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Abstract
The phase-field method is a very effective way to simulate arbitrary crack nucleation, propagation, bifurcation, and the
formation of complex crack networks. The diffusion-based method is suitable for multi-field coupling fracture problems. In
this paper, a parallel algorithm of the thermo-elastic coupled phase-field model is implemented in commercial finite element
code Abaqus/Explicit. The algorithm is applied to simulate the dynamic and quasi-static brittle fracture of thermo-elastic
materials. Further, it is adopted on a structured mesh combined with first-order explicit integrators. Several examples of the
quasi-static and dynamic cases of single crack, as well as multi-crack initiation and propagation under thermal shock, are
given to demonstrate the robustness of the algorithm. The source code and tutorials provide an effective way to simulate crack
nucleation and propagation in multi-field coupling problems.

Keywords Phase-field model · Explicit time integration · Abaqus VUEL · Multi-field coupling · Thermal shock

1 Introduction

In practical engineering, there are a lot of fracture pro-
cesses of materials under thermal shock loads, such as
hot ceramic sheets in cold water [1], the thermal shock of
an α-alumina porous capillary [2], and instantaneous ther-
mal start-up of engine blades [3]. Usually, thermal shock
occurs on a short time scale, accompanied by instantaneous
temperature changes, and results in non-uniform volume
change and stress distribution of brittle materials. Fracture
of materials and a large number of cracks may be a severe
consequence of thermal shock stress. The dynamic ther-
mal shock fracture mechanism is very complicated due to
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the inertia effect and complex thermo-mechanical coupling
[4].

Because of the complexity of the multi-field coupled frac-
ture process in thermal shock, the numerical methods play
an important role in fracture analysis. The boundary ele-
ment method (BEM) [5], non-local damage models [6], and
damage mechanics-based models [7] are used to reproduce
multiple cracking modes in quenching tests. Besides, the
thermal stress evolution and dynamic crack growth under
thermal shock loading are studied by using the extended
finite element method (XFEM) [8,9]. However, these numer-
ical models still have limitations in simulating compound
dynamic crack growth.

The phase-field method, as a widely concerned method in
recent years, can simulate arbitrary propagation, branching,
and convergence of cracks based on the fundamental the-
ory of Griffith’s elastic fracture mechanics [10–13]. Unlike
other numerical methods such as XFEM [14,15], no addi-
tional discontinuity is required in the phase-field method.
Instead, the distribution of cracks is approximated by a
phase-field variable which smoothes the crack boundary
in a small area [16–18]. The main advantage of using the
phase-field variable is that the evolution of the fracture
surface follows the solution of coupled partial differen-
tial equations (PDEs). Thus, no additional tracking of the
crack surface is required [19–22]. This description method
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of the crack surface is in sharp contrast to the complexity
of many discrete fracture models and is especially bene-
ficial to the three-dimensional complex fracture networks
[23].

In the past ten years, the phase-field method has gained
remarkable attention and research interest because of its flex-
ible implementation [24–26]. A great deal of code has been
developed for personal research. Unfortunately, most of the
current articles do not give the source code of phase-field
method implementation. Molnár and Gravouil [27] gave the
code of two-dimensional (2D) and three-dimensional (3D)
phase-field model based on implicit commercial software
package Abaqus/Standard, which is a very excellent work
and has a good effect on the application of the phase-field
method in engineering practice. They also provide detailed
and practical tutorials on their personal websites [28]. How-
ever, the source code of an explicit dynamic phase-field
model based on mature commercial software is not yet avail-
able.

In this paper, a fully functional realization of the multi-
field coupled phase-field model in Abaqus/Explicit is pre-
sented to study the dynamic evolution of multi-field coupled
brittle fracture problems in thermoelastic solids. The work
of this paper is inspired byMolnar and Gravouil’s work [27].
Also, as supplementary material, we provide the source code
of Abaqus/VUEL and the other user subroutines, as well as
several examples. The aim is to make the multi-field coupled
diffusion crack propagation scheme applicable not only to
numerical research but also to practical application.

In addition, the code provided here can be easily further
developed for other multi-field coupling problems, such as
mechanical-chemical coupling fracture of lithium batteries
[29], fracture of porous media [30,31], anisotropic failure of
soft biological tissues [32] and solute-assisted fracture [33],
etc. More practical, through equation analogy, new appli-
cations can be completed quickly without additional code
development. Amajor advantage of current implementations
is that they donot require additional updates and software, but
only widely available Abaqus/Explicit packages and Fortran
compilers. Its parallel framework can solve various fracture
problems more efficiently.

This paper is organized as follows: the basic princi-
ple and governing equations of the phase-field method are
reviewed for thermoelastic materials in Sect. 2. The govern-
ing equations are discretized in space and time, and how to
implement in Abaqus/Explicit is explained in Sect. 3. Five
typical dynamic and quasi-static numerical examples are pre-
sented in Sect. 4 to verify the correctness and efficiency of
the numerical implementation. The concluding remarks are
given in Sect. 5.

2 Problem statement

2.1 Variational formulation of thermo-elastic brittle
fracture

Consider the evolution of the deformation, fracture and tem-
perature fields of an isotropic thermo-elastic solid body
� ⊂ R

δ with external boundary ∂� ⊂ R
δ−1 over a time

period [0-ta], as shown in Fig. 1. Here δ ∈ [1 − 3] is the
dimension. Let ∂�t , ∂�u, ∂�J and ∂�θ be the traction, dis-
placement, heat flux and temperature boundaries, such that:
∂�t ∪ ∂�u = ∂�, ∂�t ∩ ∂�u = ∅ and ∂�J ∪ ∂�θ = ∂�,
∂�J ∩ ∂�θ = ∅. Let t̄ : ∂�t × [0, ta] → R

δ and
ū : ∂�u × [0, ta] → R

δ be prescribed traction and dis-
placement boundary conditions, and θ̄ : ∂�θ ×[0, ta] → R

1

and J̄ : ∂�J × [0, ta] → R
1 be prescribed temperature and

heat flux boundary conditions.
According to Ref. [34–36], the brittle fracture of thermoe-

lastic solids involves finding saddle points for the following
problems:

S [u, u̇, θ, �] :=
∫ ta

0
L [u, u̇, θ, �]dt (1)

among all u := �×[0, ta] → R
δ and θ := �×[0, ta] → R

1

that are bounded functions of � that satisfy:

u = ū, on ∂�u × [0, ta] (2a)

θ = θ̄ , on ∂�θ × [0, ta] (2b)

The Lagrangian L is defined as follows:

L [u, u̇, θ, �] :=
∫

�/�

{
1

2
ρ u̇ · u̇ − ψ0

(
εe (u, θ)

) + ρb · u

+ ρcθ̇ + ∇ · J − γ
}
dV

+
∫

∂�t

t̄ · ud� +
∫

∂�J

J̄ · nd� − gc |�|
(3)

where ρ is the density of body, b denotes the body force per
unit mass, c is the specific heat capacity, γ is the body heat
source per unit volume, gc is the critical energy release rate,
� is the set of discontinuities as shown in Fig. 1a and |�| is
the length of �. ψ0 (εe (u, θ)) := λ

2 (trεe)2 + μ ‖εe‖2 is the
elastic strain energy density which depends on elastic strain:

εe = ε − εθ (4)

where λ and μ are Lame constants, and ε is the total strain
defined as:

ε := 1

2

(
∇u + ∇uT

)
(5)
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Fig. 1 Deformed configuration
of the thermo-elastic brittle
fracture problem: a sharp
representation of discontinuities,
and b dispersion representation
of discontinuities
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and εθ is the thermal strain tensor, which is proportional to
the temperature difference:

εθ := αθ�θI (6)

where αθ is the thermal expansion coefficient of materials,
and I is the identity tensor.

2.2 Phase-field description of diffuse crack

In the phase-field method, a damage variable d : � → [0, 1]
is introduced to describe the failure of the material. In partic-
ular, regions with d = 0 and d = 1 correspond to unbroken
and fully broken states of thematerial. Thus the crack surface
is dispersed, as shown in Fig. 1b. Let

T u :=
{
u ∈ H1 (

�;Rδ
) × [0, ta] | u(·, t) = ū(·, t) on ∂�u

}
,

(7a)

T θ :=
{
θ ∈ H1

(
�;R1

)
× [0, ta] | θ(·, t) = θ̄ (·, t) on ∂�θ

}
,

(7b)

T d :=
{
d ∈ H1 (�; [0, 1]) × [0, ta]

}
, (7c)

then the regularized variational formulation reads: find
(u, θ, d) ∈ T u × T θ × T d that is the stationary point of
Slc [u, u̇, θ, �] := ∫ ta

0 Llc [u, u̇, θ, �]dt , with

Llc [u, u̇, θ, �] :=
∫

�

{
1

2
ρ u̇ · u̇ − ψ

(
εe (u, θ), d

) + ρb · u
+ ρcθ̇ + ∇ · J − γ

}
dV

+
∫

∂�t

t̄ · ud� +
∫

∂�J

J̄ · nd�

− gc

∫
�

(
d2

2lc
+ lc

2
‖∇d‖2

)
dV (8)

where lc is a length scale which can be understood as
characteristic crack width. When lc → 0, the regularized
formulation converges to that with sharp crack representa-
tion. ψ(εe, d) is the strain energy density degraded by the

phase-field variable such that ψ(εe, d = 0) = ψ0(ε
e) and

that ψ(εe, d1) ≥ ψ(εe, d2) if d1 ≤ d2.
The strong form of the boundary value problem can be

derived from Eq. (8):

divσ + ρb = ρ ü in � × [0, ta] (9a)

ρcθ̇ + ∇ · J = γ in � × [0, ta] (9b)

− ∂ψ

∂d
− gc

lc

(
d − l2c�d

)
= 0 in � × [0, ta] (9c)

σ · n = t̄ on ∂�t × [0, ta] (9d)

J · n = J̄ on ∂�J × [0, ta] (9e)

∂d

∂n
= 0 on ∂� × [0, ta] (9f)

where σ = σ (εe, d) := ∂ψ
∂εe

is the Cauchy stress, and n is
the unit outer normal to ∂�. Here, Eq. (9a) expresses the
momentum conservation of solid, Eq. (9b) gives the evolu-
tion process of temperature, Eq. (9c) defines the phase-field
evolution, and Eqs. (9d) to (9f) are Neumann boundary con-
ditions for u, θ and d, respectively.

The heat flux J is assumed to be proportional to the
temperature gradient, and the thermal conductivity k is also
degraded by the damage d to ensure no heat flux at the crack
surface:

J = −k · ∇θ, k = (1 − d)2k0 (10)

where k0 is the inherent thermal conductivity for undamaged
material.

2.3 Rate-dependent form of phase-field evolution

In order to adopt explicit time integral, we replace Eq. (9c)
with a time-dependent form according to Ref. [34,37]:

ḋ =
{

1
η

〈
− ∂ψ

∂d − gc
lc

(
d − l2c�d

)〉
+, d < 1

0, otherwise
(11)

where η is the viscous parameter that controls phase field
evolution and 〈a〉± := (a ± |a|) /2 for any a ∈ R.
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Table 1 Three different
expressions of strain energy
density decomposition for
phase-field models used to
simulate crack growth [34]

Model ψ+ (εe) ψ− (εe) References

A ψ0 (εe) 0 [39]

B (λ/2 + μ/3) 〈trεe〉2+ + μ‖devεe‖2 (λ/2 + μ/3) 〈trεe〉2− [38]

C (λ/2) 〈trεe〉2+ + μ
∑3

i=1

〈
εei

〉2
+ (λ/2) 〈trεe〉2− + μ

∑3
i=1

〈
εei

〉2
− [37]

The initial condition of the problem can be expressed as

u(·, 0) = u0, u̇(·, 0) = v0, θ(·, 0) = θ0, d(·, 0) = d0,

(12)

where u0, v0, θ0 and d0 are the initial displacement, velocity,
temperature and damage field, respectively.

2.4 Three different models of energy decomposition

For the phase-field simulation of brittle fracture, the different
elastic strain energy density functions can be selected, corre-
sponding to different energy decomposition and degradation
modes. Here we mainly review and discuss three common
ways. Their elastic strain energy density functions have the
following general forms:

ψ
(
εe, d

) = (1 − d)2ψ+
(
εe

) + ψ−
(
εe

)
(13)

where ψ+ (εe) and ψ− (εe) satisfy ψ+ (εe) + ψ− (εe) =
ψ0 (εe). The expressions ofψ+ (εe) andψ− (εe) for the three
models are shown in Table 1.

It should be noted that an additional small number s with
0 < s � 1 and s = o(l) is added to the coefficient of
(1 − d)2ψ+ (εe) to solve the singularity of stiffness matrix
caused by complete fracture in Ref. [37–39]. That is, the
(1−d)2 in Eq. (13) is replaced by [(1−d)2+s]. In thismodel,
we do not need to introduce such an additional parameter
because we adopt a fully explicit time integration method
and do not need to inverse the stiffness matrix.

3 Numerical implementation

In order to implement the phase-field method in Abaqus/
Explicit, we first discretize the governing equations in space
and time using the standard finite element method (FEM)
discretization scheme and explicit integral operators. Then,
the algorithm is implemented by using multiple user-defined
subroutines.

3.1 Spatial-discrete Galerkin scheme

The solution domain� is discretized by using a mesh family
{Th}, which has a featuremesh size of h.We can approximate
(u, θ, d) with the standard first-order FEM shape function:

ue (x, t) =
n∑

I=1

Ne
u I (x) ueI (t), θe (x, t) =

n∑
I=1

Ne
θ I (x) θeI (t),

de (x, t) =
n∑

I=1

Ne
d I (x) deI (t) (14)

where ue, θe and de are the displacement, temperature and
phase fields of the element e, respectively. ueI , θ

e
I and d

e
I are

the displacement, temperature and phase field values of node
I in element e, respectively. n is the number of nodes in the
element. Ne

u I , N
e
θ I and Ne

d I are the standard FEM shape
functions [40].

Then the spatial discrete equations of the coupling prob-
lem with phase-field evolution are obtained by using the
standard Galerkin approximation

Mü = Fext (b, t̄) − Fint (u, θ , d)

Cθ θ̇ = Qext (γ, J̄
) − Qint (θ, d), Cd ḋ = 〈Y (H(u), d)〉+

(15)

where u = {ue}, θ = {θe} and d = {de} are the displace-
ment, temperature and phase-field vectors that contain the
time-dependent nodal DOFs of u, θ and d in the whole solu-
tion domain. The expressions of the coefficient matrices in
Eq. (15) are listed below:

M =
Ne

A
e=1

∫
�e

ρNe
u
T Ne

udV (16a)

Fext =
Ne

A
e=1

∫
�e

ρNe
u
T bdV +

Nt
s

A
e=1

∫
∂�e

t

Ne
u
T t̄d� (16b)

Fint =
Ne

A
e=1

∫
�e

Be
u
T
σdV (16c)

Cθ =
Ne

A
e=1

∫
�e

ρcNe
θ
T dV (16d)

Qext =
Ne

A
e=1

∫
�e

Ne
θ
T
γ dV +

N J
s

A
e=1

∫
∂�e

J

Ne
θ
T J̄d� (16e)
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Qint =
Ne

A
e=1

∫
�e

Be
θ
T K Be

θ θdV =
Ne

A
e=1

∫
�e

(1 − d)2Be
θ
T K 0Be

θ θdV

(16f)

Cd =
Ne

A
e=1

∫
�e

ηNe
d
T dV (16g)

Y = −
Ne

A
e=1

∫
�e

{[
gc
lc
d − 2 (1 − d)H

]
Ne

d
T d + gclcBe

d
T∇d

}
dV

(16h)

where the operator
Ne

A
e=1

represents matrix assembly from ele-

ment to global in classic FEM, Ne is the total number of
the elements, Nt

s and N J
s are the number of surface ele-

ments having the surface force and surface heat flow. Ne
u,

Ne
θ and Ne

d are the vectors of the FEM shape functions:
Ne

u = Ne
θ = Ne

d = [N1, · · · , Nb] (where b = 4 for vol-
ume integral in 2D and surface integral in 3D, and b = 8
for volume integral in 3D). Be

u, B
e
θ and Be

d are the shape
functions’ spacial derivatives [40]. K = diag {k, k, k} and
K 0 = diag {k0, k0, k0} are the damaged and undamaged
body’s heat transfer coefficientmatrix, respectively.The local
gradient of the phase-field can be calculated by the following
formula:∇d = Be

dd.H is a so-called history variable which
is defined as:

H =
{

ψ+ (εe) if ψ+ (εe) > Hn

Hn otherwise,
(17)

where Hn is the previously calculated history variable in
the n-th increment step. This history variable couples the
displacement and phase field. Furthermore, it enforces the
irreversibility criterion of the phase-field variable (ḋ ≥ 0).

3.2 Time-discrete scheme

To integrate over time, the time interval [0, ta] is discretized
into several small time intervals: 0 = t0 < t1 < · · · <

tN = ta . The time increment in the k-th incremental step
�tk = tk − tk−1 is defined. Because explicit time integral is
used, the velocity vector should be calculated at the middle
time of each time interval: tk+ 1

2
= 1

2 (tk + tk+1).
Since the displacement field is second-order in time, the

temperature field and phase field are first-order in time.
In order to adapt to the built-in time integration rules of
Abaqus/Explicit for different degrees of freedom, we adopt
different time integration schemes for different fields. In this
paper, the displacement field is integrated using the explicit
central-difference time integration rule, and the temperature
field and phase field are integrated using the explicit forward-
difference time integration rule with using the diagonal or
“lumped” element capacity/mass matrices. The approximate

solutions of u(tk), u̇(tk+ 1
2
), ü(tk), θ(tk), θ̇(tk), d(tk) and ḋ(tk)

are marked as uk , vk+ 1
2
, ak , θk , pk , dk and rk , respectively.

(1) Central-difference method for displacement field inte-
gration. In this paper, we use central-difference method to
calculate uk+1, vk+ 1

2
, ak+1 from uk , vk− 1

2
, ak , dk and θk

according to the following update formulas

ak = M−1(Fext (b, t̄) − Fint (uk, θk, dk)) (18a)

vk+ 1
2

= vk− 1
2

+ �tk+1 + �tk
2

ak (18b)

uk+1 = uk + �tk+1vk+ 1
2

(18c)

It should be pointed out that the central difference operator
is not self-starting since the value of velocity v− 1

2
needs to

be defined. To this end, the following two equations are used
to determine the initial conditions of velocity.

v+ 1
2

= v0 + �t1
2

a0, v− 1
2

= v0 − �t0
2

a0 (19)

(2) Forward-difference method for temperature field inte-
gration. In this paper, the forward-difference method is
adopted to calculate θk+1, pk+1 from θk , dk and pk accord-
ing to the following update formulas

pk = C−1
θ · (Qext (γ, J̄

) − Qint (θk, dk)) (20a)

θk+1 = θk + �tk+1 pk (20b)

(3) Forward-differencemethod for phase-field integration.
In this paper, the forward-difference method is adopted to
calculate dk+1, rk+1 from dk , uk and rk according to the
following update formulas

rk = C−1
d · (〈Y (uk, dk)〉+) (21a)

dk+1 = dk + �tk+1rk (21b)

Since the center and forward differential integrals are
both explicit, the displacement field, temperature field, and
phasefield canbe solved simultaneously by explicit coupling.
Therefore, it is not necessary to perform an iterative solution
or calculate a tangent stiffness matrix, and the solution pro-
cess in each incremental step is very efficient. In addition,
explicit integration is independent on each FEM node, so it is
very suitable for multi-CPU parallel computing. The parallel
performance of multi-CPU is studied in detail in “Appendix
A”.

3.3 Finite element implementation in
Abaqus/Explicit

In order to implement the solution in Abaqus/Explicit, we
duplicate a geometric model (including the mesh) as shown
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Fig. 2 Schematic diagram of
multi-field coupled phase-field
method in Abaqus/Explicit

1
Displacement field
Temperature field

2 Phase field

Actived DOFs: 1,2,3,11
Actived DOFs: 11

Stress update, 
stiffness reduction, 
thermal expansion
user subroutine: VUMAT

Transfer SDVs at integral points, 
such as strain energy, H, etc.
user subroutine: VUSDFLD

Phase field evolution
user subroutine: VUEL

Transfer SDVs at integral points, 
such as phase field d, etc.
user subroutine: VUSDFLD

Variables on nodes (d) 
are mapped to integral points 
through field variable,
user subroutine: VFIELD

in Fig. 2. The solution domain of original model is marked
as �1, and the replicated model is marked as �2. We solve
the displacement and temperature field on �1 and the phase
field on �2. Besides, �1 is also used to visualize the results.
The reason for using this replication model is that there is
not enough freedom in Abaqus/Explicit to solve two dif-
fusion equations at the same time. The actived degrees of
freedom (DOFs) are 1, 2, 3 and 11 in �1. Among them,
DOFs 1, 2 and 3 are used to calculate the displacement
field, and DOF 11 is used to calculate the evolution of tem-
perature field. In order to maximize the use of Abaqus’s
existing code, the coupling of displacement field and temper-
ature field and stiffness degradation are realized in the user
subroutine VUMAT. The actived DOF is 11 in �2 and the
evolution of the phase field is realized in the user subroutine
VUEL.

To transfer information among the three fields, we intro-
duce the user subroutines VUSDFLD and VUFIELD. The
detailed information transmission paths are shown in Fig. 2.
It mainly involves transferring the contribution of displace-
ment field to phase field evolution (H) from �1 to �2,
and transferring the phase-field variable d from �2 to
�1.

Besides, the user subroutine VEXTERNALDB is used
to synchronize variables in different regions of multi-CPU
parallelism.

The above process and method are implemented in
Abaqus/Explicit by writing Fortran 90 subroutines. The
detailed tutorial of one element example is given in “Appendix
B”. The source code and input files for the implementation
of the above algorithm are provided in “Appendix C”.

4 Benchmark tests and numerical examples

4.1 One element tests

In this section, we use two typical one-element tests to verify
the correctness of the code and study the influence of numer-
ical parameters. The input file and source code are given for
the convenience of readers to grasp and use.

4.1.1 Uniaxial tensile test

In this section, an example of uniaxial tension with a three-
dimensional solid element is carried out to understand the
phase-field model. The geometry parameters and boundary
conditions of the model are shown in Fig. 3. The size of the
element (also the model) is 1.0×1.0×1.0 mm. The material
properties and viscosity parameter of the model are listed in
Table 2. The length scale parameter lc is set to 1.0 mm.

According to Ref. [27], although the size of lc here does
not satisfy the relationship between lc and the mesh size,
because we do not study the crack growth, but understand the
essence of the phase-field model through the basic equation
of phase-field evolution, so it is acceptable. The displacement
load is applied linearly and the total simulation time is 0.01
s. We will prove later that in such a long time, loading can be
regarded as a quasi-static process, which can be compared
with the analytical solution given by Molnár and Gravouil
[27].

Considering the quasi-static loading process and ignoring
the viscous effect, the problem has an analytical solution,
which can be found in Ref. [27]. In Fig. 3, the calculated
axial stress versus axial strain curves and phase-field versus
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Fig. 3 Comparison of numerical
results and analytical solutions
[27] under different viscosity
parameters for one element test
under uniaxial tensile load: a
axial stress as a function of axial
strain, and b damage phase field
as a function of axial strain
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axail strain curves under different viscous parameters (η =
1.0×10−5 kN s/mm2, η = 1.0×10−6 kN s/mm2, η = 1.0×
10−7 kN s/mm2) are given and compared with the analytical
solutions (η = 0) [27]. We can find that the numerical results
are in good agreement with the analytical solutions when the
viscous parameter η decreases gradually. In Fig. 4, the kinetic
energy and external work of the system and their ratios versus
time are given for η = 1.0 × 10−7 kN s/mm2. The results
show that the ratio of kinetic energy to externalwork is always
less than 0.001%, which indicates that this is a quasi-static
process.

The input file and source code for this example can be
found in the supplementary materials in “Appendix C”. See
“Appendix B” for details of the execution of this example.

4.1.2 Tension–compression cycle test

The evolution process of phase-field under tension and
compression cyclic loads is considered to verify the mono-
tonicity of phase-field evolution and the different responses
for compression loads of phase-field models with differ-
ent energy decomposition modes. The material parameters
and viscous parameter are listed in Table 2. The loading–
unloading–reloading curve is shown in the upper right corner
of Fig. 5a.

In Fig. 5, the curves of axial stress and axial strain and the
curves of phase-field evolutionwith loading are given respec-

Table 2 The material properties and viscosity parameter used in
Sect. 4.1.1

E (GPa) ν ρ (kg/m3) gc (kN/mm) η (kN ∗ s/mm2)

210.0 0.0 7800.0 0.01 1.0 × 10−7

tively under three phase fieldmodels. The arrows in the figure
indicate the direction of the curve (that is, the direction of
loading) and the numbers indicate the order of loading. It can
be seen that the pure tensile responses of the three models are
the same. However, their responses to compressive loads are
different.ModelA andBwill be damaged under compressive
loads, whileModel Cwill not.Model A ismore vulnerable to
damage than model B under the same compressive load. At
the same time, the compression and re-stretching process also
shows thatwhen thematerial has certain damage, not only the
stresses but also the material stiffness is degraded. The evo-
lution curve of phase-field variable d in Fig. 5b also shows
that our phase-field model based on explicit time intergra-
tion satisfies the irreversibility criterion (ḋ ≥ 0). The input
file and source code for this example can be found in the
supplementary materials in “Appendix C”.

4.2 Single edge notched test

The third example is a single edge notched sample under
tensile and shear loading. The geometry and boundary
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Fig. 4 The curves of energy and
energy ratio with time of
uniaxial tension example
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Fig. 5 A phase-field model of
one element under a cyclic load
of tension and compression: a
axial stress as a function of axial
strain (the loading curve of
displacement-time is in the
upper right corner); and b
damage phase-field variable as a
function of axial strain
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conditions are shown in Fig. 6a. Consider a specimen of
100 mm × 100 mm with a single notched crack in the mid-
dle and a length of 50 mm. The bottom of the specimen is
fixed, and the upper part is given a constant velocity v in a
certain direction (α). The material properties and viscosity
parameter are listed in Table 3. The characteristic width of
crack lc is chosen as 0.5 mm, and the mesh size is set as
h = lc/2. Besides, Model C is used for strain energy decom-
position.

The crack patterns for the two limit cases are shown in
Fig. 6b, c. While for the pure tensile loading (α = 90◦)
the crack is horizontal ( β = 0◦) for the pure shear load-
ing (α = 0◦) we see a curved crack path initiating with a
deflection angle from the horizontal direction ( β = 70.1◦).
The crack pattern is in good agreement with the works
of Ziaei-Rad and Shen [34] and Miehe et al. [42]. The
calculation results of the initial deflection angle of crack
under different loading angles are compared with those
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(a) geometry (mm) and boundary (b) crack pattern ( 90 ) (c) crack pattern ( 0 ) (d) crack angle vs loading direction
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Fig. 6 Single edge notched specimen problems: a geometry and boundary. b Crack pattern for pure tension (α = 90◦). c Crack pattern for pure
shear (α = 0◦). d Crack angle (β) vs. loading direction (α) and the comparison with the work of Molnár and Gravouil [27] and Bourdin et al. [41]

Table 3 The material properties and viscosity parameter used in
Sect. 4.2

E (GPa) ν ρ (kg/m3) gc (N/m) η (kN ∗ s/mm2)

32.0 0.2 2450.0 3.0 1.0 × 10−8

of previous calculation results, as shown in Fig. 6d. We
can see that our results are in good agreement with the
works of Molnár and Gravouil [27] and Bourdin et al.
[41].

Next, we use the example of α = 0◦ to study the viscosity
parameter η of the solution. Figure 7 shows the phase field
contour calculatedwith three different values of η at the same
time (η = 1.0×10−6 kN s/mm2, η = 1.0×10−7 kN s/mm2,
η = 1.0 × 10−8 kN s/mm2) and the other parameters of the
model are the same. The results show that the crack propaga-
tion paths are the same under different viscous parameters,
and the crack propagation speed increases with the decrease
of η.

4.3 Dynamic crack propagation

In this section, we use a classic Kalthoff experiment [43]
to show the simulation ability of the model and code for
dynamic crack propagation. The schematic diagram and geo-
metric parameters of the model are shown in Fig. 8a. Due to
symmetry, only half of the models are shown. The mate-
rial properties and viscosity parameter used here are listed in
Table 4. Themesh size h is 0.1mm (To reduce the calculation
consumption, the four-layer element is used in the thickness
direction) and the characteristic length scale lc = 2h. The
notchedpart on the side of the specimen is impacted at a speed
of 20 m/s to drive the crack growth. The results of Kalthoff
andWinkler’s experiments [43] and previous numerical sim-
ulations [36,44,45] show that under the low-velocity impact,
the crack will propagate along the direction of about 70-
degree angle.

The simulated 3D crack growth paths at different times
(t = 25µs, t = 50µs and t = 100µs) are shown in Fig. 8b–
d. The resulting crack propagation angle is 69◦, which is very

6 21 10 kN s/mm 7 21 10 kN s/mm 8 21 10 kN s/mm(a) (b) (c)

Fig. 7 The crack propagation paths of single edge notched specimen problem for α = 0◦ with different viscosity parameters: a η = 1 ×
10−6 kN s/mm2, b η = 1 × 10−7 kN s/mm2, and c η = 1 × 10−8 kN s/mm2
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(a) Schematic diagram 
of the model 25t s(b) Numerical result: 50t s(c) 100t s(d)

20 mm

Fig. 8 The schematic diagram of the model for Kalthoff experiment [43] and the three typical crack growth paths obtained by simulation: a the
model schematic diagram and geometric parameters; b the crack growth path at t = 25µs; c the crack growth path at t = 50µs; and d the crack
growth path at t = 100µs

Table 4 The material properties and viscosity parameter used for
Kalthoff test

E (GPa) ν ρ (kg/m3) gc (N/mm) η (kN ∗ s/mm2)

190.0 0.3 8000.0 22.13 1.0 × 10−7

close to 70◦. This shows that our phase-field model and code
are suitable for typical dynamic fracture problems.

We also compare the crack paths of the Kalthoff exper-
iment under different step time increments and viscosity
parameters, as shown in Fig. 9. It can be found that the crack
propagation paths under the three conditions have good con-
sistency, and the crack deflection angles are very close (69◦,
70◦, and 70◦, respectively). This shows that (1) when the vis-
cosity parameter is small, reducing the viscosity parameter
does not affect the crack propagation path; (2) when the time
increment is less than the requirement of stable time incre-
ment, reducing the time increment does not affect the crack
propagation path.

4.4 Quenching test

This example concerns a quenching test to verify the thermo-
elastic coupled fracture process under thermal shock loading.
Shao et al. [46] carried out a detailed experimental study
on the quenching process. In the experiment, the ceramic
plates were heated to different temperatures and then put
into a low temperature water bath. Under the thermal shock
load, a large number of parallel cracks were produced in the
ceramic. In the quenching process, the shrinkage of ceramics
with higher temperature before contact with water is more
intense, showing a larger number of parallel crackswith alter-
nating length. Many researchers have studied this problem
numerically [4,47].

According to the experimental settings, we take half-
model for numerical simulation. The size of the sample is
50 × 9.8 mm. The ambient temperature is θm = 300 K
(in the simulation, the surface temperature of the sample
is kept at 300 K) and the initial temperature of the sample
is θi = 550 K, 680 K and 980 K respectively (the corre-

69 70 70

7 20.01 , 1.0 10 kN s/mmt s(a) 8 20.01 , 1.0 10 kN s/mmt s(b) 7 20.005 , 1.0 10 kN s/mmt s(c)

Fig. 9 The simulated crack path of Kalthoff experiment [43] under different step time increments and viscosity parameters: a �t = 0.01µs, η =
1.0 × 10−7kN s/mm2; b �t = 0.01µs, η = 1.0 × 10−8kN s/mm2; and c �t = 0.005µs, η = 1.0 × 10−7kN s/mm2
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Table 5 The material properties
for quenching test problem

E (GPa) ν gc (J/m2) ρ (kg/m3) k0(W/(mK)) c(J/(kgK)) αθ (K−1)

340 0.22 42.47 2450 300 0.775 8.0 × 10−6

Fig. 10 The numerical results
(left) of crack distribution in
ceramics after cooling for 10 ms
at different initial temperatures
(i.e., different cooling
temperature differences a
�θ = 250 K, b �θ = 380 K
and c �θ = 680 K) are
compared with the experimental
results (The experimental results
are from Ref. [46])

Numerical results Experimental results
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Fig. 11 Statistical chart of the number of non-dimensional length range of cracks after cooling for 10 ms at various initial temperatures (i.e., various
cooling temperature differences a �θ = 250 K, b �θ = 380 K and c �θ = 680 K) in the numerical simulation

sponding temperature difference is �θ = 250 K, 380 K and
680 K). The material properties are listed in Table 5. In order
to ensure that enough dense initial cracks are generated on
the boundary, the mesh size h is set to 0.02 mm and the char-
acteristic length scale lc = 2h. The viscosity parameter is
η = 1.0 × 10−8 kN s/mm2. In this case, the crack initiation
or propagation is mainly caused by thermal expansion and
contraction. The time step used here is 1.8 × 10−9 s.

The final crack patterns at different initial temperatures
(corresponding to different temperature difference) and their

comparison with experimental results are given in Fig. 10.
If short cracks are neglected, the crack patterns calcu-
lated by numerical method at different temperatures are
in good agreement with the experimental results. In fact,
shorter cracks may nucleate in the ceramic slab during the
experiment, but due to the limitations of the experimental
technology, they can not be clearly observed. Our simula-
tions canwell capture the key features of this problem: a large
number of parallel short cracks nucleate, then selectively
arrest and propagate. The parameter lc ensures that enough
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Fig. 12 Comparisons between numerical results and experimental results [46] of the crack density, average crack length and crack distance with
different temperature differences

Fig. 13 For �θ = 380 (K), the distribution of temperature (left) and maximum principal stress (right) at t = 10 ms

microcracks are initiated to simulate subsequent selective
arresting and growth processes accurately. Figure 11 shows
the statistics of the number of cracks in different crack length
intervals (dimensionless by the height of the ceramic slab)
of the numerical results. We can see that the more significant
the temperature difference, the denser the cracks are. Espe-
cially the number of short cracks, which increases rapidly.
That is, the more prominent the temperature difference is,
the bigger the temperature gradient near the boundary of the
ceramic slab is at the beginning, so the more significant the
shrinkage caused by thermal stress is. Therefore, denser short
cracks are needed in a short time to minimize the energy of
the system.

According to the statistical data, we further define the
crack of more than 25% sample height (H ) as long crack.
The number of long cracks and the average distance p and
the average length of cracks a (nondimensionalized by the
height of ceramic slab H ) under different temperature differ-
ences (�θ ) are summarized, as shown in Fig. 12. From the
statistical results, it can be seen that the numerical results are
in good agreement with the experimental results. At the same
time, we also noticed that the crack length calculated by the
numerical method is always smaller than the experimental
value. This is mainly due to the numerical simulation of a
relatively short period of time (10 ms) while the experimen-
tal time lasts for a long time (although the crack propagation
mainly occurs in a short period of time when the ceramic

slab is placed into cold water). We also show the tempera-
ture distribution and stress field distribution at the end of the
simulation in Fig. 13. It can be seen that since the propaga-
tion direction of heat flux is consistent with the propagation
direction of the crack, there is no obvious difference between
the temperatures on both sides of the crack. Still, there is a
noticeable temperature gradient along the propagation direc-
tion of crack. The distribution of the stress field shows the
shielding effect of long crack to short crack, so only some
cracks are dominant in competition and extend to a long dis-
tance.

4.5 Fragmentation of ceramic balls under thermal
shock

In order to demonstrate the simulation ability of the algo-
rithm and code for 3D complex thermo-mechanical coupling
problems, in this example, we simulate the fracture and frag-
mentation process of a ceramic ball under thermal shock
loading. Similar problems for 3D fracture process of balls
have been studied by Klinsmann et al. in modeling crack
initiation and propagation during Li insertion in storage par-
ticles [29]. The radius of the ceramic ball is 5.0 mm, and
the material parameters are the same as those in the previous
section. Initially, the temperature of the ceramic ball is 273
K. When the ambient temperature suddenly rises to 653 K
(The corresponding temperature difference is �θ = 380 K)
the ceramic ball will crack and break under the action of
thermal expansion. The characteristic crack width is chosen
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Fig. 14 3D crack distribution of ceramic ball after fracture under thermal loading: a temperature distribution, b damage distribution on the surface
of ceramic ball, and c 3D geometric structure of cracks

Fig. 15 Evolution of phase-field under thermal load of ceramic ball at different time: a–d the phase-field distribution on the middle section (top
view) and e–h the 3D debris structure (the regions of d > 0.95 were removed to show the position of the cracks)

as lc = 0.14 mm and the mesh size is set as h = lc/2. The
viscosity parameter is η = 1.0 × 10−8 kN s/mm2

The 3D crack distributions of the ceramic ball after frac-
ture under thermal loading are shown in Fig. 14. We can
find that the ceramic ball was broken into 14 large pieces of
ceramic fragments. Moreover, the broken form and the shape
of the fragments of the ceramic ball have good symmetry.
In order to study the fracture and fragmentation process of
ceramic balls more precisely, we sliced the ceramic balls and
observed the phase field evolution process on the slices, as
shown in Fig. 15a–d. The process of 3D crack propagation
and debris generation with time is also given, as shown in
Fig. 15e–h (the regions of d > 0.95 were removed to show
the position of the cracks). It can be found that the complete

damage first occurs in the center of the ceramic ball and then
gradually expands around it. When the crack extends near
the surface of the ball, the crack bifurcates (in 3D space, it
appears as a cone) and finally forms a 3D complex crack
surface, as shown in Figs. 14 and 15e–h.

5 Concluding remarks

In this paper, a phase-field model based on explicit time inte-
gration for thermo-elastic coupling problems was developed
in the commercial finite element code Abaqus/Explicit to
simulate brittle fracture in 3D solids. The implementation
was carried out in the framework of a user-defined finite ele-
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ment subroutine (Abaqus/VUEL) and a user-definedmaterial
subroutine (Abaqus/VUMAT). Several examples are given to
illustrate the practicability and robustness of this method for
complex fracture problems under thermal shock: from one
element to 3D thermal shock crack nucleation and propaga-
tion. The numerical results are in good agreement with the
analytical solutions and existing experiments.

The influence of viscous parameters on numerical results
is systematically studied. It is observed that this parameter
does not affect the crack path or the initiation of crack prop-
agation, but it leads to different crack velocities and stress
peaks.

The source code and several benchmark examples are
given as supplementary materials. Abaqus is one of the
most widely used finite element software. This implementa-
tion makes it easy for engineers and researchers to simulate
complex crack propagation, bifurcation, and crack network
formation in multi-field coupling problems. Besides, the
source code can be easily extended to simulate large defor-
mation, crack propagation in plastic materials, and other
multi-field coupled fracture problems.
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Appendix A: Parallel performance study

The phase-field model has high requirements for mesh den-
sity and usually requires large-scale calculations. Therefore,

parallel computing is particularly important for the wide
application of the phase field method. The explicit time inte-
gration schemes (including central-difference and forward-
difference integration method) are suitable for increasing
computational efficiency through parallel computing. In this
paper,we implement themusingmulti-CPUsub-regional cal-
culations. Here we use the example in Sect. 4.5 to study the
efficiency of parallel computing. For parallel computing, the
entire model is divided into several subdomains according
to the number of CPUs that will be used. The informa-
tion on the common boundary of each subdomain is stored
in the public variables, which are synchronized in multiple
CPUs via MPI functions in the user subroutine VEXTER-
NALDB.

Figure 16a shows the increment numbers every two min-
utes of the model with different number of CPUs. The model
has 12,859,435 DOFs and 22,851 incremental steps. We can
find that using multiple CPUs can greatly improve the effi-
ciency of calculation, and the wall time is approximately
inversely proportional to the number of CPUs used. Fig-
ure 16b shows the wall time consumed by the same model
with the same number of CPUs (16) and different DOFs. It
can be seen that the relationship between the wall time and
the number of DOFs is basically linear, which is better than
that of the implicit scheme.

Appendix B: One element tutorial

Here we assume that users are familiar with Abaqus/Explicit
and its user subroutines. Due to the limitation of page space,
only some key modeling details are given.

Each problem has two files for calculation: an Abaqus
input file (*.inp) and a FORTRAN source code file (*.for or
*.f, depending on the operation system).
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Fig. 16 Parallel performance study: a incremental steps every twominutes with different number of CPUs, and b calculating wall time consumption
under different numbers of DOFs
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Table 6 Solution dependent
variables (SDVs) used for
visualization

Variable Number of SDV in Abaqus

Elastic axial strains—εexx , ε
e
yy , ε

e
zz SDV1-SDV3

Elastic shear strains—εexy, ε
e
yz, ε

e
zx SDV4-SDV6

Elastic principal strains—εe1, ε
e
2, ε

e
3 SDV7-SDV9

Thermal expansion strain—εθ SDV10

Elastic strain energy component—ψ+ (εe) (Model A, B and C) SDV11-SDV13

History variable—H SDV14

Phase field variable—d SDV15

Element status (0: deleted, 1: not deleted) SDV16

Due to the problem of the allocation of the common block
(module) for everyfinite elementmesh a newFORTRANfile
should be created.Only two variables that should bemodified
in the provided example file are NodeNum (the number of
the nodes in�1) and NumEle (the number of the elements in
�1). Thus, in this example NodeNum = 8, and NumEle=1.

The Abaqus input file is generally written by the software
itself. However, we should modify it before initiating the
simulation.1

In the first section, the parts are created. The nodes are
given (*Node) and the elements are generated. After creating
all the nodes, a command is given to define the phase-
field element type (*User element, nodes=8, type=VU2,
properties=3, coordinates=3, variables=16). This com-
mand creates an element with eight nodes with five material
properties and sixteem status variables. The status variables
are used to transport information from one step to the next.
It contains the phase-field value and the history variable at
each integration point. The meaning of the SDVs is listed in
Table 6.

In the next line, we define the concerning DOFs, in this
case only the eleventh (11). To create the elements after
the command: *Element, type=VU2, the elements are given
starting with the serial number then the nodes of the cor-
ners in a counterclockwise list: 1, 5, 6, 8, 7, 1, 2, 4, 3. To
assign material parameters to the elements a set is created.
After which the command *Uel property, elset=Set-part2-
ele-1 and the properties are given in the next line (where
Set-part2-ele-1 is the nameof the set containing all the phase-
field elements). The properties are given as follows: viscosity
parameter (η), length scale parameter (lc) and fracture sur-
face energy (gc).

For temperature and displacement elements, the user
material subroutine VUMAT is used. We only need to
specify the material parameters passed into the user sub-

1 We also wrote Python code to automatically handle the process of
modifying input files. One who familiar with Python can just modify
the geometric modeling part and the boundary condition imposing part
to create their own model.

routine in *.inp file through the following statement: *User
Material, constants=3. The properties are given as fol-
lows: Young’s modulus (E) Poisson’s ratio (ν) and thermal
expansion coefficient (αθ ). The user subroutine VUSFLD is
declared to be used by adding command *User Defined
Field to the *.inp file. Command *Field, Variable=1, User
declares that the user subroutine VUFIELD is used and
that the scope is all nodes (Set-allnode). The loads and
boundaries of the displacement and temperature fields (in
�1) are defined usually as it is done in a normal input
file.

See the *.inp file in “Appendix C” for more details.

Appendix C: Supplementary materials

The supplementary materials related to this article include
the source code of Abaqus user subroutine and the input file
of the one element example.
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