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Abstract
A novel numerical method is proposed for the solution of transient multi-physics problems involving heat conduction,
electrical current sharing and Joule heating. The innovation consists of a mesh-free Monte Carlo approach that eliminates or
drastically reduces the particle scattering requirements typical of conventionalMonte-Carlo methods. The proposed algorithm
encapsulates a volume around each point that affects the solution at a given point in the domain; the volume includes other
points that represent small perturbations along the path of energy transfer. The proposed method is highly parallelizable and
amenable for GPU computing, and its computational performance was substantially increased by the elimination of scattered
interpolation. The accuracy and simulation time of the proposed method are compared against a finite element solution and
also against experimental results from existing literature. The proposed method provides accuracy comparable to that of finite
element methods, achieving an order of magnitude reduction in simulation time.

Keywords Mesh-free methods · Multiphysics simulation · Multi-scale systems · Monte-Carlo · Parallel computing ·
Superconducting quench

1 Introduction

Multiphysics boundary and initial value problems involve the
simultaneous solution of partial differential equations on the
spatial and time domains. Such problems are solved in state-
of-the-art software using conventional numerical methods
such as the finite difference method (FDM), finite volume
method (FVM) or finite element method (FEM). Implicit
versions of these methods involve matrix inversions, where
the size of the matrices grows with the number of ele-
ments being used. Multi-scale multiphysics problems, where
elements of significantly different dimensions are adjacent
(e.g., a coil element and its insulation) can quickly become
intractable with existing software tools, given the largemem-
ory requirements and prohibitive simulation time associated
with a sufficiently large mesh needed to represent such ele-
mentswhile achieving reasonable accuracy. TheMonteCarlo
Method (MCM) [1–10] has emerged as an effective approach
to solve boundary and initial value problems in systems that
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can be prohibitive to simulate by the conventional methods
mentioned above.MCMrelies on randomnumber generation
to solve themulti-dimensional integration associatedwith the
solution of boundary value problems and can be implemented
as either an on-grid or gridless method [11–14]. In mesh-free
MCM, all points in the solution domain are solved inde-
pendently, eliminating the requirement of generating a mesh
and inverting the correspondingly (large) matrix, enabling
to focus the solution in specific regions of interest with-
out having to mesh and solve the entire domain [15–19].
Since the time history of each point in the domain can be
solved independently, MCM is well suited for implementa-
tion in highly parallel platforms such asGPUcomputers.Haji
Sheikh et al. [20] introduced both grid-based and grid-free
Monte-Carlo methods to solve heat conduction problems in
homogeneous media. Their method calculates the tempera-
ture at any point in the domain by adding the contributions of
all probable sources around the point (sink)where energy can
be received from. A novel version proposed by the authors
extends this approach to nonlinear heat conduction in mul-
tilayer composite media [21–23]. These methods require
scattering random particles and performing scattered inter-
polation to identify the value associated with each carrier
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particle in the physical domain. Computation of scattered
interpolation is a very time-consuming step. In this paper,
a novel approach is presented to significantly reduce simu-
lation time in MCM by eliminating scattered interpolation
at every step-length or iteration. Furthermore, this study
addresses heat transfer in the presence of a very thin layer
in a composite structure. The proposed method was demon-
strated in the transient simulation of conductive heat transfer
in a multiscale composite material with nonlinear material
properties.

Various Mesh-free methods have been used to solve ini-
tial and boundary value problems such as heat conduction.
Smoothed Particle Hydrodynamic (SPH) is one of the most
prominent approaches. SPH [24] was originally described in
astrophysics to model the motion of stars. SPH has been
used in fluid mechanics and other applied physics prob-
lems, from large deformations in explosion events to heat
transfer. A key aspect in SPH is the definition of a kernel
function to avoid singularities in discrete physical systems.
In 1999, Cleary [25] provided the formulation of heat con-
duction using SPH. The Mesh Free Galerkin (MFG) method
is another important approach introduced in the early 1990s.
MFG updates the kernel particle interpolant by an advanced
version of the moving least squares (MLS) method to solve
differential equations. Shepards interpolant [26] is also a ver-
sion of MFG. Several other mesh-free methods have been
used to obtain the thermal solution in a heat conduction
problem, such as Finite Point Method [27], Boundary Knot
Method [28], Radial Point Interpolation Method [29], etc.
The proposed EFV method has significant advantages rel-
ative to these methods in that it performs a nearest point
interpolation in the geometry around the energy transfer
path only once (before starting a time iteration) and uses
it to eliminate/minimize the requirement of scattered inter-
polation, leading to a significant reduction in simulation
time.

In this paper, the derivation of the governing equations
is shown in Sect. 2. The steady-state solution of the cen-
ter point temperature in a sphere is combined with the
transient Monte-Carlo solution. A modification is proposed
to take thin layers into account. The governing equations
for electric current sharing are obtained from combina-
tion of the steady-state solutions at the center point in a
sphere and the steady-state Monte-Carlo solution. Next, the
Joule heating equations are presented. Finally, the EFV
algorithm is explained. Section 3 describes an example
(quench in a superconducting tape) that considers the physics
described above. The EFV method is verified numerically
and experimentally in two different scenarios. Section 4
shows performance of the EFV method against FEM in
terms of simulation time; and Sect. 5 provides conclu-
sions.

Fig. 1 Coupling of numerical models in the proposed multiphysics
problem

2 Formulation andmethod

The multiphysics problem used to illustrate the proposed
approach consists of the simulation of simultaneous heat
conduction, electrical current sharing, and Joule heating.
The governing equations and related modifications will be
first presented to illustrate how the method can be extended
to other multiphysics problems. Figure 1 shows the cou-
pling scheme of the numerical models contributing to the
proposed multiphysics problem, where T stands for tem-
perature which is both spatial and time dependent. Time
is shown as τ and r , θ and φ represent spherical coordi-
nates: radius, elevation angle and azimuth angle, respectively.
V is voltage, J is electric current density and Q is heat
generated by Joule heating. α and σ are temperature depen-
dent thermal diffusivity and electrical conductivity, respec-
tively.

2.1 Heat transfer

A mesh-free method to solve transient heat conduction in
composite structures has been shown in [22] and [23].
First, the steady-state solution of the temperature at the
center of a sphere is derived, in a domain with space
and temperature dependent thermal properties. To address
time dependency, the distribution functions of transient
floating random walk Monte-Carlo method in homoge-
nous domains are used in combination with the steady-
state solution. This also enables the evaluation of material
properties in composite domains, as required to perform
numerical integration. In this section, the proposed meth-
ods, their shortcomings and proposed solutions are dis-
cussed.
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2.1.1 Steady-state conduction

The equation for the steady-state heat diffusion in spherical
coordinates is:

1

r2sin2 (θ)

∂

∂ϕ

(
k (r , θ, ϕ)

∂T (r , θ, ϕ)

∂ϕ

)

+ 1

r2sin (θ)

∂
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(
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∂
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(
k (r , θ, ϕ) r2

∂T (r , θ, ϕ)

∂r

)
= 0

(1)

Starting from (1), one can reach its integral form [Eq. (2)] by
integrating from 0 to 2π in the azimuthal direction, from 0
to π in the elevation direction and from 0 to r in the radial
direction:

∫ 2π

0

∫ π

0
sin(θ)r2k (r , θ, ϕ)

∂T (r , θ, ϕ)

∂r
dθdϕ = 0 (2)

The temperature at the center of the sphere based on the tem-
perature of the particles in its vicinity forming a spherical
region is defined using the coordinate transformations (3)–
(5):

η =
∫ r
0

dr ′
k(r ′,θ,ϕ)r2sin(θ)∫ R

0
dr ′

k(r ′,θ,ϕ)r2sin(θ)

(3)

f =

∫ θ

0
dθ ′∫ R

0
dr ′

k(r ′,θ ′,ϕ)r2sin(θ)∫ π

0
dθ ′∫ R

0
dr ′

k(r ′,θ ′,ϕ)r2sin(θ)

(4)

g =

∫ ϕ

0

∫ π

0
dθ ′dϕ′∫ R

0
dr ′

k(r ′,θ ′,ϕ′)r2sin(θ)∫ 2π
0

∫ π

0
dθ ′dϕ′∫ R

0
dr ′

k(r ′,θ ′,ϕ′)r2sin(θ)

(5)

Applying the coordinate transformations to Eq. (2) yields the
transformed integral shown in Eq. (6). Integrating from 0 to
1 with respect to η, yields (7):

∫ 1

0

∫ 1

0

∂T (η, f , g)

∂η
d f dg = 0 (6)

∫ 1

0

∫ 1

0
(T R − TC )d f dg = 0 (7)

The central temperature in the sphere (TC ) is shown in Eq. (8)
based on T (R, θ, ϕ) (temperature of sources around the cen-
ter), where the thermal conductivity K is replaced by the
thermal diffusivity α; the detailed derivation is shown in
[23]:

TC =

∫ 2π
0

∫ π

0
sin(θ)r2T (R,θ,ϕ

)
∫ R
0

dr ′
α(r ′,θ,ϕ)

dθdϕ

∫ 2π
0

∫ π

0
r2sin(θ)∫ R
0

dr ′
α(r ′,θ,ϕ)

dθdϕ
(8)

2.1.2 Monte-Carlo transient conduction

The floating random walk Monte-Carlo solution of three-
dimensional transient heat conduction in homogenous media
has been presented byHaji Sheikh et al. in [20]. Potential the-
ory is used to describe the energy flow between source and
sink. Starting from the transient heat conduction equation in
spherical coordinates (1), the Monte-Carlo solution for the
temperature at the center of a sphere at (x, y, z) is shown
in Eq. (9) [30]; Eqs. (10)–(12) are probability functions in
azimuth (ϕ), elevation (θ ) and radial direction (r ), respec-
tively. The parameter (τ ) is the time step.

T (x, y, z, t) =
∫ 1

F=0

∫ 1

G=0

∫ t

τ=0
T (r , ϕ,θ,t−τ) dFdGdH (3)

(9)

F (ϕ) = ϕ

2π
(10)

G (θ) = 1

2
(1−cosθ) (11)

H (3)
(ατ

r2

)
= 1 + 2

∞∑
k=1

(−1)kexp

(−k2π2ατ

r2

)
(12)

Calculation of step-length, elevation and azimuth angles
for probable sources around each point requires generat-
ing random numbers RN1–RN3 as arguments to the inverse
functions of Eqs. (10)–(12), shown in Eqs. (13)–(16). The
corresponding curve fit coefficients Di , (i = 1−4) are shown
in Table 1 [23,30,31]. The outcomes of Eqs. (13)–(16) are fed
to Eq. (8) to conduct numerical integration and calculate the
transient heat conduction in a composite layered structure.

ϕ = 2π(RN1) (13)

θ = cos−1[1 − 2(RN2)] (14)
ατ

r2
= D1 + D2(RN3) + D3(RN3)

2

+ D4(RN3)
3 RN3 < 0.6 (15)

ατ

r2
= − 0.10132 ln[0.5(1 − RN3)] RN3 ≥ 0.6 (16)

2.1.3 Limitations

In the method presented above, the boundary value problem
is solved by peripheral integration of the temperature at the
boundaries, while the material properties inside the sphere
along the path of energy transfer from source to sink are taken
into account. To obtain material properties inside the sphere,
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Table 1 Coefficients of the inverse probability function (15)

RN3 D1 D2 D3 D4

0.0–0.1 0.079578 0.079621 0.058919 0.048997

0.1–0.3 0.079515 0.081077 0.048261 0.074542

0.3–0.6 0.070722 0.150740 −0.13699 0.240830

the algorithmdivides the step-lengths r in an equal number of
steps, then considers the thermal diffusivity at these points in
the integration of Eq. (8). Figure 2a illustrates this approach
in a cross section of a composite material where each layer
has been defined by K points using a Halton set sequence.
In this figure, only one particle (source of energy) is shown,
but bear in mind that several particles are scattered around
point K as defined by Eqs. (13)–(16) to find the uniform
distribution of probable sources around the sink. Particle J
depicts the j th probable source for point k ∈ K . The step-
length r is divided into M = 5 sub step-lengths, dr . Before
performing the peripheral integration (8), the location of par-
ticle J and points in between point K and particle J should
be calculated, since they do not coincide with the location
of points in K . Then, the temperature of particle J and the
thermal diffusivity of points between α2 and α5 should be
calculated. Since k ∈ K , α1 is known from the initial condi-
tion or the previous time step. Scattered interpolation is the
usual method to obtain these values—this is a significantly
time consuming step. Figure 2b illustrates a shortcoming on
this approach when simulating a multi-scale geometry. A
very thin layer of material 2 is sandwiched between materi-
als 1 and 3. The substantial difference in thickness defines
a multi-scale geometry problem. In Figure 2b, none of the
acquisition points between point k and particle J may fall
in the narrow layer, and therefore material properties of this
layer are not taken into account for the calculation of the
center point temperature. A simple solution to address this
issue is to increase the number of divisions such that size
of each sub step-length is smaller than the size of the thin
layer—this, however, leads to a very large number of sub
step-lengths and therefore a prohibitive increase in simula-
tion time. Furthermore, in someproblems the initial condition
is not homogenous in all layers, or heat generationmay occur
in the middle thin layer. In these cases, using only particle
J ′s temperature in the calculation of heat propagation is not
sufficient: one should acquire the temperature of all points in
between sink and source in addition to their material proper-
ties and consider all in the central temperature calculation.

2.1.4 Proposed approach: the effective floating volume

The issues mentioned above require modifications of the
original method that can address these shortcomings. The

Fig. 2 A thin layer in a multi-scale domain using the division algorithm

proposed approach is called effective floating volume (EFV)—
it meets accuracy requirements while providing significantly
smaller simulation time. In the transient solution, step-length
is calculated using Eqs. (15)–(16). A random number 0 ≤
RN3 ≤ 1 is generated, and C(RN3) is obtained by replacing
RN3 in Eqs. (15)–(16). The step-length r is then calculated
as:

ατ

r2
= C(RN 3) �⇒ r =

(
ατ

C(RN 3)

)1/2

(17)

where C(RN3) is constant for each individual r . If the time
step τ is constant during simulation, the magnitude of r for
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Fig. 3 Extracting an effective floating volume around point m using other points that define the geometry. (Color figure online)

each particle (probable source) depends only on the ther-
mal diffusivity α. In nonlinear materials, thermal diffusivity
can be a temperature dependent parameter. In that case, the
maximum step-length for each point is found using Eq. (18),
where αmax is the maximum value of thermal diffusivity in
the temperature range, andC(RN3)min is theminimumvalue
of the right-hand side of Eqs. (15)–(16):

Rmax =
(

αmaxτ

C(RN 3)min

)1/2

(18)

Figure 3a shows the three-dimensional representation of an
“effective floating volume” around one point out of K points
that define the geometry. Consider point m ∈ K : ten prob-
able sources around m are displayed in the cross section of
compositemedia shown in Fig. 3b.Out of K points represent-
ing the geometry, the points encapsulated in the sphere with
radius Rmax are chosen for further steps. This is the maxi-
mum number of points that may participate in the solution at
pointm. Changing temperature can only reduce the radius of
this sphere, since it is directly related to the temperature-
dependent thermal diffusivity, and its maximum value is
already taken into account in the calculation of Rmax . Each
probable source is shown as Pj | 1 < j < J , J = 10. Fig-
ure 3c illustrates the next step, in which points surrounding
the energy transfer path from each probable source to sink
m are separated and labeled Slice j | 1 < j < J . The vol-
ume around point m formed by points in the slices is used
to perform the closest distance calculation. Each slice is a

three-dimensional pyramidal volume, and only its cross sec-
tion is shown here for the sake of clarity; some points have
been added on the boundaries and interfaces between lay-
ers. Alternatively, the boundary and interface points for each
layer can be extracted using the convex hull algorithm. Then,
the points participating in the solution at point m are chosen
among points in the slices. Figure 3d illustrates this step for
Slice4. The line between point m and P4 is defined by V1
and V2; the distance of each point in Slice4 to the line V1V2
is:

Di = ‖(Pi − V2) × (V1 − V2)‖/‖V1 − V2‖ (19)

wherePi is the coordinate of the i th point in Slice4 and Di is
the shortest distance to the line.This process is repeated for all
slices around pointm. The steps described in Fig. 3b, c reduce
the computational load of Eq. (19) by avoiding performing
the calculation for all K points, significantly reducing sim-
ulation time. Equation (19) is evaluated at points in both
the material layers and the interfaces between layers, which
ensures the correct definition of boundaries and interfaces
when computing the solution at point m; effective floating
points in layers are shown with red star markers and on inter-
faceswith yellow starmarkers. Figure 3e shows the “effective
floating volume” for point m formed by the points around it.
The assumption is that all acquisition points share the energy
transfer path from associated source to sink. To meet this
assumption, the acquisition points must be able to slightly
move. These points also participate in the solution of other
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Fig. 4 Contributing variables in Eq. (22) in case of a thin layer

points in the geometry, and may be required to move in other
directions to coincide with the path of energy transfer for
those points. The word “Floating” is used to represent the
ability of points in the domain to meet this assumption. Sim-
ilar to other numerical methods (such as finite elements or
finite differences) in whichmodel accuracy is directly related
to the number of elements, point density affects the accuracy
of the proposed method, with error converging to zero as the
number of points (elements) becomes increasingly larger.All
steps needed to find an effective floating volume around each
point are performed only once, before starting computing the
solution in successive time iterations. At each time step, the
steplengths of probable sources around each point will either
be equal to their maximum values or will be smaller. In the
first case, all effective floating points participate in the solu-
tion; in the second case, only the acquisition points whose
radii are smaller than the corresponding steplength partici-
pate. If the number of acquisition points (M) is large enough
to neglect the distance froma probable source (at the tip of the
steplength) to the closest acquisition point in the respective
direction, the interpolation process can be eliminated while
keeping an acceptable bound in error. Otherwise, it is only
required to do interpolation for the temperature and material
properties of a probable source at the tip of the steplength,
since the temperature and material properties of all other
acquisition points in between are known either from the ini-
tial condition or from a previous time step in the solution.
This reduces the use of scattered interpolation by a factor of
1/M .

Equation (8) takes into account the temperature at the
boundary and the material properties of all acquisition points
inside the sphere. To include nonhomogeneous initial con-
ditions, heat generation in a thin layer, etc. in the solution
of a central temperature, the temperature of all acquisition
points needs to participate in the solution equation. To clar-

ify this, consider the energy transfer path from P4 to point m
in Fig. 3d, simplified to three acquisition points as shown in
Fig. 4. Starting from the steadystate Eq. (6), the integration
is split in three defined integrals from zero to 1, yielding the
result on Eq. (20), where the expression inside the integral
calculates the contribution of source P4 on the central temper-
ature TC , where dTm = Tm − Tm−1, and m = 2, 3, . . . , M :

TC =
∫ 1

0

∫ 1

0
(T1 + dT 2 + dT 3) d f dg (20)

Using Eqs. (4) and (5), d f dg is equal to:

d f dg =
dθdϕ∫ R

0
dr ′

K(r ′,θ,ϕ)r2sin(θ)∫ 2π
0

∫ π

0
dθ ′dϕ′∫ R

0
dr ′

K(r ′,θ ′,ϕ′)r2sin(θ)

(21)

Substituting Eq. (21) in (20) leads to the general equation for
the central temperature TC :

TC =

∫ 2π
0

∫ π

0
T1(r ,θ,ϕ)+∑M

m=2 dTm (r ,θ,ϕ)∫ R
0

dr ′
sin(θ)r2α(r ′,θ,ϕ)

dθdϕ

∫ 2π
0

∫ π

0
1∫ R

0
dr ′

r2sin(θ)α(r ′,θ,ϕ)

dθdϕ
(22)

Points, acquisition points, sinks, sources, and effective
floating points are all the same points used to define the
geometry of the problem at the beginning of the algorithm.
The role these points take in the process of implementing
the EFV algorithm is an important key to their names. The
geometry (including layers and boundaries) is defined by a
total number K uniformly distributed random points named
by the sub-index k. Sinks and sources around point k are a
subset of the points within the domain. Particles are a phys-
ical representation of energy transport between sources and
sink. The number of particles is defined by the variable J ,
denoted individually by the sub-index j . Once the energy
transfer paths are defined by particles connecting sources
and sink, the EFV algorithm finds the M 
⊂ K number of
closest points to each energy transfer path around the sink.
These points are now called acquisition points for the energy
transfer path j . The acquisition points are hence a subset
of the total k points that define the geometry. The Effective
Floating Volume for sink k consists of J × M acquisition
points around sink k. One should be careful when defining
the number of acquisition points M in the EFV method. The
number of acquisition points should be larger than the max-
imum possible number of boundaries that may be crossed
by the energy transfer path. This assures that layers are well
defined in the EFV algorithm. Increasing the value of M
beyond that means more points are inside the layers in the
EFV. Since a nearest point algorithm is employed to define
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the acquisition points, a large value to M causes far points in
the energy transfer path to be attached to the EFV algorithm,
which not only does not help accuracy butmay increase error.
M should be defined with respect to the point density of the
geometry.We suggest to use the proportion of 6.LET /ADP
to estimate the maximum number for M , where LET stands
for Length of Energy Transfer” for the path between source
and sink and ADP stands for Average Distance of Points” in
the geometry. It is obtained by dividing volume of a cylinder
along the energy transfer path with radius ADP by volume
of each point as an sphere with radius ADP/2.

2.2 Electric current sharing

The current sharing model shown in Fig. 1 calculates the
steadystate distribution of electric potential V at each time
step, and uses it to calculate the electric current density J .
The assumption to model current sharing in heterogeneous
material is that the effect of change in temperaturedependent
electrical conductivity on the electric potential distribution
can be modeled by a succession of steadystate propagation
events. In heterogeneous media, Laplaces equation for the
electric potential V can be written as:

1

r2sin2 (θ)

∂

∂ϕ

(
σ (r , θ, ϕ)

∂V (r , θ, ϕ)

∂ϕ

)

+ 1

r2sin (θ)

∂

∂θ

(
σ (r , θ, ϕ) sin(θ)

∂V (r , θ, ϕ)

∂ϕ

)

+ 1

r2
∂

∂r

(
σ (r , θ, ϕ) r2

∂V (r , θ, ϕ)

∂r

)
= 0

(23)

whereσ is the electrical conductivity. This equation is similar
to the steadystate heat conduction problem; hence, the meth-
ods described in Sects. 2.1.1–2 can be used. The steadystate
electric potential at the center of the sphere is:

VC =

∫ 2π
0

∫ π

0
sin(θ)r2V (R,θ,ϕ)∫ R

0
dr ′

σ(r ′,θ,ϕ)

dθdϕ

∫ 2π
0

∫ π

0
r2sin(θ)∫ R
0

dr ′
σ(r ′,θ,ϕ)

dθdϕ
(24)

The MonteCarlo solution is for the steadystate in this case.
The MonteCarlo formulation for steadystate electric poten-
tial distribution in homogeneous media is similar to that for
temperature in steadystate heat conduction [20]. Equations
(25)–(27) define the steadystate electric potential at the center
point of a sphere, and the corresponding probability functions
in azimuth and elevation directions, respectively. Similarly,
inverse probability functions (13)–(14) can be used to calcu-
late the route of each probable source around the sink.

V (x, y, z) =
∫ 1

F=0

∫ 1

G=0

∫ t

τ=0
V (r , ϕ, θ)dFdG (25)

F (ϕ) = ϕ

2π
(26)

G (θ) = 1

2
(1−cos(θ)) (27)

Since the steadystate problem is not dependent on time, the
MonteCarlo approach suggests finding the furthest probable
sources on the boundaries of the solution domain. Therefore,
the solution for electrical potential at each point comes from
the uniform distribution of sources around it that rest on the
boundary. To account for temperature dependent electrical
conductivity in multiscale composite media, the coordinate
transformations (3)–(5) are applied to Eq. (23), where tem-
perature and thermal diffusivity are replaced by electric
potential and electrical conductivity. After coordinate trans-
formation and splitting the integral in the radial direction,
a relation for the steadystate electric potential V similar to
Eq. (24) is found [Eq. (28)],with electrical resistivityσ where
dVm = Vm − Vm−1, and m = 2, 3, . . . , M .

VC =

∫ 2π
0

∫ π

0
V1(r ,θ,ϕ)+∑M

m=2 dVm (r ,θ,ϕ)∫ R
0

dr ′
r2sin(θ)σ (r ′,θ,ϕ)

dθdϕ

∫ 2π
0

∫ π

0
1∫ R

0
dr ′

r2sin(θ)σ (r ′,θ,ϕ)

dθdϕ
(28)

The acquisition points to solve numerically for electric poten-
tial lay on the longest possible transport path, i.e., from
boundary to sink. If there are enough acquisition points to
meet the accuracy requirements in each time step, they can
be used for coupling the transient heat conduction and electri-
cal current sharing problems. Finding the acquisition points
need to be done only once the step shown in Fig. 2a is not
needed, since acquisition points should touch the boundary.
Once electric potential is found in the domain, the electric
current density J is calculated by Eq. (29), where the sign
indicates that the electric current points toward the decreas-
ing direction of the electric potential gradient:

J (r , θ, ϕ) = − σ (r , θ, ϕ) ∇V (r , θ, ϕ) + ∂D (r , θ, ϕ)

∂τ
(29)

where D in Eq. (29) is current displacement or current
flux density vector, defined as D (r , θ, ϕ) = ∂εE(r ,θ,ϕ)

∂τ

where ε is electrical permittivity and E is the electric field:
E (r , θ, ϕ) = −∇V (r , θ, ϕ).

2.3 Joule heating

Once current density is calculated, one can determine the
electric current passing each point. The electrical resistance
Rof eachpoint k ∈ K canbe calculated using the dimensions
of each layer, the point density of that layer and the electrical
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Fig. 5 YBCO tape and its cross-section, outlined by scattered random points

resistivity of each point at the respective temperature. Know-
ing the electrical current I and electrical resistanceR at each
point, the generated energy Q at each time step due to Joule
heating (resistive dissipation) can be calculated as:

Q(r , θ, ϕ) = R(r , θ, ϕ)I (r , θ, ϕ)2τ (30)

The temperature increment dTk at each point k ∈ K due to
Joule heating can be obtained using Eq. (31), where Cp is
the temperature dependent specific heat andm is the mass of
each point in the domain:

dTk = Q(r , θ, ϕ)/m(r , θ, ϕ)Cp(r , θ, ϕ) (31)

Since heat generation and heat propagation are happening at
the same time, dTk is added to all points before running the
heat propagation algorithm [Eq. (22)], then the temperature
of all points at the corresponding time step is stored.

3 Application example: current sharing
during superconducting quench

Superconducting YBCO tapes (Yttrium Barium Copper
Oxide) are good examples of compositematerials withmulti-
scale geometry. The silver andYBCO layers in this sandwich
structure have a thickness of approximately 3 µm and
1.4 µm, respectively. The YBCO layer is a superconduct-
ing material: it reaches near zero electrical resistance when
persistent mode conditions are met, allowing the supercon-
ducting tape to carry a very large current with no Joule
dissipation. The critical conditions to achieve superconduc-
tivity are a function of temperature, electric current density

andmagnetic field. The transition fromsuperconducting state
to normal conducting state is called quench. When quench
happens, the electric resistivity of the YBCO layer increases
drastically compared to other layers in the tape conductor.
When the electric current passing through the near-zero resis-
tance layer of YBCO reaches a quenched spot, it finds the
lowest resistance path, forcing very large electrical currents
through the stabilizer layers (copper and silver). Since the
electrical resistivity of copper is not zero, Joule heating takes
place. The heat generated in the copper layer propagates in
both longitudinal and transverse directions simultaneously,
raising the temperature in the YBCO layer above its critical
temperature, causing expansion of the quench region in the
direction of the heat transfer. Figure 5 shows the cross sec-
tion geometry of a YBCO tape made of random points. The
layer thicknesses have been scaled to illustrate themulti-scale
geometry of this composite structure. The length of tape to
be considered in this example is 0.01m.

3.1 Effective floating volume (EFV): predictions
compared to finite elements method

Superconducting quench can happenwhen the critical condi-
tions for the superconducting material are exceeded (critical
temperature, critical current density or criticalmagneticfield)
or due to physical impurities in the tape, such as a crack that
leads to a small area of high electrical resistance. To sim-
ulate a quench event, we assumed that a length of 1mm at
one end of the tape has a physical impurity. The electrical
resistivity at this point in the YBCO layer is considered to
be 500 µ�m. Figure 6 shows the temperature dependent
material properties used with both methods (EFV and FEM):
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Fig. 6 Material properties in the YBCO tape as function of temperature

thermal conductivity, heat capacity and electrical resistiv-
ity of the different materials in the superconducting YBCO
tape. Densities are considered constant (8940, 8890, 6390
and 10,490 kg/m3 for copper, substrate, YBCO and Sil-

ver, respectively). A number of directions around the center
points to look for probable sources of energy J = 200 was
used in this example. The maximum number of acquisition
points in the radial direction was set to M = 15. The super-
conducting tape has a terminal on one end with an electrical
current I = 300 A, while the other end is connected to
ground. The same geometry was implemented in a state-of-
the-art finite elementmultiphysics solver (COMSOL), which
will be used as benchmark of accuracy and performance of
the proposed approach. The brick elements are swept along
the length of the conductor. The number of random points
for the EFV computation and the number of nodes in the
FEM simulation was set to approximately 40,000, provid-
ing an equivalent baseline for comparison of accuracy and
simulation time. The initial temperature was 40 K, which
is below the critical temperature of YBCO (approximately
50 K). An electric current I = 300 A passes through the
tape. The simulation is done with a time step of 3.3×10−4 s,
reaching the final time τ = 0.1 s in 300 time steps. Figure 7
shows the temperature rise on points distributed evenly (at
0.25 cm intervals) in the YBCO layer along the length of the
tape versus time. The results from both methods lie within
an error margin that confirms the accuracy of the proposed
EFV method. Figure 8 shows the temperature distribution
(top view) on the superconducting tape at three different
times steps, ranging from the beginning of the simulation
to 0.04 s. Current sharing takes place where the electri-
cal current reaches the quench zone: the current follows a
path through the copper stabilizer layer. Figure 9 shows this
phenomenon, as simulated by the EFV method. Points in
the middle of each layer are shown with different markers.
The distance between points along the length of the tape
is 0.005 m. After 0.03 s, the electric current has changed
its path completely to the stabilizer and silver layers. The

Fig. 7 Superconducting quench
event: FEM versus EFV results
for a 0.1 s simulation
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Fig. 8 Top view of temperature propagation on the YBCO tape in [K ] at a EFV 0.0013 s, b FEM 0.0013 s, c EFV 0.02 s, d FEM 0.02 s, e EFV
0.04 s, f FEM 0.04 s

Fig. 9 Electric current sharing in the YBCO tape during the quench phenomenon
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Fig. 10 Experimental set-up: quench propagation in a short YBCO
tape, presented in [32]–[33]

Fig. 11 Electrical resistivity of YBCO layer against temperature, for
n = 21

dashed line represents current sharing in the simulation done
using FEM.

3.2 Effective floating volume: predictions compared
to experimental measurements

Besides the benchmark against state-of-the-art FEMsoftware
shown above, quench data presented in [32–34] was used to
benchmark the capabilities of the proposed EFV method.
A YBCO tape with the same geometry as shown in Fig. 5
has been experimentally and numerically studied for quench
simulation. Figure 10 shows the experimental setup. Quench
excitation was done using a heater at the center of a 9 cm
long YBCO tape. Since quench propagation is symmetri-
cal, only half the length of the tape was considered in the
simulation. The thermocouples in the experiment were con-
nected to the top stabilizer layer at distances of 0, 1.5 and
2.5 cm to the heater, to acquire the temperature profile (in
time) during quench propagation. The heater half-length is
1.5 mm. The tape is initially at temperature T0 = 70 K. The
experiment was done with a ratio of current to critical cur-
rent I/Icr = 0.5, where the critical current is approximately
Icr = 70 A [33] (Fig. 8a). Equation (32) was used to esti-
mate the electrical resistivity of the YBCO layer, with n =
21 and Ec = 10−4 V/m In the previous section (comparing
EFV and FEM) n = 30 was used; the difference takes into

account the change in material properties of the supercon-
ducting tape in the transition region from superconducting to
normal conducting state after critical temperature Tcr . Fig-
ure 11 shows the electrical resistivity of the YBCO layer for
the given operational conditions and n value.

ρ (B, T , I ) =
{

Ec
Ic(B,T )

·
(

I
Icr (B,T )

)n−1
f or T < Tcr

500 µ� · m f or T > Tcr
(32)

Total simulation timewas set to 10 s tomatch the available
experimental data. The sample time τ = 0.01 s leads to 1000
time steps. The minimum energy that is required to initiate
quench is called minimum quench energy. The minimum
quench energy (MQE) is equal to 0.67 J for I/Icr = 0.5 (in
Table II [34]). The duration of the current pulse applied to the
heater was set to 1 s. At each time step, the energy transferred
to the first 1.5 mm of tape is dMQE = MQE ·τ

duration of pulse . To
calculate the temperature rise at the heater at each time step,
the mean density and mean heat capacity of the portion of
tape under the heater is calculated as:

PM = PCuV fCu + PAgV f Ag + PsubsV fsubs

+PY BCOV fY BCO (33)

Cp_M = Cp_CuV fCu + Cp_AgV f Ag + Cp_subsV fsubs

+Cp_Y BCOV fY BCO (34)

where is themass density (kg/m3) and V f is the volume frac-
tion. The specific heat capacity Cp is updated as function of
temperature. The temperature rise due to the heater was prop-
agated using Eq. (22) and then stored. Since temperature was
measured at the thermocouple locations (T0, T1.5 and T2.5),
the EFV solution was extracted at these location during the
10 s simulation. Results from the FEM solution (provided in
[32]) are also included in Fig. 12. Both numerical simulations
have larger magnitudes and steeper slopes compared to the
measurements. This could be due to inaccuracy on material
properties, convective cooling introduced by the environ-
ment in the measurements, or interfacial thermal resistance
between layers of the superconductor tape. In conclusion, the
trend and overall results of the EFV simulation as compared
to both the FEM simulation and the published experimental
results illustrate the validity of the proposed EFV method.

4 Computational performance

One of the most important motivations for the development
of the EFV algorithm is to achieve a significant reduction in
simulation time compared to conventional numerical meth-
ods such as FEM. The parallelization of the EFV algorithm
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Fig. 12 Temperature profile at locations T0, T1.5, T2.5. Comparison of EFV, FEM and measurements [32]

Fig. 13 a Performance of EFV against FEM. Shorter simulation time
indicates better performance. b Speed ratios

is based on theMonte-Carlo method: the time history of each
particle can be programmed into a single GPU core in a GPU
engine since the solution for each particle is independent of
each other. In this section, a comparison of the simulation
time of EFVversus FEM (for the example shown in Sect. 3.1)
is presented. The workstation used for this study has 20 CPU
cores (dual 10-core Intel Xeon E5-2697v3 CPUs) and seven
Titan V NVidia GPUs, with a total of 35,840 CUDA cores.
Figure 13a shows simulation time on CPU–CPU compar-
ison, with both methods using the same number of CPUs
in parallel. Figure 13b shows speed ratios (FEM time/EFV
time). Speed increases of 18× and11× are achievedusing the

EFV method compared to FEM for 20 and 7 CPUs in paral-
lel, respectively. The simulation time for each FEM iteration
is approximately 61.53 s (when using 20 CPU cores) and
82.61 s (using 7 CPU cores), while the corresponding val-
ues for EFV are 3.42 and 7.571 s, respectively. The number
of nodes used in FEM is equal to the number of particles
used in the EFV method (approximately 40,000). EFV was
implemented as a single program, multiple data (SPMD)
code in MATLAB, using the GPU support toolbox. A GPU–
GPU comparison could not be accomplished since the FEM
software used does not support GPU computing. A base-
line comparison was performed by running the FEM model
in 7 CPU cores, while the SPMD MATLAB code ran the
EFV method on 7 GPUs; each GPU handling approximately
5700 points of the solution domain. After each iteration, the
GPUs broadcast the simulation results to the other GPUs to
update material properties. Using 7 CPU cores in parallel,
each FEM iteration took 82.61 s, while one iteration using
the EFV method on 7 GPUs took 1.145 s. This represents
in excess of 72× speed up in simulation time. For proto-
type purposes, MATLABwas used to implement the method
in both CPU and GPU platforms—implementing EFV on
lower-level programming languages (such as CUDA/C++)
would lead to significantly better performance. In a conven-
tional computer (no GPU), the speed-up improvement by the
EFVmethod is much better than FEM as the number of CPU
cores increases (Fig. 12a). The performance comparison is
done based on average time elapsed at one iteration. The
time required to mesh in FEM and to perform the EFV and
find probable acquisition points are not included as this pro-
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cess is done only once before beginning of time sequence
of simulation. For the purpose of comparing computational
performance, the FEM simulation was set to have the same
number of iterations and time step as the EFV.

5 Conclusions

The effective floating volume method (EFV) is presented as
a novel approach to solve multiphysics problems in multi-
scale systems that eliminates the numerical bottleneck in
conventional FEM tools: the need to invert a large matrix
at each time step of a transient simulation. With currently
available FEMsoftware tools, the number of elements needed
to achieve reasonable accuracy in multi-scale problems can
make simulation time prohibitively long. A demonstration
example using joule heating combined with heat conduc-
tion and electrical current sharing has been presented. The
proposed formulation takes into account the temperature,
voltage and temperature-dependent material properties at the
acquisition points, not only at the boundaries but also along
the radial path of energy transfer. Therefore, the proposed
EFV method can either eliminate or drastically reduce the
need for scattered interpolation, compared to previous mesh-
free methods. These features enable the proposed method
to tackle problems with multi-scale geometries, such as the
simulation of composite objects with thin layers. The pro-
posed method is well suited for GPU parallelization (one
computation thread per GPU core), as made available by
state-of-the-art GPU computers. This enables the simulation
of complex multiphysics multi-scale problems, where con-
ventional FEM software tools would require large numbers
of elements, leading to prohibitively long simulation times.
It is shown that EFV converges to correct results, as com-
pared to both FEM simulations and available experimental
measurements, while its simulation time is a fraction of the
one needed when using FEM. The proposed method points
a path of future development to extend the proposed concept
to other physical domains, including stress-strain, thermal-
stress, heat transfer in porous media, fluid mechanics, and
electromagnetics.
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