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Abstract
We present a conservative/dissipative time integration scheme for nonlinear mechanical systems. Starting from a weak form,
we derive algorithmic forces and velocities that guarantee the desired conservation/dissipation properties. Our approach relies
on a collection of linearly constrained quadratic programs defining high order correction terms that modify, in the minimum
possible way, the classical midpoint rule so as to guarantee the strict energy conservation/dissipation properties. The solution
of these programs provides explicit formulas for the algorithmic forces and velocities which can be easily incorporated into
existing implementations. Similarities and differences between our approach and well-established methods are discussed
as well. The approach, suitable for reduced-order models, finite element models, or multibody systems, is tested and its
capabilities are illustrated by means of several examples.

Keywords Conservative/dissipative time integration scheme ·Nonlinear mechanical systems · Linearly constrained quadratic
programs · Optimality conditions · Unconditional energy stability

1 Introduction

A key feature in the numerical approximations of conserva-
tive mechanical systems is their ability to exactly preserve
the first integrals of their motion (energy, momenta, sym-
plecticity, …), replicating the properties of the continuous
counterparts (see, e.g., [1,2]). This interest in structure
preserving integrators is hence justified by the qualitative
similarity between the dynamical behaviour of a mechani-
cal system and the discrete dynamics generated by the time
integration scheme [3]. In addition, a wealth of evidence sup-
ports the fact that this kind of time-steppingmethods behaves
extremely well for long-term simulations [4–9].

It is not easy to formulate numerical schemes that uncon-
ditionally preserve one or more invariants of the discrete
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motion. Generally speaking, this goal is accomplished by
ensuring that some of the (abstract) geometric structures that
appear in the continuous picture are replicated in the discrete
dynamics. Since it is well-known that, in general, all invari-
ants cannot be preserved for a fixed time step size scheme,
different families of methods strive for the preservation of
specific subsets of the various symmetries of the continu-
ous system. For example, some numerical methods resemble
discrete Hamiltonian systems [6], based on discrete gradient
operators, and unconditionally preserve the energy and the
(at most quadratic) momenta. Other methods emanate from
discrete variational principles [10] and obtain the update for-
mula from the stationarity conditions of these principles. In
fact, it is possible to formulate methods that preserve energy,
momenta, and the symplectic form of the system, if the time
step size is added as an unknown to the method’s equations
[7].

In the context of nonlinear elastodynamics, the first energy
and momentum conserving algorithms were developed by
Simo and co-workers [4]. This pioneering work showed that
for SaintVenant–Kirchhoffmaterials, such structure preserv-
ing methods can be easily obtained by a simple modification
of themidpoint rule in which the stress, instead of being eval-
uated at the midpoint instant, should be taken as the average
of the stresses at the endpoints of the time interval. Since
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the constitutive law is linear in the strain, this turns to be
equivalent to compute the algorithmic stress with the aver-
age of the strains at the endpoints of the time interval. This
simple idea was later applied to the conserving integration of
shells [5], rods [11,12], contact mechanics [13], multibody
systems [14,15], etc., and generalized to elastic materials
of arbitrary type [16,17]. The key idea for such general-
ization is the definition of a discrete gradient operator, a
consistent approximation of the gradient that guarantees the
strict conservation of energy in Hamiltonian systems [16,18–
20]. Alternatively, one might derive conserving methods by
defining an average vector field [8,21]. In the context of
the continuous Galerkin method, an optimization approach
was employed to systematically develop high-order energy
conserving schemes [22,23].Very recently, a newmixed vari-
ational framework that takes advantage of the structure of
polyconvex stored energy functions was proposed [24], and
the properties of several formulas for the discrete gradient
that are available in the literature were carefully analyzed in
the context of multibody systems [25].

Many Hamiltonian problems are modeled with stiff dif-
ferential equations for which conserving integration schemes
might not be the most robust. For these problems, numerical
methods with controllable numerical dissipation in the high-
frequency range provide often a practical solution [26–30].
Based on a modification of the discrete gradient operator,
Armero and Romero [9,31] developed a family of schemes
for nonlinear three-dimensional elastodynamics that exhibits
this kind of algorithmic dissipation, while preserving the
momenta and providing a strict control of the energy, applica-
ble to elastodynamics, as well as to rods and shells [32,33].
Following an alternative path based on the average vector
field, Gebhardt and co-workers have proposed similar con-
serving/dissipative methods for general solid and structural
problems [34,35].

This work considers the conservative/dissipative time
integration of the equations of motion that typically arise
during the analysis of nonlinear mechanical systems. More
specifically, we present a novel approach that renders, by
construction, methods with the desired conservation or dis-
sipation properties. These methods discretize the equations
of motion and add some perturbations related to the main
field variables through a collection of ancillary linearly
constrained quadratic programs that guarantee the conser-
vation/dissipation properties. This kind of programs are
analytically solvable and therefore, very attractive from the
computational point of view. One possible interpretation of
the contributions in this article is that it results in conser-
vative/dissipative methods where the geometric arguments
typically employed for their design have been replaced by
optimality conditions.

The perturbations proposed in the new methods are
designed to correct some of the unwanted effects coming

from the discretization of the governing equations. From a
geometric point of view, the idea is to redesign the problem
in such a way that the behavior of the system on the discrete
constrained sub-manifold remains unaltered, but acts as an
attractor for trajectories outside of it. Since the constrained
programs can be solved in closed form, corrected formulas
for the algorithmic internal forces and generalized velocities
can be provided, and thus easily incorporated in existing sim-
ulation codes. The similarities and differences of the newly
proposed method with respect to existing ones are pointed
out and discussed critically.

The remaining of the article is organized as follows:
In Sect. 2, we present the basic framework for nonlinear
mechanical systems. In Sect. 3, we address in a compre-
hensive manner the new time discretization. In Sect. 4, we
present several examples of increasing complexity for the
verification of the method. Finally, conclusions, limitations
and future work are presented in Sect. 5. Additionally, the
“Appendix” introduces the precision quotient, with which
the correctness of an implementation can be tested.

2 Mechanical framework

2.1 Statement

In this work we consider mechanical systems whose con-
figuration is completely defined by a vector q ∈ Q, where
Q ⊆ R

n . Denoting by t the time, the state of the system at
any instant is given by the pair (q, s) ∈ W ≡ T Q, where
s = q̇ is the velocity, and in which we have employed the
notation ˙(·) = d(·)

dt . The dynamical behavior of this system,
for t ∈ [ta, tb] is governed by the variational equation:
∫ tb

ta

[〈
δs, p(q̇)−π(s)

〉 − 〈
δq, π̇(s)+ f int(q)− f ext(q)

〉]
dt

= 0 , (1)

where (δq, δs) ∈ TW are admissible variations of the
generalized coordinates and velocities, p(q̇) ∈ T ∗

s S and
π(s) ∈ T ∗

s S stand for the generalized-coordinate-based and
generalized-velocity-based momenta, respectively, f int ∈
T ∗
q Q is the vector of internal forces, f ext ∈ T ∗

q Q is the
vector of external loads that can be of conservative or non-
conservative nature, and finally,

〈·, ·〉 represents a suitable
pairing. Additionally, we assume the following two condi-
tions: (i) the system possesses a positive-definite symmetric
mass matrix M such that

π(s) = Ms, p(q̇) = Mq̇ (2)

and, (ii) both the internal and the external forces derive from
potential functions depending only on the configuration q,
i.e.,
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f int = −∂V int

∂q
, f ext = −∂V ext

∂q
, (3)

and we define the total potential energy of the system as
V = V int + V ext.

We would like to analyze next the implications that
symmetry has on the form of the internal forces and the
appropriate notions of linear and angular momentum in the
abstract space Q. For that, the relation between the configu-
ration space Q and the ambient space R3 has to be carefully
considered. We start by defining Φ : R

3 × Q → Q to
be a smooth action of R3 on the configuration space such
that Φ(a, q) is the configuration of the system after all its
points have been translated in space by constant vector a.
The infinitesimal generator of this translation at q is the vec-
tor τ a(q) ∈ TqQ defined as

τ a(q) = ∂

∂ε

∣∣∣∣
ε=0

Φ(ε a, q), (4)

with ε ∈ R. Let us now assume internal potential energy is
invariant under translations, i.e.,

V int = V int ◦ Φ. (5)

Then, choosing a one parameter curve of translations
Φ(ε a, ·) in Eq. (5) and differentiating with respect to ε, it
follows that a translation invariant potential implies that the
internal forces satisfy

0 = ∂

∂ε

∣∣∣∣
ε=0

V int(Φ(ε a, q)) =
〈

∂

∂q
V int(q), τ a(q)

〉

= −〈 f int(q), τ a(q)〉. (6)

To study the conservation of angular momentum, wemust
repeat the same argument but considering now a second
smooth action Ψ : R3 × Q → Q such that Ψ (θ, q) is the
configuration of the system after all its points have rotated in
ambient space by the application of a rotation exp[θ̂ ]. Defin-
ing, as before, the infinitesimal generator of this action to be
the vector ρθ (q) ∈ TqQ calculated as

ρθ (q) = ∂

∂ε

∣∣∣∣
ε=0

Ψ (ε θ, q), (7)

again with ε ∈ R. If the potential energy is now rotation
invariant, i.e.,

V int = V int ◦ Ψ . (8)

Then the internal force must satisfy

0 = ∂

∂ε

∣∣∣∣
ε=0

V int(Ψ (ε θ , q)) =
〈

∂

∂q
V int(q), ρθ (q)

〉

= −〈 f int(q), ρθ (q)〉. (9)

The precise notion of linear and angular momentum for
the systemdefined in this section is provided by the following
result:

Theorem 1 Consider a mechanical system with configura-
tion space Q ⊆ R

n and vanishing external forces. Let
Φ(a, ·), Ψ (θ , ·) be the translation and rotation actions on
the configuration space with infinitesimal generators τ a and
ρθ , respectively, and define the linear momentum l ∈ R

3

and the angular momentum j ∈ R
3 as the two quantities

that verify

〈l, a〉 = 〈τ a(q),π〉, 〈 j , θ〉 = 〈ρθ (q),π〉 . (10)

Then, the linear momentum is conserved if the potential
energy is invariant with respect to translations. Similarly,
if the potential energy is invariant under rotations, the angu-
larmomentum is a constant of themotion.Moreover, the total
energy

E = 1

2
〈s, Ms〉 + V (q) (11)

is preserved by the motion, due to its time invariance.

Proof The proof of momenta conservation follows from tak-
ing the derivative of these quantities and using (1) with
admissible variations (δq, δs) = (τ a(q), 0) and (ρθ (q), 0),
respectively. The conservation of energy property follows
similarly by choosing (δq, δs) = (s, 0). 
�

3 Time discretization

The interest in the current work is in algorithms to approx-
imate the solution of Eq. (1). To define them, let us start
by considering a partition of the interval [ta, tb] into disjoint
subintervals (tn, tn+1] with ta = t0 < t1 < . . . < tN = tb,
andΔtn = tn+1−tn . Then, the integration algorithms that we
consider are based on the midpoint approximation of Eq. (1)
and of the form:

0 =
〈
δs, M

qn+1 − qn
Δtn

− Msn+1/2

〉
−

〈
δq,

πn+1 − πn

Δtn

+ fint(qn, qn+1) − f ext(qn+1/2)

〉
(12)

where the configuration and rate, respectively, at time tn are
approximated by qn, sn , we have defined πn = Msn , and
we have used the notation (·)n+1/2 = 1

2 (·)n + 1
2 (·)n+1. The

update depends on the definition of an approximation to the
internal force at the midpoint tn+1/2 that we have denoted as
fint.
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Equation (12) provides an implicit or explicit update
(qn, sn) �→ (qn+1, sn+1) that, together with the initial con-
ditions of the configuration and velocity, suffices to generate
discrete trajectories. We note that the approximation to the
internal force in Eq. (12) is a function of two arguments that,
by consistency, must satisfy

fint(q, q) = f int(q), (13)

for all configurations q ∈ Q.
We are interested, in particular, in formulating time inte-

gration schemes of the form (12) that preserve (some of) the
invariants in the motion of the system (1), while controlling
the value of the energy at all times. Let us first consider the
update Eq. (12) with variations of the form (δq, δs) = (0, c),
where c is an arbitrary but constant vector in T Q. Then, triv-
ially, it follows that

qn+1 − qn
Δtn

= sn+1/2. (14)

Next, we would like to explore whether the proposed class
of integration schemes preserves momenta for mechanical
systems defined in the configuration space Q. The result, for
every configuration space, is given next.

Theorem 2 Consider the time discretization (12) of a
mechanical system with configuration space Q ⊆ R

n. Let
Φ andΨ denote, as above, the actions ofR3 on Q represent-
ing, respectively, translations and rotations. The integration
scheme preserves linear momentum if

0 = 〈τ a(qn+1/2), f
int(qn, qn+1)〉 (15a)

〈τ a(qn+1/2),πn+1 − πn〉 = 〈ln+1 − ln, a〉, (15b)

for every a ∈ R
3. Likewise, the integration algorithm pre-

serves angular momentum if for every θ ∈ R
3

0 = 〈ρθ (qn+1/2), f
int(qn, qn+1)〉 (16a)

〈ρθ (qn+1/2),πn+1 − πn〉 = 〈 jn+1 − jn, θ〉. (16b)

The verification of conditions (15)–(16) depends, first, on
the structure of Q. For example, if we consider Q ≡ R

3n ,
the configuration space of n particles in three-dimensional
Euclidean space, conditions (15b)–(16b) are easily veri-
fied. Conditions (15a)–(16a) depend not only on Q but
also on the form of fint which has been, up to this point,
left unspecified. For example, the canonical midpoint rule
employs fint(x, y) = f int((x + y)/2), and preserves both
linear and angular momenta, but not energy. In turn, the
Energy-Momentum method [4,5] provides an expression for
this force that guarantees strict energy conservation in the
discrete update map, without upsetting the preservation of

momenta. Expanding on this idea, the Energy-Dissipative-
Momentum-Conserving method [9,31] adds controllable
energy dissipation to the solution, so small that does not upset
the accuracy of the solution, yet large enough that can damp
out some of the spurious oscillations in the high-frequency
part of the solution.

3.1 Discrete derivative

As already mentioned, the direct evaluation of the internal
forces at the midpoint configuration does not guarantee, in
general, the preservation of energy. There exist however, con-
sistent approximations of these forces that strictly enforce
this property of conservative equations.

To introduce the form of this “conservative” approxima-
tion of the internal energy let us assume as in Sect. 2 that the
internal forces derive from a smooth potential V : Q → R.
Be aware that from now on, we remove the superindex int,
since no external force is longer considered along the deriva-
tion presented next. The type of approximations we search
for are referred in the literature as “discrete derivatives” [6]
and are functions f : Q × Q → R that satisfy, for every
x, y ∈ Q, two properties, namely:

i. Directionality:

〈f(x, y), y − x〉 = V ( y) − V (x) . (17)

ii. Consistency:

f(x, x) = −DV (x) = f (x), (18)

where D denotes the standard derivative operator.

When Q ⊂ R, there only exists one discrete derivative [8]
and its closed form expression is given by

f(x, y) = V (y) − V (x)

|y − x | , (19)

with the well-defined limit

lim
y→x

f(x, y) = −DV (x) = f (x). (20)

In higher dimensions, there are actually an infinite number
of discrete derivatives [8,20] since only the component of f
along the direction of y − x needs to have a precise value
in order to guarantee energy conservation, and its orthog-
onal complement is free to vary, as long as consistency of
the approximation is preserved. This statement is formalized
next:
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Theorem 3 Any discrete derivative can be rewritten as

f(x, y) = V ( y) − V (x)

‖ y − x‖2 ( y − x) + g(x, y), (21)

with g(x, y) a vector-valued function such that

〈g(x, y), y − x〉 = 0, ( y �= x), (22)

and

lim
y→x

(
g(x, y) − P⊥

( y−x) f (x)
)

= 0, (23)

whereP⊥
( y−x) is the projection on the component perpendic-

ular to y − x.

Proof Let g(x, y) be defined as

g(x, y) = f(x, y) − V ( y) − V (x)

‖ y − x‖2 ( y − x), (24)

it is apparent that g(x, y) is perpendicular to y − x because
〈f(x, y), y − x〉 = V ( y) − V (x), and

g(x, y) − P⊥
( y−x) f (x) = f(x, y) − V ( y) − V (x)

‖ y − x‖2 ( y − x)

− f (x) + 〈 f (x), y − x〉
‖ y − x‖2 ( y − x)

= f(x, y) − f (x) − 1

‖ y − x‖ (V ( y) − V (x)

−〈 f (x), y − x〉) ( y − x)

‖ y − x‖ ,

(25)

which tends to zero as y → x. 
�

3.2 Conservative algorithmic force

We explore next a type of discrete derivative that is dif-
ferent to the one usually employed in nonlinear mechanics
[4,16]. For that, we construct first a convex combination of
the (exact) derivative at two configurations, i.e.,

fcons = 1

2
(1 − αcons) f (x) + 1

2
(1 + αcons) f ( y) (26)

or in a more compact form

fcons = f a + αcons Δ̃ f . (27)

In this expression, the scalar αcons has to be determined in
order to guarantee directionality, f a is the averaged force

f a = f (x) + f ( y)
2

, (28)

and Δ̃ f is one half of the force jump between the configura-
tions at times tn and tn+1, i.e.,

Δ̃ f = f ( y) − f (x)

2
. (29)

Notice that this conservative approximation satisfies, by con-
struction, the consistency condition (18). The satisfaction of
directionality depends, as advanced, on the choice of the
parameter αcons. To enforce it, we select αcons by means
of an optimality condition [20], namely, as the scalar that
minimizes

1
2‖fcons − f m‖2G

subject to 〈fcons, y − x〉 − V ( y) + V (x) = 0.
(30)

Assuming f (x) �= f ( y), this optimization problem is a lin-
early constrained quadratic program that can be solved in
closed form. Moreover, the only requirement for the opti-
mization problem to be convex is that ‖ f ( y)− f (x)‖2G > 0.
Its solution can be interpreted as the discrete derivative that
is closest to f m , the continuous force at the midpoint f m ,
namely,

f m = f
(
x + y
2

)
. (31)

Here,G is a metric tensor. The Lagrangian of the optimiza-
tion problem is

L(αcons, λcons) = 1

2
‖fcons − f m‖2G + λcons

(〈fcons, y − x〉
−V ( y) + V (x)) , (32)

where λcons is a Lagrange multiplier that enforces direction-
ality. To find the stationarity condition, the variation of L is
calculated as:

δL(αcons, λcons) = 〈δ f cons,G(fcons − f m) + λcons( y − x)〉
+δλcons

(〈fcons, y − x〉 − V ( y) + V (x)
)
. (33)

Now for the sake of brevity, let us introduce a discrete func-
tion defined as

C̃ f (x, y) = V ( y) − V (x) − 〈
f a, y − x

〉
. (34)

From now on, we refer to this function as a conservation
function, which allows the preservation energy in the dis-
crete setting for a given fixed time stepΔt . This conservation
function is not unique and depends, in principle, on the shape
of the approximated discrete form.

The stationarity condition for the associated Lagrangian
function can be reformulated as the linear system that is
explicitly given by
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⎛
⎝ A f

11 A f
12

A f
12 0

⎞
⎠

[
αcons

λcons

]
=

⎡
⎣b f , cons

1

b f , cons
2

⎤
⎦ , (35)

with

A f
11 = 1

2
‖ f ( y) − f (x)‖2G , (36)

A f
12 = 〈 f ( y) − f (x), y − x〉 , (37)

b f , cons
1 = 〈 f ( y) − f (x),G( f m − f a)〉, (38)

and

b f , cons
2 = 2C̃ f (x, y) . (39)

The solution of this program is

αcons = 2C̃ f (x, y)

〈 f ( y) − f (x), y − x〉 , (40)

and

λcons = −〈 f ( y) − f (x),G( f m − f a)〉
〈 f ( y) − f (x), y − x〉

−‖ f ( y) − f (x)‖2GC̃ f (x, y)

〈 f ( y) − f (x), y − x〉2 . (41)

Notice thatαcons does not depend on the chosenmetric. Then,
we can claim that the adopted construction affords a unique
definition. This feature represents a main innovation of the
current work. However and up to this point, it is not clear to
which extent the current formula approaches the commonly
used formulas like the one due to Gonzalez [6] or the one due
toHarten et al. [21]; a comparison of that secondmethodwith
the current one is beyond the scope of this work.

In contrast, the Lagrange multiplier λcons depends on the
chosen metric. Finally, the conservative part of the discrete
force takes the following explicit form:

fcons(x, y) = f (x) + f ( y)
2

+ C̃ f (x, y)

〈 f ( y) − f (x), y − x〉 ( f ( y) − f (x)).

(42)

In the context of nonlinear elastodynamics, the first term
of the formula is equivalent to the definition proposed by
Simo and Tarnow [4] that was derived in the context of
Saint Venant–Kirchhoff materials. The second term can be
interpreted as a correction for the most general hyperelastic
case. The formula proposed by Gonzalez [6] cannot be alge-
braically reduced to the proposed expression, because the
former is basically a correction for f m and the latter, for f a .

The conserving force given by Eq. (42) can be rewritten
in the form of Eq. (21) and therefore, is a discrete derivative
with

P
‖
( y−x)f

cons( y − x) = V ( y) − V (x)

‖ y − x‖2 ( y − x) , (43)

where P‖
( y−x) is the projection parallel to y − x, and

gcons(x, y) := P⊥
( y−x)f

cons(x, y). (44)

3.3 Dissipative algorithmic force

To account for dissipation, let us assume the existence of a
dissipative part of the algorithmic internal force that is pro-
portional to Δ̃ f , this is

fdiss = αdissΔ̃ f , (45)

where αdiss is a scalar whose precise definition is still open.
This construction is supported by the analysis done by
Romero [20], which showed that other choices may destroy
the accuracy of the approximation. We will see later that this
expression is very attractive since it provides an unifying
treatment of both conservative and dissipative parts of the
algorithmic internal force.

To find the value of αdiss, we define a discrete dissipation
function D̃ f (x, y), which must be positive semi-definite, at
least second order in ‖ y− x‖ to avoid spoiling the accuracy
of the algorithm, and tend to 0 as x tends to y. Then αdiss can
be obtained as the scalar that minimizes

1
2‖fdiss‖2G

subject to 〈fdiss, y − x〉 − D̃ f (x, y) = 0.
(46)

This is also a linearly constrained quadratic program. The
solution of this optimization problem can be interpreted as
the smallest perturbation force that satisfies the dissipation
relation 〈 y− x, fdiss〉 = D̃ f (x, y). Once again,G is a given
metric tensor and the associated Lagrangian is simply

L(αdiss, λdiss)= 1

2
‖fdiss‖2G+λdiss(〈fdiss, y−x〉−D̃ f (x, y)),

(47)

where λdiss is a Lagrange multiplier that enforces the dissi-
pation constraint. To formulate the stationarity condition, the
variation of the associated Lagrangian has to be computed.
This procedure yields

δL(αdiss, λdiss) = 〈δfdiss,Gfdiss + λdiss( y − x)〉
+δλdiss(〈fdiss, y − x〉 − D̃ f (x, y)). (48)
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Noting that δfdiss = δαdissΔ̃ f , the stationarity condition of
the Lagrangian can be written explicitly as

(
A f
11 A f

12

A f
12 0

)[
αdiss

λdiss

]
=

[
0

b f , diss
2

]
, (49)

with

b f , diss
2 = 2D̃ f (x, y) . (50)

The solution of this linearly constrained quadratic program
is

αdiss = 2 D̃ f (x, y)
〈 f ( y) − f (x), y − x〉 , (51)

and

λdiss = −‖ f ( y) − f (x)‖2GD̃ f (x, y)

〈 f ( y) − f (x), y − x〉2 . (52)

As in the case of the conservative part of the algorithmic
force, the parameter αdiss does not depend on the chosen
metric and therefore, it is unique. However and up to this
point, it is not clear to which extent the current formula
approaches already established formulas, especially the one
due to Armero and Romero [9,31]. As in the case of the
conservative part of the approximation, the multiplier λdiss

depends on the chosen metric. Finally, the formula for the
dissipative part of the algorithmic internal force takes the
following explicit form:

fdiss = D̃ f (x, y)

〈 f ( y) − f (x), y − x〉 ( f ( y) − f (x)). (53)

Notice that this formula has the same structure as the sec-
ond term of the conservative part of the algorithmic force.
However, instead of the conservation function, the dissipa-
tion function appears in the numerator. This fact suggests
that a unifying formula containing both conservative and dis-
sipative parts is possible, which makes the approach very
attractive.

3.4 Generalization and preservation of momenta

Assuming an additive compositionof the algorithmic approx-
imation of the force, that is,

f = fcons + fdiss, (54)

we can write, using Eqs. (42) and (53),

f(x, y) = f (x) + f ( y)
2

+ C̃ f (x, y) + D̃ f (x, y)

〈 f ( y) − f (x), y − x〉 ( f ( y)− f (x)).

(55)

This formula is very compact and a simple inspection
confirms that when the dissipation is zero, the directional-
ity condition is exactly verified.

To accommodate the preservation of linear and angular
momenta as discussed in Eqs. (15) and (16), Eq. (55) must
be modified as indicated next: Let G be a Lie group with
algebra g and coalgebra g∗, which acts on the configuration
space Q ⊆ R

3n by means of the action χ : G × Q → Q.
For every ξ ∈ g, let ξQ : Q → T Q denote the infinitesimal
generator of the action. Following again Gonzalez [6], we
can define G-equivariant derivatives. If V : Q → R is a
G-invariant function, its G-invariant discrete derivative is a
smooth map fG : Q×Q → R that satisfies the requirements
of discrete derivatives and, moreover, the equivariance and
orthogonality condition, namely,

fG(χg(x),χg( y)) =
(
Dχg

(
x + y
2

))−T

fG(x, y), (56)

for all x, y ∈ Q, g ∈ G, and

fG(x, y) · ξ Q

(
x + y
2

)
= 0. (57)

To construct a G-equivariant discrete derivative, consider
invariant functions under the symmetry action denoted by
πi , i = 1, 2, ...., q where q is the dimension of the quotient
space Q/G. Let Π = (π1, π2, ..., πq). If V : Q → R is G-
invariant, a reduced function Ṽ can be defined by the relation
V = Ṽ ◦ Π. If each of the invariants is at most of degree
two, then a G-equivariant discrete derivative for V can be
constructed as

fG(x, y) = f̃(Π(x),Π( y)) ◦ DΠ

(
x + y
2

)
, (58)

where, as before x, y ∈ Q. In particular, the formulation of
a G-equivariant discrete derivative that preserves linear and
angular momenta (cf. Eqs. 15 and 16) is straightforward.

The expression of the G-equivariant force in the current
context is given by

f(x, y) = DΠT (z)
(

f (Π( y)) + f (Π(x))

2

+ α(Π(x), (Π( y))( f (Π( y)) − f (Π(x)))

)
,

(59)

with z = (x + y)/2 and

α(Π(x), (Π( y))= C̃ f (Π( y),Π(x))+D̃ f (Π( y),Π(x))

〈 f (Π( y)) − f (Π(x)),Π( y) − Π(x)〉 .

(60)
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3.5 Interpretation of the conservative algorithmic
force

There exist infinite second order accurate approximations of
the midpoint force that that lead to energy and momentum
conserving discretizations [20]. A general expression for the
algorithmic force that is in agreement with the definition of
the discrete derivative is given by

fG(x, y) = f
(
x + y
2

)
+ Ĉ f (x, y)

‖ y − x‖2
G−1

G−1( y− x), (61)

where G is the matrix representation of a suitable metric
tensor and its associated conservation function is

Ĉ f (x, y) = [
V ( y) − V (x)

] − 〈
f m, y − x

〉
. (62)

As shown in [20], the choice of themetric tensor inEq. (61)
is crucial, since a wrong choice can destroy the accuracy
of the solution even when the directionality and consistency
properties are verified.Thegeneral expression canbe reduced
to the original formula proposed in [6] just by adopting the
standard Euclidean metric tensor, i.e.,

f I (x, y) = f
(
x + y
2

)
+ Ĉ f (x, y)

‖ y − x‖2I
( y − x). (63)

Until now, this original formula has been regarded as the
optimal one from the implementation point of view.By visual
inspection of Eq. (42), it is also possible to claim that the
formula derived in this work is as easy to implement as the
original one given in Eq. (63). Moreover, the new formula
requires only evaluations at the endpoints of the time interval
and not at the midpoint.

Next, we would like to analyze the formula (42) in terms
of the general expression provided byEq. (61). First, defining
z to be the average z = (x + y)/2, we make use of Taylor’s
theorem to compute

f (x) = f (z) − 1

2
D f · ( y − x) + 1

4
D2 f · (( y − x), ( y − x))

−1

8
D3 f · (( y − x), ( y − x), ( y − x)) + O(‖ y − x‖4)

(64)

and

f ( y) = f (z) + 1

2
D f · ( y − x) + 1

4
D2 f · (( y − x), ( y − x))

+ 1

8
D3 f · (( y − x), ( y − x), ( y − x)) + O(‖ y − x‖4).

(65)

The averaged force can be expressed as

f (x) + f ( y)
2

= f (z) + O(‖ y − x‖2) (66)

and

〈
f (x) + f ( y)

2
, y − x

〉
= 〈 f (z), y − x〉 + O(‖ y − x‖3).

(67)

The force jump can be written as

f ( y) − f (x) = 〈D f , y − x〉 + O(‖ y − x‖3), (68)

and

〈 f ( y) − f (x), y − x〉
=

〈
y − x, D2V (z)( y − x)

〉
+ O(‖ y − x‖4)

=
〈
y − x, D2V (x)( y − x)

〉
+ O(‖ y − x‖3).

(69)

Now putting everything together, we can rewrite Eq.(42) as

fcons = f (z)+ V ( y)−V (x)−〈 f (z), y−x〉〈
y − x, D2V (x)( y − x)

〉 D2V (x)( y−x)

+O(‖ y − x‖2). (70)

Taking a look at this expression, it is apparent that the
discrete force (42) is a second order perturbation of the mid-
point approximation and that the metric employed for the
definition of the conserving correction is just

G = (D2V (x))−1. (71)

We conclude that the an integration scheme based on Eq. (27)
would behave locally in a very similar manner to a method
based on Eq. (61) with metric (71). Their global behavior
can, in general, differ.

3.6 Dissipative algorithmic velocity

As proposed in [9,31], the generalized velocity can also
be expressed as the linear combination of a conserva-
tive and a dissipative component. If the mass matrix is
configuration-independent, the midpoint rule provides pre-
cisely the conservative part of the velocity. Following the
ideas adopted for the formulation of the dissipative part of
the algorithmic force, we find next the smallest perturbation
of the midpoint velocity that guarantees dissipation accord-
ing to a given dissipation function D̃s(u, v), which must be
non-negative, at least second order accurate in ‖v − u‖, and
tend to 0 as u tends to v.
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According to the midpoint rule, the conservative part of
the algorithmic velocity can be expressed as

scons = u + v

2
= w , (72)

where the velocity u corresponds to time instant tn , the veloc-
ity v corresponds to time instant tn+1 and w is the averaged
velocity. This particular choice preserves linear and angular
momenta. The preservation of energy is guaranteed when the
relation

〈scons, M(v − u)〉 = T (v) − T (u) (73)

is satisfied, with T being the kinetic energy. Equivalently,
this expression can be obtained from 〈δsn+1/2,π(scons)〉 =
T (v) − T (u) when the variation is of the form δsn+1/2 =
v − u. It is apparent that the conservative part of the algo-
rithmic velocity adopted fulfills this condition without need
for further corrections.

Now we follow an idea that is slightly different to the one
previously used to derive the dissipative part of the algo-
rithmic force. Henceforth, let us assume the existence of a
dissipative part of the algorithmic velocity proportional to
scons, this is

sdiss = βdissscons, (74)

where βdiss is a scalar to be found that must guaranteed the
dissipation of energy according to a given dissipation func-
tion D̃s(u, v). This scalar can be obtained as theminimizer of

1
2‖sdiss‖2M

subject to 〈sdiss, M(v − u)〉 − D̃s(u, v) = 0 ,
(75)

where M is the mass matrix. Equation (75) defines a
quadratic program with linear constraints. Its solution can
be interpreted as the smallest non-conservative velocity per-
turbation that satisfies for a discrete variation of the form
δsn+1/2 = v − u, an energy dissipation according to the
adopted rule. The associated Lagrangian function of the opti-
mization problem is

L(βdiss, μdiss)

= 1

2
‖sdiss‖2M + μdiss(〈sdiss, M(v − u)〉 − D̃s(u, v)),

(76)

where μdiss is a Lagrange multiplier that enforces the dis-
sipation constraint. To formulate the stationarity condition,
the variation of the associated Lagrangian function has to be
computed. This procedure yields

δL(βdiss, μdiss) = 〈δsdiss, Msdiss + μdissM(v − u)〉

+ δμdiss(〈sdiss, M(v − u)〉 − D̃s(u, v)) . (77)

Noting that δsdiss = δβdissscons, the stationarity condition of
the Lagrangian can be written explicitly as

(
As
11 As

12
As
12 0

)[
βdiss

μdiss

]
=

[
0

bs, diss2

]
, (78)

with

As
11 = 2T (w) , (79)

As
12 = T (v) − T (u) , (80)

and

bs, diss2 = D̃s(u, v) . (81)

The solution of this linearly constrained quadratic program is

βdiss = D̃s(u, v)

T (v) − T (u)
(82)

and

μdiss = − T (w)D̃s(u, v)

(T (v) − T (u))2
. (83)

Finally, the formula for the dissipative part of the algorithmic
velocity takes the following explicit form:

sdiss = D̃s(u, v)

T (v) − T (u)

v + u
2

. (84)

Assuming an additive compositionof the algorithmic approx-
imation of the velocity, that is,

s = scons + sdiss , (85)

we can write

s(u, v) =
(
1 + D̃s(u, v)

T (v) − T (u)

)
v + u
2

. (86)

This formula is identical to the formula proposed in [9,31]
that was derived by employing only geometric arguments.
This time, it can be clearly interpreted as an optimal approx-
imation.

3.7 Final equations

The combination of all ingredients discussed here yields the
full discrete formulation of the dynamic equilibrium for non-
linear mechanical systems. These consist of two residuals,
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one for the generalized velocities and another for the gener-
alized coordinates, namely,

[
rs
rq

]
n+1/2

=
[

π(sn, sn+1)− p(qn, qn+1)

π̇(sn, sn+1) + f(qn, qn+1) − f ext(qn+1/2)

]
,

(87)

where both residuals have to beminimized at every time step.
This task is accomplished by means of a Newton-Raphson
algorithm.

The generalized-velocity-based momentum term in its
algorithmic form is

π(sn, sn+1) = M

(
1 + D̃s(sn, sn+1)

T (sn+1) − T (sn)

)
sn+1 + sn

2
.

(88)

The generalized-coordinate-basedmomentum term in its dis-
crete version becomes

p(qn, qn+1) = M
qn+1 − qn

Δtn
. (89)

The generalized-coordinate-basedmomentum rate term in its
algorithmic form is

π̇(sn, sn+1) = M
sn+1 − sn

Δtn
. (90)

Finally, the generalized internal force becomes

f(qn, qn+1) = f (qn) + f (qn+1)

2

+ C̃ f (qn, qn+1) + D̃ f (qn, qn+1)

〈 f (qn+1) − f (qn), qn+1 − qn〉
( f (qn+1) − f (qn)) .

(91)

In the case of accommodating the preservation of linear and
angularmomenta,we require theG-equivariant version given
by

fG(qn, qn+1) = DΠT
n+1/2

(
f (Πn+1) + f (Πn)

2

+ α(Πn,Πn+1)( f (Πn+1) − f (Πn))

)
(92)

where

α(Πn,Πn+1) = C̃ f (Πn+1,Πn) + D̃ f (Πn+1,Πn)

〈 f (Πn+1) − f (Πn),Πn+1 − Πn〉 (93)

and Πn = Π(qn). The discrete conservation function is
given by

C̃ f (qn, qn+1) = (V (qn+1) − V (qn))

−
〈
f (qn) + f (qn+1)

2
, qn+1 − qn

〉
, (94)

and its G-equivariant version given by

C̃Gf (qn, qn+1) = (V (Πn+1) − V (Πn))

−
〈
f (Πn) + f (Πn+1)

2
,Πn+1 − Πn

〉
.

(95)

The most basic discrete dissipation function at the level
of the generalized internal force that can be chosen is

D̃ f (qn, qn+1, q̃n) = 1

2

〈
qn+1 − qn, D(q̃n − qn)

〉
, (96)

or its G-equivariant counterpart expressed as

D̃G
f (qn, qn+1, q̃n) = 1

2

〈
Πn+1 − Πn, D(Π̃n − Πn)

〉
,

(97)

where q̃n could correspond to an intermediate configuration,
and D is constant, symmetric and positive semi-definite. The
dissipation function for the velocity is of the form

D̃s(sn, sn+1, s̃n) = 1

2
〈sn+1 − sn, M(s̃n − sn)〉 , (98)

or its G-equivariant version given by

D̃G
s (sn, sn+1, s̃n) = 1

2
(‖sn+1‖M − ‖sn‖M)(‖s̃n‖M − ‖sn‖M),

(99)

where s̃n could correspond to an intermediate configuration.
With this setting, unconditional stability in the nonlinear
sense can be achieved. The chosen dissipation functions cor-
respond to those proposed in [9,31] for the EDMC-1/2.

4 Numerical results

In this section, we present four numerical examples which
were chosen to show the potentialities of the proposed
approach. With these, we do not pretend to test the new
approach exhaustively, but at rather provide some insight on
its properties. For this purpose, we study first two examples
involving two-mass systemswith potential functions that can
arise in the context of reduced-order models, and then two
examples of nonlinear elastic shell structures employing a
neo-Hookean material. Additionally, we briefly discuss the
dissipation properties of the proposed scheme in the high-
frequency range.
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4.1 Reduced-order models

The first example is a mechanical system with two degrees
of freedom whose potential function possesses polynomial
complexity. The second one considers another mechanical
systemwith also two degrees of freedom, butwhose potential
function shows non-polynomial complexity. Here, we adopt
themost basic discrete dissipation functions at the level of the
generalized internal force and at the level of the generalized
velocity that are given by

D̃ f (qn, qn+1) = χ f

2h

∥∥qn+1 − qn
∥∥2
D , (100)

in which D is a constant symmetric semi-positive definite
matrix, and

D̃s(sn, sn+1) = χs

h

(√
T (sn+1) − √

T (sn)
)2

, (101)

where χ f and χs in R≥0 are merely dissipation parameters.
For both examples, four cases are considered: i) fully con-
servative, i.e., χ f = χs = 0; ii) dissipative at the level of
the generalized internal force, i.e., χ f �= 0 and χs = 0;
iii) dissipative at the level of the generalized velocities, i.e.,
χ f = 0 and χs �= 0; and, iv) fully dissipative, i.e., χ f �= 0
and χs �= 0. Additionally, to numerically gain some insight
about the accuracy of the method, we provide for these two
examples and all cases the secondquotient of precisionQII(t)
computed on the basis of the corresponding states ξ ∈ W ,
namely ξ = (q, s). The definition of QII(t) is presented in
the “Appendix”.

4.1.1 Two-mass systemwith a polynomial potential

Here, we consider a nonlinear oscillatory mechanical system
with potential function

V (q) = 1

2
V II
abq

aqb + 1

3
V III
abcq

aqbqc + 1

4
V IV
abcdq

aqbqcqd .

(102)

This kind of systems naturally arises in the context of
reduced-order models, see for instance [36,37]. To perform
our computations,we adopt amodelwith two degrees of free-
domused as a demonstrator in [36]. The non-zeromechanical
properties are M11 = M22 = 1 Kg, V II

11 = V II
22 = 16 N/m,

V II
12 = V II

21 = −15 N/m and V IV
1111 = 15 N/m3. The simula-

tion parameters are initial time ti = 0 s, final time t f = T s,
simulation time T = 50 s, time step Δt = 0.001 s and
relative iteration tolerance ε = 10−10. Additionally, for the
dissipative cases, we set χ f = 0.0025 and χs = 0.008 as

well as D = V II. The initial conditions employed are

q0 =
[
1.00000
0.91800

]
and s0 =

[
0.00000
0.00000

]
.

Figure 1 shows the idealized mechanical system under con-
sideration and Fig. 2 presents a plot of the potential function,
which is clearly convexwithin the regionwhere the dynamics
of the system takes place. Figure 3 shows different plots for
the solution of the fully conservative case. We can observe
the very complex and nonlinear oscillatory behavior, which
is also in excellent agreement with those results presented in
[36].

On the left of Figs. 4, 5, 6 and 7, the evolution of the
kinetic, potential, and total energies is shown. On the right of
these figures, we show the second precision quotient also as a
function of time. Figure 4 evidently corresponds to the fully
conservative case. Figure 5 shows the dissipative case at the
level of the generalized internal forces. Figure 6 corresponds
to the dissipative case at the level of the generalized veloci-
ties. Finally, Fig. 7 corresponds to the fully dissipative case.
In the latter, the energy decay is larger than the two previous
cases.

For all cases the second quotient of precision is almost
constant and its value is approximately 4. Therefore, as
expected, the numerical method is second-order accurate.
According to Eq. (115), a method of a given order is unable
to produce solutions with higher quotients of precision. In
[38], it is stated that even if the method is correctly imple-
mented, it is not trivial to find the right set of parameters

Fig. 1 Twomasses connected by linear springs between two walls. The
first mass is also connected to the left wall through a nonlinear spring

Fig. 2 Potential function with polynomial complexity
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Fig. 3 Fully conservative case; extended configuration and velocity diagrams

Fig. 4 Fully conservative case; energy and QII

Fig. 5 Dissipative case at the level of internal forces; energy and QII

Fig. 6 Dissipative case at the level of generalized velocities; energy and QII
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Fig. 7 Fully dissipative case; energy and QII

in order to numerically obtain precision quotients of a high
quality like the one presented herein.

4.1.2 Two-mass systemwith a non-polynomial potential

Next, we consider a nonlinear oscillatory mechanical system
whose potential function is

V (q) = 1

2

[
V II
ab + VN

ab(
1 + VD

abq
aqb

)n
]
qaqb, (103)

in which the conditions V II
ab = V II

ba , V
N
ab = VN

ba and VD
ab =

VD
ba are used for the sake of simplicity. This kind of systems

could arise in the context of Euler-Bernoulli beams [39,40]
or for structures with softening behavior [41].

To perform our computations, we adopt a model with two
degrees of freedom. The non-zero constants of the model are
are M11 = M22 = 1 Kg, V II

11 = V II
22 = 10 N/m, VN

11 =
VN
22 = −VN

12 = −VN
21 = 300 N/m, VD

11 = VD
22 = −VD

12 =
−VD

21 = 5 N/m2 and n = 3.
The simulation parameters are initial time ti = 0 s,

final time t f = T s, simulation time T = 50 s, time step
Δt = 0.0001 s, and relative iteration tolerance ε = 10−10.
Additionally, for the dissipative cases, we set χ f = 0.001
and χs = 0.001 as well as D = V II. The initial conditions
employed are

q0 =
[− 0.41726

− 0.49840

]
and s0 =

[− 2.53182
− 2.79761

]
.

Figure 8 shows the idealized mechanical system under con-
sideration and Fig. 9 depicts the potential function, which is
clearly non-convex within the region where the dynamics of
the system takes place, see Fig. 10. This feature pushes the
numerical method to its limits. On the left of Figs. 11, 12, 13
and 14 the kinetic, potential and total energies are plotted.
On their right, these show the second precision quotient
also as a function of time. Figure 11 depicts the energies
in the conserving solution. Figures 12 and 13 plot the ener-

Fig. 8 Nonlinear system with two masses connected by linear springs
to two walls. Both masses are connected to each other by a nonlinear
spring

Fig. 9 Potential function with non-polynomial complexity

gies when dissipation is introduced in the internal forces
and generalized velocities, respectively. Last, Fig. 14, pro-
vides the results obtained when both dissipation functions
are employed, resulting in a larger dissipation of energy. In
all cases, the second quotient of precision is very close to
4 for all time, confirming the second order accuracy of the
method in all the simulations.

4.2 Finite elasticity models

Herewe analyze twofinite elasticitymodels. The first one is a
tumbling cylinder and the second one is a free-flying, single-
layer, shell. In both cases, the spatial discretizations are based
on a four-node shell element [34,42], i.e., an extensible-
director-based solid-degenerate shell model, in which the
shear locking and the artificial thickness strains are controlled
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Fig. 10 Fully conservative case; extended configuration and velocity diagrams

Fig. 11 Fully conservative case; energy and QII

Fig. 12 Dissipative case at the level of internal forces; energy and QII

Fig. 13 Dissipative case at the level of generalized velocities; energy and QII
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Fig. 14 Fully dissipative case; energy and QII

Fig. 15 Tumbling cylinder—finite element representation

Table 1 Tumbling
cylinder—spatial loads per
length unit in N/m

A B C D

f1 0 1 1 0

f2 − 1 1 1 − 1

f3 − 1 1 1 − 1

by means of the assumed natural strain method. Also, the
enhancement of the strain field in the thickness direction and
the cure of the membrane locking are achieved by means of
the enhanced assumed strain method. Such element allows
to consider unmodified three-dimensional constitutives laws.
For the current study, we adopt the neo-Hookean hyperelas-
tic material model, whose strain energy density is given by

W̃ (C) = λ

2
log2(J ) + μ

2
(I1 − 3) − μ log(J ) , (104)

with C , the right Cauchy–Green deformation tensor, J =√
det(C), I1 = trace(C), and λ andμ are the first and second

Lamé parameters, respectively.

4.2.1 Tumbling cylinder

This structure is a cylindrical shell subject to body loads
with a prescribed time variation and was already investi-

Fig. 16 Tumbling cylinder (conservative)—sequence of motion

gated, for instance, in [5,42,43] and in many other works.
The geometrical and material properties are the following:
mean radius 7.5m, height 3.0m, thickness 0.02m, first Lamé
parameter 80MPa, secondLaméparameter 80MPa andmass
density per volume unit 1.0Kg/m3. The cylinder is dis-
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Table 2 Tumbling cylinder—stationary values

t > tload (1.0 s) l1 (Kg m/s) l2 (Kg m/s) l3 (Kg m/s) j1 (Kg m2/s) j2 (Kg m2/s) j3 (Kg m2/s) T + V (J)

Cons. 20.00000 0.00000 0.00000 122.00960 147.20774 − 178.26475 445.22767

Diss. 20.00000 0.00000 0.00000 121.62771 147.28455 − 178.14972 –

Fig. 17 Tumbling cylinder (conservative)—momenta and energy

cretized with 48 elements, in which 16 elements are located
along the circumference and 3 elements along the height. The
total number of nodes is 60. Moreover, no kinematic bound-
ary conditions are enforced. For the dissipative case we set
χ = 0.25. Figure 15 shows the finite element model of the
tumbling cylinder. Additionally, the line segments A, B, C
and D, to which the spatial loads are applied, are indicated
in magenta. Table 1 presents the values for the loads that
are applied to the structure. The loads are then multiplied
with a function that describes the variation of the applied
force over the time, which is defined in Eq. (105). Then

f ext0 = f1 î
1 + f2 î

2 + f3 î
3
and f ext(t) = f (t) f ext0 , in

which the last expression is the applied load.

f (t) =
⎧⎨
⎩
10t for 0 ≤ t < 0.5
5 − 10t for 0.5 ≤ t < 1
0 for t ≥ 1

(105)

Figure 16 shows a motion sequence for the conservative
case, where the original configuration is located at the upper-
left corner of the plot, and some deformed configurations are
sequentially shown from left to right and from the top to the
bottom. Table 2 provides the stationary values for momenta
and energy computed with the current method for both the
conservative and the dissipative cases. Figure 17 shows the
time history of momenta and energy for the conservative
case. It can be observed that the linear momentum, angular
momentum and total energy vary during the time in which
the external load is active, i.e., the first 1 s. After the external
loads vanish, these three quantities are identically preserved

123



Computational Mechanics (2020) 65:405–427 421

Fig. 18 Tumbling cylinder (dissipative)—momenta and energy

Fig. 19 Free-flying single-layer plate—finite element representation

through the time. These results confirm that the newly pro-
posed integration scheme preserves momenta and energy.
Although the total energy remains constant, the potential and
kinematic energies vary in time, complementing each other
in such a way that the total energy is perfectly constant. Fig-

Table 3 Free-flying singe-layer
plate—force density per length
unit in N/m

A B C

f1 0 0 40,000

f2 40,000 0 0

f3 40,000 − 40,000 40,000

ure 18 shows the time history of momenta and energy for
the dissipative case. Clearly, the momenta is identically pre-
served and energy is dissipated.

4.2.2 Free-flying single-layer plate

The structure considered in this last example is a rectangular
flat plate, which consisting of a single material layer, sub-
ject to spatial loads with a prescribed time variation and was
considered, for example, in [26,42,44] and in many other
works. The geometrical and material properties are the fol-
lowing: length 0.3m, width 0.06m, thickness 0.002m, first
Lamé parameter 0.0 Pa, second Lamé parameter 103.0GPa
and mass density per volume unit 7.3 × 103 Kg/m3. The
plate is then discretizedwith 120 elements, 30 elements being
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Fig. 20 Free-flying single-layer
plate (conservative)—sequence
of motion

Table 4 Free-flying single-layer plate—stationary values

t > tload (0.004 s) l1 (Kgm/s) l2 (Kgm/s) l3 (Kgm/s) j1 (Kgm2/s) j2 (Kgm2/s) j3 (Kgm2/s) T + V (J)

Cons. 4.80000 3.20000 3.20000 0.02880 − 0.38690 − 0.03596 246.53283

Diss. 4.80000 3.20000 3.20000 0.02896 − 0.38701 − 0.03597 –

located along the largest dimension and 4 elements along the
smallest dimension. The total amount of nodes is 155 and
for the dissipative case we set χ = 0.5. Figure 19 depicts
the finite element discretization of this structure. The loads
are applied over the line segments A, B and C , indicated in
magenta on the figure. The reference point for the angular
momentum is indicated with the symbol �. Table 3 gathers
the values for the loads that are applied to the structure and
Eq. (106) defines their scaling factor.

f (t) =
⎧⎨
⎩
500t for 0 ≤ t < 0.002
2 − 500t for 0.002 ≤ t < 0.004
0 for t ≥ 0.004

(106)

Figure 20 shows amotion sequence for the conservative case.
The linear momentum, angular momentum and energy dur-
ing the simulation are constant once reached the stationary
state, and their values are provided in Table 4 for both the
conservative and the dissipative cases. Momenta and energy
values in time are plotted in Fig. 21 for the conservative case,
proving that after the removal of the force, they all remain
constant. Figure 22 shows the values in time of momenta
and energy for the dissipative case. Once again, momenta is
perfectly preserved and energy is artificially dissipated.
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Fig. 21 Free-flying single-layer plate (conservative)—momenta and energy

4.2.3 On the dissipation properties

Dissipative schemes would be of little interest if the energy
dissipation did not take place mostly in the high-frequency
range. It is well-known that the dissipation of the high fre-
quencies results in enhanced stability for the integration of
stiff differential equations. Therefore, we could conclude
that the only useful dissipative schemes are those that can
annihilate the high-frequency content of the response with-
out radically affecting the low frequency content of the
response. In a nonlinear mechanical context, and to the
best of our knowledge, there exists no dissipation function
that only eliminates the high-frequency content and leaves
untouched the low-frequency content. Dissipation always
takes place along the whole frequency range. Moreover,
there is no formal proof that the dissipation can be split
in that sense for nonlinear problems and thus, we can only
claim that some dissipation functions seem to be effective
to address the high-frequency problem, fact that is mainly
justified by experience. Further detailed analysis regarding
intrinsic features of dissipation functions would fall outside
the scope of the current work that addresses the deriva-
tion of a new structure preserving schema that is enriched

with the inclusion of numerical dissipation. The choice of a
particular dissipation function is left to the structural ana-
lyst based on the special demands of the problem to be
solved.

Keeping these limitations in mind, the free-flying single-
layer plate turns to be a suitable example to show the good
dissipation properties of the new proposed scheme. Fig-
ure 23, to the left, presents the amplitude spectrum based
on the fast Fourier transform of the potential energy for both,
the conservative and dissipative cases within the time range
0.06–0.1 s such that the direct influence of the initial transient
is avoided. The subsequent analysis corresponds to the fre-
quency range100–2000Hzand to the energy amplitude range
0–20 J. Figure 23, to the right, presents the same information,
but for the energy amplitude range 0–2 J. Clearly, the dissi-
pative algorithm works very effectively beyond 600 Hz. For
the kinetic energy, Fig. 24, to the left and to the right, shows
almost identical dissipative properties. Up to 600 Hz, even if
slightly different due to some dissipationwithin 200–210Hz,
the behavior for the conservative and dissipative cases looks
similar. Thus, we can claim that the proposed scheme seems
to have very interesting dissipation properties.
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Fig. 22 Free-flying single-layer plate (dissipative)—momenta and energy

Fig. 23 Effectiveness of the dissipative scheme at the potential energy level

Fig. 24 Effectiveness of the dissipative scheme at the kinetic energy level
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5 Concluding remarks

We considered the conservative/dissipative time integration
in the context of nonlinear mechanical systems. A sys-
tematic approach to derive algorithmic internal forces and
generalized velocities that ensure the preservation or the
controlled dissipation of energy was presented. As a main
concrete result, we proposed a new second-order formula for
the algorithmic internal forces. Moreover, this formula was
investigated from a geometric point of view and also inter-
preted for the fully conservative case in terms of a general
approach available in the literature.

In contrast with conservative/dissipative methods avail-
able in the literature and based on the midpoint rule, the
proposed formulas are perturbations of averaged evaluations,
and thus not equivalent to existing ones.

The proposedmethods are able to preserve the total energy
of conservative equations, or add artificial dissipation in a
controllable fashion, while preserving, in both cases, the lin-
ear and angular momenta of the system. Numerical tests
verify all the previous assertions.

The proposed methods could be extended to integrate
differential-algebraic equations or to include consistently
dissipation functions involving derivatives with fractional
orders, among others. The reformulation in the context of
polyconvex large strain elasticity as well as of Lie Groups
may yield interesting results. Beyond that, rigorous mathe-
matical proofs on the robustness are still necessary.
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A Precision quotient

It is very useful to havemeans for checking the correctness of
integration algorithms during their development and imple-
mentation. Therefore, we introduce here two tests that can
be applied once an integration scheme has been numerically
implemented. According toKreiss andOrtiz [38], the numer-
ical solution of an initial value problem can be expanded as

ξ(t, h, k) = ξ(t) +
(
h

k

)
ψ1(t) +

(
h

k

)2

ψ2(t) + · · ·

+
(
h

k

)n

ψn(t) + O(hn+1), (107)

where ξ(t) is the exact solution of the given initial value
problem and ψ i for i = 1, . . . , n are smooth functions of
the time t that do not depend on the reference time step h.

A positive integer number k allows to define finer solutions
based on the original resolution given by the time step h that
are necessary to compute precision coefficients, a tool that
may be very effective to check the correctness of a running
program.

A first precision quotient can be defined as

QI(t) = ‖ξ(t, h, 1) − ξ(t)‖
‖ξ(t, h, 2) − ξ(t)‖ , (108)

where the numerator is computed as

‖ξ(t, h, 1) − ξ(t)‖ =
(
h

1

)n ∥∥ψn(t)
∥∥ + O(hn+1), (109)

and the denominator is given by

‖ξ(t, h, 2) − ξ(t)‖ =
(
h

2

)n ∥∥ψn(t)
∥∥ + O(hn+1). (110)

It is possible to show that for sufficiently small time steps,
the first precision quotient can be directly approximated by
2n , where n denotes the order of accuracy of the integration
method, namely

QI(t) =
( h
1

)n ∥∥ψn(t)
∥∥ + O(hn+1)( h

2

)n ∥∥ψn(t)
∥∥ + O(hn+1)

= 2n + O(hn+1) ≈ 2n .

(111)

The main issue with this definition is that the exact solution
of the initial value problem is required and, in general, is not
available, especially in the context of mechanical systems
involving nonlinear constitutive relations. To circumvent this
drawback, it is possible to define a second precision quotient
as

QII(t) = ‖ξ(t, h, 1) − ξ(t, h, 2)‖
‖ξ(t, h, 2) − ξ(t, h, 4)‖ , (112)

where the numerator is computed as

‖ξ(t, h, 1) − ξ(t, h, 2)‖
=

∥∥∥∥
(
h

1

)n

ψn(t) −
(
h

2

)n

ψn(t) + O(hn+1)

∥∥∥∥
=

(
2n − 1

2n

)
hn

∥∥ψn(t)
∥∥ + O(hn+1)

(113)

and the denominator is given by

‖ξ(t, h, 2) − ξ(t, h, 4)‖
=

∥∥∥∥
(
h

2

)n

ψn(t) −
(
h

4

)n

ψn(t) + O(hn+1)

∥∥∥∥
=

(
2n − 1

4n

)
hn

∥∥ψn(t)
∥∥ + O(hn+1).

(114)
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Notice that this concept removes intrinsically the need for the
exact solution of the considered initial value problem. Once
again, it is possible to show that for sufficiently small time
steps, the second precision quotient can be approximated by
2n as well as in the case of the first precision quotient, namely

QII(t) =
(
2n−1
2n

)
hn

∥∥ψn(t)
∥∥ + O(hn+1)(

2n−1
4n

)
hn

∥∥ψn(t)
∥∥ + O(hn+1)

= 2n+O(hn+1) ≈ 2n .

(115)

For the integration scheme considered in this work (an
energy-conservative/dissipativemethod), accuracy of second
order can be guaranteed, meaning that log2[QI(t)] ≈ 2 and
log2[QII(t)] ≈ 2. Let us note that for the calculation of pre-
cision quotients, h has to be chosen small enough, and the
choice may vary from case to case. In addition, if ‖ψn(t)‖ is
very small, both tests may fail even if the implementation is
right. For this reason it is sometime necessary to experiment
with several initial conditions and time step sizes in order to
achieve correct pictures. As a general rule, the quotients of
accuracy show better performance when the trajectories are
periodic or quasi-periodic.
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