result,
numerical integration is required only for the line elements
that discretise the polyhedra boundaries. An analytical inte-
gration is adopted within the polygonal surface and within
the polygonal domain. A further discretisation of the poly-
hedral surfaces into triangles and/or quadrilaterals e.g. in the
technique employed by Talebi et al. [52] is not necessary.

This paper is organised as follows: Sect. 2, commences
with the description of the developed technique, the coor-
dinate transformation, formulation of the surface shape
functions and the solution for the equilibrium condition
within a polyhedron. Section 3 focuses on the analytical
integration procedure required to compute the coefficient
matrices in the new scaled boundary finite element formula-
tion. Other implementation aspects of the developed method
associated with the use of polyhedron and octree meshes are
described in Sect. 4. Section 5 presents the application of
developed method for a few numerical benchmarks for vali-
dation. The manuscript concludes in Sect. 6 summarising the
major conclusions derived from this study.

2 Dual scaled boundary coordinate systems
on arbitrary polyhedra

The proposed technique can be formulated on arbitrary
faceted polyhedrons. Each facet is in turn an arbitrary

sided star-convex polygon that forms a plane in the three-
dimensional space. For non-planar surfaces, a further trian-
gulation step can be performed on the surface to generate an
admissible polyhedron. The only restriction to the geometry
of a polyhedron is that it must satisfy the scaling require-
ment required by the SBFEM on each of the facets of the
polyhedron and also within the polyhedron. These scaling
requirements require that:

1. There is a point within the polyhedron from which the
entire boundary (surface) is directly visible from it.
This point is defined as the polyhedron scaling centre
Op(xp, yp, z p) and it is convenient to choose this to be
the geometric centre of the polyhedron.

2. For each facet that discretises the polyhedron bound-
ary, there is a point on the plane of each facet such that
the entire edge of the polygon is directly visible from
it. This point is defined as the surface scaling centre
Os(xs ys, zs).

Figure 1 shows a generic polyhedron that can be formu-
lated fromadual scaled boundary coordinate system.A radial
coordinate ξ with 0 ≤ ξ ≤ 1. is defined at the polyhedron
scaling centre. The radial coordinate is ξ = 0 at the poly-
hedron scaling centre Op and ξ = 1 at any point on the
polyhedron boundary. Together with the polyhedron scaling
centre, each facet on the polyhedron forms a pyramidal sec-
tor as shown in Fig. 2. The base of the pyramid is a planar
arbitrary sided polygon. A second radial coordinate ζ with
0 ≤ ζ ≤ 1 is defined at the surface scaling centre of the
polygon. At the surface scaling centre Os , ζ = 0 and at the
polygon boundary, ζ = 1. Each edge on the polygon bound-
ary is discretised using one-dimensional line elements having
local coordinate η with −1 ≤ η ≤ 1 similar to the FEM.

The (ξ, η, ζ ) coordinate system is shown in Fig. 2. The
Cartesian coordinates r̂(η) = [x̂(η), ŷ(η), ẑ(η)]T of a point
defined on a line element of a generic tetrahedral sector
shown in Fig. 2 is interpolated by shape functions as

[x̂(η) ŷ(η) ẑ(η)]T = [N(η)xb N(η)yb N(η)zb]T (1)

where

N(η) = [N1(η) N2(η) . . . Nn(η)] (2)

is the shape function vectorwith n number of nodes and xTb =
[x1 x2 . . . xn], yTb = [y1 y2 . . . yn] and zTb = [z1 z2 . . . zn]
are the vectors of nodal coordinates along the x−, y− and
z-axes, respectively.

On each surface, the Cartesian coordinates r(η, ζ ) =
[x(η, ζ ), y(η, ζ ), z(η, ζ )]T of a point on the facet of the
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Fig. 1 A generic polyhedron
modelled by the dual-SBFEM
and radial coordinate ξ

Fig. 2 Dual-SBFEM coordinate
system on a pyramidal sector
and on a tetrahedral sector of a
polyhedron

tetrahedral sector are scaled with respect to the radial coor-
dinate ζ as

⎧
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For a generic case where the polyhedron scaling centre is
located at the origin, the Cartesian coordinate r(ξ, η, ζ ) =
[x(ξ, η, ζ ), y(ξ, η, ζ ), z(ξ, η, ζ )]T of a point in the tetra-
hedral sector shown in Fig. 2 is obtained by scaling the
coordinate x(η, ζ ) by the radial coordinate ξ as

r(ξ, η, ζ ) = ξr(η, ζ ) (4)

The coordinate transformation between the Cartesian and
the scaled boundary coordinates is obtained using the chain
rule of derivatives as
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where J(ξ, η, ζ ) is the Jacobian matrix. Using the definitions
in Eqs. (3) and (4), J(ξ, η, ζ ) can be expressed as

J(ξ, η, ζ ) =
⎡

⎣
1

ξ

ξ

⎤

⎦

⎡

⎣
x y z
x,ζ y,ζ z,ζ
x,η y,η z,η

⎤

⎦ (6)
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where the dependencies of x , y and z on η and ζ have been
dropped fromEq. (6) for convenience.The second termon the
right-hand-side of Eq. (6) is defined as the surface Jacobian

J(η, ζ ) =
⎡

⎣
x y z
x,ζ y,ζ z,ζ
x,η y,η z,η

⎤

⎦ (7)

Using Eqs. (5), (6) and (7), the coordinate transformation can
therefore be expressed as

[
∂

∂x

∂

∂ y

∂

∂z

]T

=J
−1

(η, ζ )

[
∂

∂ξ

∂

∂η

∂

∂ζ

]T

(8)

The Cartesian derivatives can be more conveniently
expressed in terms of the outward normal vectors gξ , gη

and gζ to the three surfaces (η, ζ ), (ζ, ξ) and (ξ, η), where
the coordinates ξ , η and ζ , respectively, are constant on the
boundary ξ = 1. The outward normal vectors are, respec-
tively

gξ =r,ζ ×r,η = [
y,ζ z,η −y,ηz,ζ z,ζ x,η −z,ηx,ζ

x,ζ y,η −x ,ηy,ζ
]T (9a)

gη =r × r,ζ = [
yz,ζ −y,ζ z zx,ζ −z,ζ x x y,ζ −x ,ζ y

]T

(9b)

gζ =r,η ×r = [
y,η z − yz,η zx,η −z,η x x,η y − x y,η

]T

(9c)

The unit vectors of gξ , gη and gζ are therefore
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[
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y nξ
z
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z

]
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where gξ , gη and gζ are the magnitudes of the vectors gξ , gη

and gζ , respectively. Using Eqs. (9a)–(10c), J
−1

(η, ζ ) can
be expressed as

J
−1

(η, ζ ) = 1
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where J (η, ζ ) is the determinant of J(η, ζ ). Using Eq. (3),
J (η, ζ ) can be expressed as

J (η, ζ ) =ζ Jb(η) (12)

where

Jb(η) =xs(y,ζ z̃,η −ỹ,η z,ζ ) + ys(z,ζ x̃,η −z̃,η x,ζ )

+ zs(x,ζ ỹ,η −x̃,η y,ζ ) (13)

with

[x̃,η ỹ,η z̃,η ]T =[N(η),η xb N(η),η yb N(η),η zb]T
(14)

and that Jb is a function of η only. Substituting Eq. (11) into
Eq. (8) results in
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(15)

The coordinate transformation of an infinitesimal volume
dΩ in the dual-scaled boundary coordinate system (ξ, η, ζ )

is established from the derivatives of the position vector
r(ξ, η, ζ ) defined in Eq. (5) with respect to ξ , η and ζ as

dΩ =r,ξ ·(r,ζ ×r,η )dξdηdζ = J (η, ζ )ξ2dξdηdζ (16)

3 Polygonal surface shape functions

To proceed with the equilibrium formulation for a poly-
hedron, the polygonal facets on each polyhedron have to
be discretised. The approach adopted in the conventional
SBFEM [50,52] is to further discretise the polyhedron facets
into simplex shapes e.g. triangles and quadrilaterals that can
be discretised by theFEM.StandardFEMshape functions are
then adopted over each simplex shape. A different approach
is be adopted here. Instead of a further discretisation into sim-
plex shapes, a new set of shape functions is derived on the
polygonal facets. For this purpose, local right-handed coor-
dinate system is introduced on each polygonal facet with
origin at the surface scaling centre as shown in Fig. 3. The
local coordinate system (s, t, n) is defined by three orthog-
onal axes with unit vectors s, t and n. The unit vector n is the
outward normal pointing away from the polyhedron scaling
centre. The unit vectors s and t lie along the polygonal plane
and can be chosen arbitrarily in any direction so as long as
they are orthogonal. A straightforward procedure is to com-
pute s with reference to an edge on the polygon boundary.
The unit vector t can then be computed as

t =n × s (17)

The Cartesian coordinates (x, y, z) of a point on the
polygonal facet can be transformed into local coordinates
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Fig. 3 Local right-handed coordinate system (s, t, n) on a polygonal
facet

Fig. 4 Local planar coordinate system on a triangular sector bounded
by a line element on the boundary

(s, t, n) by defining the 3 × 3 transformation matrix R

R =[s t n] (18)

so that

[s t n]T =R[x y z]T (19)

The two-dimensional shape functions on a polygonal facet
Γ are then formulated in terms of the SBFEM surface coor-
dinates (η, ζ ) from the SBFEM solution of the Laplace
equation. This involves the formulation of the SBFEMover a
two-dimensional area typical in conventional SBFEM prac-
tices e.g. [48] with the coordinates (s, t) replacing the
Cartesian coordinates (x, y).This is similar to the approach
of solving coupled field problems with the SBFEM where
the shape functions for the (scalar) pressure field in a seep-
age flow problem is derived from the solution of the Laplace
equation [41].

The coordinates (s, t) of a point in a triangular sector
bounded by a line element on the boundary (see Fig. 4) and
the surface scaling centre Os can be expressed in terms of

the scaled boundary coordinates on the surface Γ as

{
s(η, ζ )

t(η, ζ )

}

=ζ

{
N(η)sb
N(η)tb

}

(20)

where N(η) is the shape function vector described in Eq. (2)
and sb = [s1 s2 . . . sn]T and tb = [t1 t2 . . . tn]T are the
vector of nodal coordinates of the line element. It is noted
here that at any point on the plane, the coordinate n is zero
and is omitted in the shape function derivation.

A linear operator ∇L is defined and expressed in terms of
the local planar coordinates (s, t) as

∇T
L =

[
∂

∂s

∂

∂t

]

(21)

Using the chain rule, the coordinate transformation of the
derivatives in the (s, t) coordinate system into scaled bound-
ary coordinates on the plane (η, ζ ) is expressed as [56]

[
∂

∂s

∂

∂t

]T

=b1(η)
∂

∂ζ
+ 1

ζ
b2(η)

∂

∂η
(22)

where

b1(η) = 1

JL(η)

[
N(η),η tb

−N(η),η sb

]

(23a)

b2(η) = 1

JL(η)

[−N(η)tb
N(η)sb

]

(23b)

and JL(η) is the determinant of the Jacobian matrix JL(η),
expressed as

JL(η) =
[

N(η)sb N(η)tb
N(η),η sb N(η),η tb

]

(24)

Following Wolf and Song [56], an infinitesimal area dΓ on
the surface of a polygonal facet can be expressed in terms of
(η, ζ ) as

dΓ =JL(η)ζdζdη (25)

The Laplace equation is expressed as

∇T
L ∇Lθ =0 (26)

where θ is the potential.The potential of a point in a triangular
sector bounded by a line element on the boundary and the
surface scaling centre Os is interpolated as

θ(η, ζ ) =N(η)θh(ζ ) (27)

where θh(ζ ) are analytical functions that satisfy the Laplace
equation in the ζ direction. Using Eqs. (22) and (25), the
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weak form of Eq. (26) is obtained by multiplying with an
arbitrary test function θ(η, ζ ) = N(η)θh(ζ ) and integrating
over Γ resulting in

θ
T
h (ζ )

[∫ ∫

NT
(

b1
∂

∂ζ
+ 1

ζ
b2

∂

∂η

)T

(

b1
∂

∂ζ
+ 1

ζ
b2

∂

∂η

)

Nζ JLθh(ζ )dηdζ

]

= 0 (28)

where the dependence of b1(η), b2(η), N(η) and JL(η) on
η has been dropped for convenience. As θh(ζ ) is arbitrary,
the Laplace equation is weakly satisfied if the term inside the
square brackets in Eq. (28) is zero. Equation (28) therefore,
leads to a differential equation expressed in terms of θh(ζ )

as

E0ζ
2θh(ζ ),ζζ +(E0 + E

T
1 + E1)ζθh(ζ ),ζ

− E0θh(ζ ) + Fq(ζ ) = 0 (29)

where the coefficient matrices E0, E1 and E2 are

E0 =
∫ 1

−1
B
T
1 (η)B1(η)JL(η)dη (30a)

E1 =
∫ 1

−1
B
T
2 (η)B1(η)JL(η)dη (30b)

E2 =
∫ 1

−1
B
T
2 (η)B2(η)JL(η)dη (30c)

and

B1(η) =b1(η)N(η) (31a)

B2(η) =b2(η)N(η),η (31b)

The coefficient matrices E0, E1 and E2 are assembled ele-
ment by element over the boundary of the polygon.

The term Fq(ζ ) in Eq. (29) is

Fq(ζ ) = NT (η)b
T
2 (η)

(

b1
∂

∂ζ
+ 1

ζ
b2

∂

∂η

)

N(η)θh(ζ )

]1

−1
(32)

and represents the flux vector along a line of constant ζ . For
polygons that form a closed loop such as those considered
in this manuscript, Fq(ζ ) vanishes and the weak form of the
Laplace equation becomes

E0ζ
2θh(ζ ),ζζ +(E0 + E

T
1 + E1)ζθh(ζ ),ζ −E0θh(ζ ) =0

(33)

Eq. (33) can be solved using an eigenvalue or a Schur decom-
position by a conversion into a first order differential equation

[48,56]. This results in

θh(ζ ) =Vζ−Sc (34)

where S is eigenvalue/Schur- matrices with negative eigen-
values, which are obtained from an eigenvalue or a Schur
decomposition of the Hamiltonian matrix

Z =
[

E
−1
0 E

T
1 −E

−1
0

−E2 + E1E
−1
0 E

T
1 −E1E

−1
0

]

(35)

andV is the transformationmatrix with eigenvectors relevant
to S. The integration constants c in Eq. (34) depend on the
potentials on the polygon boundary θb = θ(ζ = 1). They
are obtained from as

c =V
−1

θb (36)

Substituting Eqs. (36) and (34) into Eq. (27), the potential
field of a point in the triangular sector bounded by Os and a
line element on the polygon boundary can be expressed as

θ(η, ζ ) =N(η)V
(e)

ζ−SV
−1

θb (37)

where the superscript (e) indicates that only the rows in cor-
responding to element (e) are required for each interpolation
within a triangular sector. This notation is necessary because
Eq. (37) is obtained after assembling the contributions from
the line elements that form the closed loop defining the poly-
gon. The planar shape functions Φ(η, ζ ) on Γ is defined in
Eq. (37) as

Φ(η, ζ ) =N(η)V
(e)

ζ−SV
−1

(38)

It is valid for arbitrary sided polygons on a polyhedron facet
so as long as the scaling requirement on the facet is satisfied.
It interpolates a scalar variable on a planar polygonal facet
located on the boundary of a polyhedron.

4 Equilibrium formulation of a polyhedron

4.1 Interpolation of displacement and
strain-displacement relations

In order to use the shape functions derived in Eq. (38) in a
three-dimensional setting, we consider now, a generic tetra-
hedral sector such as that shown in Fig. 2. Following the
SBFEM, the Cartesian displacement components u(ξ, η, ζ ),
v(ξ, η, ζ ) and w(ξ, η, ζ ) of a point in the tetrahedral sector
is interpolated as

u(ξ, η, ζ ) =Φ(η, ζ )uh(ξ) (39a)
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v(ξ, η, ζ ) =Φ(η, ζ )vh(ξ) (39b)

w(ξ, η, ζ ) =Φ(η, ζ )wh(ξ) (39c)

where the shape functions in Eq. (38) have been used to inter-
polate the analytical displacement functions uh(ξ),vh(ξ)

and wh(ξ). Comparing Eqs. (39a)–(39c), with Eq. (37),
it can be inferred that the potential θ(η, ζ ) has the phys-
ical meaning of the Cartesian displacement components
on the polygonal facet i.e. at ξ = 1. To consolidate
the equations, the displacement field vector u(ξ, η, ζ ) =
[u(ξ, η, ζ ) v(ξ, η, ζ ) w(ξ, η, ζ )]T is interpolated so that

u(ξ, η, ζ ) =Φ(η, ζ )Tuh(ξ) (40)

where

Φ(η, ζ ) =
⎡

⎣
Φ(η, ζ )

Φ(η, ζ )

Φ(η, ζ )

⎤

⎦ (41)

and T is a 3n × 3n transformation matrix with n the number
of nodes on a line element on a tetrahedral sector. The trans-
formation matrix is necessary to enable the standard Voigt
notation to be adopted for the displacement functions uh(ξ).

Using the structure of the planar shape functions Φ(η, ζ )

in Eq. (38), the shape function Φ(η, ζ ) can be decomposed
as

Φ(η, ζ ) =Nu(η)Vζ SU (42)

where

Nu(η) =
⎡

⎣
N(η)

N(η)

N(η)

⎤

⎦ (43)

V =
⎡

⎣
V

V
V

⎤

⎦ (44)

S =
⎡

⎣
−S

−S
−S

⎤

⎦ (45)

U =
⎡

⎢
⎣

V
−1

V
−1

V
−1

⎤

⎥
⎦ (46)

A linear differential operator ∇u is defined as

∇u =
⎡

⎢
⎣

∂
∂x 0 0 0 ∂

∂z
∂
∂ y

0 ∂
∂ y 0 ∂

∂z 0 ∂
∂x

0 0 ∂
∂z

∂
∂ y

∂
∂x 0

⎤

⎥
⎦

T

(47)

Using Eq. (15), ∇u is expressed as

∇u =b1(η, ζ )
∂

∂ξ
+ 1

ξ

(

b2(η, ζ )
∂

∂η
+ b3(η, ζ )

∂

∂ζ

)

(48)

where

bT1 (η, ζ ) =gξ

J

⎡

⎢
⎣

nξ
x 0 0 0 nξ

z nξ
y

0 nξ
y 0 nξ

z 0 nξ
x

0 0 nξ
z nξ

y nξ
x 0

⎤

⎥
⎦ (49a)

bT2 (η, ζ ) =gη

J

⎡

⎣
nη
x 0 0 0 nη

z nη
y

0 nη
y 0 nη

z 0 nη
x

0 0 nη
z nη

y nη
x 0

⎤

⎦ (49b)

bT3 (η, ζ ) =gζ

J

⎡

⎢
⎣

nζ
x 0 0 0 nζ

z nζ
y

0 nζ
y 0 nζ

z 0 nζ
x

0 0 nζ
z nζ

y nζ
x 0

⎤

⎥
⎦ (49c)

Furthermore, the identity

(Jb2(η, ζ )),η +(Jb3(η, ζ )),ζ = − 2Jb1(η, ζ ) (50)

can be established from Eqs. (9a)–(9c) and Eqs. (49a)–(49c).
Using the definitions of gξ , gη and gζ in Eqs. (9a)–(9c),

the Jacobian on the boundary in Eq. (12) and the surface
coordinates in Eq. (3), b1(η, ζ ), b2(η, ζ ) and b3(η, ζ ) can
be decomposed as

b1(η, ζ ) = 1

Jb
b1a(η) (51a)

b2(η, ζ ) = 1

ζ Jb
b2a(η) (51b)

b3(η, ζ ) = 1

Jb
b3a(η) + ζ

Jb
b3b(η) (51c)
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where the matrices b1a(η), b2a(η), b3a(η) and b3b(η) are
functions of η only with

bT1a =
⎡

⎣
y,ζ z̃ − ỹz,ζ 0 0 0 x ,ζ ỹ − x̃ y,ζ z,ζ x̃ − z̃x ,ζ

0 z,ζ x̃ − z̃x ,ζ 0 x ,ζ ỹ − x̃ y,ζ 0 y,ζ z̃ − ỹz,ζ
0 0 x ,ζ ỹ − x̃ y,ζ z,ζ x̃ − z̃x ,ζ y,ζ z̃ − ỹz,ζ 0

⎤

⎦ (52a)

bT2a =
⎡

⎣
ysz,ζ − y,ζ zs 0 0 0 xs y,ζ − x ,ζ ys zs x ,ζ − z,ζ xs

0 zs x ,ζ − z,ζ xs 0 xs y,ζ − x ,ζ ys 0 ys z,ζ − y,ζ zs
0 0 xs y,ζ − x ,ζ ys zs x ,ζ − z,ζ xs ys z,ζ − y,ζ zs 0

⎤

⎦ (52b)

bT3a =
⎡

⎣
ỹzs − ys z̃ 0 0 0 x̃ ys − xs ỹ z̃xs − zs x̃

0 z̃xs − zs x̃ 0 x̃ ys − xs ỹ 0 ỹzs − ys z̃
0 0 x̃ ys − xs ỹ z̃xs − zs x̃ ỹzs − ys z̃ 0

⎤

⎦ (52c)

bT3b =
⎡

⎣
ỹz,ζ − y,ζ z̃ 0 0 0 x̃ y,ζ − x ,ζ ỹ z̃x ,ζ − z,ζ x̃

0 z̃x ,ζ − z,ζ x̃ 0 x̃ y,ζ − x ,ζ ỹ 0 ỹz,ζ − y,ζ z̃
0 0 x̃ y,ζ − x ,ζ ỹ z̃x ,ζ − z,ζ x̃ ỹz,ζ − y,ζ z̃ 0

⎤

⎦ (52d)

4.2 Discretisation of equilibrium equation

The condition of static equilibrium of a generic polyhedron
is expressed

∇T
u σ + fb =0 (53)

with boundary conditions

u =u on Γu (54)

σ · n =t on Γt (55)

where σ is the stress field, fb is the body load intensity, Γu

is the portion of the boundary with prescribed displacements
u, Γt is the portion of the boundary with prescribed tractions
t and n is the outward unit normal on Γt . The correspond-
ing weak form of Eq. (53) is formulated using the method
of weighted residuals. Multiplying Eq. (53) with a weight
function w(ξ, η, ζ ), using Eq. (48) and integrating over the
domain dΩ results in

∫

wTbT1 σ ,ξdΩ +
∫

wT ξ−1(bT2 σ ,η + bT3 σ ,ζ )dΩ

+
∫

wT fbdΩ = 0 (56)

where the dependency of w and σ on ξ , η and ζ ; and b1, b2
and b3 on η and ζ have been dropped for convenience. The
second term in Eq. (56) is examined. Substituting Eq. (16)
for dΩ and integrating by parts results in

I=
∫

ξ

[∮

Γ ξ

(wT JbT2 − wT JbT3 )σdΓ −
∫ ∫

((wT JbT2 ),η

+(wT JbT3 ),ζ )σdηdζ
]
dξ (57)

where Γ ξ is the surface with constant ξ . Using the identity
in Eq. (50) results in

I =
∫

ξ

[∮

Γ ξ

(wT JbT2 −wT JbT3 )σdΓ −
∫ ∫

(−2wT JbT1

+wT
,η Jb

T
2 + wT

,ζ Jb
T
3 )σdηdζ

]
dξ (58)

Substituting Eq. (58) into Eq. (56) and rearranging the
terms results in

∫ [

ξ2
∫ ∫

wT JbT1 σ ,ξdηdζ − ξ

∫ ∫

(−2wT JbT1 + wT
,η Jb

T
2 + wT

,ζ Jb
T
3 )σdηdζ + . . .

ξ2
∫ ∫

wT J fbdηdζ + ξ

∮

Γ ξ

(wT JbT2 − wT JbT3 )σdΓ

]

dξ=0

(59)

The last term on the left-hand-side of Eq. (59) represents
the surface tractions acting along a line of constant ξ . For
polyhedrons that form a close loop, the contributions from
the individual tetrahedral sectors over the polyhedron equi-
librate and this term vanishes when it is assembled over all
the entire polyhedron. Therefore, the equilibrium condition
of a polyhedron reduces to

ξ2
∫ ∫

wT JbT1 σ ,ξdηdζ − ξ

∫ ∫

(−2wT JbT1 + wT
,η Jb

T
2 + wT

,ζ Jb
T
3 )σdηdζ + . . .

ξ2
∫ ∫

wT J fbdηdζ = 0 (60)
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Using Hooke’s law σ = Dε and the strain displacement
relation ε = ∇uu, the stress field is expressed as

σ (ξ, η, ζ ) =D(B1(η, ζ )Tuh(ξ),ξ + ξ−1B2(η, ζ )Tuh(ξ))

(61)

where

B1(η, ζ ) =b1(η, ζ )Φ(η, ζ ) (62a)

B2(η, ζ ) =b2(η, ζ )Φ(η, ζ ),η + b3(η, ζ )Φ(η, ζ ),ζ (62b)

Theweighting function is selected so that it is interpolated by
the same shape functions as the displacement field u(ξ, η, ζ )

w(ξ, η, ζ ) =Φ(η, ζ )Twh(ξ) (63)

Substituting Eqs. (61)–(63) into Eq. (60) and invoking the
condition that the equilibrium has to be satisfied for arbitrary
wh(ξ) results in

E0ξ
2uh(ξ),ξξ + (2E0 − E1 + ET

1 )ξuh(ξ),ξ

+ (ET
1 − E2)uh(ξ) + ξ2Fb = 0 (64)

where the coefficient matrices E0, E1 and E2 are

E0 =TT
∫ 1

0

∫ 1

−1
BT
1 (η, ζ )DB1(η, ζ )J (η, ζ )dηdζT (65a)

E1 =TT
∫ 1

0

∫ 1

−1
BT
2 (η, ζ )DB1(η, ζ )J (η, ζ )dηdζT (65b)

E2 =TT
∫ 1

0

∫ 1

−1
BT
2 (η, ζ )DB2(η, ζ )J (η, ζ )dηdζT (65c)

and

Fb =TT
∫ 1

0

∫ 1

−1
ΦT (η, ζ )J fbdηdζ (66)

It is worth noting here that Eq. (64) is similar to the scaled
boundary finite element equation in displacements [49] but
with different coefficient matrices E0, E1 and E2. The coef-
ficient matrices E0, E1 and E2 can be integrated numerically
in the η direction using standard Gauss-Lobatto quadrature
along the line elements on the boundaries of a polyhedron.
Along the ζ direction, analytical integration is employed.

In each of the coefficient matrices E0, E1 and E2, sub-
stituting Eqs. (62a) and (62b) and using the definition of
Φ(η, ζ ) in Eq. (42) results in

E0 =TTUT
∫ 1

0
ζ ST +IY00ζ

SdζUT (67a)

E1 =TTUT
(∫ 1

0
ζ ST +IY10ζ

Sdζ +
∫ 1

0
ζ STY11ζ

Sdζ

)

UT

(67b)

E2 =TTUT
(∫ 1

0
ζ ST +IY20ζ

Sdζ +
∫ 1

0
ζ STY21ζ

Sdζ

+
∫ 1

0
ζ ST −IY22ζ

Sdζ

)

UT (67c)

where

Y00 =VT
∫ 1

−1
NT
u b

T
1aDb1aNu J

−1
b dηV (68a)

Y10 =STVT
∫ 1

−1
NT
u b

T
3bDb1aNu J

−1
b dηV (68b)

Y20 =STVT
∫ 1

−1
NT
u b

T
3bDb3bNu J

−1
b dηVS (68c)

Y11 =STVT
∫ 1

−1
NT
u b

T
3aDb1aNu J

−1
b dηV

+ VT
∫ 1

−1
NT
u,ηb

T
2aDb1aNu J

−1
b dηV (68d)

Y21 =VT
∫ 1

−1
NT
u,ηb

T
2aDb3bNu J

−1
b dηVS

+ STVT
∫ 1

−1
NT
u b

T
3bDb2aNu,η J

−1
b dηV

+ STVT
∫ 1

−1
NT
u b

T
3aDb3bNu J

−1
b dηVS

+ STVT
∫ 1

−1
NT
u b

T
3bDb3aNu J

−1
b dηVS (68e)

Y22 =VT
∫ 1

−1
NT
u,ηb

T
2aDb2aNu,η J

−1
b dηV

+ STVT
∫ 1

−1
NT
u b

T
3aDb3aNu J

−1
b dηVS

+ VT
∫ 1

−1
NT
u,ηb

T
2aDb3aNu J

−1
b dηVS

+ STVT
∫ 1

−1
NT
u b

T
3aDb2aNu,η J

−1
b dηV (68f)

are functions of η only and can be integrated numerically.
The integrals with respect to ζ in Eqs. (67a)–(67c) can be

computed by introducing the matrices

Xi0 =
∫ 1

0
ζ ST +IYi0ζ

Sdζ for i = 0, 1, 2 (69a)

Xi1 =
∫ 1

0
ζ STYi1ζ

Sdζ for i = 1, 2 (69b)

Xi2 =
∫ 1

0
ζ ST −IYi2ζ

Sdζ for i = 2 (69c)

The matrices X00, X10, X20, X11, X21 and X22 are obtained
by integrating Eqs. (69a)–(69c) analytically and solving the
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resulting Lyapunov equations

(S + I)TXi0 + Xi0(S + I) =Yi0 for i = 0, 1, 2
(70a)

(S + 0.5I)TXi1 + Xi1(S + 0.5I) =Yi1 for i = 1, 2
(70b)

STXi2 + Xi2S =Yi2 for i = 2 (70c)

The coefficient matries E0, E1 and E2 are then computed as

E0 =TTUTX00UT (71a)

E1 =TTUT (X10 + X11)UT (71b)

E2 =TTUT (X20 + X21 + X22)UT (71c)

They can be assembled for each polyhedron, considering the
contributions from each of the tetrahedral sectors that form
the polygonal facets on the polyhedron boundary.

4.3 Solution for vanishing body loads

The static stiffness matrix is obtained from the solution of
Eq. (64) without the presence of body loads

E0ξ
2uh(ξ),ξξ + (2E0 − E1 + ET

1 )ξuh(ξ),ξ

+ (ET
1 − E2)uh(ξ) = 0 (72)

This second order differential equation is first transformed
to a first order differential equation with twice the number of
unknowns [50]

ξ

{
ξ0.5uh(ξ)

ξ−0.5qh(ξ)

}

,ξ

= − Z
{
uh(ξ)

qh(ξ)

}

(73)

where Z is the Hamiltonian matrix

Z =
[

E−1
0 ET

1 − 0.5I −E−1
0

−E2 + E1E
−1
0 ET

1 −(E1E0 − 0.5I)

]

(74)

with identity matrix I and qh(ξ) is the internal nodal force
functions along the radial line ξ

qh(ξ) =E0ξ
2uh(ξ),ξ + ET

1 ξuh(ξ) (75)

The Hamiltonian matrix can be decomposed into pairs of
eigenvalues using either an eigenvalue decomposition or a
Schur decomposition as [48]

ZΨ =Ψ Λ (76)

where Λ is a diagonal or block diagonal matrix (depending
on the decomposition of Z i.e. eigenvalue or Schur) con-
taining the eigenvalues of Z. The transformation matrix Ψ

contains the eigenvectors of Λ. The matrices Λ and Ψ can
be conformably partitioned as

Λ =
[−Λn ∗

−Λp

]

(77)

Ψ =
[

Ψ
(u)
n Ψ

(u)
p

Ψ
(q)
n Ψ

(q)
p

]

(78)

The solution of Eq. (73) is therefore

{
uh(ξ)

qh(ξ)

}

=
[

Ψ
(u)
n Ψ

(u)
p

Ψ
(q)
n Ψ

(q)
p

]

ξ

[−Λn − 0.5I ∗
−Λp + 0.5I

]

{
cn
cp

}

(79)

with integration constants cn and cp. For bounded polyhe-
drons such as those considered in this study, the condition of
finiteness of the displacement at ξ = 0 is satisfied by setting
cp = 0. This leads to

uh(ξ) =Ψ (u)
n ξ−Λn−0.5Icn (80)

qh(ξ) =Ψ
(q)
n ξ−Λn+0.5Icn (81)

The integration constants cn are determined from the nodal
displacements ub = uh(ξ = 1) of a polyhedron as

cn =(Ψ (u)
n )−1ub (82)

The stiffness matrix of a polyhedron Kpol is obtained from
Eqs. (80) and (81) as

Kpol =Ψ
(q)
n (Ψ (u)

n )−1 (83)

The complete displacement field in a tetrahedral sector as
shown in Fig. 2 is obtained by substituting Eq. (80) into
Eq. (40) resulting in

u(ξ, η, ζ ) =Φ(η, ζ )Tuh(ξ) (84)

Accordingly, the stress field can be expressed as

σ (ξ, η, ζ ) =DΨ ε(η, ζ )ξ−Λn−1.5Icn (85)

where the strain mode Ψ ε(η, ζ ) is

Ψ ε(η, ζ ) =B1(η, ζ )TΨ (u)
n (−Λn − 0.5I) + B2(η, ζ )TΨ (u)

n
(86)

Remark

Although the formulation is presented with reference to arbi-
trary faceted polyhedrra, it is directly applicable to octree
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Fig. 5 Polyhedron meshes for
three-dimensional patch test

(a) (b)

(c) (d)

meshes, which can be viewed as a special case of arbi-
trary faceted polyhedra. In a three-dimensional analysis,
discretisation using octree meshes has the advantage of rapid
adaptive modelling, particularly for problems exhibiting
complex geometries [58]. The flexibility to assume arbitrary
shaped facets removes the numerical difficulty introduced by
the hanging nodes, whichwould otherwise require additional
treatment in conventional methods such as the FEM. Like the
approach advocated by Zou et al. [58], the formulation also
improves over the octree-type decomposition of Saputra et al.
[47] and Liu et al. [34] by eliminating the need of introducing
additional nodes and faces on the octree cells. Moreover, the
use of semi-analytical integration over the facets of the poly-
hedra in this work eliminates the need for special integration
rules associated with the application of irrational functions-
based interpolants as in the work of Natarajan et al. [38]
and Zou et al.[58]. The use of octree meshes also lead to
additional advantages with regard to the computation of the
stiffness matrices by exploiting the limited number of cell
types in an octree decomposition [34,47,58].

5 Numerical examples

This section presents the application of the formulation to
afew numerical benchmarks for the purposes of validation.
The majority of the numerical examples employ a combi-
nation of octree and polyhedron meshes for the purpose of
discretisation.

5.1 Patch test

A a unit cuboid (1m×1m×1m) is considered for the patch
tests. Two types of patch tests are performed: (1) a constaint
strain patch test and (2) a high order patch test. Figure 5 shows
the polyhedral meshes that are used for the patch tests.

5.1.1 Constant strain patch test

A constant strain patch test is considered first. The mesh
in Fig. 5a is adopted. The material properties are: Young’s
modulus E = 1×103 kPa and Poisson’s ratio ν = 0.25. The
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Table 1 Displacements at
interior nodes for
three-dimensional patch test

Node Analytical Present
u v w u v w

1(0.75, 0.25, 0.25) 0.1000 0.0750 0.0750 0.1000 0.0750 0.0750

2(0.25, 0.25, 0.75) 0.0750 0.0750 0.1000 0.0750 0.0750 0.1000

5(0.75, 0.75, 0.25) 0.1250 0.1250 0.1000 0.1250 0.1250 0.1000

6(0.75, 0.75, 0.75) 0.1500 0.1500 0.1500 0.1500 0.1500 0.1500

7(0.75, 0.25, 0.75) 0.1250 0.1000 0.1250 0.1250 0.1000 0.1250

8(0.50, 0.50, 0.75) 0.1125 0.1125 0.1250 0.1125 0.1125 0.1250

9(0.25, 0.75, 0.25) 0.0750 0.1000 0.0750 0.0750 0.1000 0.0750

10(0.50, 0.50, 0.25) 0.0875 0.0875 0.0750 0.0875 0.0875 0.0750

11(0.25, 0.25, 0.25) 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500

13(0.25, 0.75, 0.75) 0.1000 0.1250 0.1250 0.1000 0.1250 0.1250

objective of the patch test is to examine the convergence of the
developed method when subjected to a linear displacement
field imposed along the boundaries of the cuboid. The bound-
ary conditions are prescribed at the exterior nodes according
to

u =5(2x + y + z) × 10−2 m

v =5(x + 2y + z) × 10−2 m

w =5(x + y + 2z) × 10−2 m

Table 1 compares the computed displacements at the interior
nodes with the analytical solution. It is observed that the
exact values can be reproduced to machine precision and
therefore the proposed technique passes the patch test. This is
an indication that the convergence of the proposed technique
is ensured with mesh refinement.

5.1.2 High order patch test

A high order patch test is considered next. A consistent dis-
placement field is derived from the solution of the Navier
equations of equililbrium following the approach outlined in
Rajendran et al. [43]. Displacement boundary conditions are
prescribed at the exterior nodes according to

u =3x2 − 8xy + y2 m

v =3y2 − 8yz + z2 m

w =3z2 − 8xz + x2 m

The Young’s modulus E = 8.25 kPa and the Pois-
son’s ratio ν = 0.375. As only linear shape functions are
adopted to discretize the line elements on the boundary of the
polyhedron, the scaled boundary finite element formulation
developed in this paper is not high order complete. A conver-
gence study is therefore performed using the meshes shown
in Fig. 5 Amongst the available approaches over polytopes,

Fig. 6 Plots of convergence of norm of error of displacements for high
order patch test

in this study, the accuracy and the convergence behaviours of
the scaled boundary finite element formulation is compared
to that of the VEM.

Figure 6 shows the convergence plot of the displacement
error normdefined as ||unumer−uanal ||L2 . It is observed from
Fig. 6 that for the same mesh, the SBFEM is slightly more
accurate than the VEM. The convergence rate of the SBFEM
is 0.6443. The convergence rate of the VEM is 0.5871.
The improved convergence and accuracy may come at the
expense of the additional effort required in the eigenvalue
solution required to compute the surface shape functions
and the stiffness matrix over each polyhedron. However, this
computational aspect may be improved by adopting octree
meshes in the computations.
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Fig. 7 Pressurised hollow sphere

5.2 Pressurised hollow sphere

The problemof a pressurised hollow sphere shown in Fig. 7 is
considered. The analytical solution of the displacements and
stresses are reported by Bower [8] in spherical coordinates
(r , θ, φ) as

ur (r , θ, φ) = pia3

2E(b3 − a3)r2
{2(1 − 2ν)r3 + (1 + ν)b3}

uθ (r , θ, φ) = uφ(r , θ, φ) = 0

σrr (r , θ, φ) = pia3(r3 − b3)

(b3 − a3)r3

σθθ (r , θ, φ) = σφφ(r , θ, φ) = pia3(2r3 + b3)

2(b3 − a3)r3

σrθ (r , θ, φ) = σrφ(r , θ, φ) = σθφ(r , θ, φ) = 0

(a) (b) (c)

Fig. 8 Hybrid octree-polyhedron meshes of an octant of the sphere

Fig. 9 Plots of radial
displacement component ur
along line AB and L2− and
H1− norms for pressurised
hollow sphere

(a) (b)
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Fig. 10 Contour plot of
magnitude of displacement and
von Mises stress of pressurised
hollow sphere

where pi is the internal pressure, a is the internal radius, b
is the external radius, E is the Young’s modulus and ν is
the Poisson’s ratio. The parameters selected for validation
are: E = 200GPa, ν = 0.3, a = 10mm, b = 50mm and
pi = 6GPa.

Considering the symmetry of the geometry and the loads,
only an octant of the sphere is modelled. The sphere is dis-
cretised using a combination of octree cells and arbitrary
faceted polyhedrons. On the internal and external surfaces
of the sphere, boundary conditions are specified according
to the analytical solution. Additionally, symmetric boundary
conditions are prescribed on the planes of symmetry. The
mesh generation algorithm is augmented from Saputra et al.
[47] and Liu et al. [34]. The key feature in this develop-
ment is the elimination of the triangulation process required
for the octree cells containing hanging nodes. A bounding
box of 80 × 80 × 80mm3 is used to construct the mesh.
During mesh generation the ratio of the maximum to the
minimum size of the octree cells ( hmax

hmin
) is kept constant at

8. The density of the mesh is controlled by specifying hres ,
which scales the physical size of the sphere to an octree cell as
hmin = b

lres
mm. Along the curved boundaries of the sphere,

the surfaces are triangulated in order tomaintain the planarity
condition required by the surfaces of the polyhedron and also
to better represent the curvature of the sphere. Figure 8 shows
the mesh of one octant of the sphere for lres = 32, lres = 128
and lres = 512.

Figure 9a compares the computed radial displacement
component ur along the line AB shown in Fig. 7 for the
five meshes generated with the analytical solution. It can
be observed from Fig. 9a that the computed displacements
agree well with the analytical solution. The convergence of
the L2− and H1−norms computed are shown in Fig. 9b. It is
observed that both the error norms decrease as the mesh den-
sity increases. The convergence rates for the L2− and H1−
norms are −0.742 and −0.521, respectively. The theoreti-
cal convergence rate using uniform mesh refinement, which
are −2/3 and −1/3, respectively. Figure 10 shows the con-

Fig. 11 Cook’s membrane problem

tour plots of the displacement magnitudes and the von Mises
stress of the hollow sphere. As is expected, the contour of the
vonMises stress exhibits radial symmetry, which is reflective
of the symmetric geometry and boundary conditions of the
problem.

5.3 Cook’s membrane

The Cook’s membrane shown in Fig. 11 is investigated as
a three-dimensional problem. The material properties of the
membrane are: Young’s modulus E = 1000Nmm−2 and
Poisson’s ratio ν = 0.33. A vertical distributed load τ =
10Nmm−2 is applied on the right edge of the membrane.
The membrane is constrained frommotion on its left edge. A
hybrid octree polyhedronmesh of themembrane is generated
starting from a pure octree mesh. The density of the meshes
is controlled by specifying the resolution hres used during
voxel generation. The three meshes adopted in this study are
shown in Fig. 12.

Table 2 shows the y-displacement component of point
C shown in Fig. 11 at the mid z-plane of the membrane.
When computed displacements exhibited a converging trend
as the mesh density is increased. The results compare well
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(a) (b) (c)

Fig. 12 Hybrid octree polyhedron meshes used for Cook’s membrane problem

Table 2 y−displacement component at point C

hres Elements Nodes DOF y−displacement (mm)

32 273 642 1926 3.9058

64 1394 2552 7656 3.9620

128 5576 9392 28176 3.9826

Fig. 13 Distribution of σxx along line AB of Cook’s membrane

with the reference solution obtained from the commercial
FEM software ABAQUS using a very fine mesh consisting
of 66700 brick elements which was 4.00856mm.

Figure 13 shows the distribution of the stress component
σxx along line AB of the Cook’s membrane. Similar to the
displacements, the computed stresses also show a conver-

Fig. 15 STL model of a
sculpture of a rabbit

gent trend as the results computed from the coarser meshes
approach those of the finer. Figure 14 shows the contour plots
of the magnitude of displacement and the stress component
σxx of the membrane. As is expected, the displacements are
highest in magnitude in the vicinity of the applied traction.
The membrane exhibits a region of tensile stress, which is
maximum near mid-length of the membrane as is expected
due to the nature of the load τ in the problem.

5.4 STLmodel of sculpture of rabbit under
self-weight

The STL model of a sculpture of a rabbit shown in Fig. 15 is
considered. The model is bounded by a cuboid with dimen-
sions 100 cm×98.7 cm×76.9 cm. The sculpture is assumed
to be fixed at its base and undergoes deformation due to
its self-weight. The material properties of the sculpture are:
Young’s modulus E = 17GPa, Poisson’s ratio ν = 0.15 and

Fig. 14 Contour plots of
displacement magnitude and
stress σxx of Cook’s membrane

(a) (b)
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Fig. 16 Hybrid-octree-
polyhedron mesh of sculpture of
rabbit

(a) (b)

Fig. 17 Contour plots of
sculpture of rabbit deforming
under self weight

(a) (b)

density 2400 kgm−3. The gravitational acceleration is taken
to be g = 9.81ms−2.

The model is meshed with a resolution of hres = 128.
The ratio of the maximum and minimum cell size is hmax :
hmin = 8 : 1. The corresponding mesh of the sculpture
is shown in Fig. 16. It can be observed from Fig. 16a that
along the exterior of the model, the discretisation is of the
form of polyhedrons with arbitrary number of faces. Within
the interior and away from the boundary of the sculpture
as is observed in Fig. 16b, the majority of the cells in the
mesh belong to the generic cell types in a balanced octree
discretisation [58].

Figure 17 shows the contour plots of the displacement
magnitude and first principal stress of the sculpture of the
rabbit. The tips of the ears of the sculpture were observed
to have the largest deformation and are an expected result as
the ears form a cantilever-like structure supported at the head
of the rabbit. Regions of high magnitude of tensile stresses
were observed at the head of the sculpture near the base of
the ears as is shown in Fig. 17b and is a consequence of the
bending-like deformation of both ears under self-weight.

5.5 Image-based analysis of concrete mesostructure
subjected to uniaxial tension

Figure 18a shows 3D image of part of a concrete meso-
structure generated from images obtained from an X-ray
computed tomography scan analysed by Huang et al. [26].
The aggregates in themeso-structure are represented in black
whereas the mortar is represented in grey. The image is
of size 64 × 64 × 64 voxels. The size of each voxel is
0.08mm×0.08mm×0.08mm.Amesh consisting of purely
octree cells is used to discretize the image. The ratio of the
maximum and minimum cell size adopted for the discretiza-
tion is hmax : hmin =8:1. Figure 18b shows the octree mesh
of the meso-structure, which comprises of 46187 cells and
71402 nodes. It is noticeable in Fig. 18b that the mesh is
made up entirely of octree cells without the need for further
triangularization like in the work of Saputra et al. [47] and
Talebi et al. [52].

A stress analysis is carried out to simulate a uniaxial tensile
strain of 1 × 10−5 by prescribing the displacement compo-
nents on the top and bottom surfaces of the meso-structure
(in the z−direction). The material properties assumed for
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Fig. 18 Mesh of concrete
meso-structure

(a) (b)

(a)

(b) (c)

Fig. 19 Stress contour plot of concrete meso -structure
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Fig. 20 Fichera’s corner

(a) (b)

the analysis are as follows. The Young’s modulus of aggre-
gate Ea = 70GPa. The Young’s modulus of mortar Em =
25GPa. The Poisson’s ratio is assumed to be ν = 0.2 for both
the aggregate and the mortar. Figure 19a shows the contour
plot of the stress σzz of the concrete meso-structure. Fig. 19b,
c show the σzz−contour plot for the aggregate and mortar
phases separately. Regions of high stresses can be observed
in the vicinity of the interfaces between the aggregates and
the mortar where the dissimilarity of the material proper-
ties between both phases generates stress concentrations.
This reflects the observations of the response of concrete
meso-structure made in the literature (e.g. Wang et al. [54];
Rodrigues et al. [46]) where cracks tend to nucleate along the
aggregate-mortar interfaces due to the high stress concentra-
tion in these regions.

5.6 Three-dimensional stress singularity: Fichera’s
corner

The three-dimensional stress singularity problem defined by
Fichera’s corner shown in Fig. 20 is considered. The surfaces
of the corner defined by three mutually orthogonal planes
OAB, OAC and OBC are stress-free. The corner is embed-
ded at the centre of a sphere of radius r = 1. The sphere is
assumed to be homogeneous with Poisson’s ratio ν = 0.3
and Young’s modulus E = 1.

The sphere is modelled using only one polyhedron with
scaling centre atO . Theorthogonal planes are not discretized.
The surface of the sphere is discretized is discretized by lines
forming triangular sectors of size h as shown in Fig. 20b.
Three mesh sizes are considered i.e. h = 0.2, h = 0.1 and
h = 0.05.

The order of the mode-I stress singularity defined as
([λR]−1) is computed using the developed formulation [24].
Table 3 compares the computed results. The stress singular-

Table 3 Three-dimensional stress singularities for Fichera’s corner

Method Number of nodes ([λR] − 1)

FEM [17] N/A −0.238329

SBFEM [24] N/A −0.230313

Present h = 0.2 337 −0.226018

Present h = 0.1 1611 −0.232455

Present h = 0.05 4518 −0.235890

ities computed using the FEM [17] and the original SBFEM
[24] are reported for comparison. It is observed that the com-
puted stress singularities are close to the results reported in
the literature. The developed technique therefore, preserves
the advantages of theSBFEMin computing the order of stress
singularities inherent in the original SBFEM.

6 Conclusions

A novel SBFEM formulation has been developed for three-
dimensional analysis. The formulation adopts a novel approach
in which planar shape functions for a scalar field are
derived over the facets of each polyhedron from the semi-
analytical solution of the Laplace equation in a transformed
two-dimensional coordinate system. The resulting shape
functions are then adopted in the SBFEM in a formulation
for elasto-static analyses. The subsequent processes in the
formulation are similar to standard SBFEM procedures with
the exception that the isoparametric (or Wachspress [38,58])
shape functions are replaced by the semi-analytical scaled
boundary shape functions. The resulting coefficient matri-
ces can be integrated in both the scaling directions ζ and
ξ . Numerical integration is required only along the edges of
each polyhedron. This approach removes the need to further
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partition the faces of the octree cells into triangles [34,47]
or to adopt special integration techniques associated with the
rational polygonal interpolants over the surface [58].

The developed formulationwas validated using six numer-
ical benchmarks. A discretisation that adopts a combination
of octree and polyhedron cells was adopted. The combined
use of octree and polyhedron cells leads to significant reduc-
tion in the number of cells in a mesh due to the efficiency
of the octree decomposition in transitioning across different
scales [34,47,58]. It was shown that the developed formula-
tion can passthe patch test. The convergence behaviour of the
formulation was also demonstrated for a case where analyt-
ical solution is available. Two additional numerical example
show the application of the formulation in conjunction with
STL models and image-based analyses.
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