
Computational Mechanics (2020) 65:1621–1631
https://doi.org/10.1007/s00466-020-01837-x

ORIG INAL PAPER

A simple and effective method based on strain projections to alleviate
locking in isogeometric solid shells

Pablo Antolin1 · Josef Kiendl2 ·Marco Pingaro3 · Alessandro Reali4,5

Received: 7 October 2019 / Accepted: 7 March 2020 / Published online: 19 March 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
In this work, we focus on the family of shell formulations referred to as “solid shells”, where the simulation of shell-type
structures is performed by means of a mesh of 3D solid elements, with typically only one element through the thickness. We
propose a novel approach for alleviating shear and membrane locking phenomena, which typically appear in thin structures,
based on the projection of strains onto discontinuous coarser polynomial spaces defined at element level. In particular, we
present and investigate two different formulations based on this approach. Several numerical experiments prove the very good
performance of both formulations in terms of displacements and stresses. The main advantages of the presented approach
compared to existing solid shell formulations are its simplicity and numerical efficiency.

Keywords Solid shells · Locking · Isogeometric analysis · Shell structures

1 Introduction

Shell structures are ubiquitous in various engineering disci-
plines and there exists a huge variety of shell elements for
analyzing them within finite element methods. As a major
classification of shell elements, one can distinguish between
(bivariate) shells and solid shells. While the former are for-
mulated onbivariate domains and derived fromshell theories,
solid shells are trivariate solid elements and their formula-
tion is based on 3D continuum theory. Whereas standard
solid elements applied to thin structures typically require
excessively fine meshes with several elements through the
thickness to avoid geometric locking phenomena, in par-
ticular shear, membrane and curvature-thickness locking,
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solid shell elements are designed such that more accurate
analyses can be obtained with only one element in the
thickness direction. Essentially, solid shells are solid ele-
ments enhanced by certain anti-locking techniques, like, e.g.,
B̄- and F̄-formulations, assumed natural strains (ANS), or
enhanced assumed strains (EAS). The advantages of solid
shells compared to bivariate shell elements are, among oth-
ers: (•) generally simpler formulation and implementation
(standard solid theory vs. shell theories); (•) avoidance of
rotational degrees of freedom, which are necessary in most
classical shell elements; (•) straight-forward use of non-
linear constitutive models, which are generally derived in
the context of 3D solids; (•) higher accuracy when three-
dimensional stress states are important locally, e.g., for
double-sided contact in sheet metal forming simulations.
Solid shells are well established in classical finite element
analysis [6,12,20,25,26,28,29,31].

In this paper we make use of the peculiar features of Iso-
geometric Analysis (IGA) (see, e.g., the monograph [9] or
the recent special issue [16]), which have been shown to
have a great potential in particular for structural analysis. So
far, most of the IGA structural formulations proposed in the
literature have been developed in the framework of bivariate
shells (see, e.g., [1,3,4,11,14,18,19,22–24,30] and references
therein), while only a few papers deal with IGA solid shell
elements [5,7,8,13,14,21].
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In this context, it is well-known that high-order finite
element methods have the capability of alleviating lock-
ing phenomena by raising the interpolation order, being
potentially less effective in the case of discretizations with
high-continuity. On the other hand, degree elevation may
cause the appearance of stress oscillations. In addition,
higher-order IGAwith standard quadrature rules can become
numerically very costly and, therefore, there is a high inter-
est in developing isogeometric solid shell elements which
combine high-order accuracy with the efficiency of low-
order approximations, i.e., quadratic elements. In [7], the
concept of assumed natural strains (ANS) [10,17] was firstly
applied to isogeometric solid shells. The general idea of the
ANSmethod is to replace the strain components which cause
locking by an “assumed” strain field. This approach can be
summarized as follows: The compatible strains are evaluated
at the so-called tying points instead of the integration points,
where the tying points correspond to points of a reduced
integration rule; an assumed strain field is then extrapolated
from these tying points at element level; the assumed strain
field is finally used in the weak form and integrated at the
standard integration points. Different sets of tying points are
used for different strain components, whichmakes the imple-
mentation a bit cumbersome and also this affects numerical
efficiency, due to the increased number of shape function
evaluations (at the different sets of tying points and at the
standard integration points), and, consequently, the memory
requirements. Another important aspect is that this method
requires the general element formulation to be set in a curvi-
linear or local Cartesian coordinate frame for being able to
separate the strains into in-plane and out-of-plane compo-
nents.

In the present paper we propose two novel solid shell for-
mulations, where shear and membrane locking effects are
counteracted by projecting those strain components which
cause locking onto coarser polynomial spaces at element
level through local L2 projections. The first formulation is
inspired by the ANS method in the sense that the projection
spaces correspond to the spaces of the assumed strain fields
in the ANS method, with the consequence that different pro-
jection operators are used for different strain components.
Its advantage, compared to the ANS method is that no tying
points are necessary and shape functions are evaluated only at
the standard integration points,which enhances the efficiency
of themethod. Secondly, we explore a simplified formulation
where the same projection is applied to all strain compo-
nents. In this case, thewhole formulation and implementation
becomes much more efficient. In fact, this formulation does
not even need a local coordinate system (as it is the case for
many solid shell formulations), which makes its implemen-
tation into existing standard solid elements straight forward
and particularly easy. Numerical studies on several bench-
mark examples show that both formulations perform well,

showing the same level of accuracy as the ANS formula-
tion [7]. In this paper, we use NURBS basis functions for
the discretization, however, the proposed formulations can
be equally applied to standard Lagrangian finite elements.

2 Standard solid and solid shell formulations

The formulations presented in this work are based on clas-
sical 3D linear elasticity. Thus, assuming, for the sake of
simplicity, a combination of Dirichlet and homogeneous
Neumann boundary conditions, the problem’sweak form can
be written as

∫
Ω

δε : σ dΩ =
∫

Ω

δu · f dΩ , (1)

where Ω denotes the domain occupied by the elastic body;
u is the elastic displacement vector field (assumed to satisfy
the prescribed Dirichlet boundary conditions); σ = C : ε is
the stress tensor, being C the elasticity tensor, and ε = ∇Su
is the strain tensor (∇S denotes the symmetric gradient oper-
ator); and f is the external load vector field. Finally, δu is a
virtual displacement vector field (that satisfies homogenous
Dirichlet boundary conditions where displacements are pre-
scribed) and δε is the virtual strain tensor field.

The elastic displacement u is approximated as

u ≈
n∑

k=1

Nk(ξ, η, ζ ) uk , (2)

where Nk ∈ R are the NURBS basis functions [9], n is the
total number of functions, (ξ, η, ζ ) are the coordinates in
the parametric domain, and uk ∈ R

3 are the control point
displacements (i.e., the problem unknowns). Following a
standard approach (see, e.g., [15]), we obtain the classical
formulation for the element stiffness matrix to be

ke =
∫

Ωe

B�DB dΩe , (3)

whereΩe is the element domain, B is the strain-displacement
matrix, and D is thematerialmatrix. The strain-displacement
matrix can generally be constructed as

B = (
B1 B2 . . . Bne

)
, (4)

being ne the number of shape functions per element, with the
submatrices Bk defined as
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Bk =

⎛
⎜⎜⎜⎜⎜⎜⎝

Nk,x 0 0
0 Nk,y 0
0 0 Nk,z

Nk,y Nk,x 0
Nk,z 0 Nk,x

0 Nk,z Nk,y

⎞
⎟⎟⎟⎟⎟⎟⎠

, (5)

where the comma subscript indicates a partial derivative, e.g.,
Nk,x = ∂Nk/∂x . Thus, the strain tensor can be approximated
as

ε ≈
n∑

k=1

Bk uk , (6)

where ε is the Voigt representation of the strain tensor in the
Cartesian coordinate system, i.e., ε = [εxx , εyy, εzz, 2εxy,
2 εxz, 2εyz]�.

In many solid shell formulations it is necessary to express
the strains and, accordingly, the strain-displacement matrix
in a curvilinear coordinate system aligned with the shell’s
geometry in order to separate the strains into in-plane andout-
of-plane components. Typically, the geometry is modeled
such that the first two coordinates (ξ, η) correspond to the
in-plane directions of the shell and the third one (ζ ) to the
thickness direction.Wecan then compute the curvilinear base
vectors gi as

gi = ∂x
∂ξi

=
n∑

k=1

∂Nk

∂ξi
xk , i = {1, 2, 3} , (7)

where we used (ξ1, ξ2, ξ3) = (ξ, η, ζ ) for a shorter notation
(see Fig. 1), and xk are the geometry control point coordi-
nates.

Using the basis (7), we can compute the strain-
displacement matrix, referred to the curvilinear system and
in a row-wise way, as

g1g2
g3 ξ1

ξ2

ξ3

x

y

z

x

Fig. 1 Solid shell curvilinear coordinates and its associated covariant
basis

B̃k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Nk,ξ g�
1

Nk,η g�
2

Nk,ζ g�
3

Nk,ξ g�
2 + Nk,η g�

1

Nk,ξ g�
3 + Nk,ζ g�

1

Nk,η g�
3 + Nk,ζ g�

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8)

Analogously as for the Cartesian system (6), the curvilin-
ear (covariant) strain components ε̃ = [ε̃xx , ε̃yy, ε̃zz, 2ε̃xy,
2ε̃xz, 2ε̃yz]� can be expressed as

ε̃ ≈
n∑

k=1

B̃k uk , (9)

where, in the same way as in (4), the submatrices B̃k can be
gathered as

B̃ = (
B̃1 B̃2 . . . B̃ne

)
. (10)

It should be noted that in (8) the derivatives with respect
to the natural NURBS coordinates (ξ, η, ζ ) are used. Also
note that, in contrast to the classical matrix B, the curvilinear
matrix B̃ is, in general, fully populated, as it can be observed
comparing Eqs. (5) and (8).

For consistency, also the Cartesian material matrix D
needs to be expressed in the curvilinear system. This is
obtained via the transformation matrix R (see, for instance,
[5]):

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

J 211 J 221 J 231 J11 J21
J 212 J 222 J 232 J12 J22
J 213 J 223 J 233 J13 J23

2J11 J12 2J22 J21 2J31 J32 J11 J22 + J21 J12
2J11 J13 2J21 J23 2J31 J33 J11 J23 + J21 J13
2J12 J13 2J22 J23 2J32 J33 J12 J23 + J22 J13

J11 J31 J21 J31
J12 J32 J22 J32
J13 J33 J23 J33

J11 J32 + J31 J12 J21 J32 + J31 J22
J11 J33 + J31 J13 J21 J33 + J31 J23
J12 J33 + J32 J13 J22 J33 + J32 J23

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(11)

where Ji j are the components of the Jacobian matrix:

J =

⎛
⎜⎜⎜⎜⎜⎝

∂x

∂ξ

∂x

∂η

∂x

∂ζ
∂ y

∂ξ

∂ y

∂η

∂ y

∂ζ
∂z

∂ξ

∂z

∂η

∂z

∂ζ

⎞
⎟⎟⎟⎟⎟⎠

= (
g1 g2 g3

)
. (12)
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Thematerial matrix in the curvilinear system is then obtained
as

D̃ = R−�DR−1 , (13)

and the element stiffness matrix can be computed as

ke =
∫

Ωe

B̃
�
D̃ B̃ dΩe. (14)

Note that, in the same way, B̃ can be alternatively calculated
as B̃ = RB.

3 Solid shell locking alleviation

In this section, we present two different approaches to alle-
viate shear and membrane locking effects through local
modifications of the strain-displacement matrices, for both
the curvilinear (14) and the Cartesian (3) formulations.

To this end, we propose a procedure based on the projec-
tion of the strain components causing locking onto coarser
polynomial spaces. In fact, in the same way as in other
problems, like, e.g., quasi-incompressible elasticity, locking
phenomena arise as a consequence of the excess of con-
straints on the numerical solution. In order to reduce these
constraints, the affected part of the elastic energy is interpo-
lated by means of coarser polynomial spaces. In particular,
for the case of solid shells, we interpolate the different com-
ponents of the strain tensor using element-wise lower order
polynomial spaces that are discontinuous across elements.

3.1 ANS-inspired locking alleviation using local
projections

Let us first introduce the strain tensor expressed in the covari-
ant basis:

ε =
3∑

i, j=1

ε̃i j gi ⊗ g j . (15)

In order to alleviate the possible shear andmembrane locking
phenomena, the strain tensor ε is replaced with its modi-
fied version ε that results from a local L2 projection of each
covariant component of ε onto different coarser polynomial
spaces defined for each parametric element Ω̂e. Accordingly,
each component ε̃i j of ε is substituted by a new component
εi j of ε, obtained through its L2 projection onto a reduced
order space. Thus, the modified strain tensor reads

ε =
3∑

i, j=1

εi j gi ⊗ g j , with εi j = Π(i, j)(ε̃i j ) , (16)

whereΠ(i, j) is the element-wise L2 projection operator onto
the space Q(i, j)(Ω̂e) for each i j strain component.

Thus, in each single parametric element Ω̂e, the L2 pro-
jection can be implicitly expressed as:

∫
Ω̂e

ε̃i jθh dΩ̂e =
∫

Ω̂e

εi jθh dΩ̂e ,

∀θh, ε
i j ∈ Q

(i, j)(Ω̂e), ε̃i j ∈ L2(Ω̂e) .

(17)

Assuming that the problem solution is discretized with
the same degree p along the three parametric directions, and
inspired by the ANSmethod proposed for isogeometric anal-
ysis in [7,8], the different strain components are then treated
as follows:

– ε̃11 and ε̃13 are projected onto the local element space
Q

(1,1) = Qp−1,p,p(Ω̂e);
– ε̃22 and ε̃23 are projected onto the local element space
Q

(2,2) = Qp,p−1,p(Ω̂e);
– ε̃12 is projected onto the local element space Q

(1,2) =
Qp−1,p−1,p(Ω̂e);

– ε̃33 remains unprojected, i.e., ε33 = ε̃33.

Qq,r ,s(Ω̂e) is the space of polynomials of degrees≤ (q, r , s),
along the three parametric directions of the parametric
domain element Ω̂e.

The above-introduced polynomial spaces are local to each
element and discontinuous across different elements. There-
fore, the projections of the different strain components can
be computed at each element independently from the oth-
ers, making this operation computationally inexpensive and
embarrassingly parallel.

Thus, the element-wise projection can be explicitly writ-
ten in matrix form as:

f
i j = P

(i, j) f̃
i j

, (18)

where the column vectors f̃
i j ∈ R

nq and f
i j ∈ R

nq are the
values of ε̃i j and εi j , respectively, evaluated at the nq quadra-
ture points of a single element Ω̂e, while P(i, j) ∈ R

nq×nq is
the linear projection operator expressed in matrix form. Due
to the fact that the projections are performed in the paramet-
ric domain, and the same projection spaces are chosen for all
elements, the operators P(i, j) are constant from element to
element. In Appendix Awe provide closed-form expressions
of the matrices P(i, j), for degrees p = 1 and p = 2, ready
to be used in isogeometric or finite element analysis codes.

By means of the above defined projections, the modified
strain can be represented as
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ε ≈
n∑

k=1

Bk uk , (19)

where Bk is written row-wise as

Bk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Π(1,1)
(
Nk,ξ g�

1

)
Π(2,2)

(
Nk,η g�

2

)
Nk,ζ g�

3

Π(1,2)
(
Nk,ξ g�

2 + Nk,η g�
1

)
Π(1,1)

(
Nk,ξ g�

3 + Nk,ζ g�
1

)
Π(2,2)

(
Nk,η g�

3 + Nk,ζ g�
2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (20)

In the same way as for (10), we can define

B = (
B1 B2 . . . Bne

)
, (21)

such that the element stiffness matrix is computed as

ke =
∫

Ωe

B
�
D̃B dΩe. (22)

3.2 Simplified Cartesian locking alleviation using
local projections

In this work we also explore the possibility of projecting
all strain components, including ε̃33, onto the reduced poly-
nomial space Qp−1,p−1,p(Ω̂e). In such a case, all strain
components are projected directly using their Cartesian ver-
sion, and their transformation to curvilinear components is
no longer needed, which renders the operation much simpler.

Thus, the new strain-displacement matrix B̂k is computed
as:

B̂k =

⎛
⎜⎜⎜⎜⎜⎜⎝

N̂k,x 0 0
0 N̂k,y 0
0 0 N̂k,z

N̂k,y N̂k,x 0
N̂k,z 0 N̂k,x

0 N̂k,z N̂k,y

⎞
⎟⎟⎟⎟⎟⎟⎠

, (23)

where N̂k,xi are simply the projected basis function deriva-
tives, i.e.,

N̂ k,xi = Π(1,2)(Nk,xi ) , (24)

for i = {1, 2, 3} and (x1, x2, x3) = (x, y, z). Then, as
before, the local stiffness matrix is simply computed as:

k̂e =
∫

Ωe

B̂
�
DB̂ dΩe . (25)

This methodology presents a fundamental advantage with
respect to the projections presented in the previous section:

It requires the use of Cartesian coordinates only [notice the
use of Cartesian coordinates of the involved derivatives in
(24) and the use of the Cartesian version of tensor D in
(25)], making it simpler and faster. Moreover, it is worth
mentioning that this approach differs from reduced integra-
tion techniques, which in some cases may lead to unphysical
instabilities, while, on the basis of our numerical tests, the
proposed method seems to be always stable. As it will be
shown in the numerical experiments gathered in Sect. 4, the
performance of this simplified technique is as good as the
ANS-inspired one, presented in Sect. 3.1, and even superior
in some cases.

4 Numerical examples

In this section we present a series of numerical experiments,
classically used to test shell and solid-shell formulation
capabilities for alleviating locking effects, with the aim of
illustrating the performance of the proposed solid-shell ele-
ments.

In particular we first present two classical beam tests,
and we then analyze the celebrated set of three bench-
marks known as the “shell obstacle course”, proposed by
Belytschko et al. [2].

In these five test cases we compare the performance
of different quadratic solid shell elements, namely: The
ANS-inspired version of our quadratic solid-shell element,
described in Sect. 3.1 and labeled hereinafter as “
SSANS”; the simplified quadratic solid-shell element, for-
mulated in Cartesian coordinates and detailed in Sect. 3.2,
denoted as “ SS”; and, finally, the quadratic ANS ele-
ment proposed in [7] and labeled as “ ANS”. Quadratic
formulations are also compared with the standard cubic iso-
geometric element (simply denoted as “ p = 3”), known
to show a good behavior even in the presence of shear and
membrane locking conditions. Additionally, we also include
in all the test cases the results corresponding to the standard
isogeometric quadratic element, denoted as “ p = 2”.

4.1 Straight cantilever beam

This first example is a straight cantilever beam, clamped at
one face and subjected to a distributed load, with resultant
F , along the top edge of the opposite face (see Fig. 2). A
Young modulus E = 1000 and a Poisson ratio ν = 0 are
assumed, while the beam length and width are L = 100 and
w = 1, respectively. The beam thickness is indicated by t .
In all numerical tests a single element is used for the beam
cross section, while a variable number of elements along the
longitudinal direction are considered.

Even if the nature of the formulation proposed in this paper
is three dimensional, under the geometrical setting, boundary,
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Fig. 2 Straight cantilever beam: problem description. One face is
clamped whereas a distributed load (with resultant F) is applied along
the top edge of the opposite face. Beam deflection is measured at the
bottom edge of the free end. E = 1000, ν = 0, L = 100, and w = 1.
Different slendernesses L/t are considered

loading, and material conditions described above, the model
behaves as a 2D beam. This test helps in evaluating the effect
of shear locking, isolated from other possible effects, for all
the considered discretizations.

Considering a high slenderness value L/t = 100, the nor-
malized deflection of the beam tip is reported in Fig. 3a for
different numbers of control points along the beam length.
As it can be seen, all considered solid-shell elements are able
to capture the exact solution, even for the coarsest considered
mesh (this is not the case for standard quadratic elements).

On the other hand, in Fig. 3bwe report the results obtained
in the case of a fixed discretization (8 elements along the
beam’s length) and different (high) values of the slenderness
L/t . As in the previous case, except for the standard quadratic
element, all discretizations are able to capture the correct
results, even for quite severe slendernesses.

It is well known that higher order finite elements (isogeo-
metric or standard isoparametric) tend to provide good results
for primal variables, even if some locking is present. Derived
quantities (stress and strain), however, may still suffer from
severe oscillations in formulations that are not completely
locking-free. In that sense, and in order to illustrate the per-
formance of the proposed methods, we present in Fig. 4
the relative error of the shear stress σ13 resultants along the
beam’s axis. The resultants are computed as the integral of
σ13 on beam’s cross sections, being the applied load at the
beam’s tip the reference value.

As it can be seen in Fig. 4, both, the ANS-inspired and the
simplified quadratic solid-shell formulations, as well as the
cubic element, present small resultant errors and oscillations,
even for very high slendernesses. However, the standard
quadratic formulation predicts much worse stresses, even in
the case in which the computed deflection is not so low (cf.
Figs. 3b, 4a).

The stress resultant oscillations, higher for extreme slen-
dernesses, are mitigated when the number of elements along
the beam’s axis is increased. Other stress components not
affected by locking, namely, σ11 and σ33 in this example,
present smaller errors than σ13 and no oscillations.
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N
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m
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ce
m
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p = 2 p = 3 SS SSANS ANS

(a) Beam vertical deflection as a function of the number of
control points along beam length (slenderness L/t = 100).
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m
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m
en

t
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(b) Beam vertical deflection as a function of slendernessL/t (8
elements along the beam’s length).

Fig. 3 Straight cantilever beam: normalized vertical deflection at the
tip for different discretizations and slendernesses

Finally, in order to test also the robustness of the pro-
posed solid-shell elements, we report in Fig. 5 the results
obtained when different in-plane mesh distortions are con-
sidered. These distortions are generated in such a way that
the in-plane distortion angle is maximum at the center of the
beam and linearly fades to zero at both ends (see Fig. 5), as
proposed in [26].

As it can be seen in Fig. 5a, for moderate angle distortions
(30◦), the proposed Cartesian solid-shell element clearly out-
performs the proposed ANS-inspired and ANS elements for
large values of the slenderness, while for less slender beams,
all elements present similar results.

For severe distortion angles (60◦), instead, Fig. 5b shows
that the Cartesian solid-shell element still provides better
results than the other quadratic solid-shell formulations, but
all of them attain quite inaccurate results for very slender
beams (L/t ≥ 1000).

In all distorted cases the standard cubic element presents
good results in the full considered range of slendernesses.
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Fig. 4 Straight cantilever beam: Normalized error of the beam’s σ13
resultant at cross sections, plotted along the longitudinal axis. The
applied load at the beam’s tip (x = L) is taken as reference value
fo the shear stress resultant. 8 elements along the beam’s length and
two different slendernesses are considered

4.2 Curved cantilever beam

The second example is a classical benchmark for membrane
locking (see [11]). The problem is sketched in Fig. 6 and
consists of a quarter of ring beam clamped at one end and
subjected to a radial distributed force along the exterior edge
of the opposite face, whose resultant is F . The radius of the
beam’s middle fiber is R = 10 and the width is w = 1. As
before, the Young’s modulus and Poisson’s ratio are E =
1000 and ν = 0, respectively.

A mesh consisting of a single element for the beam cross
section and 10 elements along the circumferential direction
is considered. The computed radial displacement at the beam
tip is reported in Fig. 7 as a function of the slenderness
R/t . As it can be seen, all considered solid-shell elements
significantly enhance the response of the standard quadratic
formulation and all present very similar results that are prac-
tically locking-free, except for the case of extremely slender
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Fig. 5 Straight cantilever beam: normalized vertical deflection versus
beam slenderness for different in-plane mesh distortions (8 elements
along the beam’s length)

beams (R/t = 104) for which the standard ANS formulation
produces poor results.

4.3 Shell obstacle course I: Scordelis–Lo roof

The first test of the shell obstacle course is the well-known
Scordelis–Lo roof [27]. The roof, illustrated in Fig. 8, has a
cylindrical geometry and is supported by rigid diaphragms at
both extremes. The structure radius is R = 25, its length is
L = 50, and the thickness is t = 0.25. The roof is subjected
to its self-weight, whose value is ρg = 360, where ρ is the
density and g is the gravity acceleration. The elastic moduli
are E = 4.32 · 108 and ν = 0. Due to symmetry conditions,
only one quarter of the structure is modeled. The same num-
ber of elements are considered along each in-plane direction
while only one element through the thickness is used.

The reference displacement is the vertical deflection
of point A in Fig. 8, whose “exact” value is 0.3024 (as
reported in [2]). The results for the different elements con-
sidered, varying the number of in-plane control points, are
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Fig. 6 Curved cantilever beam: problem description. One face is
clamped whereas a radial distributed load (with resultant F) is applied
along the exterior edge of the opposite face. The radial beam deflection
is measured at the interior edge of the free end of the beam. E = 1000,
ν = 0, R = 10, andw = 1. Different slendernesses R/t are considered

101 102 103 104
10−5

10−4

10−3

10−2

10−1

100

Slenderness R/t

N
or
m
al
iz
ed

di
sp

la
ce
m
en

t

p = 2 p = 3 SSANS SS ANS

Fig. 7 Curved cantilever beam: normalized radial deflection for differ-
ent slenderness values (10 elements along the beam’s length)

reported in Fig. 9. As it can be seen, the proposed solid-
shell elements (as well as the ANS formulation) present
results as good as those granted by the cubic discretiza-
tion.

4.4 Shell obstacle course II: pinched hemispherical
shell

The second test of the shell obstacle course consists in a
hemispherical structure pinched by two couples of opposite

A

40◦

R

L/2
SymmetrySymmetry

Rigid
diaphragm

Fig. 8 Scordelis–Lo roof problem [2]: Problem description. The cylin-
drical roof, supported by rigid diaphragms at both extrema is under the
action of its self-weight ρg. The displacement at mid-span point A is
measured. Due to symmetry conditions, only one quarter of the geom-
etry is considered, setting the proper symmetry boundary conditions.
E = 4.32 × 108, ν = 0, R = 25, L = 50, t = 0.25, and ρg = 360
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Fig. 9 Scordelis–Lo roof problem: vertical deflection at point A versus
number of in-plane control points per side

concentrated forces on diametrically opposed points of the
equator section. Due to the problem symmetry only one quar-
ter of the structure is modeled, setting suitable symmetry
boundary conditions, as illustrated in Fig. 10. Moreover, the
top point of the hemisphere is fixed, while the equator sec-
tion of the hemisphere can move freely. The structure has a
thickness t = 0.04 and the middle surface of the hemisphere
has a radius R = 10. The applied forces have magnitude
F = 1 and the material properties are E = 6.825 × 107

and ν = 0.3. In Fig. 11 we plot the numerically computed
radial deflection at point A (see Fig. 10) versus the number
of control points along each in-plane direction and compare
those results with the reference solution 0.0924 reported in
[2]. A similar behavior to that observed in the Scordelis–Lo
roof case is obtained.
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Fig. 10 Pinched hemispherical shell [2]: Problem description. The
hemispherical structure, fixed at the top point, is subjected to the action
of diametrically opposed forces (applied at points A and B in the
picture). The equator (bottom) section can move freely. The radial
deflection at point A is measured. Due to symmetry conditions, only
one quarter of the geometry is considered, setting the proper symmetry
boundary conditions. E = 6.825 × 107, ν = 0.3, R = 10, t = 0.04
and F = 1
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Fig. 11 Pinched hemispherical shell [2]: Radial deflection at point A
versus the number of control points along each in-plane direction

4.5 Shell obstacle course III: pinched cylinder

The last test case of the shell obstacle course, is the so-called
pinched cylinder. The problem consists of a cylinder with
rigid end diaphragms subjected to a pair of concentrated
forces; due to the problem symmetry only one eight of the
problem is studied, setting the proper symmetry boundary
conditions, as shown in Fig. 12. The cylinder middle surface
has radius R = 300, while its length is L = 600 and its
thickness t = 3. The two opposite concentrated forces have
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Fig. 12 Pinched cylinder [2]: problem description. The cylindrical
structure is supported by two rigid diaphragms at both ends while a
pair of diametrically opposed concentrated forces are applied at the
center of the cylinder. The radial deflection of the point where loads
are applied is measured. Due to symmetry conditions, only one eighth
of the geometry is considered, setting the proper symmetry boundary
conditions. E = 3 × 106, ν = 0.3, R = 300, L = 600, t = 3, and
F = 1
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Fig. 13 Pinched cylinder: radial deflection versus the number control
points along each in-plane direction

value F = 1, and the material properties are E = 3 × 106

and ν = 0.3.
The numerically computed radial deflections (measured at

the pointwhere loads are applied) are plotted in Fig. 13 versus
the number of control points along each in-plane direction
and compared with the reference solution 1.8248 × 10−5

123



1630 Computational Mechanics (2020) 65:1621–1631

reported in [2]. As in the previous test cases, all quadratic
solid-shell elements present similar behaviors, representing
a very significant improvement over the standard quadratic
element. In this case, we have to note however that the stan-
dard cubic element shows a slightly superior performance.

5 Conclusions

In this paper, we have presented a new approach to allevi-
ate shear and membrane locking effects in solid shells. The
approach is based on local projections of strains onto coarser
polynomial spaces. We have explored two different formu-
lations based on this method. The first one is inspired by the
ANSmethod and uses different projection spaces for the dif-
ferent strain components, while in the second formulation,
the same projection is used for all strain components. Both
formulations have shown very good performance in terms of
predicted displacements in all numerical tests with the same
level of accuracy as the ANS formulation presented in [7].
The computed stress resultants also present small errors and
oscillations.

The advantages of the proposed formulations are their
simplicity and numerical efficiency, requiring much fewer
function evaluations at the element level than the ANS
method. Comparing the two presented formulations, the sec-
ond one is even simpler and more efficient than the first one.
This formulation requires only a standard Cartesian-based
element formulation and can be integrated into existing solid
implementations very easily. In this paper, we restricted to
linear elastic problems. The extension to nonlinear mechan-
ics is planned as future work, as well as the treatment of the
curvature-thickness locking phenomenon, that may appear
in certain configurations for very thin structures.
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A Local L2 projection operators

In this Appendix we provide closed-form expressions for the
projection operatorsP(i, j) introduced in Sect. 3.1, for degrees
p = 1 and p = 2. For both degrees, p + 1 Gauss–Legendre
quadrature points along each direction are considered, being
the points ordered is a lexicographical manner: i.e., the first
parametric direction runs faster than the second, and the sec-
ond faster than the third one.

The projection operator matrices present the following
block-diagonal structure:

P
(i, j) =

⎡
⎢⎢⎢⎣

S
(i, j) 0 . . . 0
0 S

(i, j) . . . 0
...

...
. . .

...

0 0 . . . S(i, j)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
(p+1) submatrices

, (26)

where the submatrices S
(i, j) ∈ R

(p+1)2×(p+1)2 for degree
p = 1 are:

S
(1,1) = 1

2

⎡
⎢⎢⎣
1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

⎤
⎥⎥⎦ , (27a)

S
(2,2) = 1

2

⎡
⎢⎢⎣
1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎤
⎥⎥⎦ , (27b)

S
(1,2) = 1

4

⎡
⎢⎢⎣
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤
⎥⎥⎦ , (27c)

and for degree p = 2:

S
(1,1) = 1

18

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

14 8 −4 0 0 0 0 0 0
5 8 5 0 0 0 0 0 0

−4 8 14 0 0 0 0 0 0
0 0 0 14 8 −4 0 0 0
0 0 0 5 8 5 0 0 0
0 0 0 −4 8 14 0 0 0
0 0 0 0 0 0 14 8 −4
0 0 0 0 0 0 5 8 5
0 0 0 0 0 0 −4 8 14

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(28a)

S
(2,2) = 1

18

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

14 0 0 8 0 0 −4 0 0
0 14 0 0 8 0 0 −4 0
0 0 14 0 0 8 0 0 −4
5 0 0 8 0 0 5 0 0
0 5 0 0 8 0 0 5 0
0 0 5 0 0 8 0 0 5

−4 0 0 8 0 0 14 0 0
0 −4 0 0 8 0 0 14 0
0 0 −4 0 0 8 0 0 14

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(28b)

S
(1,2) = 1

324

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

196 112 −56 112 64 −32 −56 −32 16
70 112 70 40 64 40 −20 −32 −20

−56 112 196 −32 64 112 16 −32 −56
70 40 −20 112 64 −32 70 40 −20
25 40 25 40 64 40 25 40 25

−20 40 70 −32 64 112 −20 40 70
−56 −32 16 112 64 −32 196 112 −56
−20 −32 −20 40 64 40 70 112 70
16 −32 −56 −32 64 112 −56 112 196

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(28c)
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