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Abstract
This contribution proposes a multiscale scheme for structural elements considering beam kinematics. The scheme is based
on a first-order homogenization approach fulfilling the Hill–Mandel condition. Within this paper, special focus is given to
the transverse shear stiffness. Using basic boundary conditions, the transverse shear stiffness drastically depends on the size
of the representative volume element (RVE). The reason for this size dependency is identified. As a consequence, additional
internal constraints are proposed. With these new constraints, the homogenization scheme leads to cross-sectional values
independent of the size of the RVE. As they are based on the beam assumptions, a homogeneous material distribution in the
length direction yields optimal results. Furthermore, outcomes of the scheme are verified with simple linear elastic benchmark
tests as well as nonlinear computations involving plasticity and cross-sectional deformations.

Keywords FE2 · Homogenization · Beam · Structural element · Multiscale · Nonlinearity

1 Introduction

Beam elements provide a simple and efficient way to model
large structures, provided the structure has a predominant
direction. To exploit this geometrical property, highly sim-
plified kinematical assumptions are made. As a result, the
load-bearing behavior of a beam element is no longer char-
acterized by the classical stresses and material parameters
but is described with the help of stress resultants and their
linearizations. This includes mainly tension, bending, tor-
sion and shearing. If homogeneous structures with a strongly
pronounced preferred direction are assumed, it is enough to
consider tension and bending. Their corresponding cross-
sectional parameters can be determined easily. If the beam
to be considered becomes shorter, the shear deformation
plays an increasingly important role. The determination of its
corresponding stiffness is more complicated. A direct inte-
gration of the shear modulus over the cross-section leads to
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an overestimation of the shear stiffness. To reduce this prob-
lem, shear correction factors are proposed, see e.g. [8,24].
Furthermore, higher-order shear deformation theories have
been developed leading to refined beam formulations, see
e.g. [21]. They include additional assumptions for the cross-
sectional warping so that the shear stresses fulfill the stress
boundary conditions. Another refined beam theory and its
finite element application can be found in [2].

In addition to the shear stiffness, the torsional stiffness
is also important. Both cases have in common that cross-
sectional warping must be considered. As in the case of
the higher-order shear deformation theories, the displace-
ment field is enhanced by a warping function. Additionally,
an associated degree of freedom is introduced to achieve
the continuity of the displacement field throughout the
cross-section, see e.g. [11,23]. As a result, additional stress
resultants are introduced. Difficulties arise in determining
the warping function or the corresponding cross-sectional
parameters. However, this extension allows consideration of
lateral torsional buckling.

Regarding the evaluation of the stiffness parameters,
in [16,31] an asymptotic homogenization scheme is pro-
posed. The scheme allows determination of necessary values
for Timoshenko’s beam theory. It can consider homoge-
neous as well as heterogenous cross-sections and allows
recovery of the 3D stress state. However, it is limited to
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linear elastic material behavior. In [1,3], this approach is
extended to the homogenization of periodic structures using
Bernoulli’s kinematical assumptions. An extension to shear-
soft Timoshenko kinematics is presented in [30] with a
focus on evaluating suitable shear correction factors. Leav-
ing the linear regime, in [26,27] a coupled model to evaluate
cross-sectional properties with consideration of the current
stress–strain state is proposed.

Besides the previously mentioned works, numerical
homogenization procedures have become popular in recent
years.Basedon them, theFE2 methodwas developed, see e.g.
[5,6]. It is often used to determine properties of yet unknown
heterogeneous materials. Themost interesting element of the
approach is that the evaluation of a structure on macroscopic
level and homogenization on amicroscopic level are coupled.
Therefore, physical nonlinear behavior on microscopic level
can be considered. A comprehensive overview of the appli-
cation of the FE2 method can be found in [20]. Furthermore,
it has already been used in conjunction with structural ele-
ments. In [4], for example, the Kirchhoff-Love shell theory is
considered, and a second-order homogenization approach is
used to carry out themultiscale computation.Within this shell
theory, no transverse shear deformation is considered. It will
be shown later that this deformation leads to problems when
performing the homogenization.Despite this fact, a shear soft
kinematic is considered in [7] by an extension of the previ-
ously mentioned second-order homogenization scheme. It is
shown that the scheme can approximate the behavior of com-
plex structures. Regarding the transverse shear deformation,
possible boundary conditions are given. However, no linear
elastic benchmark tests are performed, such as the evaluation
of shear correction factors. Further contributions to perform-
ing a multiscale analysis with shell kinematics are [9,14]. In
these papers, a first-order homogenization scheme is used. In
[9], only the mesh convergence of the shear correction factor
is investigated, while [14] also mentions that the evaluation
of the transverse shear stiffness leads to problems. The latter
also applies a shear correction factor based on the size of
the representative volume element (RVE) that improves the
results.

The current work proposes a multiscale scheme for beam
structures, exhibiting the following properties:

• The macroscopic structure is modeled with Timoshenko
beam elements. This means that the kinematical assump-
tions contain tension, bending and transverse shear
deformations. This leads to a basic six degrees of freedom
element that can incorporate geometrical nonlinearity;
however, the strains are assumed to be small.

• The multiscale approach is based on a first-order homog-
enization scheme fulfilling the Hill–Mandel condition.
This allows for the homogenization of 3D RVEs, which
facilitates the modeling of general heterogenous struc-

tures. This means that general 3D material laws can be
used. Thus, physical nonlinearities can be considered.
Furthermore, geometrical nonlinearity can be applied,
since cross-sectional deformations may also be included.

• The reason for the dependency of the resulting shear stiff-
ness on the size of the RVE is identified. Despite the
basic boundary conditions, new internal constraints are
proposed leading to results independent of the size of the
RVE. With the new constraints, the numerical homoge-
nization leads to well-known cross-sectional values for
linear elastic benchmark tests, including shear correction
factors.

2 Beam kinematics

The description of the beam kinematics is analogous to that
in [27] by introducing the reference configuration �0 at time
t = 0 as well as the current configuration �t at arbitrary
time t in the Euclidean space ei . To describe an arbitrary
point of the body, the local coordinate systems Ai in the
reference configuration and ai in the current configuration
are introduced, see Fig. 1. The local coordinates are denoted
as {ξ1, ξ2, ξ3}. By introducing orthogonal tensorsR0 andR ∈
SO (3), the relation between the coordinate systems can be
expressed as

Ai (S) = R0 (S) ei , ai (S) = R (S) ei withR0, R ∈ SO (3) . (1)

The parameter S = ξ1 ∈ [0, L] is the arclength of the spatial
curve representing the beam. Therefore, the position vectors
in the reference configuration X and in the current configu-
ration x are

X (S, ξ2, ξ3) = XB (S) + ξ2A2 (S) + ξ3A3 (S) ,

x (S, ξ2, ξ3, t) = xB (S, t) + ξ2a2 (S, t) + ξ3a3 (S, t) . (2)

Using the position vectors Eq. (2), the tangent vectors are

G1 = X′
B + ξ2A′

2 + ξ3A′
3, g1 = x′

B + ξ2a′
2 + ξ3a′

3,

G2 = A2, g2 = a2,

G3 = A3, g3 = a3. (3)

The notation {•}′ indicates the derivative with respect to the
arclength S. Considering R0 = Ai ⊗ ei and R = ai ⊗ ei , the
pull-back of the covariant basis systems can be defined. This
leads to the vectors

F1 = RT
0 G1 = ε0 + e1 + κ0 × d, f1 = RT g1 = εt + e1 + κ t × d,

F2 = RT
0 G2 = e2, f2 = RT g2 = e2,

F3 = RT
0 G3 = e3, f3 = RT g3 = e3 (4)
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Fig. 1 Kinematical assumptions

with d = ξ2e2 + ξ3e3. Using Eq. (4), the relation to the beam
strains ε0, κ0 and εt , κ t is established. Therefore, the vector
F1 can be expressed as

F1 =
⎡
⎣
1 0 0 0 ξ3 −ξ2
0 1 0 −ξ3 0 0
0 0 1 ξ2 0 0

⎤
⎦
[

ε

κ

]

0
+
⎡
⎣
1
0
0

⎤
⎦

= A
[

ε

κ

]

0
+ e1 = Aε0 + e1. (5)

Furthermore, rewriting f1 using Eq. (5) and replacing ε0 with
εt , leads to

f1 = Aεt + e1. (6)

Using the definition of the Green–Lagrange strains in a con-
vective coordinate system,

E = 1

2

(
gi j − Gi j

)
, (7)

with the metric tensors gi j = gi · g j and Gi j = Gi · G j as
well as the fact that R0RT

0 = RRT = 1, leads to

E = 1

2

(
fi · f j − Fi · F j

)
. (8)

The non-vanishing terms due to the kinematical assumptions
read

EB =
⎡
⎣

E11

2E12

2E13

⎤
⎦ =

⎡
⎣

1
2 (f1 · f1 − F1 · F1)

f1 · f2 − F1 · F2

f1 · f3 − F1 · F3

⎤
⎦

=
⎡
⎣

1
2

(
2A (εt − ε0) · e1 + εt · ATAεt − ε0 · ATAε0

)
A (εt − ε0) · e2
A (εt − ε0) · e3

⎤
⎦ . (9)

The terms in Eq. (9) contain the beam strains ε0, which rep-
resent the initial distortion in the reference configuration,
as well as εt , which represents the distortion in the current
configuration. In this contribution small strains are assumed,
hence εt · ATAεt − ε0 · ATAε0 ≈ 0 leads to

EB = A (εt − ε0) = A
[

εt − ε0
κ t − κ0

]
= A

[
ε

κ

]
= Aε, (10)

which main impact lies in the application of the RVE
boundary conditions. Therefore, the Green–Lagrange strains
Eq. (10) are expressed via the difference of the beam strains
in the current configuration εt minus the beam strains in the
reference configuration ε0. Those strains can be split into
the normal and shear strain vector ε and the curvature part
κ . For the final stress-generating strains, the indices t and 0
are dropped. The derivatives of the orthonormal basis system
can be expressed asA′

i = θ0 ×Ai and a′
i = θ t ×ai by intro-

ducing the axial vectors θ0 and θ . Finally, the strain vectors
are defined as

εt +e1 = RT x′
B =

⎡
⎣
x′
B · a1

x′
B · a2

x′
B · a3

⎤
⎦ , κ t = RT θ =

⎡
⎣
a′
2 · a3
a′
3 · a1

a′
1 · a2

⎤
⎦ .

(11)

Analogous to Eq. (11), the strain vectors in the reference
configuration readε0+e1 = RT

0 X
′
0 andκ0 = RT

0 θ0.Accord-
ingly, the variations of the Green–Lagrange strains can be
expressed as

δEB = Aδ (εt − ε0) = A
[

δεt
δκ t

]
= A

[
δε

δκ

]
= Aδε. (12)
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Fig. 2 Deformations of an infinitesimal beam element

Thus, the essential parts of the kinematics are described,
whereby individual components of beam distortions can be
represented according to Fig. 2, provided that an originally
straight and untwisted beam is assumed. The particular com-
ponents are ε = [εx , γy, γz

]
and κ = [κx , κy, κz

]
.

To obtain an expression for the corresponding internal
forces, it is sufficient to insert thefirst variations of theGreen–
Lagrange strains into the generally known, weak form of
equilibrium

g (δu, u) =
∫
�0

δE : S dV +
∫
�0

δu · f dV +
∫
∂�σ0

δu · t dA = 0. (13)

In Eq. (13), u = [ux , uy, uz
]
is the displacement field and δu

the corresponding variation. Accordingly, S is the 2. Piola–
Kirchhoff stress tensor, which is work conforming to the
Green–Lagrange strain tensor. The vector f contains the vol-
ume loads and t the applied boundary loads. To evaluate
the equations, the integration is performed over the refer-
ence configuration �0 and its stress boundary ∂�σ0. In this
contribution, the virtual internal work

∫
�0

δE : S dV is of
particular interest.

Inserting the variation of the Green–Lagrange strains
Eq. (12) into the weak form of equilibrium Eq. (13) and
reducing the 2. Piola–Kirchhoff stresses to the non-vanishing

terms SB = [
S11, S12, S13

]T
, the virtual internal work then

reads

∫
�0

δE : S dV =
∫

�0

δEB ·SB dV =
∫

�0

Aδε ·SB dV . (14)

The integration ofEq. (14) can nowbe split into an integration
along the beam’s length and an integration over its cross-
section. This leads to

∫
�0

Aδε · SB dV =
∫
L

δε ·
∫
A
ATSB dA dS. (15)

With Eq. (15), the definition of the beam stress resultants can
be derived as

∫
A
ATSB dA =

∫
A

⎡
⎢⎢⎢⎢⎢⎢⎣

S11

S12

S13

S13ξ2 − S12ξ3
S11ξ3

−S11ξ2

⎤
⎥⎥⎥⎥⎥⎥⎦

dA =
[
F
M

]
= σ .

(16)

The stress resultants Eq. (16) contain the three forces
F = [

N , Q2, Q3
]
as well as the three moments M =[

M1, M2, M3
]
. Herein, N denotes the normal force, Q2, Q3

the shear forces, M1 the torsional moment and M2, M3 the
bending moments. The linearization of Eq. (16) finally leads
to

∫
A
ATC
EB dA =

∫
A
ATCA
ε dA =

∫
A
ATCA dA

︸ ︷︷ ︸
D


ε,

(17)

in which C is the material tangent in continuum mechanics
theory. With Eqs. (16) and (17), the main parts of the beam
theory for this contribution are derived. It is well-known that
the direct integration overestimates the stiffness of the beam.
The main reason is the suppressed warping of the cross-
section with the result that shear stresses do not fulfill the
stress boundary conditions. This affects the torsional as well
as the shear stiffnesses of the beam. Under the assumption of
linear elasticity, an improved version of the material tangent
is derived in [26] by considering higher order strains that
represent the cross-sectional warping. This matrix reads

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

E A 0 0 0 E A s3 −E A s2
GAS2 0 −GAS2 m3 0 0

GAS3 GAS3 m2 0 0
GIT 0 0

sym. E I2 E I23
E I3

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(18)

The linearized stress resultants given in Eq. (18) will be
used as a reference solution to benchmark the proposed
homogenization scheme. The values contained inEq. (18) are
the tension stiffness E A, the two effective shear stiffnesses
GAS2 and GAS3, the torsional stiffness GIT , the bending
stiffnesses E I2 and E I3, and the deviatoric part E I23. Addi-
tionally, the matrix contains terms due to eccentricities given
by the distances s2 and s3 of the center of gravity C to the
beam reference line and the distancesm2,m3 from the center
of shear M to the beam reference line, see Fig. 3. To evaluate
the torsion constant IT = I ∗

T + AS2 · m2
3 + AS3 · m2

2, the
torsion constant I ∗

T with respect to the center of shear as well
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Fig. 3 General geometry of a cross-section

as the effective shear areas AS2, AS3 and the distances m2,
m3 enter. Regarding the beam theory all relevant parts for
this contribution are described. The derivation of the finite
element equations of the beam element can be found in the
literature, e.g. [11,23,27]. Regarding the evaluation of the
examples, it should be mentioned that a pure displacement
formulation with a reduced order integration is used.

3 Homogenization

In this work, homogenization is based on the first-order the-
ory of Hill–Mandel [15]. Therefore, an RVE is introduced
that represents the microscopic scale. It is required that the
volume-averaged virtual internal work on the microscopic
scale equals the virtual internal work of the corresponding
macroscopic point

〈
Pm : δFm 〉− PM : δFM = 0. (19)

In Eq. (19) P is the first Piola–Kirchhoff stress tensor, which
is work conforming to the deformation gradient F. Further-
more, values on the microscopic scale are denoted with {•}m
and those on the macroscopic scale with {•}M . The brack-
ets 〈•〉 = 1

Vm

∫
Vm

{•} dV indicate volume average over the
microscopic body. To identify suitable boundary conditions,
Eq. (19) can be reformulated as a surface integral

〈Pm : δFm〉 − PM : δFM

= 1

Vm

∫
Am

(
δxm − δFMXm

)
·
(
tm0 − PMN

)
dA, (20)

see e. g. [20,22], where the vectors Xm and xm represent
position vectors in the reference and current configuration of
the microscopic scale. The stress vector is denoted as tm0 , and
the corresponding normal vector of the surface is called N,
both with respect to the reference configuration. Integration
is performed over the surface Am on themicroscopic scale. In
this work, essential boundary conditions that fulfill Eq. (20)

Fig. 4 Definition of the RVE in the case of the assumed beam kinemat-
ics

are periodic boundary conditions

xm+ − xm− = FMXm+ − FMXm− (21)

and displacement boundary conditions

xm = FMXm . (22)

The latter will be used for comparison reasons only. It should
be noted that up to now the term “microscopic” has been
used, but the term “mesoscopic” is more appropriate when
transferring to beam systems. Therefore, this term will be
used in what follows.

3.1 Beam kinematics

In the case of beam kinematics, there are two problems that
arise when using periodic boundary conditions according to
Eq. (21). On the one hand, a shear deformation of the RVE
leads to a rigid body rotation only; on the other hand, the
homogenized shear stiffness depends on the length of the
RVE and shows no convergent behavior. Furthermore, the
length dependency also affects the displacement boundary
conditions. This work introduces additional constraints to
eliminate these problems. To address these problems, a def-
inition of the RVE which allows for application of the beam
strains is first needed. Then it will be shown that under those
assumptions, the Hill–Mandel condition is fulfilled, and the
homogenization scheme leads to the definition of the beam
stress resultants.

The assumed RVE with boundary conditions is depicted
in Fig. 4, which shows a side view of it. Here, it is assumed
that the RVE is modeled in an orthonormal basis system x , y,
z, with the x-axis representing the beam axis. Therefore, the
RVE extends in the x-direction from −LRVE/2 to LRVE/2,
with LRVE as the length of the RVE. The cross-section of the
beam is modeled in the y, z-plane, but neither its center of
gravity nor its center of shear necessarily lies on the x-axis.
Thus, a general eccentricity can be considered. To deform
the RVE according to the beam kinematics, the strains are
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imposed on the positive x+ and negative x− side of the RVE
according to Eq. (21) or Eq. (22). Furthermore, it is assumed
that the remaining surfaces of theRVE are stress free. Finally,
the only element missing in terms of the beam kinematics
is the deformation gradient FM . Under the assumption of
an initially straight and untwisted beam it can expressed as
F = [ f1 f2 f3

]
, with f1, f2 and f3 according to Eq. (4). This

leads to

FM − 1 =
⎡
⎣

εx + κy · z − κz · y 0 0
γy − κx · z 0 0
γz + κx · y 0 0

⎤
⎦ . (23)

As this description results from the beam theory according
to Sect. 2, it is considered as a consistent description. The
corresponding deformations are depicted in Fig. 2. Another
possibility is to subject the shear deformation to a rigid body
rotation [29]. This leads to the slightly different definition of
the deformation gradient

FM − 1 =
⎡
⎣

εx + κy · z − κz · y γy γz
−κx · z 0 0
κx · y 0 0

⎤
⎦ . (24)

For the numerical implementation, the definition accord-
ing to Eq. (23) is used, while the version according to
Eq. (24) is used to show the problem of the rigid body
rotation when applying a shear deformation with periodic
boundary conditions. To check whether the Hill–Mandel
condition is fulfilled, those equations need to be inserted
into Eq. (19). As the cross-sectional information needs to
be preserved, the homogenization, or “volume averaging,”
is performed only over the length of the RVE, meaning that
〈•〉 = 1/LRVE

∫
�m
0

{•} dV . As a result, a reformulation of
Eq. (19) leads to

δε · σ = 1

LRV E

∫
∂�m

0

δxm · PmN dA. (25)

Inserting the definition of the deformation gradient in the
form of Eq. (23) or Eq. (24) into Eq. (25) must lead to the
definition of the stress resultants. As can be seen, only a sur-
face integration over ∂�m

0 is necessary to derive the stress
resultants. For simplification, and to be consistent with the
beam theory of Sect. 2, small deformations are assumed. This
means that F ≈ 1 and P = FS ≈ S. Furthermore, the RVE
is introduced in such a way that the normal vectors N+ =
−N− = [1, 0, 0]T of the surfaces with boundary conditions
are parallel to the x-axis and pointing in opposite directions
on opposite faces. What remains for the mesoscopic stress

state in the integral is PN ≈ SN = ± [S11, S12, S13]T .

Inserting this stress vector into Eq. (25) leads to

δε · σ = 1

LRV E

⎧⎪⎨
⎪⎩

∫
∂�m+

0

δxm+ ·
⎡
⎣
S11

S12

S13

⎤
⎦

+

dA

−
∫

∂�m−
0

δxm− ·
⎡
⎣
S11

S12

S13

⎤
⎦

−

dA

⎫⎪⎬
⎪⎭

. (26)

Finally, the expressions for the displacement as well as the
periodic boundary conditions canbederivedby insertingEqs.
(23) and (24) into Eqs. (21) and (22). To proceed, the varia-
tions are needed which can be expressed as

δxm+ − δxm− = δFMXm+ − δFMXm−

= δFM (Xm+ − Xm−) = δFM
X (27)

for periodic boundary conditions and

δx = δFMX (28)

for displacement boundary conditions. As the main goal
is to derive periodic boundary conditions that allow cross-
sectional warping, it is natural to assume that the faces on
the x+ and x− side of the RVE are geometrically identical.
First, using Eq. (28) with the relation according to Eq. (24)
and inserting it into Eq. (26) leads to

δε · σ = 1

LRVE
δε ·

∫
∂�m+

0

⎡
⎢⎢⎢⎢⎢⎢⎣

S11 x̂
S11 ŷ
S11 ẑ

−S12 x̂ z + S13 x̂ y
S11 x̂ z

−S11 x̂ y

⎤
⎥⎥⎥⎥⎥⎥⎦

+

−

⎡
⎢⎢⎢⎢⎢⎢⎣

S11 x̂
S11 ŷ
S11 ẑ

−S12 x̂ z + S13 x̂ y
S11 x̂ z

−S11 x̂ y

⎤
⎥⎥⎥⎥⎥⎥⎦

−

dA. (29)

To distinguish between the positions contained in F and X,
the latter are expressed with X = [x̂, ŷ, ẑ]T . Furthermore, it
is assumed that the cross-sections at x− and x+ are identi-
cal. Therefore, the integration over the surface can be carried
out on either side, e.g., over ∂�+

0 as in Eq. (29). The val-
ues that need to be considered for x+ and x− are identified
by the brackets [•]+ and [•]−, respectively. Performing the
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integration over the area leads to

δε · σ = 1

2
δε ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

N
−1
LRVE

Mz

1
LRVE

My

Mx

My

Mz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

N
1

LRVE
Mz

−1
LRVE

My

Mx

My

Mz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (30)

The assumed relationships between displacements and beam
strains according to Eq. (24) reveal the first problem that
arises when using the homogenization schemewith the beam
kinematics in Eq. (30). While the results for the normal force
and the moments clearly lead to the correct values, the shear
forces can only be recovered due to the equilibrium state.
This means dMy

dx = Qz and dMz

dx = −Qy . Collecting the
terms finally leads to

δε · σ = δε ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

N
−
Mz

LRV E

My

LRV E

Mx

My

Mz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= δε ·

⎡
⎢⎢⎢⎢⎢⎢⎣

N
Qy

Qz

Mx

My

Mz

⎤
⎥⎥⎥⎥⎥⎥⎦

(31)

Evaluation of Eq. (29) with the result according to Eq. (31)
is only valid for the displacement boundary conditions.
If periodic boundary conditions are assumed, anti-periodic
tractionsmust be considered. Thismeans

[
S11 S12 S13

]+ =[
S11 S12 S13

]−
, and therefore, Eq. (29) evaluates to

δε · σ = δε ·

⎡
⎢⎢⎢⎢⎢⎢⎣

N
0
0
Mx

My

Mz

⎤
⎥⎥⎥⎥⎥⎥⎦

= δε ·

⎡
⎢⎢⎢⎢⎢⎢⎣

N
0
0
Mx

My

Mz

⎤
⎥⎥⎥⎥⎥⎥⎦

. (32)

As can be seen, the periodic boundary conditions do not yield
any result for the shear forces. Consequently, the resulting
shear stiffnesswill be zero in the case of pure periodic bound-
ary conditions.

On the other hand, using the consistent description accord-
ing to Eq. (23) and inserting it into Eq. (26) yields

δε · σ = 1

LRVE
δε ·

∫
∂�m+

0

x̂+

⎡
⎢⎢⎢⎢⎢⎢⎣

S11

S12

S13

−S12z + S13y
S11z

−S11y

⎤
⎥⎥⎥⎥⎥⎥⎦

+

− x̂−

⎡
⎢⎢⎢⎢⎢⎢⎣

S11

S12

S13

−S12z + S13y
S11z

−S11y

⎤
⎥⎥⎥⎥⎥⎥⎦

−

dA. (33)

Evaluating Eq. (33) for both the periodic and the displace-
ment boundary conditions results in

δε · σ = 1

2
δε ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

N
Qy

Qz

Mx

My

Mz

⎤
⎥⎥⎥⎥⎥⎥⎦

+

+

⎡
⎢⎢⎢⎢⎢⎢⎣

N
Qy

Qz

Mx

My

Mz

⎤
⎥⎥⎥⎥⎥⎥⎦

−⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= δε ·

⎡
⎢⎢⎢⎢⎢⎢⎣

N
Qy

Qz

Mx

My

Mz

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(34)

Comparing Eqs. (33) and (34) with Eq. (16) shows that the
homogenization scheme yields consistent definitions of the
stress resultants. But, regarding the final interpretation, the
results of both relations between the displacements on the
mesoscopic scale and the macroscopic stress, Eqs. (24) and
(23) need to be considered. The only difference between
Eqs. (23) and (24) is a rigid body rotation regarding the
shear deformation. Therefore, even though Eq. (34) yields
the consistent definition of the stress resultants, the RVE per-
forms a rigid body rotation if a shear deformation is applied
using periodic boundary conditions. In this case the resulting
shear stresses S12 and S13 are zero. Additionally, looking at
Eq. (31), the equilibrium state of the RVE needs to be consid-
ered, as the constant shear force introduces a linear moment
distribution. Thus, the remaining tasks are:

• Remove the rigid body rotations, provided that a shear
deformation with the periodic boundary conditions is
applied.

• Interpret the equilibrium state caused by a shear defor-
mation.

While the rigid body rotation affects only the periodic bound-
ary conditions, the equilibrium state needs to be considered
for both boundary conditions.

3.2 Equilibrium state due to a shear deformation

As is evident from Eq. (31), a shear deformation of the RVE
does not result in a pure shear stress state but also causes
a linear moment distribution over its length. The associated
differential relations between the shear force and themoment
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Fig. 5 RVE subjected to a shear
deformation according to
Eq. (23), including stress
resultants – upper: RVE
displacement boundary
conditions, lower: RVE with
periodic boundary conditions
and rigid body rotation
constraint in the center

in the case of beam stress resultants read

−dMz

dx
= Qy and

dMy

dx
= Qz . (35)

Constructing an equivalent beam system for the RVE with
respect to the chosen boundary conditions, the equilibrium
state according to Eq. (35) can be evaluated.

In the case of the displacement boundary conditions, the
equivalent beam system representing the RVE under a shear
deformation γ is clamped on both sides. Considering the
periodic boundary conditions, the system needs to be able to
represent a rigid body rotation as mentioned before. There-
fore, a simply supported beam is assumed to represent the
RVE. Furthermore, the rigid body rotation is removed by
adding an additional workless constraint in the center of the
system. The described systems are depicted in Fig. 5, with
the displacement boundary conditions in the upper part and
the periodic boundary conditions in the lower. In both cases,
the shear deformation is applied according to Eq. (23). Of
course, this deformation leads to a constant shear force Q,
and due to Eq. (35) to a linear moment distribution M as
depicted in Fig. 5. Assuming further that the system has a
bending stiffness of E I and a shear stiffness GAS , the rela-
tionship among the resulting shear force Q, the length of
the RVE LRVE and the applied shear deformation γ can be
evaluated to

γα =
(

1

12E I
L2
RVE + 1

GAS

)
Qα with α = y, z. (36)

Without loss of generality, it is assumed that the center of
gravity equals the center of shear. Then the relation between
the stress resultant Qα and the shear deformation γα must be
equal to Qα = GASγ α . Herein, γ α represents an assumed
averaged shear deformation. It is obvious that

γα 	= γ α = 〈2Exα〉 with α = y, z. (37)

Considering Eq. (37), the averaged shear strain γ α of the
RVE does not equal the applied beam shear strain γα due to
the equilibrium state. To ensure the equality between γ α and
γα , the linear moment distribution needs to vanish. This can

be established with additional constraints
∫
LRVE

Myx dx = 0 and
∫
LRVE

Mzx dx = 0. (38)

Due to the additional constraints according to Eq. (38), the
term L2

RVE/12/E I vanishes fromEq. (36).Without this term,
the equality γ α = γα between the applied shear deformation
and the averaged shear strain is achieved.

4 Finite element implementation

In this section, the numerical treatment of the theory is
addressed. To model the macroscopic geometry,
displacement-based beam elements are used. On the meso-
scopic scale, displacement-based continuum elements are
employed. Since they are both standard elements, their
numerical realization is not discussed here. The focus is
on the treatment of additional constraints and the numeri-
cal treatment of the homogenization. While the derivation of
the additional constraints follow the approach in [19], but the
resulting indefinite matrix will be inverted instead of follow-
ing the proposed sub-loop approach.

4.1 Constraint of the rigid body rotation

As the beam theory describes the normal stress distri-
bution over a cross-section in a very satisfactory way, a
constraint based on this stress component is employed to
remove the rigid body rotation. Considering this fact, the
constraint can be expressed as

σx − σ x = 0, in �C . (39)

To evaluate the stresses σx and σ x in Eq. (39), physical and
geometrical linearity is assumed. Furthermore, the balance
will be enforced in an interface domain �C . Figure 6 shows
the assumed geometry of the interface domain �C as well
as the finite element mesh and a single finite element. As
depicted, the nodes of an element are separated into nelS
nodes on the darker face of the interface domain and nelV
remaining nodes. Additionally, an external node containing
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Fig. 6 Rigid body rotation
interface—left: geometry with
mesh, right: single finite element

the Lagrange parameters is introduced. This node is assigned
to each interface element with the special property that it is
shared by all of them. The Lagrange parameters are used to
enforce the stress assumption according to Eq. (39). As σ x

will be evaluated using beam kinematics, the constraint must
be fulfilled in an average sense and not pointwise. Therefore,
only three Lagrange parameters for the entire interface are
used, leading to the constraint equation

∫
�C

(σx − σ x )
(
λx + μyz − μz y

)
dV = 0. (40)

As the RVE is modeled in the x , y, z-coordinate system with
the x-axis as the tangent to the beam axis, the Lagrange
parameters can be interpreted as the normal strain λx , and
the two bending curvatures μy and μz . With the definitions

� = [
λx , μy, μz

]T and p = [1, z,−y]T , the first variation
of Eq. (40) can be derived and added to the weak form of
equilibrium

g (v, δv) = · · · +
∫

�C

{
C (δεC − δεC )p · �

+ (σx − σ x ) p · δ�} dV = 0. (41)

In Eq. (41), the variations of the stresses (δσx − δσ x )

are already replaced by the linear elastic material law
C (δεC − δεC ). Herein, the vectorC=E/ (1 + ν) / (1 − 2ν)

[1 − ν, ν, ν, 0, 0, 0] contains the first line of Hooke’s law
in Voigt notation. Thus, the linearization of Eq. (41) reads

L [g (v, δv) , 
v] = g (v, δv) + · · · +∫
�C

{
C (δεC − δεC )p · 
� + C (
εC − 
εC )p · δ�

}
dV = 0.

(42)

With the first variation Eq. (41) and its linearization Eq. (42),
only the finite element approximations are missing. For the

geometry and the displacement field, these are done using
Lagrange polynomials

xh =
nelV +nelS∑

I=1

NI xI , uh =
nelV +nelS∑

I=1

NIuI , δxh = δuh =
nelV +nelS∑

I=1

NI δuI ,

�h = �, δ�h = δ�. (43)

The approximations according to Eq. (43) lead to the first
variation of the strains

δεhC =
nelV +nelS∑

I=1

BI δuI =
nelV +nelS∑

I=1

⎡
⎢⎢⎢⎢⎢⎢⎣

NI ,x 0 0
0 NI ,y 0
0 0 NI ,z

NI ,y NI ,x 0
NI ,z 0 NI ,x

0 NI ,z NI ,y

⎤
⎥⎥⎥⎥⎥⎥⎦

δuI .

(44)

With Eq. (44), the linearization of the strains can be derived
by replacing δ with
. Regarding the evaluation of the strains
εhC themselves, which are needed to computeσ h

x = CεhC , δuI

is replaced by uI in Eq. (44). Next, the assumptions for εhC
are chosen as

δεhC =
nelV∑
I=1

BI δu
V
I +

nelS∑
J=1

BJ δuSJ

=
nelV∑
I=1

⎡
⎢⎢⎢⎢⎢⎢⎣

NI ,x 0 0
0 NI ,y 0
0 0 NI ,z

NI ,y NI ,x 0
NI ,z 0 NI ,x
0 NI ,z NI ,y

⎤
⎥⎥⎥⎥⎥⎥⎦

δuVI +
nelS∑
J=1

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 NJ ,y 0
0 0 NJ ,z

NJ ,y NJ ,x 0
NJ ,z 0 NJ ,x
0 NJ ,z NJ ,y

⎤
⎥⎥⎥⎥⎥⎥⎦

δuSJ .

(45)

Regarding Eq. (45), the linearization can again be derived by
replacing δ with
 and the approximation of εhC by dropping
δ. Comparing Eq. (45) with Eq. (44), the difference lies in the

123



644 Computational Mechanics (2020) 65:635–661

Fig. 7 Resulting normal stress
at the surface of the interface
element constraining a rigid
body rotation and a translation
in the case of a three-layer
structure with two stiff layers
and a soft core

computation of the first component of the strain vector εhC .
In this case, the contribution of the displacements uSx is set to
zero only for this specific strain component of the nodes on
the darker surface in Fig. 6. Building the difference between
εhC and εhC yields

(
δεhC − δεhC

)
=

nelS∑
J=1

⎡
⎢⎢⎢⎢⎢⎢⎣

NJ ,x 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

δuS
J = B̃δuS . (46)

As Eq. (46) states, only the nodes on the surface nelS con-
tribute to the constraint equation. And of course, it holds
again that

(

εhC − 
εhC

) = B̃
uS and
(
εhC − εhC

) = B̃uS

with
(
σ h
x − σ h

x

) = C
(
εhC − εhC

)
. Finally, only the shape

functions for the Lagrange parameters are missing, which
are assumed to be one. Therefore, the nodal values directly
enter the weak form and its linearization. To finalize the ele-
ment formulation, Eq. (46) needs to be inserted into Eq. (41),
which leads to the element load vector

[
δuV δuS δ�

]
fe = [ δuV δuS δ�

]
⎡
⎢⎣

0∫
�C

B̃T
C
T
p · � dV∫

�C
p C · B̃uS dV

⎤
⎥⎦ . (47)

Furthermore, the stiffness matrix can be derived by inserting
Eq. (46) into Eq. (42)

ke =
⎡
⎣
0 0 0
0 0 kab
0 kTab 0

⎤
⎦ , with kab =

∫
�C

B̃T
C
T
pT dV . (48)

The integrals in Eqs. (47) and (48) are evaluated employing
the Gaussian quadrature rule.

This element was specifically developed to remove the
rigid body rotations of the RVE in the case of heterogenous
cross-sections. Therefore, it is formulated in a way that the
material parameters are taken into account when distribut-
ing the stresses over the cross-section. In view of Eq. (47),
the normal stress distribution is exemplarily depicted for a
three-layer cross-section in Fig. 7. The jumps in the normal

stress distribution are essential for the correct shear stress
distribution through the thickness.

4.2 Linear moment constraint

To remove the linear moment distribution due to the shear
deformation, a constraint similar to that used in Sect. 4.1 is
proposed. Again, small deformations and linear elastic mate-
rial behavior are assumed to evaluate the constraints. As the
moment, which needs to be removed, results from the normal
stresses in x-direction only, the constraint reads

∫
�

σx
(
λx + yμz − zμy

)
dV = 0. (49)

This time there is no equivalent beam stress introduced, but
the same three Lagrange parameters are used. As before,
the Lagrange parameters and the positions can be grouped
in � = [

λx , μy, μz
]T and p = [1, z,−y]T . With this in

hand, the weak form of equilibrium gets extended by the
first variation of Eq. (49), leading to

g (v, δv) = · · · +
∫

�

(δσxp · � + σxp · δ�) dV = 0. (50)

The derivation of the linearization of Eq. (50) is straightfor-
ward, leading to

L [g (v, δv) ,
v] = g (v, δv)

+ · · · +
∫

�

(δσxp · 
� + 
σxp · δ�) dV = 0. (51)

The linearization of the weak form Eq. (51) looks quite com-
parable to Eq. (42), with the main difference being that the
integration is performed over the whole RVE. This means
that, in contrast to the rigid body rotation constraint, the
Lagrange parameters are global to the whole RVE and not
only to certain elements. Additionally, they are constant in
the y, z−plane, but get assigned appropriate shape functions
in the x-direction in order to remove the linearmoment distri-
bution based on the chosen boundary conditions according to
Sect. 3.2. Therefore, by means of the finite element approx-
imation, the shape functions for the Lagrange parameters in
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Fig. 8 Finite element mesh for the linear moment constraint

the x-direction are

N� =

⎧⎪⎨
⎪⎩

x displacement b. c.{
x + 1

2 LRVE, x < 0

x − 1
2 LRVE, x > 0

periodic b. c.
. (52)

Thedisplacementfield is approximatedby standardLagrange
polynomials. Therefore, the final approximations read

xh =
nel∑
I=1

NI xI , uh =
nel∑
I=1

NI uI , δxh = δuh =
nel∑
I=1

NI δuI ,

�h = N��, δ�h = N�δ�. (53)

Again, the linearizations are derived by replacing δ with 
.
With the finite element approximations according to Eq. (53),
the constraint requires the entire RVE mesh as well as an
additional node with Lagrange parameters �.

This can be achieved by using the already generated mesh
of the RVE to interpolate the displacement field and add a
shared node to all elements, as depicted in Fig. 8. To derive
the element load vector, Eq. (53) just needs to be inserted
into Eq. (50)

[
δuh δ�h

]
fe = [ δuh δ�h

] [ ∫
V BT

C
T
p · �h dV∫

V N� pC · BTu dV

]
.

(54)

Finally, the element stiffness matrix can be derived by the
linearization of Eq. (54)

ke =
[

0 kab
kTab 0

]
, with kab =

∫
V
BT

C
T
pT N� dV . (55)

With Eqs. (54) and (55), the element is completely described.
However, special considerations regarding the element load
vector are necessary. Reconsidering C = E/ (1 + ν)

/ (1 − 2ν) [1 − ν, ν, ν, 0, 0, 0] with the components in
Voigt notation [C11, C12, C13, C14, C15, C16] and evalu-
ating Eq. (54) leads to

fe1I =
∫
V

⎡
⎣
NI ,xC11

NI ,yC12

NI ,zC13

⎤
⎦ p · �h dV . (56)

Keeping the load vector as in Eq. (56) would just shift the
problem from the stresses in length direction to the stresses
in thickness direction of the beam. At this point, there are
two possibilities. Either repeating the constraint for σy and
σz or setting the Poisson’s ratio to zero. The first choice leads
to additional unknown Lagrange parameters. Therefore, the
Poisson’s ratio will be assumed to be zero for the numerical
examples.

4.3 Homogenization algorithm

The basis of the homogenization algorithm is in accordance
with [9]. To derive a consistently linearized formulation
leading to a quadratic convergence of the coupled model,
the weak form of equilibrium of the macroscopic model is
extended with homogenized mesoscopic models. Assuming
Voigt notation, the equation of the coupled model reads

g (v, δv) =
∫

�M
δEM · SM dV + {load terms}M

+
numel·ngp∑

i=1

1

LRVE,i

∫
�i

δE · S dV = 0. (57)

The weak form of equilibrium in Eq. (57) contains the
macroscopicmodel denotedwith {•}M aswell asmesoscopic
models for which a special identification is omitted. As stated
in Eq. (57), each of the numel macroscopic elements gets
assigned one individual RVE for each of its ngp integration
points. The integration of RVEs is performed over their vol-
ume �i , while the homogenization is performed over the
length of the RVE LRVE,i, which is calculated based on the
extent of the RVE in the x-direction.

To achieve quadratic convergence using the Newton-
Raphson scheme, a consistent linearization of the weak form
of equilibrium Eq. (57) is necessary. This leads to the fol-
lowing expression:

L [g (v, δv) ,
v] := g (v, δv) + Dg · 
v = 0. (58)
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Inserting the finite element shape functions into Eq. (58)
yields the following system of equations:

L [g (v, δv) ,
v]

=
numel∑
e=1

⎡
⎢⎢⎢⎣

δvM

δV1
...

δVngp

⎤
⎥⎥⎥⎦

T

e

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

kM 0 · · · 0
0 K1 · · · 0
...

...
. . .

...

0 0 . . . Kngp

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣


vM


V1
...


Vngp

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣

fM

F1
...

Fngp

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

e

= 0. (59)

To get better insight, Eq. (59) expresses the system of equa-
tions as a summation of all macroscopic elements e. As
already stated, each macroscopic element gets assigned one
RVE for each of its integration points. Due to the structure
of the resulting equation system, each RVE can be solved
independently. Therefore, to perform the numerical homog-
enization it is enough to look at one single RVE. Here, RVE i
out of the 1 . . . ngp RVEs is considered. It is assumed that the
numerical model consists of numel2 finite elements, which
are identified by e. The equation system of one RVE can
then be expressed as a sum of all elements e, and the relation
between elementwise displacements and system displace-
ments as well as macroscopic strains can be expressed as

ve =
[
va
vb

]

e
=
[
ae 0
0 Ae

] [
V
ε

]
. (60)

In this contribution, the values ε in Eq. (60) contain the beam
strains from Sect. 2. The matrix ae is the standard assembly
matrix, while thematrixAe can be evaluated using thematrix
A of Eq. (5) by replacing ξ2 with y and ξ3 with z. This leads
to Ae = x̂A, where x̂ is the x-coordinate of the node that
corresponds to vb.

Furthermore, the same relations are assumed for the virtual
as well as the linearized values, leading to

δve =
[

δva
δvb

]
=
[
ae 0
0 Ae

] [
δV
δε

]
,


ve =
[


va

vb

]
=
[
ae 0
0 Ae

] [

V

ε

]
. (61)

Expressing the equation system of one RVE as the sum over
all its elements and inserting Eq. (61) leads to

δVT (K
V + F) = 1

LRVE

numel2∑
e=1

[
δV
δε

]T

{[
aTe kaaae aTe kabAe

AT
e kbaae A

T
e kbbAe

] [

V

ε

]
+
[
aTe fa
AT
e fb

]}
. (62)

Furthermore, the following matrices are introduced:

K =
numel2∑
e=1

aTe kaaae Fa =
numel2∑
e=1

aTe fa

L =
numel2∑
e=1

aTe kabAe Fb =
numel2∑
e=1

AT
e fb (63)

M =
numel2∑
e=1

AT
e kbbAe.

In a next step, a static condensation of the internal degrees of
freedom 
V and a comparison to the virtual internal work
of the macroscopic scale can be performed. This leads to the
expression

1

LRVE

{
δε ·

(
Fb − LTK−1Fa

)
+ δε ·

(
M − LTK−1L

)

ε
}

= {δε · σ + δε · D
ε} . (64)

A comparison of the variables in Eq. (64) leads to the defi-
nition of the stress resultants and material tangent. They are
given as

σ = Fb − LTK−1Fa and D = M − LTK−1L. (65)

The values in Eq. (65) of the numerical homogenization
scheme enter themacroscopic beam element. Thus, the entire
schema is defined consistently linearized.

5 Numerical examples

In this section selected numerical examples are presented
with a focus on the improvement of the results due to the
introduced additional constraints. Summing up Sect. 3 and
4, three different kinds of boundary conditions are used. They
are displacement boundary conditions (DBC), displacement
boundary conditions with linear moment constraints Eq. (49)
(DBCC) and the periodic boundary conditions with rigid
body rotation constraints Eq. (40) and linear moment con-
straints Eq. (49) (PBCC). They can be abstractly visualized
as depicted in Fig. 9. In the case ofDBC, according to Fig. 9a,
the displacement component in the length direction ux on
sides x+ and x− is fixed. Remaining displacements on these
sides are assumed periodic to reduce boundary effects. For
DBCC the same assumptions aremade as for DBC, but linear
moment constraints from Sect. 4.2 are applied, as displayed
in Fig. 9b. The third set, the PBCC, is shown in Fig. 9c.
Here, the whole displacement field on the sides x+ and x−
is assumed periodic. Additionally, the rigid body rotations
are removed by applying the interface element according to
Sect. 4.1 in the center of the RVE. Finally, linear moment
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(a) (b) (c)

Fig. 9 RVE – Side view of mesh with boundary conditions

Fig. 10 Cross-section geometry
on the left and RVE geometry
on the right

distributions are removed by the linear moment constraints
according to Sect. 4.2.

To avoid repetition of the description of the used finite ele-
ments, a displacement-based beam formulation with linear
Lagrange shape functions and one-point integration is used.
For the volume elements, a displacement-based formulation
with tri-quadratic Lagrange shape functions is employed.
When other formulations are used, it is explicitly stated.

5.1 Rectangular cross-section

The first example is a rectangular cross-section. This simple
example is used as a benchmark test, as its linear cross-
sectional properties are well known. Its geometry as well
as a schematic plot of the corresponding RVE is visualized
in Fig. 10. The cross-section has a width of b and a height
of h, and the RVE has a length of LRVE. Furthermore, the
coordinates of the center of gravity are denoted as sy and sz .
The same applies for the position of the center of shear, the
coordinates of which are denotedmy andmz . As the interface

according to Sect. 4.1 is a 3D element, its thickness is called
d with a value of d = LRVE/10.

5.1.1 Linear elasticity: centered cross-section

At first, effective cross-sectional values are evaluated con-
sidering the beam axis goes through the center of gravity
of the cross-section (sy = my = sz = mz = 0 cm). The
size of the cross-section is chosen as b = h = 1 cm.
Regarding the material parameters, a Young’s modulus of
E = 21,000 kN cm−2 and a Poisson’s ratio of ν = 0.3 are
used.

To show the improvement due to the introduced additional
constraints, the length LRVE is varied. Furthermore, cross-
sectional values are evaluated analytically and are given in
Table 1. For the shear stiffness, a shear correction factor of
� = 5/6 is considered.

The finite element mesh consists of 4 × 4 elements over
the cross-sectionwith 8 elements along the length of the RVE
in the case of DBC and 9 elements along the length in the
case of PBCC due to rotational constraints.
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Table 1 Effective cross-sectional values of the rectangular cross-
section

E A GAS E I GI T

21,000 kN 6730 kN 1750 kN cm2 1130 kN cm2

Results for tension stiffness E A and bending stiffness E I
are given in Fig. 11. For both stiffnesses, the results of the
numerical homogenization scheme are independent of the
length of the RVE and match the analytical solution, see
Fig. 11.

The results for shear and torsional stiffnesses are depicted
in Fig. 12. If DBC or DBCC are used, they depend on the
length of the RVE, as cross-sectional warping needs to be
considered. While the torsional stiffness GIT converges to
the analytical value with increasing length, the shear stiff-
ness GAS converges to zero in the case of DBC. Using
DBCC, homogenized shear stiffness converges to the ana-
lytical solution. In the case of the proposed PBCC, results
of the homogenization scheme are independent of the length
LRVE of the RVE and match the analytical solution.

The influence of linear moment constraints is depicted
in Fig. 13a. Herein, the RVE stays straight under a shear
deformation employing PBCC, and cross-sectional warping
occurs. It is worthmentioning that the stress boundary condi-
tions on top and on bottomof theRVEare fulfilled. In the case
of DBC, the cross-sectional warping is suppressed, and an
additional deformation due to the linear moment distribution
is clearly visible in Fig. 13b. This deformation is responsi-
ble for the length dependency of the shear stiffnesses when
performing the numerical homogenization.

To close this example, mesh convergence of resulting
shear and torsional stiffnesses is investigated and depicted
in Fig. 14. In this case, only the cross-section is refined,
while the number of elements along the length is kept con-
stant. Theunderlying reference solution for the shear stiffness

assumes a shear correction factor of � = 5/6, and the ref-
erence solution for the torsional stiffness is evaluated to
GIT = 1135.4297 kN cm2 using the element given in [12].
It is worth mentioning that results for tension and bending
stiffnesses are numerically exact for the initial mesh.

5.1.2 Off-centered cross-section

In this example the same rectangular cross-section is assumed,
but an off-centered cross-section is investigated. As a refer-
ence solution, cross-sectional values are evaluated according
to Eq. (18). The eccentricity is chosen as sy = my = 1 cm
and sz = mz = 0 cm. Remaining parameters are the same as
in the previous example.

As all boundary conditions yield numerically exact ten-
sion and bending stiffnesses, the focus is on torsional
stiffness, which depends on the distance from the center of
shear to the beam axis as well as the effective shear area.
Again, the influence of the length of the RVE is investi-
gated. The reference value for torsional stiffness is assumed
as GI ∗

T = 1135.4297 kN cm2 and accounting for eccentric-
ity as G(I ∗

T + m2
y AS) = 7871.908 kN cm2. As depicted in

Fig. 15, solutions are again independent of the length of the
RVE and equal the reference solution of Eq. (18) employ-
ing PBCC. In contrast to this, the DBC case shows a length
dependency anddecreases against the solution of the centered
cross-section. This is because the effective shear stiffness
drops to zero as length increases.

5.1.3 Cantilever beam: considering plasticity

To leave the linear elastic regime and to show that the scheme
can consider physical nonlinearities, a bending-dominated
problem including plasticity is investigated. The example is
taken from [17,26]. This time the rectangular cross-section
has a width of b = 2 and a height of h = 1. The beam
axis goes through the center of gravity of the cross-section;

Fig. 11 Results of the homogenization scheme for E A and E I in the case of varying RVE length—rectangular cross-section
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Fig. 12 Results of the homogenization scheme for GAS and GIT in the case of varying RVE length – Rectangular cross-section

(a) (b)

Fig. 13 Shear deformation and shear stresses in (kN cm−2) of RVEs with different boundary conditions—rectangular cross-section

Fig. 14 Mesh convergence of
PBCC—regular refinement of
the cross-section with a constant
number of elements in length
direction
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Fig. 15 Resulting torsional
stiffness in the case of an
eccentricity of sy = my = 1 cm

Fig. 16 Geometry of the cross-section and the cantilever beam with
load

this means sy = my = sz = mz = 0. The length of the
cantilever is L = 20. As already stated, a plastic material
behavior is assumed with a Young’s modulus of E = 16000,
a Poisson’s ratio of ν = 0.3, a yield stress of Y0 = 20 and a
hardeningmodulus of H = 200. Additionally, on both scales
geometrical nonlinearity is assumed.

The geometry of the system with load is depicted in
Fig. 16. For themacroscopic system, 20 linear beamelements
are chosen, and the RVE is meshed with 8 elements over its
width, 4 elements over its height, and 8 elements along its
length in the case of DBC, 3 elements along its length for
PBCC. The length of the RVE is chosen as LRVE = 1 for
both boundary conditions. For the PBCC, again a thickness
of d = LRVE/10 for the rotational interface is chosen.

Figure 17 shows the results of the scheme with DBC and
PBCC and compares them to the reference solution (Ref.)
from [17,26] and a full 3D model. Here, force F is plotted
versus the deflection δ. Calculations with DBC and PBCC
agree well with the reference solutions.

To show that results of the proposed coupled model
depend on the length of the RVE LRVE in the case of DBC
and are independent of its length in the case of PBCC, the
macroscopic model is slightly modified. The length of the
beam will be reduced to L = 6. Therefore, the length to

height ratio shrinks to L/h = 6, and the impact of shear
deformation on the total deflection increases.

Results of the calculation are depicted in Fig. 18. Here,
to further distinguish among them, the names of the RVE
boundary conditions are extended with the length of the
RVE; for example, DBC1 means that displacement bound-
ary conditions with an RVE length LRVE = 1 are used. It
is noticeable that results using PBCC are the same whether
the length of the RVE is chosen as LRVE = 1 (PBCC1) or
LRVE = 6 (PBCC6). In the case of the DBC, the coupled
model leads to comparable results if the RVE has a length
of LRVE = 1 (DBC1). If its length is increased to LRVE = 6
(DBC6), even the linear part of the load deflection curve is
too soft, and the maximum load is underestimated.

5.1.4 Torsional limit load considering plasticity

To further investigate the influence of RVE length, the limit
load due to torsional moment is investigated. The exam-
ple is taken from [28]. Here, the cross-section has a height
of h = 10 cm and a width of b = 5 cm. The beam
axis goes through the center of gravity of the cross-section,
which equals the center of shear in this case (sy = sz =
my = mz = 0 cm). Furthermore, an isotropic linear elas-
tic, ideal plastic material law with a Young’s modulus of
E = 21,000 kN cm−2, a Poisson’s ratio of ν = 0.3 and a
yield stress of Y0 = 24 kN cm−2 is chosen. Here, only shear
stresses are responsible for the occurrence of plasticity. They
are limited to a value of τmax = 13.86 kN cm−2. According
to [28], the limit state can be computed as

Mel
T = 0.246 · τmax · h · b2 = 852.2 kN cm
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Fig. 17 Load deflection
curve—load F versus deflection
δ

Fig. 18 Load deflection curve
with varying RVE length—load
F versus deflection δ

and Mpl
T = 1

6
· τmax · b2 · (3 · h − b) = 1443.4 kN cm.

(66)

Values in Eq. (66) are the elastic limit torsional moment Mel
T

and the plastic one Mpl
T .

With previously given values, two directions of the RVEs
are defined. The remaining direction is chosen as LRVE =
5 cm in the case of PBCC, again with an interface thickness
of d = LRVE/10. For DBC, the length will be varied and is
attached to its name, as in the last example. Therefore, the
RVE in the case of DBC20 has the length LRVE = 20 cm and
in the case of DBC100 the length is LRVE = 100 cm. The
mesh of the RVEs is chosen with 8 elements in height and
4 elements in width. The length direction is meshed with 3

elements in the case of PBCC and 8 elements in the case of
DBC. The finer mesh in the case of DBC is chosen because
of the suppressed warping.

Results of the calculation are depicted in Fig. 19. On the
left side, PBCCandDBCare compared to the analytical solu-
tion according to Eq. (66). As expected, the DBC20 with
an RVE length of LRVE = 20 cm show a too stiff behav-
ior due to the warping constraint. This affects not only the
linear elastic part but leads to an overestimation of the max-
imum torsional moment as well. If the length of the RVE
is increased to LRVE = 100 cm, results look much better,
as seen for DBC100. In comparison with Fig. 12, however,
the shear stiffness is underestimated, whereas when using
the PBCC, results are independent of the length of the RVE
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Fig. 19 Load deflection behavior—normalized moment versus normalized torque

Fig. 20 Comparison of the equivalent plastic strain in the full plastic state—DBC20 on the left and PBCC on the right

LRVE. Furthermore, the reference solution (Ref.) of [28] is in
good agreement with the solution of PBCC, see Fig. 19 on
the right.

To get insight into what is happening on the mesoscopic
scale, the equivalent plastic strain in the case of a fully plastic
state for DBC20 and PBCC are depicted in Fig. 20. On the
left side, the strain state of DBC20 is depicted. The boundary
effects on the strain state are clearly noticeable. In contrast
to that, the constraints due to PBCC have no impact on the
strain state as shown in the picture on the right.

5.2 U-shaped profile

To show the necessity of an accurate approximation of shear
stiffnesses within the multiscale scheme, a U-shaped profile
is investigated. The crucial property is that the center of shear
does not equal the center of gravity for this cross-section.

Figure 21 shows the geometry of the cross-section. The
geometrical data are height h = 10 cm, width b = 10 cm,
thickness of the web s = 0.6 cm and thickness of the flanges
t = 1.2 cm. Furthermore, the parameters nc = nw = 4 spec-
ify the numbers of elements used to mesh the cross-section.

Along the RVE’s length, 10 elements are used. As a result,
the thickness of the rotational interface is d = LRVE/10.
A homogeneous, isotropic material behavior with a Young’s
modulus of E = 21,000 kN cm−2 and a Poisson’s ratio of
ν = 0.3 is assumed.

5.2.1 Effective properties

As a reference solution, the cross-sectional properties given
in Table 2 are calculated with the elements in [8,12]. The
distances to the center of gravity sy and sz as well as the
distances to the center of shear my and mz are provided with
respect to the lower left corner of the cross-section according
to Fig. 21. Furthermore, the listed shear correction factors
�y and �z lead to the resulting shear stiffnesses GASy =
�yGA and GASz = �zGA. The torsion constant I ∗

T is given
with respect to the center of shear and can be calculated
with respect to the center of gravity as IT = 310.018 cm4

according to Eq. (18).
Using the homogenization schemewith PBCC leads to the

cross-sectional values given in Table 3. Here, RVE lengths
LRVE of 1 cm and 100 cm are chosen. Both cases give the

123



Computational Mechanics (2020) 65:635–661 653

Fig. 21 Geometric description
of the cross-section

Table 2 Cross-sectional
properties of the U-shaped
profile

A Iy Iz I ∗
T

28.56 cm2 489.4688 cm4 284.78419 cm4 11.293598 cm4

sy sz my mz �y �z

4.2495798 cm 5 cm 4.0828184 cm 5 cm 0.659 10048 0.150 65091

Table 3 Cross-sectional values
of the homogenization scheme
using PBCC for LRVE = 1 cm
and LRVE = 100 cm

LRVE = 1 cm
A Iy Iz I ∗

T

28.56 cm2 489.469 cm4 284.784195 cm4 11.39699501 cm4

sy sz my mz �y �z

4.24958 cm 5 cm 4.0770323 cm 4.9999989 cm 0.66221 0.151 97

LRVE = 100 cm
A Iy Iz I ∗

T

28.56 cm2 489.469 cm4 284.784195 cm4 11.39699501 cm4

sy sz my mz �y �z

4.24958 cm 5 cm 4.0770323 cm 4.9999989 cm 0.66221 0.15197

same results and are consistent with the reference solution in
Table 2.

Using DBC, the tension and bending stiffnesses are cal-
culated numerically exactly, but length-dependent results for
the cross-sectional values are observed if they arise from
shear stresses, see Fig. 22. Within this diagram, results are
normalized by the reference solutions given in Table 2. The
length dependency of the position of the center of shear
resides in the suppressed warping. Therefore, it is not con-
nected to the problem described in Sect. 3.2, but is a general
problem of DBC due to the suppressed warping and is
resolved by increasing the length LRVE of the RVE. In con-
trast, the shear stiffnesses drop to zero again, and connected
to them, the torsional stiffness converges to the value related
to the center of shear.

5.2.2 Lateral torsional buckling

To show that the scheme is not only limited to calculating
cross-sectional properties for the linear elastic case or taking
into account physical nonlinearities, this example considers
cross-sectional deformation by using geometric nonlinear-
ity on the mesoscopic and macroscopic scale. The impact
of this nonlinearity is shown by calculating a stability prob-
lem that is due to lateral torsional buckling. It is necessary
to mention that the underlying beam theory leads to the
basic 6 degrees of freedom per node and, thus, does not
contain any assumption regarding the continuity of the cross-
sectional warping between the elements. Therefore, it is
expected that the scheme recognizes the correct maximum
load level only for a limited set of examples and underesti-
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Fig. 22 Normalized
cross-section parameters of the
U-shaped profile using DBC

Fig. 23 Geometry and load of the system to investigate lateral torsional
buckling

mates themaximum load level as soon aswarping constraints
or warping continuity play a significant role.

For the reasons mentioned above, the system is chosen
according to Fig. 23. Its length has a value of L = 150 cm,
and it is loaded with λF and λM . The values of the force and
moment are F = 100 kN and M = 0.1 kN cm. Both applied
loads are scaled with the load-factor λ. The applied moment
M represents an imperfection only and is removed as soon
as the system buckled.

Regarding the finite element mesh, 20 beam elements
are employed on the macroscopic scale. For the mesoscopic
scale, the cross-section described in the previous section is
used. This time the mesh parameters are nc = 2 and nw = 4.
In the length direction 3 elements are used for the PBCC and
5 elements for the DBC. In both cases, the length of the RVE
is chosen as LRVE = 10 cm. Furthermore, a reference solu-
tion is calculated using 3Dbrick elementswith the samemesh
parameters for the cross-section and 40 elements along the
length of the system. To reduce the impact of the continuity of
warping deformation, the boundary conditions are imposed
with a constant traction interface element comparable to that
in Sect. 4.1.

The results are depicted in Fig. 24. In this diagram, the
unloading path is shown after the moment M was removed.
Both themultiscale calculationwith PBCC and the 3Dmodel

(Ref.) yield nearly the same results. Looking at the DBC, no
sign of instability can be observed. This is because the warp-
ing displacement is suppressed on the mesoscopic scale. For
further comparison, analytical values of the critical loads are
computed according to [18]. They evaluate to λT B = 5.89 in
the case of lateral torsional buckling, λBw = 6.55 for the first
Euler case with respect to the weak axis, and λBs = 11.27
for the first Euler case with respect to the strong axis. Even
though all loads are applied at the center of gravity of the
cross-section, they do not lead to a sufficient imperfection
with DBC, and neither the Euler buckling case connected
to the weak axis nor the one connected to the strong axis
is triggered, but the equation system has negative diagonal
elements after reaching the critical load of the first Euler
buckling case.

5.3 Layered cross-section

Here, a layered cross-section is considered. The geometry of
the cross-section is depicted in Fig. 25. Its width is b, and its
height h = 2hL +hC . Furthermore, the core fraction ρC that
describes the ratio between the layer height hL and the core
height hC as hC = ρCh and hL = (1 − ρC )h/2 is assumed.
Regarding the material parameters, the factor α is introduced
to describe the ratio between the stiffness of the core and the
layers as α = EC/EL . The value EC is the Young’s modulus
of the core and EL the one of the face layers.

5.3.1 Effective properties

Here, the width is b = 20 cm, and the total height h = 2hL +
hC = 20 cm. The focus lies in the evaluation of the tension
stiffness E A, the bending stiffness E Iy with respect to the
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Fig. 24 Load-factor λ versus
tip-rotation ϕ

Fig. 25 Geometry of the layered cross-section

y-axis and the shear stiffness in the z-direction. The Young’s
modulus of the layer is chosen as EL = 1000 kN cm−2, and
the Poisson’s ratio is assumed to be equal in the layer and
the core, with a value of ν = 0.3. For this cross-section, the
analytical values for the tension and bending stiffness can be
evaluated as

E A = ELb (αhC + hL)

E Iy = ELb

(
α
h3C
12

+ 2

[
h3L
12

+ s2LhL

])
. (67)

For the shear correction factor, a solution for �z can be
found in [25] and is evaluated with

Fig. 26 Comparison of the resulting bending and tension stiffness for varying stiffness ratios α and core fractions ρC—layered cross-section
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Fig. 27 Comparison between
the analytically and numerically
evaluated shear correction factor
� for varying stiffness ratios α

and core fractions ρC—layered
cross-section

Fig. 28 Shear stresses and
deformation of the RVE
α = 0.001 and γz = 0.1 in
(kN cm−2)—layered
cross-section

(a) (b)

A (ρC ) = (1 − ρC )3

15

(
3ρ2

C + 9ρC + 8
)

,

T1 (ρC ) =
(
1 − ρ3

C

)
+ ρ3

Cα,

T2 (ρC ) = 1 − ρC

α
+ ρC ,

T3 (ρC ) =
(
1 − ρ2

C

)2 + 8

15
α2ρ4

C + 4

3
αρ2

C

(
1 − ρ2

C

)
,

T4 (ρC ) = A (ρC ) α + ρCT3 (68)

as

�z = 4

9

T 2
1

T2T4
. (69)

To compare the reference solutions Eqs. (67) and (69)
with the results of the homogenization scheme, PBCC are
used. Each layer of the RVE is meshed with 4 elements in
thickness, 4 elements in width and 9 elements in length.

The results of the homogenization scheme for the tension
and bending stiffnesses are depicted in Fig. 26. A dashed
line is used to represent the reference solution according
to Eq. (67). The results of the numerical homogenization
are marked with the corresponding symbols. For all stiffness
ratios α and core fraction ρC , numerically exact values are

Fig. 29 Geometry of the macroscopic system

to be observed. This means that 7 digits agree, which is the
used output precision.

Next, the shear correction factor is evaluated. Results are
presented in Fig. 27. Again, the dashed lines represent the
analytical solution and the results of the homogenization
scheme are depicted with symbols. As before, the numerical
results agree very well with the analytical solution Eq. (69).
In the case of ρC = 0 and ρC = 1, the shear correction
factor is � = 5/6. In this case a homogeneous cross-section
is evaluated. To name an extreme value, for α = 0.001 and
ρC = 0.4, the shear correction even drops to a value of
� ≈ 1/500. The values are also compared with the results of
the element according to [10],which leads to the same values.

To get insight into the shear deformation of the RVE, it
is depicted for a core fraction of ρC = 0.1 in Fig. 28a and
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Fig. 30 Additional constraints to achieve a plate strip behavior

for a core fraction of ρC = 0.9 in Fig. 28b. In Fig. 28a, it is
clearly visible that the shear strain is concentrated in the core,
and the RVE shows noticeable warping. In contrast, warping
deformation is less noticeable in Fig. 28b. One can see that
the shear stresses are nearly constant within the core.

5.3.2 Plastic behavior

In this section, the behavior of the cross-section due to plas-
ticization of the face layers is investigated. The example is
taken from [13].A linear elasticmaterial behavior for the core
is assumed with a Youngs’ modulus of E = 70 N mm−2 and
a Poisson’s ratio of ν = 0.3. For the face layers, a plastic
behavior is assumed with EL = 70,000 N mm−2, νL = 0.3,

a yield stress of Y0 = 100 N mm−2 and a hardening mod-
ulus of H = 1000 N mm−2. The geometry parameters are
hC = 30 mm, hL = 0.5 mm and b = 60 mm.

The macroscopic system is depicted in Fig. 29. Its length
is chosen as L = 2000 mm, and it is loaded with q = λ ·
0.06 N mm−1. To represent the structure, 14 beam elements
are used. Later, the displayed deflection δ versus the load
factor λ is observed.

As the reference solution of [13] is for a plate strip and
is not directly comparable with beam kinematics, additional
constraints for the RVE are needed. They are depicted in
Fig. 30.Here, the displacements uy on opposite sides in the y-
direction of the RVE are constraint. Due to those constraints,
an equivalent behavior of the system can be achieved. Fur-
thermore, the mesh of the RVE can be seen in Fig. 30. It has
a length of LRVE = 10 mm, consists of 2 elements in width,
2 elements in height per layer and 5 elements in length. The
interface element in the center of the RVE has a thickness of
d = 0.5 mm. The results of the computation are presented in
Fig. 31. For comparison, the calculation is performed with
the basic PBCC (PBCCb). As expected, the solution of the
system is too soft, as it is calculated using the beam assump-
tions. Using PBCC with the additional constraints given in
Fig. 30, the plate strip behavior can be simulated with the
multiscale approach. Under those assumptions, it is possible
to reproduce the reference solution (Ref.).

5.4 Structural homogenization: right angle bent

The last example considers an internal structure that will
be homogenized. It is intended to show that the scheme’s
capabilities go beyond the modeling of cross-sections only.

Fig. 31 Load deflection
behavior of the system
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Fig. 32 Geometry and loading
of the right angle and its local
structure

The geometry of the model and its internal structure is
depicted in Fig. 32. With length lc = 30 cm, width b =
10 cm, height h = 20 cm and radius r = 6.5 cm, the structure
is completely defined. It is worth mentioning that the hole
with a radius of r = 6.5 cm reduces the cross-section by
65 %. Therefore, the kinematical assumptions of the beam
theory are no longer valid in every point of the structure. But
it will be shown, that the proposed scheme can reproduce the
structural behavior. Furthermore, geometrical and physical
nonlinearity is included on both scales. Regarding the latter,
a linear elastic, ideal plasticmaterial behavior with aYoungs’
modulus E = 21,000 kN cm−2, a Poisson’s ratio of ν = 0.3
and a yield stress of Y0 = 23.5 kN cm−2 is chosen. The
structure is loaded by a force F = λ · 50[kN], whereby λ is
the load factor. Furthermore, both ends are clamped. Due to
the given geometry and loading, the system is subjected to
bending, shearing and torsion.

To describe the mesh, the internal structure in Fig. 32 is
subdivided into 8 blocks. Each of these blocks is meshed by
4 × 4 × 4 elements. The resulting mesh for the RVE with
PBCC is depicted in Fig. 33. Here, two internal structures
are used to represent the RVE. In the center of the RVE,
the interface element is added. Its thickness is chosen as
d = 0.125(lc/2 − r) = 1.0625 cm. Two of the internal
structures are used because the interface element is designed
to be applied in the center of the RVE, and its kinematical
assumptions are based on beam kinematics. Therefore, it is
necessary to construct a part of the mesh in the center of the
RVE in which these assumptions are valid. Regarding the
macroscopic beam mesh, 6 linear beam elements per arm
are chosen. Consequently, the integration points of these ele-
ments approximately coincide with the centers of the holes.
For comparison, the structure is evaluated using 3D brick ele-
ments with the same mesh parameters as described above.

Fig. 33 Mesh of the RVE for PBCC including the interface element of
thickness d

The results of the calculation are depicted in Fig. 34. As
shown, the calculated load deflection behavior of the multi-
scale model (PBCC) is in good agreement with the 3Dmodel
(Ref.).

The equivalent plastic strains at δ = 2.1 cm and λ = 7.4
are shown in Fig. 35. As expected, plasticity occurs at the
weakest position with the highest load near the clamping. To
get further insight into the stress state, a coordinate system
to identify the stresses is included.

Finally, the stresses along a line are plotted in Fig. 36. The
line is parallel to the height direction and is tangent to the
hole of the internal structure at 8.5 cm from the clamping. In
addition, it is located at the center of the internal structures’
width direction. Stresses are evaluated in a plastic state with
a corner displacement of δ = 2.1 cm and a load factor of
λ = 7.4. The results of the multiscale model agree very well
with those of the reference solution.
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Fig. 34 Load deflection
behavior of the right
angle—load factor λ versus
corner displacement δ

Fig. 35 Equivalent plastic
strains of the 3D brick model at
δ = 2.1 cm and λ = 7.4
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Fig. 36 Stresses through height at 8.5 cm from the clamping of the loaded arm in (kN cm−2)—δ = 2.1 cm and λ = 7.4

6 Conclusion

In this contribution, a multiscale model for beam elements
is proposed. The theory itself is based on a first-order
homogenization scheme. It is shown that the direct appli-
cation of the scheme using the beam kinematics leads to
length-dependent results for the homogenized shear stiff-
nesses. The source of the length dependencies is identified
and is connected to the moment balance. Additional con-
straints are proposed that remove this length dependency. As
a result, the scheme is able to reproduce well-known cross-
sectional values of simple homogeneous cross-sections and
layered cross-sections. Furthermore, the model allows for
the consideration of physical nonlinearity such as plasticity.
Alongside the calculation of effective cross-sectional prop-

erties using the undeformed geometry, the scheme allows the
consideration of cross-sectional deformations by employing
geometrical nonlinearity on the mesoscale. This fact allows
the discovery of possible stability problems like lateral tor-
sional buckling. As a 3D RVE is homogenized, the scheme’s
capabilities reach beyond pure cross-section modeling and
allow the consideration of periodic structures along the length
direction.
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