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Abstract
A new numerical approach for the time independent Helmholtz equation on irregular domains has been developed. Trivial
Cartesian meshes and simple 9-point stencil equations with unknown coefficients are used for 2-D irregular domains. The
calculation of the coefficients of the stencil equations is based on the minimization of the local truncation error of the stencil
equations and yields the optimal order of accuracy. At similar 9-point stencils, the accuracy of the new approach is two orders
higher for the Dirichlet boundary conditions and one order higher for the Neumann boundary conditions than that for the
linear finite elements. The numerical results for irregular domains also show that at the same number of degrees of freedom,
the new approach is even much more accurate than the quadratic and cubic finite elements with much wider stencils. The new
approach can be equally applied to the Helmholtz and screened Poisson equations.

Keywords Helmholtz equation · Local truncation error · Irregular domains · Cartesian meshes · Optimal accuracy

1 Introduction

Many physical phenomenon in acoustics, seismology, elec-
tromagnetic radiation, nondestructive testing, medical imag-
ing and others can be modeled by the Helmholtz equation.
Therefore, many researchers (e.g., see [1–55]) are working
on the development of accurate numerical techniques for the
solution of the Helmholtz equation that has a lot of important
civil and military engineering applications. Many of these
numerical techniques finally reduce to a discrete systemwith
compact stencils; e.g., different modifications of the finite
element method, the isogeometric elements, the spectral ele-
ment method, the finite difference method and others. The
finite element method, the finite volume method, the isogeo-
metric elements, the spectral elements and similar techniques
represent very powerful tools for the solution of PDEs for a
complex geometry. However, the generation of non-uniform
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meshes for a complex geometry is not simple and may lead
to the decrease in accuracy of these techniques if ’bad’ ele-
ments (e.g., elements with small angles) appear in the mesh.
Moreover, the conventional derivation of discrete equations
for these techniques (e.g., based on the Galerkin approaches)
does not lead to the optimal accuracy. For example, it has
been shown in many publications on wave propagation that
at the same width of stencil equations of a semi-discrete sys-
tem for regular rectangular domains with uniform meshes,
the accuracy of the conventional linear finite elements can
be improved from order two to order four (e.g., see [56–67]
and others), the accuracy of the conventional high-order finite
and isogeometric elements can be improved from order 2p to
order 2p+2 where p is the element order (e.g., see [68–72]).
However, the improvement in the order of accuracy for the
high-order elements in [68–72] is not optimal. In [73–76] the
order of accuracy of the high-order elements on rectangular
domains has been improved to 4p and this order is optimal
at a given width of stencil equations.

There is a significant number of publications related to the
numerical solution of different PDEs on irregular domains
with uniform embedded meshes. For example, we can men-
tion the following fictitious domain numerical methods that
use uniform embedded meshes: the embedded finite differ-
ence method, the cut finite element method, the finite cell
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method, the Cartesian grid method, the immersed interface
method, the virtual boundary method, the embedded bound-
ary method, etc; e.g., see [77–106] and many others. The
main objective of these techniques is to simplify the mesh
generation for irregular domains as well as to mitigate the
effect of ’bad’ elements. For example, the techniques basedof
the finite element formulations (such as the cut finite element
method, the finite cell method, the virtual boundary method
and others) yield the p+1 order of accuracy even with small
cut cells generated by the complicated irregular boundary
(e.g., see [78–81,85,104,105] and many others). The main
advantage of the embedded boundary method developed in
[86–88,100,101] is the use of a simple Cartesian mesh. The
boundary conditions or fluxes in this technique are inter-
polated using the Cartesian grid points and this leads to the
increase in the stencilwidth for the grid points located close to
the boundary (however, the numerical techniques developed
in [86–88,100,101] provide just the second order of accuracy
for the global solution). An interesting high-order accurate
approach is suggested in [35] for the Helmholtz equation
on irregular domains that combines the method of difference
potentials with compact high-order finite difference schemes
on Cartesian meshes.

Summarizing, the development of robust numerical tech-
niques for the solution of PDEs on irregular domains that
provide an optimal and high order of accuracy is still a chal-
lenging problem.

A new numerical approach suggested in this paper is the
extension of our previous numerical algorithms for wave and
heat equations (see [73,76,107]) to the Helmholtz equation.
In this paper we show that the approach based on the min-
imization of the local truncation error is very general and
can be also applied to the Helmholtz equation on complex
irregular domains. We call this approach as the optimal local
truncation error method (OLTEM).

The idea of the proposed OLTEM is very simple. We start
the development of a new numerical technique by assuming
the stencil equations of a discrete system of equations used
for the solution of a system of partial differential equations.
A stencil equation is a linear combination of the numeri-
cal values of the function at a number of grid points where
the coefficients of the stencil equations are assumed to be
unknown. These unknown coefficients are determined by
the minimization of the order of the local truncation error
for each stencil equation. This procedure includes a Tay-
lor series expansion of the unknown exact solution at the
grid points and its substitution into the stencil equation. As
a result, we obtain the local truncation error in the form of a
Taylor series. At this point, no information about partial dif-
ferential equations is used. Then, the corresponding partial
differential equations are applied at the grid points in order
to exclude some partial derivatives in the expression for the
local truncation error. Finally, the unknown coefficients of

the stencil equation are calculated from a small local system
of algebraic equations obtained by equating to zero the lowest
terms in the Taylor series expansion of the local truncation
error. The coefficients of the stencil equations are similarly
calculated for the regular (uniform) stencils located far from
the boundary and for the cut (nonuniform) stencils located
close to the boundary. Then, a fully discrete global systemcan
be easily solved. The main advantages of the new approach
are a high optimal accuracy and the simplicity of the forma-
tion of a discrete system for irregular domains. As amesh, the
grid points of a uniform rectangular (square) Cartesian mesh
as well as the points of the intersection of the boundary of
a complex irregular domain with the horizontal, vertical and
diagonal grid lines of the uniform Cartesian mesh are used;
i.e., in contrast to the finite element meshes, a trivial mesh
is used with the new approach. Changing the width of the
stencil equations, different linear and high-order numerical
techniques can be developed.

In this paper we show the application of the new numer-
ical approach to the Helmholtz equation as well as to its
simple modification called the screened Poisson equation on
an irregular domain �:

∇2u + ak2u = f , (1)

where a = 1 for the Helmholtz equation, a = −1 for the
screened Poisson equation, k is the wave number for the
Helmholtz equation, f (x, y) is the loading term, u(x, y)
is the field variable. The Neumann boundary conditions
n · �u = g1 on �t and the Dirichlet boundary conditions
u = g2 on �u are applied where gi (i = 1, 2) are the given
functions, n is the outward unit normal on �t , and �t and
�u denote the boundaries with the Neumann and Dirichlet
boundary conditions, respectively.

According to the new approach we assume that after the
space discretization with a rectangular Cartesian mesh, the
stencil equation for Eq. (1) can be written as an algebraic
equation:

L∑

i=1

(ak2h2miu
num
i + kiu

num
i ) = f̄ , (2)

where unumi is the numerical solution for function u at the
i-th grid point, mi and ki are the unknown stencil coeffi-
cients to be determined, L is the number of the grid points
included into a stencil, f̄ is the discretized loading term (see
the next Sections), h is the mesh size along the x- axis. Many
numerical techniques for the Helmholtz equation such as the
finite difference method, the finite element method, the finite
volume method, the isogeometric elements, the spectral ele-
ments, different meshless methods and others can be finally
reduced to Eq. (2) with some specific coefficients mi and ki .
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In order to demonstrate the new technique, below we will
assume 9-point stencils in the 2-D case that correspond to
the width of the stencils for the linear quadrilateral finite ele-
ments on Cartesian meshes. However, the stencils with any
width can be used with the suggested approach.

Let us introduce the local truncation error used with the
new approach. The replacement of the numerical values of
the function unumi at the grid points in Eq. (2) by the exact
solution ui to Eq. (1) leads to the residual of this equation
called the local truncation error e of the discrete equation,
Eq. (2):

e =
L∑

i=1

(ak2h2miui + kiui ) − f̄ . (3)

Calculating the difference between Eqs. (3) and (2) we can
get

e =
L∑

i=1

{ak2h2mi [ui − unumi ] + ki [ui − unumi ]}

=
L∑

i=1

(ak2h2mi ēi + ki ēi ) , (4)

where ēi = ui − unumi are the errors of function u at the grid
points i .As canbe seen fromEq. (4), the local truncation error
e is a linear combination of the errors of the function u at the
grid points i which are included into the stencil equation.

In Sect. 2.1 we consider the development of the new
numerical approach for the 2-DHelmholtz equationwith zero
loading term. The imposition of the Dirichlet and Neumann
boundary conditions are described in Sect. 2.2. The exten-
sion of the new numerical approach for the 2-D Helmholtz
equation with nonzero loading term is presented in Sect. 2.3.
Section 3 considers numerical examples and the comparison
of the new approach with the conventional finite elements.
For the derivation of many analytical expressions presented
below we use the computational program “Mathematica”.

2 A new numerical approach for the 2-D
Helmholtz equation

2.1 Zero load f = 0 in Eq. (1)

Here,we present 9-point uniform stencils thatwill be used for
the internal grid points located far from the boundary and 9-
point non-uniform stencils thatwill be used for the grid points
located close to the boundary with the Dirichlet boundary
conditions (the case of the Neumann boundary conditions
will be considered separately in Sect. 2.2.2). Let us consider
a 2-D bounded domain and a rectangular Cartesian mesh

Fig. 1 The spatial locations of the degrees of freedom u p (p = 1, 2,
. . . , 9) that contribute to the 9-point uniform stencil for the internal
degree of freedom u5 located far from the boundary
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Fig. 2 The spatial locations of the degrees of freedom u p (p = 1, 2,
. . . , 9) that contribute to the 9-point nonuniform stencil for the internal
degree of freedom u5 located close to the boundary with the Dirichlet
boundary conditions

with a mesh size h where h is the size of the mesh along
the x-axis and byh is the size of the mesh along the y−axis
(by is the aspect ratio of the mesh); see Figs. 1 and 2. The
9-point stencil considered here is similar to that for the 2-D
linear quadrilateral finite elements. The spatial locations of
the 8 degrees of freedom that are close to the internal degree
of freedom u5 and contribute to the 9-point stencil for this
degree of freedom are shown in Fig. 1 for the case when the
boundary and the Cartesian mesh are matched or when the
degree of freedom u5 is located far from the boundary. In
the case of non-matching grids when the grid points do not
coincide with the boundary, the neighboring grid points for
the internal grid point u5 that lie outside the physical domain
are moved to the boundary of the physical domain as shown
in Fig. 2. In order to find the boundary points that are included
into the stencil for the degree of freedom u5 (see Fig. 2) we
join the central point u5 with the 8 closest grid points; i.e., we
have eight straight lines along the x- and y-axes and along the
diagonal directions (the dashed lines) of the grid; see Fig. 2.
If any of these lines intersects the boundary of the domain
then the corresponding grid point (designated as ◦) should
be moved to the boundary (the new location is designated as
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•). This means that for all internal points located within the
domain we use a 9-point uniform (see Fig. 1) or non-uniform
(see Fig. 2) stencil. For convenience, the local numeration of
the grid points from 1 to 9 is used in Fig. 2 as well as in the
derivations below for the 9-point uniform and non-uniform
stencils. To describe the coordinates of the boundary points
shown in Fig. 2 we introduce 9 coefficients 0 ≤ dp ≤ 1
(p = 1, 2, . . . , 9) with d5 = 0 as follows (see also Fig. 2):

xp = x5+(i−2)dph , yp = y5 + ( j − 2)dpbyh ,

p = 3( j − 1) + i , i, j = 1, 2, 3 . (5)

Eq. (5) can be also used for the coordinates of the grid points
inside the domain with the corresponding coefficients dp
equal to unity (dp = 1). Eq. (2) for the 9-point uniform (see
Fig. 1) or nonuniform (see Fig. 2) stencil can be explicitly
rewritten as follows:

ak2h2
9∑

p=1

mpu
num
p +

9∑

p=1

kpu
num
p = f̄5 , (6)

where f̄5 = 0 in the case of zero load f = 0 in Eq. (1),
the unknown coefficientsmp and kp (p = 1, 2, . . . , 9) are to
be determined from the minimization of the local truncation
error.

Remark 1 Only 17 out of the 18 coefficients mp, kp (p =
1, 2, . . . , 9) in Eq. (6) can be considered as unknown coeffi-
cients. This can be explained as follows. In the case of zero
load f = 0 and f̄5 = 0, Eq. (6) can be rescaled by the divi-
sion of the left and right sides of Eq. (6) by any multiplier a1.
For example, let us select a1 = k5. In this case the rescaled
coefficients m̄ p, k̄ p (p = 1, 2, . . . , 9) of the stencil equation
are: m̄ p = mp/k5 (p = 1, 2, . . . , 9), k̄5 = 1, k̄ p = kp/k5
(p = 1, 2, . . . , 4, 6, . . . , 9); i.e., there is only 17 unknown
rescaled coefficients. The case of nonzero load f̄5 �= 0 can
be similarly treated because the term f̄5 is a linear function
of the coefficients mp and kp (see Eq. (26) below).

For the calculation of the local truncation error, let us expand
the exact solution u p (p = 1, 2, . . . , 4, 6, 7, . . . , 9) at the
grid points into a Taylor series at small h � 1 as follows:

u p = u5 + ∂u5
∂x

[(i − 2)hdp] + ∂u5
∂ y

[( j − 2)hdp]

+ ∂2u5
∂x2

[(i − 2)hdp]2
2!

+ ∂2u5
∂x∂ y

[(i − 2)hdp][( j − 2)hdp]
2! + ∂2u5

∂ y2
(± jh)2

2!
+ ∂3u5

∂x3
[(i − 2)hdp]3

3! + ∂3u5
∂ y∂x2

[(i − 2)hdp]2[( j − 2)hdp]
3!

+ ∂3u5
∂ y2∂x

[(i − 2)hdp][( j − 2)hdp]2
3!

+ ∂3u5
∂ y3

[( j − 2)hdp]3
3! + . . . (7)

where p = 3( j−1)+i and i, j = 1, 2, 3. The exact solution
u5 to Eq. (1) meets the following equations:

∂2u5
∂x2

= −∂2u5
∂ y2

− ak2u5 , (8)

∂(i+ j+1)u5
∂ yi∂x (1+ j)

= − ∂(i+ j+1)u5
∂ y(i+2)∂x ( j−1)

− ak2
∂(i+ j−1)u5
∂ yi∂x ( j−1)

, (9)

with i = 0, 1, 2, 3, 4, . . . and j = 1, 2, 3, 4, . . .. Eq. (9) is
obtained by the differentiation of Eq. (8) with respect to x
and y. Inserting the exact solution given by Eqs. (7), (8), (9)
into the stencil equation, Eq. (6), instead of the numerical
solution, we will get the following local truncation error in
space e:

e = b1u5 + h

(
b2

∂u5
∂x

+ b3
∂u5
∂ y

)

+h2
(
b4k

2u5 + b5
∂2u5
∂x∂ y

+ b6
∂2u5
∂ y2

)

+ h3
(
b7k

2 ∂u5
∂x

+ b8k
2 ∂u5

∂ y
+ b9

∂3u5
∂x∂ y2

+ b10
∂3u5
∂ y3

)

+ h4
(
b11k

4u5 + b12k
2 ∂2u5
∂x∂ y

+ b13k
2 ∂2u5

∂ y2

+b14
∂4u5

∂x∂ y3
+ b15

∂4u5
∂ y4

)

+ h5
(
b16k

4 ∂u5
∂x

+ b17k
4 ∂u5

∂ y
+ b18k

2 ∂3u5
∂x∂ y2

+b19k
2 ∂3u5

∂ y3
+ b20

∂5u5
∂x∂ y4

+ b21
∂5u5
∂ y5

)

+ h6
(
b22k

6u5 + b23k
4 ∂2u5
∂x∂ y

+ b24k
4 ∂2u5

∂ y2
+ b25k

2 ∂4u5
∂x∂ y3

+b26k
2 ∂4u5

∂ y4
+ b27

∂6u5
∂x∂ y5

+ b28
∂6u5
∂ y6

)
+ O(h7) (10)

with the coefficientsbp (p = 1, 2, . . . , 28) given in “Appendix
A”. Here we should mention that the expression for the local
truncation error, Eq. (10), only includes the first-order deriva-
tives with respect to x (the higher order derivatives with
respect to x are excluded with the help of Eqs. 8–9).

In order to obtain the optimal order of accuracy of the local
truncation error in Eq. (10) at small h � 1, we will equate
to zero the coefficients bp in Eq. (10) for the smallest orders
of h. First, let us consider the case of uniform stencils with
di = 1 (i = 1, 2, . . . , 9); seeFig. 1. In this case, the analytical
study of coefficients bp with the help of Mathematica shows
that we can equate to zero the first 21 coefficients bp (p =
1, 2, . . . , 21) in Eq. (10). However, some of these coefficients
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are linearly dependent. Therefore, we will zero the following
bp coefficients:

bp = 0 , p = 1, 2, . . . , 13, 15, 17, 18, 24 , (11)

aswell aswe use the condition k5 = 1 (see theRemark 1 after
Eq. (6)). The solution of the algebraic equations, Eq. (11),
yields the following coefficients mi and ki (i = 1, 2, . . . , 9)
of the stencil equation, Eq. (6):

k1 = − 1

20
, k2 = by2 − 5

10(by2 + 1)
, k3 = − 1

20
,

k4 = 1 − 5by2

10by2 + 10
, k5 = 1 ,

k6 = 1 − 5by2

10by2 + 10
, k7 = − 1

20
,

k8 = by2 − 5

10(by2 + 1)
, k9 = − 1

20
,

m1 = − 5by2 + 9

1200(by2 + 1)
, m2 = 9 − 25by2

600(by2 + 1)
,

m3 = − 5by2 + 9

1200(by2 + 1)
,

m4 = 9 − 25by2

600(by2 + 1)
, m5 = − 125by2 + 9

300(by2 + 1)
,

m6 = 9 − 25by2

600(by2 + 1)
, m7 = − 5by2 + 9

1200(by2 + 1)
,

m8 = 9 − 25by2

600(by2 + 1)
, m9 = − 5by2 + 9

1200(by2 + 1)
. (12)

Inserting these coefficients mi and ki (i = 1, 2, 3, . . . , 9)
from Eq. (12) into Eq. (10), we will get the local truncation
error in space e for uniform stencils:

e =
by2h6

[
(by4 − 1) ∂6u5

∂ y6
− k6u5

]

400(by2 + 1)
+ O(h8) , (13)

i.e., the coefficients mi and ki (i = 1, 2, . . . , 9) given by Eq.
(12) zero all coefficients bp (p = 1, 2, . . . , 21) in Eq. (10)
up to the fifth order.

Next, let us consider non-uniform stencils; see Fig. 2. If
we equate to zero the first 15 coefficients bp = 0 (p =
1, 2, . . . , 15) in Eq. (10), then, at least, we could obtain the
fifth order of the local truncation error. However, for a rect-
angular mesh with by �= 1, the corresponding system of 15
algebraic equations for some particular cases (e.g., when one
point of the 9-point regular stencil lies outside the physical
domain and we have a non-uniform stencil with d1 �= 1, see
Fig. 2) can be analytically solved with the help of Mathe-
matica. These solutions show that all coefficients ki in this

stencil equation are zeros; i.e., these solutions are inappro-
priate. Therefore, the maximum possible order of the local
truncation error for a non-uniform stencil, Eq. (6), on a rect-
angular mesh corresponds to the fourth order (this can be
shown by equating to zero the first 10 coefficients bp = 0
(p = 1, 2, . . . , 10) in Eq. 10). Fortunately, for squaremeshes
with by = 1, the solution of the system of 15 algebraic equa-
tions bp = 0 (p = 1, 2, . . . , 15) can be analytically solved
with the help ofMathematica andyields non-zero coefficients
mi and ki (i = 1, 2, 3, . . . , 9). Therefore, for square meshes
the new approach with the non-uniform stencils yields, at
least, the fifth order of the local truncation error.

In order to zero the coefficients bp (p = 1, 2, . . . , 10) for
rectangular meshes and minimize the values of the coeffi-
cients bp (p = 11, 12, . . . , 28) for the fourth, fifth and sixth
orders of the local truncation error for all non-uniform sten-
cils, we use the following procedure. First, let us zero the
following coefficients bp:

bp = 0 , p = 1, 2, . . . , 10 , (14)

Then, for the coefficients bp related to the fourth, fifth and
sixth orders of the local truncation error we use the least
square method with the following residual R:

R =
15∑

p=11

b2p + h1

21∑

p=16

b2p + h2

28∑

p=22

b2p , (15)

where h1 and h2 are the weighting factors to be selected
(e.g., the numerical experiments show that h1 = h2 = h
yields accurate results). The inclusion of the sixth order terms
is explained by the fact that for uniform square meshes,
the fifth order terms do not provide a sufficient number of
equations for the calculation of the coefficients mi and ki
(i = 1, 2, . . . , 9). In order to minimize the residual R with
the constraints given by Eq. (14), we can form a new residual
R̄ with the Lagrange multipliers λp:

R̄ =
15∑

p=11

b2p + h1

21∑

p=16

b2p + h2

28∑

p=22

b2p +
10∑

p=1

λpbp . (16)

The residual R̄ is a quadratic function of coefficients mi and
ki (i = 1, 2, . . . , 9) and a linear function of the Lagrange
multipliers λp; i.e., R̄ = R̄(mi , ki , λp). In order minimize
the residual R̄(mi , ki , λp), the following equations based on
the least square method for the residual R̄ can be written
down:

∂ R̄

∂mi
= 0 ,

∂ R̄

∂ki
= 0 , i = 1, 2, . . . , 9 , (17)

∂ R̄

∂λp
= 0 , p = 1, 2, . . . , 10 , (18)
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where equation ∂ R̄
∂k5

= 0 should be replaced by k5 = 1
because for the homogeneous stencil equation, Eq. (6), with
f̄5 = 0 one of the coefficients mi and ki (i = 1, 2, . . . , 9)
can be arbitrary selected; e.g., k5 = 1; see Remark 1 after
Eq. (6). Equations (17) and (18) form a system of 28 lin-
ear algebraic equations with respect to 18 unknown stencil
coefficients mi and ki (i = 1, 2, . . . , 9) and 10 Lagrange
multipliers λp (p = 1, 2, . . . , 10). Solving these linear alge-
braic equations numerically, we can find the coefficients mi ,
ki (i = 1, 2, . . . , 9) for the 9-point non-uniform stencils.

Remark 2 To estimate the computation costs of the solution
of 28 linear algebraic equations formed by Eqs. (17) and
(18) we solved 106 such systems with a general MATLAB
solver on a simple student laptop computer (Processor: Intel
(R) Core(TM) i5-4210U CPU @ 1.70GHz 2.40GHz). The
computation ’wall’ time was T = 1216s for 106 systems or
the average time for one system was 0.001216s. Because the
coefficients mi and ki (i = 1, 2, . . . , 9) are independently
calculated for different non-uniform stencils, the computa-
tion time of their calculation for different grid points can
be significantly reduced on modern parallel computers. This
means that for large global systems of equations, the com-
putation time for the calculation of the coefficients mi and
ki (i = 1, 2, . . . , 9) is very small compared to that for the
solution of the global system of equations.

Remark 3 The computation time for pre-processing and
assembling the global matrix depends on the implementation
of a code. Here we present the computation time estimation
for the linear finite elements using our MATLAB code for
a relatively large number of degrees of freedom (dof) and a
square mesh (the computation time for the calculation of the
elemental matrices and assembling the global matrix is inde-
pendent of the shape of the finite elements). For example, a
square mesh with N = 106 dof includes approximately the
same number 106 of linear finite elements. For this mesh,
the calculation of the elemental matrices and assembling the
globalmatrix require approximately 235s of the computation
time. For the new approach, the coefficients of the global
matrix for uniform internal stencils are calculated analyti-
cally (see Eq. 12). For the squaremeshwith N = 106 dof, the
number of boundary stencils is approximately 4

√
N = 4000.

Therefore, the computation time for the calculation of the
coefficients of the global matrix for the new approach is
related to that for the boundary stencils and is approximately
5s (see Remark 2); i.e., it is significantly smaller than that
for the linear finite elements with the same number of dof.

The new approach provides the fourth (with rectangular
Cartesianmeshes) or the fifth (with square Cartesianmeshes)
order of the local truncation error for the nonuniform stencils
and the sixth order of the local truncation error for the uni-
form stencils (see Eq. 13). For the conventional linear finite

elements on uniform square meshes, the values of the coef-
ficients mi and ki (i = 1, 2, . . . , 9) (see [73]) provide the
fourth order of the local truncation error:

elinconv = c̄h4

12

(
∂4u5
∂x4

+ ∂4u5
∂ y4

)
+ O(h6) , (19)

i.e., the new approach improves the local truncation error in
space by two orders compared to that for the conventional
linear elements on uniform square meshes.

2.2 Boundary conditions

2.2.1 Dirichlet boundary conditions

The application of the Dirichlet boundary conditions in the
new approach is trivial and similar to that for the finite ele-
ments. We simply equate the boundary degrees of freedom
of the uniform and non-uniform stencils (see Figs. 1, 2) to
the values of a given function g2(x, y) at the correspond-
ing boundary points; i.e., the Dirichlet boundary conditions
are exactly imposed. Here, g2(x, y) describes the Dirich-
let boundary conditions. The final global discrete system
of equations includes the 9-point uniform and nonuniform
stencil equations (see Figs. 1, 2) for all internal grid points
that lie inside the domain as well as the Dirichlet bound-
ary conditions at the boundary points. These 9-point uniform
and nonuniform stencils on square Cartesian meshes provide
the fourth order of accuracy of numerical solutions; see the
numerical examples in Sect. 3.

Remark 4 As shown in [101], the boundary stencilsmay have
the local truncation error that is one order lower compared
to that for internal stencils (this does not worsen the order of
accuracy of the global solution).

Remark 5 The proposed technique yields accurate results for
the non-uniform stencils even with very small coefficients
di � 1. However, the new technique allows also to exclude
very small coefficients di � 1 from calculations. For exam-
ple, if di � tol for some internal point (see Fig. 2) where tol
is a small tolerance (e.g., tol = 10−3), then the non-uniform
stencil for this internal point can be removed from the global
systemof equations and this point can bemoved to the bound-
ary and treated as the boundary point for other stencils. In
this case, the corresponding coefficients di for this point in
other stencils can be slightly greater than one. According
to the derivations in the previous section, all equations will
be valid also for di > 1. The numerical experiments with a
small tolerance tol = 10−3 show that if the point with very
small coefficients di � 1 is moved to the boundary then the
coefficients di for this point in other stencils can be taken as
di = 1 without introducing any significant errors.
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2.2.2 Neumann boundary conditions

The imposition of the Neumann boundary conditions for the
new approach is different from that for the Dirichlet bound-
ary conditions. Our goal is to use the same 9-point uniform
and non-uniform stencils equations as those in Figs. 1 and 2
because this significantly simplifies the implementation of
the new approach with Cartesian meshes. We suggest the
following 9-point stencil equations for the Neumann bound-
ary conditions:

ak2h2
9∑

p=1

mpu
num
p +

9∑

p=1

kpu
num
p

=
⎡

⎣ak2h3
9∑

p=1

m̄ pg1(xp, yp) + h
9∑

p=1

k̄ pg1(xp, yp)

⎤

⎦

+ f̄5 , (20)

where f̄5 = 0 in the case of zero load f = 0 in Eq. (1),
the expression in the square brackets in the right-hand side
of Eq. (20) is known and represents the Neumann boundary
conditions at the stencil points with the coordinates xp, yp
that are located on the boundary with the Neumann boundary
conditions (see Fig. 2), the unknown stencil coefficients mp,
m̄ p, kp, and k̄ p (p = 1, 2, . . . , 9) are to be determined from
the minimization of the local truncation error, mp = 0 and
kp = 0 if a point with the coordinates xp, yp is located on
the boundary with the Neumann boundary conditions; other-
wise, m̄ p = 0 and k̄ p = 0 (this means that Eq. (20) includes
only 18 non-zero coefficientsmp , m̄ p, kp, and k̄ p), the central
grid point with the coordinates x5 and y5 is always the inter-
nal point (therefore, m̄5 = k̄5 = 0). Only 17 out of the 18
nonzero coefficients mp, m̄ p, kp, and k̄ p (p = 1, 2, . . . , 9)
in Eq. (20) can be considered as unknown coefficients. This
can be explained similar to Remark 1 after Eq. (6).

The local truncation error e of the stencil equation, Eq.
(20), can bewritten downby the replacement of the numerical
solution in Eq. (20) by the exact solution as follows:

e = ak2h2
9∑

p=1

mpu p

+
9∑

p=1

kpu p − ak2h3

9∑

p=1

m̄ p

(
n1p

∂u p

∂x
+ n2p

∂u p

∂ y

)
− h

9∑

p=1

k̄ p

(
n1p

∂u p

∂x
+ n2p

∂u p

∂ y

)
− f̄5 , (21)

where n1p and n2p (p = 1, 2, . . . , 9) are the x- and y-
components of the outward unit normal vector np at the
boundary point p (see Fig. 2), function u(x, y) in Eq. (21)
corresponds to the exact solution, the Neumann boundary
conditions in the right-hand side of Eq. (20) are expressed in
terms of the function u(x, y) and are moved to the left-hand
side of Eq. (21).

The rest of derivations will be similar to those in Sect. 2.1.
Inserting Eqs. (7), (8), (9) into (21), we will get the local
truncation error in space e that can be also expressed by
Eq. (10) with the coefficients bp (p = 1, 2, . . . , 28) given
in “Appendix B”. In contrast to Sect. 2.1, now the coefficients
bp (p = 1, 2, . . . , 28) depend not only on mi , ki and di but
also on m̄i , k̄i , n1i and n2i (i = 1, 2, . . . , 9); see “Appendix
B”. For the calculations of the coefficients mi , m̄i , ki , k̄i
(i = 1, 2, . . . , 9) for the uniform and non-uniform stencils,
we will use the least square method with Eqs. (14)–(18).
However, Eq. (17) should be modified as follows:

∂ R̄

∂mi
= 0 ,

∂ R̄

∂m̄i
= 0 ,

∂ R̄

∂ki
= 0 ,

∂ R̄

∂ k̄i
= 0 , i = 1, 2, . . . , 9 , (22)

where the partial derivatives of R̄ in Eq. (22) are considered
with respect to only non-zero coefficients mi , m̄i , ki , k̄i with
i = 1, 2, . . . , 9 (see also explanations for zero and non-zero
coefficients after Eq. 20); i.e., Eq. (22) as well as Eq. (17)
provides 18 algebraic equations (similar to Eq. (17), equation
∂ R̄
∂k5

= 0 should be replaced by k5 = 1). Finally, solving 28
linear algebraic equations (Eqs. 22 and 18) numerically, we
canfind the coefficientsmi , m̄i , ki , k̄i (i = 1, 2, . . . , 9) for the
9-point uniform and non-uniform stencils. Numerical exper-
iments show that for the Neumann boundary conditions, the
coefficients h1 = h2 = 1 in Eq. (15) provide accurate results.

Remark 6 In contrast to Sect. 2.1, the non-uniform stencils
with the Neumann boundary conditions provide the fourth-
order of the local truncation error on squaremeshes (the same
as on rectangularmeshes). This corresponds to the third order
of accuracy of the numerical results for the new approach
with the Neumann boundary conditions; see the numerical
examples in Sect. 3.

2.3 Nonzero load f �= 0 in Eq. (1)

The inclusion of non-zero loading term f in the partial dif-
ferential equation, Eq. (1), leads to the non-zero term f̄5 in
the stencil equations, Eqs. (6) and (20) (similar to Eq. 2). The
expression for the term f̄5 can be calculated from the proce-
dure used for the derivation of the local truncation error in
the case of zero loading function.
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In case of non-zero loading function ( f (x) �= 0), Eqs. (8)
and (9) for the exact solution at x = x5 and y = y5 can be
modified as follows:

∂2u5
∂x2

= −∂2u5
∂ y2

− ak2u5 + f (x5, y5) , (23)

∂(i+ j+1)u5
∂ yi∂x (1+ j)

= − ∂(i+ j+1)u5
∂ y(i+2)∂x ( j−1)

−ak2
∂(i+ j−1)u5
∂ yi∂x ( j−1)

+ ∂(i+ j−1) f (x5, y5)

∂ yi∂x ( j−1)
(24)

with i = 0, 1, 2, 3, 4, . . . and j = 1, 2, 3, 4, . . .. Then,
inserting Eqs. (7), (23) and (24) with the exact solution to
Eq. (1) into the stencil equation, Eq. (20), with non-zero f̄5
we will get the following local truncation error in space e f :

e f = e −
[
f̄5 −

{
h2 f5
2

(k1d
2
1 − 2k̄1n11d1 + d23k3 + d24k4

+ d26k6 + d27k7 + d29k9 + 2d3k̄3n13 − 2d4k̄4n14

+ 2d6k̄6n16 − 2d7k̄7n17 + 2d9k̄9n19) + h3(. . .) + · · ·
}]

,

(25)

where e is the local truncation error in space given by Eq.
(10), f̄5 designates function f (x, y) calculated at x = x5
and y = y5. Equating to zero the expression in the square
brackets in the right-hand side of Eq. (25), we will get the
expression for f̄5:

f̄5 = h2 f5
2

(k1d
2
1 − 2k̄1n11d1 + d23k3 + d24k4 + d26k6

+ d27k7 + d29k9 + 2d3k̄3n13 − 2d4k̄4n14 + 2d6k̄6n16

− 2d7k̄7n17 + 2d9k̄9n19) + h3(· · · ) + · · · (26)

as well as we will get the same local truncation errors e f = e
for zero and non-zero loading functions; see the attached
file “RHS-Helm.pdf” for the detailed expression of f̄5. This
means that the coefficients mi and ki of the stencil equa-
tions are first calculated for zero load f = 0 as described in
Sects. 2.1 and 2.2. Then, the nonzero loading term f̄5 given
by Eq. (26) is used in the stencil equation, Eqs. (20) and (6).

Remark 7 Eq. (26) for the non-zero load can be also used for
the stencil given by Eq. (6). In this case the coefficients m̄i

and k̄i should be taken as m̄i = k̄i = 0 (i = 1, 2, . . . , 9).

3 Numerical examples

In this Section the computational efficiency of the new
approach developed for the 2 − D Helmholtz equation will
be demonstrated and compared with the conventional linear

(T 3 and Q4), quadratic (T 6 and Q9) and cubic (T 10 and
Q16) quadrilateral (Q4, Q9 and Q16) and triangular (T 3,
T 6 and T 10) finite elements. The commercial finite element
software ’COMSOL’ is used for the finite element simula-
tions. Similar to the finite element terminology, a grid point
of a Cartesian mesh will be called a node. In order to com-
pare the accuracy of the new techniquewith FEM, the relative
error e j for the function u at the j th node is defined as:

e j = | unumj − uexactj |
uexactmax

, j = 1, 2, . . . , N . (27)

The maximum relative error emax for the function u is
defined as:

emax = max
j

e j , j = 1, 2, . . . , N . (28)

In Eqs. (27)–(28) the superscripts ′num′ and ′exact ′ cor-
respond to the numerical and exact solutions, N is the total
number of nodes used in calculations, uexactmax is the maximum
absolute value of the exact solution for the function u over
the entire domain. In order to compare the efficiency of the
conventional finite elements and the new approach, two test
problems are considered with the following exact solutions
to the Helmholtz equation (Eq. (1) with a = 1):

u(x, y) = sin(2πx)cos(2π y) (29)

with k2 = 8π2 and zero loading function f = 0; and

u(x, y) = sin[π(4x + y)]cos[π(2x − 3y)] (30)

with k2 = 1 and non-zero loading function f (x, y) =
cos[π(2x − 3y)]sin[π(4x + y)] − 10π2(2sin[π(6x − 2y)]
+ sin[2π(x + 2y)]). For the screened Poisson equation (Eq.
(1) with a = −1), we consider another test problem with the
following exact solution:

u(x, y) = e4π(x−1)cos(2π y) (31)

with k2 = 12π2 and zero loading function f = 0.
Let us consider a trapezoidal plate OPQR with circular

and quadrilateral holes; see Fig. 3a. Fig. 3 also shows the
Cartesian mesh used for the new approach as well as exam-
ples of typical quadrilateral and triangular meshes generated
by COMSOL for the conventional finite elements. As can be
seen from Fig. 3b, for the new approach the two grid lines of
the Cartesian mesh are matched with the edges OP and OR
for simplicity. The 9-point uniform and non-uniform sten-
cils are constructed according to the procedures presented in
the previous section; see also Figs. 1 and 2. In Sect. 3.1,
we solve the test problems for the trapezoidal plate with
the Dirichlet boundary conditions imposed along the entire
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Fig. 3 A trapezoidal plate OPQR (θ = 130o) with a circular hole of
radius 0.25 centered at S(0.6, 0.35) and a quadrilateral hole ABCD
(A(0.2, 0.95), B(0.8, 0.75), C(0.75, 1.05), D(0.35, 1.2)) (a) as well
as the Cartesian mesh for the new approach (b). Examples of typical

quadrilateral (c) and triangular (b) finite element meshes generated by
the commercial software COMSOL for the discretization of the plate
OPQR

Fig. 4 The distribution of the exact solutions for the function u(x, y)
(a, c) and the relative error e(x, y) (b, d) of the numerical solutions
on the trapezoidal plate (see Fig. 3a). The numerical solutions of the

2− D Helmholtz equation with zero (a, b) and non-zero (c, d) loading
functions and theDirichlet boundary conditions are obtained by the new
approach on the square (by = 1) Cartesian mesh of size h = 1/32

boundary. For the same test problems, the Neumann bound-
ary conditions along a part of the boundary and the Dirichlet
boundary conditions along the remaining part of the bound-
ary are considered in Sect. 3.2. In Sect. 3.3, a test problem for
the screened Poisson equation with the exact solution given
by Eq. (31) is solved. All boundary conditions are calculated
according to the exact solutions, Eqs. (29)–(31).

3.1 The Dirichlet boundary conditions

Two test problems for the trapezoidal plate (see Fig. 3a) with
the Dirichlet boundary conditions along the entire boundary
are solved by the new approach and by the conventional finite
elements. The exact solutions for these problems are given by
Eqs. (29) and (30). Fig. 4 shows the distribution of the exact
solutions for the function u as well as the distribution of the

relative error e of the numerical solutions obtained by the
new approach on the square (by = 1) Cartesian mesh of size
h = 1/32. It can be seen from Fig. 4b,d that the numerical
results obtained by the new approach on this mesh are very
accurate (the errors are very small).

In order to compare the accuracy of the numerical solu-
tions obtained by the new approach and by the conventional
finite elements, Fig. 5 shows themaximum relative error emax

as a function of the number N of degrees of freedom in the
logarithmic scale. Because the mesh size h ≈ 1/

√
N for the

new approach, then the slope of the curve 1 at large N (small
h) in Fig. 5 approximately corresponds to the order of con-
vergence of the new approach (the same is valid for Figs. 7
and 9a below). As can be seen from Fig. 5, at the same N the
numerical results obtained by the new approach are much
more accurate than those obtained by the linear and high-

123



1198 Computational Mechanics (2020) 65:1189–1204

(b)(a)

Fig. 5 The maximum relative error emax for the trapezoidal plate (see
Fig. 3a) as a function of

√
N atmesh refinement in the logarithmic scale;

N is the number of degrees of freedom. The numerical solutions of the
2−D Helmholtz equation with zero (a), non-zero (b) loading functions
and the Dirichlet boundary conditions are obtained by the new approach

on square (by = 1) Cartesian meshes (curve 1); by the conventional lin-
ear (curves 2 and 5) and high-order (curves 3,4,6,7) finite elements on
triangular (curves 2–4) and quadrilateral (curves 5–7) meshes. Symbols
�, +, ©, ∗, ×, � and 
 correspond to the results for the different N
used in the calculations

Fig. 6 The distribution of the relative error e(x, y) of the numerical
solutions for the trapezoidal plate shown in Fig. 3a; see Fig. 4a, c for
the distribution of the exact solutions for the function u . The numerical
solutions of the 2−DHelmholtz equationwith zero (a) and non-zero (b)
loading functions and the combined Neumann and Dirichlet boundary
conditions are obtained by the new approach on the square (by = 1)
Cartesian mesh of size h = 1/32

order (quadratic and cubic) finite elements. This increase in
accuracy is impressive considering the fact that the high-
order finite elements have much wider stencils compared to
those for the new approach (the width of the stencils for the
new approach corresponds to that for the conventional linear
quadrilateral finite elements). Therefore, for a given accuracy
the new approach requires a significantly less computation
time compared to that for the conventional finite elements.

3.2 The Neumann boundary conditions

Here, the same test problems for the trapezoidal plate (see
Fig. 3a) as in Sect. 3.2 are solved with the combined Neu-
mann andDirichlet boundary conditionswhere theNeumann
boundary conditions along the two holes and boundary QR
as well as the Dirichlet boundary conditions along bound-
aries OP , PQ and OR are imposed according to the exact

solutions given by Eqs. (29) and (30). Fig. 6a,b shows the
distribution of the relative error e of the numerical solutions
obtained by the new approach on the square (by = 1) Carte-
sian mesh of size h = 1/32 (see Fig. 4a,c for the distribution
of the exact solutions). It can be seen from Fig. 6a,b that the
numerical results obtained by the new approach on this mesh
are accurate for the Neumann boundary conditions as well
(the errors are small).

Similar to Fig. 5, Fig. 7 shows the maximum relative error
emax as a function of the number N of degrees of freedom
in the logarithmic scale. As can be seen from Fig. 7, at the
same N the numerical results obtained by the new approach
are more accurate than those obtained by the linear and high-
order (quadratic and cubic) finite elements.

In order to study the convergence and stability of the
numerical results obtained by the new approach in more
detail, Fig. 8 presents the curves 1 in Figs. 5a and 7a at small
changes of the mesh size h (curves 1 and 2 in Fig. 8 corre-
spond to curves 1 in Figs. 5a, 7a, respectively). For this study,
we solve the test problem on 1500 Cartesian meshes with the
mesh sizes hi = h1 + (h2−h1)(i−1)

1499 with h1 = 1/8 = 0.125,
h2 = 1/100 = 0.01 and i = 1, 2, . . . , 1500. As can be
seen form Fig. 8, the numerical results obtained by the new
approach monotonically converge with the decrease in the
grid size h for the Dirichlet boundary conditions; see curve 1
in Fig. 8. For the combinedNeumann andDirichlet boundary
conditions, the new approach shows small oscillations in the
convergence curve; see curve 2 in Fig. 8. Atmesh refinement,
these oscillations become smaller at small h. This oscillatory
behavior can be explained by a) the complicated dependency
of the leading terms of the local truncation error on the coef-
ficients di and b) at small variations of the mesh size h, there
is a discontinuous change in the location of the grid points
with respect to the irregular boundary (e.g., some grid points
that are the internal points for the previous mesh can move to
the boundary or outside the boundary for the next mesh); this
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(b)(a)

Fig. 7 The maximum relative error emax for the trapezoidal plate (see
Fig. 3a) as a function of

√
N at mesh refinement in the logarithmic

scale; N is the number of degrees of freedom. The numerical solutions
of the 2 − D Helmholtz equation with zero (a), non-zero (b) loading
functions and the combined Neumann and Dirichlet boundary condi-

tions are obtained by the new approach on square (by = 1) Cartesian
meshes (curve 1); by the conventional linear (curves 2 and 5) and high-
order (curves 3,4,6,7) finite elements on triangular (curves 2–4) and
quadrilateral (curves 5–7) meshes. Symbols �, +, ©, ∗, ×, � and 

correspond to the results for the different N used in the calculations

Fig. 8 The logarithm of the maximum relative error emax as a function
of the mesh size h for the trapezoidal plate (see Fig. 3a). The numerical
solutions of the 2 − D Helmholtz equation with zero loading function
and the Dirichlet boundary conditions (curve 1); and the combined
Neumann and Dirichlet boundary condition (curve 2) are obtained by
the new approach on square (by = 1) Cartesian meshes. Symbol© and
� correspond to the results for the different h used in the calculations

leads to the discontinuous change of some stencils equations
for the meshes with the small difference in h. It is important
to mention that small oscillations in the numerical conver-
gence curves are typical for many numerical techniques on
irregular domains at small variations of h. For example, the
change in the angles of the finite elements at small varia-
tions of the element size h also leads to such oscillations
in the convergence curves for the finite element techniques.
We should also mention that the convergence curves similar
to those in Fig. 8 were obtained for test problem with the
non-zero loading function solved by the new approach.

3.3 The screened Poisson equation

The test problem for the trapezoidal plate (see Fig. 3a) with
the Dirichlet boundary conditions along the entire boundary
and the exact solution given by Eq. (31) is solved here by

the new approach and by the finite element method. Similar
to Fig. 5, Fig. 9a shows the maximum relative error emax

as a function of the number N of degrees of freedom in the
logarithmic scale. As can be seen from Fig. 9a, at the same
N the numerical results obtained by the new approach are
much more accurate than those obtained by the linear and
high-order (quadratic and cubic) finite elements.

In order to study the convergence and stability of the
numerical solutions obtained by the new approach for the
screenedPoisson equation,we solve the same test problemon
1500 Cartesian meshes with a small variation of the grid size
h (see the previous Sect. 3.2 for the selection of h). Fig. 9b
presents the convergence curve for 1500 Cartesian meshes.
As can be seen, the new approach shows small oscillations in
the convergence curve in Fig. 9b. At mesh refinement, these
oscillations become smaller at small h. The explanations of
these oscillations are discussed in the previous Sect. 3.2.
We should mention that similar numerical results have been
obtained by the new approach and by the finite elements for
the screened Poisson equation with the Neumann boundary
conditions as well.

It can be concluded that at the same number of degrees
of freedom, the new approach yields much more accurate
results compared to those obtained by the linear and high-
order (quadratic and cubic) finite elements used for the 2−D
Helmholtz and screened Poisson equations. It is worth to
mention that the high-order finite elements have much wider
stencils and require a greater computational time compared
to that for the new approach.

4 Concluding remarks

Most of the numerical techniques for the solution of partial
differential equations finally reduce to a system of discrete
or semi-discrete equations. However, in many cases the cor-
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(b)(a)

Fig. 9 The logarithm of the maximum relative error emax for the trape-
zoidal plate (see Fig. 3a) as a function of Log10

√
N (a) and as a function

of mesh size h (b) at mesh refinement; N is the number of degrees of
freedom. The numerical solutions of the 2− D screened Poisson equa-
tion with zero loading functions and the Dirichlet boundary conditions

are obtained by the new approach on square (by = 1) Cartesian meshes
(curve 1); by the conventional linear (curves 2 and 5) and high-order
(curves 3,4,6,7) finite elements on triangular (curves 2–4) and quadrilat-
eral (curves 5–7) meshes. Symbols �, +, ©, ∗, ×, � and 
 correspond
to the results for the different N (a) and h (b) used in the calculations

responding stencil equations of these systems do not provide
an optimal accuracy. The idea of the new approach consists
in the direct optimization of the coefficients of the stencil
equations and it is based on the minimization of the order of
the local truncation error. The form and width of the sten-
cil equations in the new approach are assumed (e.g., as it is
assumed for the finite-difference method) or can be selected
similar to those for known numerical techniques (in this case
the accuracy of the known numerical techniques can be sig-
nificantly improved by the modification of the coefficients
of the stencil equations). Another idea of the new approach
is the use of simple Cartesian meshes for complex irregular
domain. In the considered paper the new approach has been
applied to the space discretization of the time-independent
Helmholtz equation. 9-point stencils in the 2-D case that are
similar to those for the linear quadrilateral finite elements
are considered in the paper. The main advantages of the sug-
gested technique can be summarized as follows:

• The idea of the minimization of the order of the local
truncation error of stencil equations can be easily and
efficiently applied to the development of new numeri-
cal techniques with an optimal accuracy as well as to
the accuracy improvement of known numerical methods.
The new approach can be equally applied to regular and
irregular domains. In contrast to many fictitious domain
numerical methods, the new approach uses the exact
Dirichlet andNeumann boundary conditions at the actual
boundary points without their interpolation using the
Cartesian grid points.

• In contrast to the finite-difference techniques with the
coefficients of the stencils calculated through the approx-
imation of separate partial derivatives, the entire partial
differential equation is used for the calculation of the

stencil coefficients in the new approach. This leads to the
optimal accuracy of the proposed technique.

• At the same computation costs, the new approach yields a
much higher order of accuracy than other numerical tech-
niques; e.g., than the finite elements. For example, at the
similar 9-point stencils, the accuracy of the new approach
is twoorders higher than that for the linear finite elements.
The numerical results for irregular domains also show
that at the same number of degrees of freedom, the new
approach is even much more accurate than the quadratic
and cubic finite elements with much wider stencils. This
also means that at a given accuracy, the new approach
significantly reduces the computation time compared to
known numerical techniques.

• Similar to our recent results for regular domains in
[73], the order of accuracy of the new approach for the
Helmholtz equation on irregular domains with square
Cartesian meshes is higher than that with rectangular
Cartesian meshes.

• In contrast to the finite elements, spectral elements, iso-
geometric elements and other similar techniques used for
irregular domains, the new approach uses trivial Carte-
sian meshes that requires a negligible computation time
for their preparation.

• The new approach does not require the time consuming
numerical integration for finding the coefficients of the
stencil equations; e.g., as for the high-order finite, spec-
tral and isogeometric elements. For the new technique,
the coefficients of the stencil equations for the grid points
located far from the boundary are calculated analytically.
For the grid points located close to the boundary (with
non-uniform and cut stencils), the coefficients of the sten-
cil equations are calculated numerically by the solution
of very small local systems of linear algebraic equations.
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• It has been shown that the Helmholtz and screened Pois-
son equations can be uniformly treated with the new
approach.

In the future we plan to consider the stencils with a larger
numbers of grid points for a higher order of accuracy (sim-
ilar to the high-order finite elements or to the high-order
finite-difference techniques), to consider a mesh refinement
with uniform Cartesian meshes using special stencils for the
transition from a fine mesh to a coarse mesh, to consider
other boundary conditions (e.g., the Robin conditions), to
extend the approach to the 3-D case, to solve real-world
problems with the new approach. We also plan to study the
application of the new approach to more complicated scalar
PDEs and systems of PDEs that include mixed derivatives
and higher-order derivatives. For example, in [108] we suc-
cessfully applied the new approach on regular domains to
a system of 2-D elasticity equations that include two PDEs
with mixed derivatives.

Acknowledgements The research has been supported in part by the
NSF Grant CMMI-1935452 and by Texas Tech University.

Appendix A: The coefficients bp used in Eq.
(10) in Sect. 2.1.

The first five coefficients bp (p = 1, 2, . . . , 5) used in Eq.
(10) are presented below. All coefficients bp used these for-
mulas are given in the attached file ’b-coeff-1.pdf’

Eq. (10):

b1 = k1 + k2 + k3 + k4 + k5 + k6 + k7 + k8 + k9

b2 = −d1k1 + d3k3 − d4k4 + d5k6 − d6k7 + d8k9

b3 = by(−d1k1 − d2k2 − d3k3 + d6k7 + d7k8 + d8k9)

b4 = −d12k1
2

− d32k3
2

− d42k4
2

− d52k6
2

− d62k7
2

−d82k9
2

+ m1 + m2 + m3

+m4 + m5 + m6 + m7 + m8 + m9

b5 = by(d1
2k1 − d3

2k3 − d6
2k7 + d8

2k9)

Appendix B: The coefficients bp used in Eq.
(10) for the Neumann boundary conditions in
Sect. 2.2.

The first five coefficients bp (p = 1, 2, . . . , 5) used in Eq.
(10) are presented below. All coefficients bp used these for-
mulas are given in the attached file ’b-coeff-2.pdf’

Eq. (10):

b1 = k1 + k2 + k3 + k4 + k5 + k6 + k7 + k8 + k9

b2 = − d1k1 + d3k3 − d4k4 + d6k6 − d7k7 + d9k9

+ k̄1n11 + k̄2n12 + k̄3n13 + k̄4n14

+ k̄5n15 + k̄6n16 + k̄7n17 + k̄8n18

+ k̄9n19

b3 = by(−d1k1 − d2k2 − d3k3 + d7k7 + d8k8

+ d9k9) + k̄1n21 + k̄2n22 + k̄3n23

+ k̄4n24 + k̄5n25 + k̄6n26 + k̄7n27

+ k̄8n28 + k̄9n29

b4 = −d21k1
2

+ d1k̄1n11 − d23k3
2

− d3k̄3n13 − d24k4
2

+ d4k̄4n14 − d26k6
2

− d6k̄6n16

− d27k7
2

+ d7k̄7n17 − d29k9
2

− d9k̄9n19 + m1 + m2

+m3 + m4 + m5 + m6 + m7 + m8 + m9

b5 = by(d
2
1k1 − d1k̄1n11 − d2k̄2n12 − d23k3

− d3k̄3n13 − d27k7 + d7k̄7n17 + d8k̄8n18

+ d29k9 + d9k̄9n19) − d1k̄1n21 + d3k̄3n23

− d4k̄4n24 + d6k̄6n26 − d7k̄7n27

+ d9k̄9n29
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