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Abstract

We address the computational challenges of and presents results from ventricle-valve-aorta flow analysis. Including the left
ventricle (LV) in the model makes the flow into the valve, and consequently the flow into the aorta, anatomically more realistic.
The challenges include accurate representation of the boundary layers near moving solid surfaces even when the valve leaflets
come into contact, computation with high geometric complexity, anatomically realistic representation of the LV motion, and
flow stability at the inflow boundary, which has a traction condition. The challenges are mainly addressed with a Space-Time
(ST) method that integrates three special ST methods around the core, ST Variational Multiscale (ST-VMS) method. The
three special methods are the ST Slip Interface (ST-SI) and ST Topology Change (ST-TC) methods and ST Isogeometric
Analysis (ST-IGA). The ST-discretization feature of the integrated method, ST-SI-TC-IGA, provides higher-order accuracy
compared to standard discretization methods. The VMS feature addresses the computational challenges associated with the
multiscale nature of the unsteady flow in the LV, valve and aorta. The moving-mesh feature of the ST framework enables
high-resolution computation near the leaflets. The ST-TC enables moving-mesh computation even with the TC created by the
contact between the leaflets, dealing with the contact while maintaining high-resolution representation near the leaflets. The
ST-IGA provides smoother representation of the LV, valve and aorta surfaces and increased accuracy in the flow solution. The
ST-SI connects the separately generated LV, valve and aorta NURBS meshes, enabling easier mesh generation, connects the
mesh zones containing the leaflets, enabling a more effective mesh moving, helps the ST-TC deal with leaflet—leaflet contact
location change and contact sliding, and helps the ST-TC and ST-IGA keep the element density in the narrow spaces near
the contact areas at a reasonable level. The ST-SI-TC-IGA is supplemented with two other special methods in this article. A
structural mechanics computation method generates the LV motion from the CT scans of the LV and anatomically realistic
values for the LV volume ratio. The Constrained-Flow-Profile (CFP) Traction provides flow stability at the inflow boundary.
Test computation with the CFP Traction shows its effectiveness as an inflow stabilization method, and computation with the
LV-valve-aorta model shows the effectiveness of the ST-SI-TC-IGA and the two supplemental methods.

Keywords Ventricle - Heart valve - Aorta - Medical image - Space-Time method - Isogeometric discretization - Inflow
stabilization - T-spline discretization
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(iv) flow stability at the inflow boundary, where we have a
traction condition.

The challenges are mainly addressed with the space—time
(ST) computational method “ST-SI-TC-IGA” [1,2]. The ST-
SI-TC-IGA integrates three special ST methods around the
core, ST Variational Multiscale (ST-VMS) method [3-5],
which subsumes its precursor “ST-SUPS” (see Sect. 2). The
three special methods are the ST Slip Interface (ST-SI) [6,7]
and ST Topology Change (ST-TC) [8,9] methods and the ST
Isogeometric Analysis (ST-IGA) [3,10,11].

The ST-discretization feature of the ST-SI-TC-IGA pro-
vides higher-order accuracy compared to standard discretiza-
tion methods. The VMS feature addresses the computational
challenges associated with the multiscale nature of the
unsteady flow in the LV, valve and aorta. The moving-
mesh feature of the ST framework enables high-resolution
computation near the leaflets. The ST-TC enables moving-
mesh computation even with the TC created by the contact
between the leaflets, dealing with the contact while main-
taining high-resolution representation near the leaflets. The
ST-IGA provides smoother representation of the LV, valve
and aorta surfaces and increased accuracy in the flow solu-
tion. The ST-SI connects the separately generated LV, valve
and aorta NURBS meshes, enabling easier mesh genera-
tion, and connects the mesh zones containing the leaflets,
enabling a more effective mesh moving. It also helps the
ST-TC deal with leaflet—leaflet contact location change and
contact sliding and helps the ST-TC and ST-IGA keep the
element density in the narrow spaces near the contact areas
at a reasonable level.

The ST-SI-TC-IGA is supplemented with two other spe-
cial methods. a) A structural mechanics computation method
generates the LV motion from the CT scans of the LV and
anatomically realistic values for the LV volume ratio. In this
method, the structural mechanics computations, performed
in different ways for the diastole and systole, generate a
“table” of LV volumes and shapes. From that and the vol-
ume ratio given, we obtain the cardiac-cycle representation
of the LV motion by using cubic B-splines in time and the
ST-C [12]. b) The Constrained-Flow-Profile (CFP) Traction
provides flow stability at the inflow boundary. This is done
by placing adjacent to the inflow boundary a special-purpose
element consisting of 27 basis functions. An SI connects the
flow solutions over that element and the rest of the mesh. The
special-purpose element, with only one unspecified control-
point velocity at the inflow, results in a constrained flow
profile, which is quadratic. The solution obtained for the
unspecified velocity, together with the quadratic profile, rep-
resents the flow rate generated by the traction conditions
specified at the inflow and outflow boundaries.

We first present a 2D-channel-flow test computation with
the CFP to show how it performs compared to the analytical
solution. We then present a computation with an LV-valve-
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aorta model created based on the CT scans of the LV and
aorta.

In Sect. 2, we provide an overview of the ST-VMS and
ST-SUPS. The overviews of the ST-SI, ST-TC, ST-SI-TC,
ST-IGA and ST-SI-TC-IGA are provided in Sects. 3—7. The
CFP Traction is presented Sect. 8, and the 2D-channel-flow
test computation with it in Sect. 9. The LV-aorta-valve flow
analysis is presented in Sect. 10, with the special structural
mechanics computation method that generates the LV motion
described in the first subsection. The concluding remarks are
given in Sect. 11. The mesh moving method used in the LV-
aorta-valve flow computation is described in “Appendix A”.

2 ST-VMS and ST-SUPS

This section, included for completeness, is mostly from [13].
The Deforming-Spatial-Domain/Stabilized ST (DSD/SST)
method [14-16] was introduced for computation of flows
with moving boundaries and interfaces (MBI), including
fluid—structure interaction (FSI). In MBI computations the
DSD/SST functions as a moving-mesh method. Moving the
fluid mechanics mesh to follow an interface enables mesh-
resolution control near the interface and, consequently, high-
resolution boundary-layer representation near fluid—solid
interfaces. Because the stabilization components of the orig-
inal DSD/SST are the Streamline-Upwind/Petrov-Galerkin
(SUPG) [17] and Pressure-Stabilizing/Petrov-Galerkin
(PSPG) [14] stabilizations, it is now called “ST-SUPS”. The
ST-VMS is the VMS version of the DSD/SST. The VMS
components of the ST-VMS are from the residual-based
VMS (RBVMS) method [18-21]. The ST-VMS has two more
stabilization terms beyond those in the ST-SUPS, and the
additional terms give the method better turbulence modeling
features. The ST-SUPS and ST-VMS, because of the higher-
order accuracy of the ST framework (see [3,4]), are desirable
also in computations without MBI

As amoving-mesh method, the DSD/SST is an alternative
to the Arbitrary Lagrangian—Eulerian (ALE) method, which
is older (see, for example, [22]) and more commonly used.
The ALE-VMS method [23-29] is the VMS version of the
ALE. It succeeded the ST-SUPS and ALE-SUPS [30] and
preceded the ST-VMS. To increase their scope and accuracy,
the ALE-VMS and RBVMS are often supplemented with
special methods, such as those for weakly-enforced Dirich-
letboundary conditions [31-33], “sliding interfaces™ [34,35],
and backflow stabilization [36]. The ALE-SUPS, RBVMS
and ALE-VMS have been applied to many classes of FSI,
MBI and fluid mechanics problems. The classes of problems
include ram-air parachute FSI [30], wind-turbine aerody-
namics and FSI [37-47], more specifically, vertical-axis
wind turbines [46—49], floating wind turbines [50], wind tur-
bines in atmospheric boundary layers [45-47,51], and fatigue
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damage in wind-turbine blades [52], patient-specific cardio-
vascular fluid mechanics and FSI [23,53-58], biomedical-
device FSI [59-64], ship hydrodynamics with free-surface
flow and fluid—object interaction [65,66], hydrodynamics
and FSI of a hydraulic arresting gear [67,68], hydrody-
namics of tidal-stream turbines with free-surface flow [69],
passive-morphing FSI in turbomachinery [70], bioinspired
FSI for marine propulsion [71,72], bridge aerodynamics
and fluid-object interaction [73-75], and mixed ALE-
VMS/Immersogeometric computations [62—64,76,77] in the
framework of the Fluid—Solid Interface-Tracking/Interface-
Capturing Technique [78]. Recent advances in stabilized and
multiscale methods may be found for stratified incompress-
ible flows in [79], for divergence-conforming discretizations
of incompressible flows in [80], and for compressible flows
with emphasis on gas-turbine modeling in [81].

The ST-SUPS and ST-VMS have also been applied to
many classes of FSI, MBI and fluid mechanics problems (see
[82] for a comprehensive summary). The classes of problems
include spacecraft parachute analysis for the landing-stage
parachutes [26,83—-86], cover-separation parachutes [87] and
the drogue parachutes [88-90], wind-turbine aerodynamics
for horizontal-axis wind-turbine rotors [26,37,91,92], full
horizontal-axis wind-turbines [43,93-95] and vertical-axis
wind-turbines [6,46,47], flapping-wing aerodynamics for an
actual locust [10,26,96,97], bioinspired MAV's [94,95,98,99]
and wing-clapping [8,100], blood flow analysis of cerebral
aneurysms [94,101], stent-blocked aneurysms [101-103],
aortas [104—108], heart valves [1,8,9,95,106,108-111] and
coronary arteries in motion [112], spacecraft aerodynam-
ics [87,113], thermo-fluid analysis of ground vehicles and
their tires [5,109], thermo-fluid analysis of disk brakes [7],
flow-driven string dynamics in turbomachinery [114-116],
flow analysis of turbocharger turbines [11,117-120], flow
around tires with road contact and deformation [2,13,109,
121,122], fluid films [13,123], ram-air parachutes [124],
and compressible-flow spacecraft parachute aerodynamics
[125,126].

The ST-SUPS, ALE-SUPS, RBVMS, ALE-VMS and ST-
VMS all have some embedded stabilization parameters that
play a significant role (see [26]). These parameters involve
a measure of the local length scale (also known as “element
length”) and other parameters such as the element Reynolds
and Courant numbers. There are many ways of defining the
stabilization parameters. Some of the newer options for the
stabilization parameters used with the SUPS and VMS can be
foundin [2,5,6,10,92,93,127-130]. Some of the earlier stabi-
lization parameters used with the SUPS and VMS were also
used in computations with other SUPG-like methods, such as
the computations reported in [70,131-142]. We will specity
which ones we use here when we describe the computations
in Sects. 9 and 10.

For more on the ST-VMS and ST-SUPS, see [26]. In the
flow analyses presented here, the ST discretization provides
higher-order accuracy compared to standard discretization
methods. The VMS and SUPS features of the ST-VMS and
ST-SUPS address the computational challenges associated
with the multiscale nature of the unsteady flow in the LV,
valve and aorta. The moving-mesh feature of the ST frame-
work enables high-resolution computation near the leaflets.

3 ST-SI

This section, included for completeness, is mostly from
[13]. The ST-SI was introduced in [6], in the context
of incompressible-flow equations, to retain the desirable
moving-mesh features of the ST-VMS and ST-SUPS in
computations involving spinning solid surfaces, such as a
turbine rotor. The mesh covering the spinning surface spins
with it, retaining the high-resolution representation of the
boundary layers, while the mesh on the other side of the
SI remains unaffected. This is accomplished by adding to
the ST-VMS formulation interface terms similar to those
in the version of the ALE-VMS for computations with
sliding interfaces [34,35]. The interface terms account for
the compatibility conditions for the velocity and stress at
the SI, accurately connecting the two sides of the solu-
tion. An ST-SI version where the SI is between fluid and
solid domains was also presented in [6]. The SI in that
case is a “fluid—solid SI” rather than a standard “fluid—fluid
SI”” and enables weak enforcement of the Dirichlet bound-
ary conditions for the fluid. The ST-SI introduced in [7]
for the coupled incompressible-flow and thermal-transport
equations retains the high-resolution representation of the
thermo-fluid boundary layers near spinning solid surfaces.
These ST-SI methods have been applied to aerodynamic anal-
ysis of vertical-axis wind turbines [6,46,47], thermo-fluid
analysis of disk brakes [7], flow-driven string dynamics in
turbomachinery [114-116], flow analysis of turbocharger
turbines [11,117-120], flow around tires with road contact
and deformation [2,13,109,121,122], fluid films [13,123],
aerodynamic analysis of ram-air parachutes [124], and flow
analysis of heart valves [1,106,108,110,111].

In the ST-SI version presented in [6] the SI is between
a thin porous structure and the fluid on its two sides. This
enables dealing with the porosity in a fashion consistent with
how the standard fluid—fluid SIs are dealt with and how the
Dirichlet conditions are enforced weakly with fluid—solid STs.
This version also enables handling thin structures that have
T-junctions. This method has been applied to incompressible-
flow aerodynamic analysis of ram-air parachutes with fabric
porosity [124]. The compressible-flow ST-SI methods were
introduced in [125], including the version where the SI is
between a thin porous structure and the fluid on its two sides.
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Compressible-flow porosity models were also introduced in
[125]. These, together with the compressible-flow ST SUPG
method [143], extended the ST computational analysis range
to compressible-flow aerodynamics of parachutes with fab-
ric and geometric porosities. That enabled ST computational
flow analysis of the Orion spacecraft drogue parachute in the
compressible-flow regime [125,126].

For more on the ST-SI, see [6,7]. In the CFP Traction, the
ST-SI connects the special-purpose element placed adjacent
to the inflow boundary to the rest of the mesh, and we will
describe the CFP Traction in Sect. 8. In the LV-aorta-valve
flow analysis, the ST-SI connects the separately generated LV,
valve and aorta NURBS meshes, enabling easier mesh gener-
ation, connects the three mesh zones of the valve, enabling a
more effective mesh moving, and connects the two separately
generated parts of the LV mesh, again enabling easier mesh
generation. By integrating it with the ST-TC, we deal with
leaflet—leaflet contact location change and contact sliding,
and we will describe the ST-SI-TC in Sect. 5. By integrating
it with the ST-TC and ST-IGA, we keep the element density
in the narrow spaces near the contact areas at a reasonable
level, and we will describe the ST-IGA and ST-SI-TC-IGA
in Sects. 6 and 7.

4 ST-TC

This section, included for completeness, is mostly from [13].
The ST-TC [8,9] was introduced for moving-mesh computa-
tion of flow problems with TC, such as contact between solid
surfaces. Even before the ST-TC, the ST-SUPS and ST-VMS,
when used with robust mesh update methods, have proven
effective in flow computations where the solid surfaces are
in near contact or create other near TC, if the nearness is suf-
ficiently near for the purpose of solving the problem. Many
classes of problems can be solved that way with sufficient
accuracy. For examples of such computations, see the ref-
erences mentioned in [8]. The ST-TC made moving-mesh
computations possible even when there is an actual contact
between solid surfaces or other TC. By collapsing elements
as needed, without changing the connectivity of the “parent”
mesh, the ST-TC can handle an actual TC while maintain-
ing high-resolution boundary layer representation near solid
surfaces. This enabled successful moving-mesh computation
of heart valve flows [1,8,9,95,106,108-111], wing clapping
[8,100], flow around a rotating tire with road contact and
prescribed deformation [2,13,109,121,122], and fluid films
[13,123].

For more on the ST-TC, see [8,9]. In the LV-aorta-valve
flow analysis, the ST-TC enables moving-mesh computation
even with the TC created by the contact between the leaflets,
dealing with the contact while maintaining high-resolution
representation near the leaflets.
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5 ST-SI-TC

This section, included for completeness, is mostly from [13].
The ST-SI-TC is the integration of the ST-SI and ST-TC. A
fluid—fluid SI requires elements on both sides of the SI. When
part of an SI needs to coincide with a solid surface, which
happens for example when the solid surfaces on two sides
of an SI come into contact or when an SI reaches a solid
surface, the elements between the coinciding SI part and the
solid surface need to collapse with the ST-TC mechanism.
The collapse switches the SI from fluid—fluid SI to fluid—
solid SI. With that, an SI can be a mixture of fluid—fluid and
fluid—solid SIs. With the ST-SI-TC, the elements collapse
and are reborn independent of the nodes representing a solid
surface. The ST-SI-TC enables high-resolution flow repre-
sentation even when parts of the SI are coinciding with a
solid surface. It also enables dealing with contact location
change and contact sliding. This was applied to heart valve
flow analysis [1,106,108,110,111], tire aerodynamics with
road contact and deformation [2,13,109,121,122], and fluid
films [13,123].

For more on the ST-SI-TC, see [1,121]. In the computa-
tional analyses presented here, the ST-SI-TC enables contact
location change and contact sliding between the leaflets.

6 ST-IGA

This section, included for completeness, is mostly from [13].
The success with IGA basis functions in space [23,34,53,144]
motivated the integration of the ST methods with isogeo-
metric discretization, which we broadly call “ST-IGA.” The
ST-IGA was introduced in [3]. Computations with the ST-
VMS and ST-IGA were first reported in [3] in a 2D context,
with IGA basis functions in space for flow past an airfoil,
and in both space and time for the advection equation. Using
higher-order basis functions in time enables deriving full ben-
efit from using higher-order basis functions in space. This
was demonstrated with the stability and accuracy analysis
given in [3] for the advection equation.

The ST-IGA with IGA basis functions in time enables
a more accurate representation of the motion of the solid
surfaces and a mesh motion consistent with that. This was
pointed out in [3,4] and demonstrated in [10,96,98]. It also
enables more efficient temporal representation of the motion
and deformation of the volume meshes, and more effi-
cient remeshing. These motivated the development of the
ST/NURBS Mesh Update Method (STNMUM) [10,96,98],
with the name coined in [93]. The STNMUM has a wide
scope that includes spinning solid surfaces. With the spin-
ning motion represented by quadratic NURBS in time, and
with sufficient number of temporal patches for a full rota-
tion, the circular paths are represented exactly. A “secondary
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mapping” [3,4,10,26] enables also specifying a constant
angular velocity for invariant speeds along the circular paths.
The ST framework and NURBS in time also enable, with
the “ST-C” method, extracting a continuous representation
from the computed data and, in large-scale computations,
efficient data compression [5,7,12,109,114-116]. The STN-
MUM and the ST-IGA with IGA basis functions in time have
been used in many 3D computations. The classes of prob-
lems solved are flapping-wing aerodynamics for an actual
locust [10,26,96,97], bioinspired MAVs [94,95,98,99] and
wing-clapping [8,100], separation aerodynamics of space-
craft [87], aerodynamics of horizontal-axis [43,93-95] and
vertical-axis [6,46,47] wind-turbines, thermo-fluid analy-
sis of ground vehicles and their tires [5,109], thermo-fluid
analysis of disk brakes [7], flow-driven string dynamics in
turbomachinery [114-116], flow analysis of turbocharger
turbines [11,117-120], and flow analysis of coronary arteries
in motion [112].

The ST-IGA with IGA basis functions in space enables
more accurate representation of the geometry and increased
accuracy in the flow solution. It accomplishes that with
fewer control points, and consequently with larger effective
element sizes. That in turn enables using larger time-step
sizes while keeping the Courant number at a desirable level
for good accuracy. It has been used in ST computational
flow analysis of turbocharger turbines [11,117-120], flow-
driven string dynamics in turbomachinery [115,116], ram-air
parachutes [124], spacecraft parachutes [126], aortas [106—
108], heart valves [1,106,108,110,111], coronary arteries
in motion [112], tires with road contact and deformation
[2,13,122], and fluid films [13,123]. Using IGA basis func-
tions in space is now a key part of some of the newest arterial
zero-stress-state (ZSS) estimation methods [108,145-150]
and related shell analysis [151].

For more on the ST-IGA, see [11,26,96,124]. In the flow
analyses presented here, the ST-IGA provides smoother rep-
resentation of the LV, valve and aorta surfaces and increased
accuracy in the flow solution.

7 ST-SI-IGA and ST-SI-TC-IGA

This section, included for completeness, is mostly from
[13]. The ST-SI-IGA is the integration of the ST-SI and
ST-IGA, and the ST-SI-TC-IGA is the integration of the
ST-SI, ST-TC and ST-IGA. The turbocharger turbine flow
[11,117-120] and flow-driven string dynamics in turboma-
chinery [115,116] were computed with the ST-SI-IGA. The
IGA basis functions were used in the spatial discretization
of the fluid mechanics equations and also in the temporal
representation of the rotor and spinning-mesh motion. That
enabled accurate representation of the turbine geometry and
rotor motion and increased accuracy in the flow solution. The

IGA basis functions were used also in the spatial discretiza-
tion of the string structural dynamics equations. That enabled
increased accuracy in the structural dynamics solution, as
well as smoothness in the string shape and fluid dynamics
forces computed on the string.

The ram-air parachute analysis [124] and spacecraft
parachute compressible-flow analysis [126] were conducted
with the ST-SI-IGA, based on the ST-SI version that weakly
enforces the Dirichlet conditions and the ST-SI version that
accounts for the porosity of a thin structure. The ST-IGA
with IGA basis functions in space enabled, with relatively
few number of unknowns, accurate representation of the
parafoil and parachute geometries and increased accuracy
in the flow solution. The volume mesh needed to be gener-
ated both inside and outside the parafoil. Mesh generation
inside was challenging near the trailing edge because of the
narrowing space. The spacecraft parachute has a very com-
plex geometry, including gores and gaps. Using IGA basis
functions addressed those challenges and still kept the ele-
ment density near the trailing edge of the parafoil and around
the spacecraft parachute at a reasonable level.

The heart valve flow analysis [1,106,108,110,111] was
conducted with the ST-SI-TC-IGA. The method, beyond
enabling a more accurate representation of the geometry and
increased accuracy in the flow solution, kept the element
density in the narrow spaces near the contact areas at a rea-
sonable level. When solid surfaces come into contact, the
elements between the surface and the SI collapse. Before the
elements collapse, the boundaries could be curved and rather
complex, and the narrow spaces might have high-aspect-ratio
elements. With NURBS elements, it was possible to deal with
such adverse conditions rather effectively.

In computational analysis of flow around tires with road
contact and deformation [2,13], the ST-SI-TC-IGA enabled
a more accurate representation of the geometry and motion
of the tire surfaces, a mesh motion consistent with that, and
increased accuracy in the flow solution. It also kept the ele-
ment density in the tire grooves and in the narrow spaces near
the contact areas at a reasonable level. In addition, we benefit
from the mesh generation flexibility provided by using Sls.

In computational analysis of fluid films [13,123], the
ST-SI-TC-IGA enabled solution with a computational cost
comparable to that of the Reynolds-equation model for the
comparable solution quality [123]. With that, narrow gaps
associated with the road roughness [13] can be accounted
for in the flow analysis around tires.

An SI provides mesh generation flexibility in a general
context by accurately connecting the two sides of the solution
computed over nonmatching meshes. This type of mesh gen-
eration flexibility is especially valuable in complex-geometry
flow computations with isogeometric discretization, remov-
ing the matching requirement between the NURBS patches
without loss of accuracy. This feature was used in the
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flow analysis of heart valves [1,106,108,110,111], tur-
bocharger turbines [11,117-120], and spacecraft parachute
compressible-flow analysis [126].

For more on the ST-SI-TC-IGA, see [1,2]. In the com-
putations presented here, the ST-SI-TC-IGA is used for the
reasons given and as described in the earlier paragraphs of
this section.

8 Constrained-Flow-Profile traction

In computational flow analysis, typically, we specify the
velocity at the inflow boundary, and the traction at the out-
flow boundary. Sometimes, however, we may want to specify
the traction at both the inflow and outflow. To discuss how
that would work, we first write the expressions for the flow
rate, influx energy at the inflow, and the outflux energy at the
outflow:

Q:—f n-udl, ()
T
1 2
Pn=— n-u Epllull +p|dr, ()
1—}11
1 2
Pout = n-u Epllull +p|drl. 3)
Foul

Here u is the velocity, n is the unit normal vector, I}, and Iy
are the inflow and outflow boundaries, p is the density, and
p is the pressure. We note that a spatially-constant pressure
value of pg can be added to or subtracted from the pressure
field without changing the energy balance.

Even though the flow rate would correspond to the pres-
sure difference between the inflow and outflow, without
specifying the full velocity profile at the inflow, the energy
coming into the domain would not be under control. With the
energy influx not being under control, for the same flow rate
we could get different flow fields. An uncontrolled energy
influx can also occur at the outflow if the flow reverses, and
an outflow stabilization method was introduced [36] to rem-
edy that. The method basically removes the incoming portion
of the energy flux.

Targeting the inflow boundary, we introduce a simple
method: Constrained-Flow-Profile (CFP) traction. Figure 1
illustrates the concept. We place adjacent to the inflow
boundary a special-purpose element consisting of 3"s¢ basis
functions, where ngqg is the number of space dimensions. An
SI connects the flow solutions over that element and the
rest of the mesh. The special-purpose element, with only
one unspecified control-point velocity at the inflow, results
in a constrained flow profile, which is quadratic. The solu-
tion obtained for the unspecified velocity, together with the
quadratic profile, represents the flow rate generated by the
traction conditions specified at the inflow and outflow bound-
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Fig. 1 A quadratic NURBS mesh illustrating the Constrained-Flow-
Profile (CFP) Traction. The left edge is the inflow boundary. The dots
are the control points and the thin lines are the element boundaries.
The pair of thicker lines represent the SI connecting the flow solutions
over a special-purpose element consisting of 9 basis functions and the
rest of the mesh. The special-purpose element, with only one unspec-
ified control-point velocity at the inflow, results in a constrained flow
profile, which is quadratic. The solution obtained for the unspecified
velocity, together with the quadratic profile, represents the flow rate
corresponding to the traction conditions specified at the inflow and out-
flow boundaries

|, =
) ] P = Pout

Fig.2 A 2D straight channel. The problem setup

aries. As shown in [123], having a single quadratic NURBS
element across a narrow channel is enough to represent the
flow, which will be a low-Reynolds-number flow, and what
we do here was inspired by that.

9 Test computation with the CFP

Using a 2D channel flow as the test case, we compare the
solution obtained with the CFP to the analytical solution and
the solution obtained with the outflow stabilization method
[36] applied to the inflow, which we will identify with the
acronym “OS.” For completeness, we provide from [36] the
outflow stabilization term, written in the ST framework:

[ wioln(ut=v)} putar. @)

Pos

Here Pos is the part of the ST-slice lateral boundary where
we apply the outflow stabilization method, v is the veloc-
ity of the lateral boundary, w is the test function, and a
superscript “A” indicates that the function is coming from

a finite-dimensional space. The function {A}_ = A%W, The
parameter S > % for stability [27].

9.1 Problem setup and analytical solution

The symbols H and L represent the channel height and
length, and pi, and poy the inflow and outflow pressures
(see Fig. 2). At low Reynolds number, the solution is known
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to be of the form

1 dp ((H\* ,
=———L (=) =x%), 5
u(x2) 2, ((2) x ©)
where 1 is the viscosity and —% <x < %, and the pressure
gradient can be expressed as
dp Pin — Pout
£ _ _fim  Poul 6
dxy L ©
From that, the flow rate is
0= H3 (Pin — Pout) ’ )
12pnL
and the energy influx
H’ Pin — Pout 3
P‘ - ~ i ’ 8
in ,0280 (—Z,U,L + pin 0O (8)
1 /0\°
=azp\ g H + pinQ, 9)

where o = %, which is the kinetic energy factor. Depending

on the flow conditions, the factor will change as a function
of the Reynolds number

Re = P2 (10)
n
The total energy in the domain is
1 2
Powd2 = | Splul|”d2+ [ pdS2 (11)
2 22 2
1 1 dp\* pi
:—,OLH5 L dap +Pm+poutLH
60 24 dxy 2
(12)
61 [0V Pin + Pout
=—-= — ) LH+ ——LH, 13
55° <H> + 7 (13)
and the average over the domain
_ 61 0\ pin+tpou
Protal = 55P (ﬁ) + % (14)

9.2 Meshes and boundary conditions

We set H = 1.3x1072m, L = 1.365x10" ' m, p =
1050 kg/m?®, 4 = 4.2x1073 Pas, p;, = 1.31 Pa, and
Pout = 0. The boundary conditions are no-slip on the channel
walls and traction conditions corresponding to pj, and poy at
the inflow and outflow. We use two kinds of meshes, a regular
mesh for the OS, and the kind shown in Fig. 1 for the CFP.

Fig. 3 Meshes for the OS (top) and CFP (bottom). The lines are the
element boundaries. Except for the part of the domain where the CFP
mesh has only one element, the two meshes have identical refinements

Table 1 Number of control

points (n¢) and elements (ne) e e
for the two quadratic NURBS oS 9472 8820
meshes CFP 9033 8401

0.00 0.0486

Fig.4 Velocity magnitude (m/s) for the OS (8 = 0.5), OS (8 = 1.0),
and CFP

Except for the part of the domain where the CFP mesh has
only one element, the two meshes have identical refinements,
with increasing mesh refinement in the normal direction as
we get closer and closer to the walls. Figure 3 shows the
meshes. The number of control points and elements for the
two meshes are given in Table 1.

9.3 Computational conditions

We start the computations with zero velocity, and suddenly
apply the traction boundary conditions corresponding to pip
and pour. We use the ST-VMS, with the stabilization param-
eters given by Eqs. (4)-(9) in [2]. The time-step size is
8.6x1073 s. The number of nonlinear iterations per time
step is 3, and the number of GMRES iterations per nonlinear
iteration is 300.

9.4 Results

Without the CFP or OS method, the solution quickly diverges.
Figure 4 shows the velocity magnitude for the OS and CFP.
We note that in both the CFP and OS computations, at the
outflow boundary we use the outflow stabilization method
[36] with B = 0.5. The maximum velocity from the analyti-
cal solution is 4.84x 102 m /s. With the CFP, we achieve, as
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(Pa)

1.0 | 1

Protal

0.8 I 1

0.6 | 1

0.0 25.0 50.0 75.0
Time (s)

—0S(8=05)—0S (3 =1.0)
—CFP

Fig.5 Time evolution of P, asitreaches its steady value. The straight
red line represents the analytical solution. (Color figure online)

1.3

1.0

—0S(3=05)—0S (8 = 1.0)
—CFP

Fig.6 Cross-sectional average pressure, evaluated at the element cen-
ters. The straight red line represents the analytical solution. (Color figure
online)

expected, a parabolic profile at the inflow boundary, which
is the form in the analytical solution.

Figure 5 shows p,.,- Figure 6 shows the cross-sectional
average pressure. In the OS computation the outflow sta-
bilization term cancels the kinetic energy influx, and that
causes the substantial discrepancy between the computed
pressure and pi,. In the CFP computation the discrepancy
is very small. The discrepancy could be because of the sud-
den transition from a mesh with a single element to a mesh
with many elements, creating a large discrepancy between
the integration accuracies on the two sides of the SI. This
can be remedied by having additional SIs and thus having a
milder transition.

@ Springer

Fig. 7 LV-valve-aorta model. LV (blue), leaflets (orange), and aorta
(green). The left picture shows the front view, and the right picture
shows the view along the valve axis. (Color figure online)

10 Ventricle-valve-aorta flow analysis

The flow computation model consists of the LV, aortic valve
with sinuses, and the aorta. We do not include the mitral
valve in the model. The boundary between the LV and the left
atrium becomes our inflow boundary. We use the CFP Trac-
tion there when the mitral valve is open, and zero-velocity
when it is closed. The aorta main outlet is treated as a reg-
ular outflow boundary with traction condition, and the three
smaller outlets are treated as prescribed-velocity outflow
boundaries.

10.1 Geometry

The entire model is shown in Fig. 7. The quadratic NURBS
meshes for the three parts are generated separately and the SIs
connect the three solution parts. The LV shrinks and expands
with a cardiac cycle of T = 0.9 s, the valve opens and closes,
and the aorta remains stationary. We describe the three parts
more in the next three subsections.

10.1.1 LV geometry and motion
We build the LV geometry and motion based on CT scans

of the LV at an instant in the cardiac cycle and anatomically
realistic values for the volume ratio defined as

V — Vi
_ . Tmm (15)
Vmax - Vmin
and ejection fraction (EF) defined as
EF = Vimax — Vmin ] (1 6)
Vmax
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0.0 0.2 0.4 0.6 0.8 1.0
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Fig.8 Volume ratio from [152], represented by cubic B-splines in time

The volume ratio is given in Fig. 8 (from [152]), EF =70 %
(from [153]), and we set Vipax = 107 mé.

By starting from the CT geometry and using a shell model,
we perform a sequence of structural mechanics computations
to obtain the cardiac-cycle LV shapes used in building the
motion. In the diastole, using the CT geometry as the ZSS
configuration, we apply a gradually-increasing spatially-
uniform pressure until the LV volume reaches Viax. In the
structural mechanics computations performed in the systole,
we start from the CT geometry with zero-pressure load. The
ZSS configurations are defined by applying to the CT geom-
etry a factor expressed as 1 ~2, where A is the uniform stretch,
with gradually-decreasing values of A. This is done by apply-
ing the factor to the metric tensor of the ZSS (see Section 2.2
in [149]). We decrease the stretch until the LV volume comes
down to Vpin.

The structural mechanics computations generate a “table”
of LV volumes and shapes. From that and the volume ratio
given in Fig. 8, we obtain the cardiac-cycle representation of
the LV motion by using cubic B-splines in time and the ST-
C [12]. The cycle periodicity is assured with the procedure
followed for the same purpose in [98,112].

The shell formulation is from [151], and the thickness is
variable, as shown in Fig. 9. Fung material model is used with
the exponent factor Dy = 8.365, and the pressure applied is
scaled as p* = me. In the computations, we fix some of
the control points, shown in Fig. 10, to obtain anatomically
realistic shapes.

Figure 11 shows the LV at its most expanded stage. Fig-
ure 12 shows how the LV volume varies with the applied
pressure. Figure 13 shows the LV at its most shrunk stage.
Figure 14 shows how the LV volume varies as the stretch
decreases. We truncate the LV structure, roughly where the
arrows in Fig. 10 indicate, to create the actual LV part used
in the fluid mechanics computation. The truncated segment
still provides us some guidance in building the valve part and
the segment of the aorta part connecting to the valve.

0.001 0.010 0.020

Fig.9 Shell thickness distribution (mm)

Fig.10 LV geometry and the
control points. The lines are the
element boundaries. Red points
remain fixed during the
structural mechanics
computations. The arrows
indicate roughly where we
truncate the LV structure to
create the actual LV part used in
the fluid mechanics computation

Fig.11 LV at its most expanded
stage
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Fig.12 LV volume variation with the applied pressure

Fig. 13 LV at its most shrunk
stage

42

40 [ /]
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Fig. 14 LV volume variation with the stretch

The starting fluid mechanics volume mesh is generated
using the method described in [117]. Then the mesh is
moved to conform to the LV shapes obtained in the struc-
tural mechanics computations. The mesh moving method is
the one described in “Appendix A”, with (Jp)y = 1 and
x = 1. The mesh moving generates a “table” of LV vol-
umes and fluid mechanics volume meshes. From that and
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Fig. 15 Valve-mesh motion with the SSDM. Template mesh (left) and
simple shape (right) prior to the transformation. The lines are the ele-
ment boundaries in the template mesh and control lines in the simple
shape

o

e o

Fig. 16 Valve-mesh motion with the SSDM. Simple shape (left) and
template mesh (right) after the transformation. The lines are the element
boundaries in the template mesh and control lines in the simple shape

the volume ratio given in Fig. 8, we obtain the cardiac-cycle
representation of the fluid mechanics mesh motion by using
cubic B-splines in time and the ST-C.

10.1.2 Valve motion

The valve-mesh motion is obtained by transformation from
the mesh motion used in the valve computation reported
in [106]. We note that the mesh motion in [106] is based
on the ST-SI-TC-IGA, which deals with the TC created
by the contact between the leaflets while maintaining high-
resolution representation near them. The transformation is
achieved with the simple-shape deformation model (SSDM)
[96], and in that context the mesh motion from [106] serves
as a template. The process, illustrated in Figs. 15 and 16,
starts with the template mesh. A simple shape, represented
by far fewer control points, is created to enclose the template
mesh. Then the simple shape transforms to have its upper
and lower surfaces match the aorta and LV geometries. From
that, the transformation of the template mesh is obtained by
projection. The transformation with the SSDM is applied
also to the motion of the valve leaflets, which are modeled
in the template mesh, generating the cardiac-cycle represen-
tation of the leaflet motion by linear functions in time. The
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Fig. 17 The three mesh parts and the special-purpose element (brown)
added for the CFP Traction. The lines are the element boundaries

projection takes places as many times as the number of flow-
computation time steps in the cardiac cycle.

10.1.3 Aorta

The aorta geometry is based on a different set of CT scans
and is represented by cubic T-splines. From that, the fluid
mechanics volume mesh is generated using the method
described in [117]. The aorta part remains rigid during the
fluid mechanics computation.

10.1.4 Mesh, boundary conditions, and blood properties

To the mesh composed of the three parts, we add, for the CFP
Traction, an SI and a special-purpose element consisting of
27 basis functions. Figure 17 shows the entire mesh. The
number of control points and elements are given in Table 2.
Figure 18 shows the SIs and boundary conditions. There
are altogether 7 SIs. Two connect the three main parts of
the mesh, one connects the special-purpose element to the
rest of the mesh, three connect the three zones of the valve
mesh, and one is for mesh generation convenience in the
LV. The boundary condition on the valve surfaces and arte-
rials walls is no-slip. The tractions specified at the inflow
and outflow boundaries correspond to pij; = 10.5 kPa and

Table 2 Number of control

points (n¢) and elements (ne) e e

for the mesh parts LV 51,920 36,707
Valve 558,318 420,000
Aorta 166,736 115,848
CFP 27 1
Total 777,001 572,556

Fig. 18 SIs (green) and boundary conditions. CFP Traction inflow
(red), traction outflow (blue), and prescribed-velocity outflow (yellow).
(Color figure online)

Pout = 0. The estimated flow rates at the prescribed-velocity
outflow boundaries come from the Murray’s law [154], a flow
rate distribution proportional to D3, where D is the aver-
age diameter of the outflow cross-section (see [107]). We set
p = 1050 kg/m3 and . = 4.2x1073 Pas. Figure 19 shows
the mesh at different instants in the cardiac cycle. Figures 20
and 21 show the mesh in the valve at the same instants.

10.2 Computational conditions

We use the ST-SUPS, with the stabilization parameters given
by Egs. (4)—(9) in [2], and the ST-SI-TC-IGA. The time-step
size is 2.81x 1073 s. The number of nonlinear iterations per
time step is 3, and the number of GMRES iterations per
nonlinear iteration is 300.
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Fig. 19 Mesh at different instants in the cardiac cycle. The
frames (from left to right and top to bottom) are for /T =
0.003, 0.250, 0.625, 0.684, 0.894, 0.981. For the significance of time,
see Fig. 8. The lines are the element boundaries. The sinuses are trans-
parent to make the valve motion visible

@ Springer

Fig. 20 Mesh in the valve at the cardiac-cycle instants of the first
three pictures in Fig. 19. The right pictures are the zoomed views.
The checkerboard pattern is for differentiating between the NURBS
elements, and the colors are for differentiating between the NURBS
patches

10.3 Results

Figure 22 shows the flow patterns. The flow patterns demon-
strate that we are able to capture the spiral flow through the
valve and in the aorta and we have a reasonable flow field
even when the leaflets come into contact. Figure 23 and 24
show the magnitude of the wall shear stress (WSS) on the
leaflet lower and upper surfaces. The WSS is, as expected,
high on the lower surface.

11 Concluding remarks
We have addressed the computational challenges encoun-

tered in LV-valve-aorta flow analysis and presented results
from the computation performed. We included the LV in the
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Fig. 21 Mesh in the valve at the cardiac-cycle instants of the last
three pictures in Fig. 19. The right pictures are the zoomed views.
The checkerboard pattern is for differentiating between the NURBS
elements, and the colors are for differentiating between the NURBS
patches

model to make the flow into the valve anatomically more
realistic, which, in turn, makes the flow into the aorta more
realistic. The challenges include (i) accurate representation
of the boundary layers near the valve leaflets as they come
into contact during the cardiac cycle, (ii) computation over a
flow domain with high geometric complexity, (iii) anatomi-
cally realistic representation of the LV motion, and (iv) flow
stability at the inflow boundary, where we have a traction
condition corresponding to the inflow pressure.

The challenges were mainly addressed with the ST-SI-
TC-IGA, which integrates the special ST methods ST-SI,
ST-TC and ST-IGA around the core method ST-VMS, which
subsumes its precursor ST-SUPS. The ST-SI-TC-IGA was
supplemented with two other special methods: a structural
mechanics computation method generating the LV motion

0.0 1.0 2.0

Fig. 22 Isosurfaces corresponding to a positive value of the second
invariant of the velocity gradient tensor, colored by the velocity mag-
nitude (m/s). The frames are for the same instants as in Fig. 19
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0.0 21.0 42.0

Fig.23 Magnitude of the WSS (Pa) on the leaflet lower (left) and upper
(right) surfaces. The frames are for the same instants as in the first three
pictures of Fig. 19

and the CFP Traction. We summarize how these methods
address the challenges.

1. The ST-discretization feature of the ST-SI-TC-IGA pro-
vides higher-order accuracy compared to standard dis-
cretization methods.

2. The VMS feature addresses the computational challenges
associated with the multiscale nature of the unsteady flow
in the LV, valve and aorta.

3. The moving-mesh feature of the ST framework enables
high-resolution computation near the leaflets.

4. The ST-TC enables moving-mesh computation even with
the TC created by the contact between the leaflets, deal-
ing with the contact while maintaining high-resolution
representation near the leaflets.

5. The ST-IGA provides smoother representation of the LV,
valve and aorta surfaces and increased accuracy in the
flow solution.

6. The ST-SI connects the separately generated LV, valve
and aorta NURBS meshes, enabling easier mesh genera-
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Fig.24 Magnitude of the WSS (Pa) on the leaflet lower (left) and upper
(right) surfaces. The frames are for the same instants as in the last three
pictures of Fig. 19

tion, and connects the mesh zones containing the leaflets,
enabling a more effective mesh moving.

. The ST-SI also helps ST-TC deal with leaflet-leaflet

contact location change and contact sliding and helps
ST-TC and ST-IGA keep the element density in the
narrow spaces near the contact areas at a reasonable
level.

. The special structural mechanics computation method

generates the LV motion from the CT scans of the LV
and anatomically realistic values for the LV volume
ratio.

. The CFP Traction provides flow stability at the inflow

boundary. This is done by placing adjacent to the inflow
boundary a special-purpose element, and an SI con-
nects the flow solutions over that element and the rest
of the mesh. The special-purpose element, with only
one unspecified control-point velocity at the inflow
that we solve for, results in a constrained flow profile
that represents the flow rate generated by the traction
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conditions specified at the inflow and outflow bound-
aries.

We first presented a low-Reynolds-number 2D-channel-
flow test computation with the CFP Traction and showed
that the results were very close to the analytical solution.
This demonstrated the effectiveness of the CFP Traction as
an inflow stabilization method. We then presented a com-
putation with an LV-valve-aorta model created based on
the CT scans of the LV and aorta. We were successful
in capturing the spiral flow through the valve and in the
aorta and we had a reasonable flow field even when the
leaflets came into contact. This demonstrated the effective-
ness of the ST-SI-TC-IGA and the two supplemental methods
in a highly challenging computational cardiovascular flow
analysis.
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A Mesh moving method and
Mesh-Jacobian-based stiffening

In the mesh moving method introduced in 1992 [155-157],
the motion of the internal nodes is determined by solving the
equations of linear elasticity. As the boundary condition, the
normal velocity of the mesh at the boundaries and interfaces
is specified to match the velocity of the fluid. With the nota-
tion of [26], the mesh moving formulation can be written as

/ ew" o —yhde =o. (17)

2;

Here ¢ is the strain tensor, o is the stress tensor, §’h is the
displacement from the reference configuration X to the cur-
rent configuration x” = X" 4 §" and y? is the displacement

from X" to the 7 configuration xlf’ =X"+ §'tf’ we compute
the mesh motion from. The most common selection is f = #,
when we are computing the mesh at #,,1 1.

In [155-157] the mesh deformation is dealt with selec-
tively based on the sizes of the elements. Selective treatment
based on element sizes is attained by altering the way we
account for the Jacobian of the transformation from the ele-
ment domain to the physical domain:

ax”
Jm = det S_EI , (18)

where £ is the parametric coordinate, and the subscript “M”
is to clarify that this is the mesh Jacobian. The objective is
to stiffen the smaller elements, which are typically placed
near solid surfaces, more than the larger ones. When this
method was first introduced in [155-157], it consisted of
simply dropping Jy from Eq. (17). Thatis equivalent to mod-
ifying Eq. (17) as

J.

where (Jym)( was originally intended to be a global scaling
value and is now seen as a free parameter. The modification
results in the smaller elements being stiffened more than the
larger ones, and the element stiffening factor is %. The
method was given the name “Jacobian-based stiffening” in
[158]. It was also augmented in [158] to a more extensive
kind by introducing a stiffening power x that determines the
degree by which the smaller elements are rendered stiffer
than the larger ones:

J.

This approach, when x = 1, would be identical to the method
first introduced in [155], and most of the time ¥ = 1.

T —1
M) dQ =0, (19)

hy . g oh _ oh
ewW 0§ yt)<(JM)0

i

—X
s(wh):a(yh—y?)< u ) de = 0. (20)

(Im)o

7

Remark 1 To also clarify that the “Jacobian” in the name of
the method is the mesh Jacobian, we are renaming the method
“Mesh-Jacobian-based stiffening” (MJBS).

From earlier tests with different 7 settings, we know that
setting 7 = t,, gives reasonably good performance for most
problems. We believe that is partly because when we compute
the mesh motion from a configuration close to the current
configuration, Jy provides the method feedback on which
elements to protect.

Remark 2 While computing from the f = ¢, configuration
works well for most problems, there are two closely related
drawbacks: (i) the method is path-dependent, (ii) once ele-
ments accumulate in some region, it is hard to undo that. The
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path-dependence leads to non-cyclic results in FSI computa-
tions that we expect to have cyclic or near-cyclic results.
Using the large-deformation elasticity equations (see, for
example, [85]) is one way of addressing this issue. For FSI
problems with cyclic or near-cyclic solutions, as an alterna-
tive, we introduce here the “Back-cycle-based mesh moving”
(BCBMM) method. With T being the cycle period, in the
kth cycle, as we move from 7, to #,11, we compute the mesh
motion from the configuration at f = t,, — (k — krporw — DT
orf = t,41 — (k—krorw — 1)T, where k > 2. We start with
krorw = 0. With that, in any cycle, we compute the mesh
motion based on the first cycle. In later cycles, as needed, we
can set kporw to higher values to compute the mesh motion
based on the recent past cycles. That would be a good way if
there are significant differences between the FSI solutions at
different cycles before the solution becomes cyclic or near-
cyclic.

We note that in practical computations the element stiff-
ening method proposed in [159] is approximately equivalent

to the MJBS method with x = 1. To show that, we first

: (m)
approximate WO as

(Jw) Vo
JMO ~ 1)

where V is the element volume and V) is a global scaling
value. The approximation becomes exact for simplex ele-
ments. In [159], the stiffening factor, represented by “1+1,”,
is given as

1 — Vmin
L4 tm =14+ —m, (22)

Vimax

where Vinin and Viax are the minimum and maximum ele-
ment volumes. This can also be written as

Vmax - Vmin

l+tm=1+ v

(23)

In practical computations, Viax >> Vpmin, and for most of
the elements that matter,

Vimax = Vinin > 1. (24)
\%
Therefore
Vinax — Vi
1 + Tm ~ max mm‘ (25)

1%

Because Vinax — Vinin 1S a global scaling value just like (Jym)g
is, the stiffening factor given by Eq. (25) is equivalent to the
one given by Eq. (21).

@ Springer

Remark 3 We note that a stiffening-factor expression in terms
of the mesh Jacobian gives us the option of evaluating the
factor at the integration points, without the need for any pre-
calculation. We also note that such an expression is naturally
applicable to isogeometric discretization.
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