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Abstract
Patient-specific computational flowanalysis of coronary arterieswith time-dependentmedical-image data can provide valuable
information to doctors making treatment decisions. Reliable computational analysis requires a good core method, high-
fidelity space and time discretizations, and an anatomically realistic representation of the lumen motion. The space–time
variational multiscale (ST-VMS) method has a good track record as a core method. The ST framework, in a general context,
provides higher-order accuracy. The VMS feature of the ST-VMS addresses the computational challenges associated with the
multiscale nature of the unsteady flow in the artery. The moving-mesh feature of the ST framework enables high-resolution
flow computation near the moving fluid–solid interfaces. The ST isogeometric analysis is a superior discretization method.
With IGA basis functions in space, it enables more accurate representation of the lumen geometry and increased accuracy
in the flow solution. With IGA basis functions in time, it enables a smoother representation of the lumen motion and a
mesh motion consistent with that. With cubic NURBS in time, we obtain a continuous acceleration from the lumen-motion
representation. Here we focus on making the lumen-motion representation anatomically realistic. We present a method to
obtain frommedical-image data in discrete form an anatomically realistic NURBS representation of the lumenmotion, without
sudden, unrealistic changes introduced by the higher-order representation. In the discrete projection from the medical-image
data to the NURBS representation, we supplement the least-squares terms with two penalty terms, corresponding to the first
and second time derivatives of the control-point trajectories. The penalty terms help us avoid the sudden unrealistic changes.
The computation we present demonstrates the effectiveness of the method.

Keywords Coronary arteries · Patient-specific computational flow analysis · Time-dependent medical-image data · Space–
time variational multiscale method · Space–time isogeometric analysis · Anatomically realistic lumen motion · Penalty
spline

1 Introduction

Coronary arteries, attached to the heart surface, supply blood
to the heart. “Atherosclerotic narrowing” of coronary arter-
ies [1] may lead to the heart attack or “sudden cardiac death”
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[2]. Such artery diseases are the leading cause of morbid-
ity and mortality among adults today [3]. Patient-specific
computational flow analysis of coronary arteries can help
doctors explain pathology of atherosclerosis and make treat-
ment decisions. It has been known for quite a while (see,
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for example, [4–6]) that the wall shear stress (WSS) plays
a significant role in arterial diseases, and its quantification
can help identify the high-probability regions of the dis-
ease. Possible connection between the atherosclerosis and
the WSS has been reported in several papers [7,8]. Patient-
specific computational flow analysis of coronary arteries is
appealing in quantifying atherosclerosis diseases based on
hemodynamic factors. In this class of computational flow
analysis, we use the Space–Time Variational Multiscale (ST-
VMS) method [9–11], which serves as the core method, and
the ST Isogeometric Analysis (ST-IGA) [9,12,13]. The ST-
VMS and ST-IGA give us increased accuracy in the flow
solution. The ST-IGA also gives us a smoother and more
accurate representation of the lumen geometry and motion.
With cubic NURBS in time, we obtain a continuous accelera-
tion from the lumen-motion representation. The higher-order
representation in time might introduce sudden, unrealistic
lumen motion. Here we focus focus on making the motion
representation anatomically realistic.

1.1 Moving-boundary problems

It was shown as early as 2004 [4–6] that there are significant
differences in the WSS obtained from blood flow computa-
tions with the rigid- and flexible-artery models. This created
a strong incentive to conduct blood flow computations with
flexible-artery models. Furthermore, it was recognized as
early as 2008 [14] that high-refinement mesh layers near the
lumen boundary are essential in high-resolution representa-
tion of the boundary layers and in accurate calculation of the
WSS. In computation of flows with moving boundaries and
interfaces (MBI), including fluid–structure interaction (FSI),
amoving-meshmethod enablesmesh-resolution control near
the interface and, consequently, high-resolution representa-
tion of the boundary layer. Because the coronary arteries
undergo large motions during the cardiac cycle, the moving-
mesh method will also need to be able to handle large lumen
motions. Both the ST [9,15] and Arbitrary Lagrangian–
Eulerian (ALE) [16] methods are moving-mesh methods,
with the ALE being the earlier and more commonly used
one.

TheDeforming-Spatial-Domain/StabilizedST (DSD/SST)
method [15,17], the precursor of the ST-VMS, was intro-
duced for FSI and MBI computations. Because the stabiliza-
tion components of the originalDSD/SST are the Streamline-
Upwind/Petrov-Galerkin (SUPG) [18] and Pressure-
Stabilizing/Petrov-Galerkin [15,19] stabilizations, themethod
is now also called “ST-SUPS.” The VMS components of
the ST-VMS are from the residual-based VMS method [20–
23]. The ST-VMS has two more stabilization terms beyond
those the ST-SUPS has. The ALE-VMS method [23,24] is
the VMS version of the ALE. It succeeded the ST-SUPS and
ALE-SUPS [25] methods and preceded the ST-VMS.

In the computational flow analysis presented here, the
ST framework provides higher-order accuracy in a general
context. The VMS feature of the ST-VMS addresses com-
putational challenges associated with multiscale nature of
unsteady flow in the arteries. The moving-mesh feature of
the ST framework enables high-resolution computation near
the lumen boundary as the artery moves.

1.2 ST-IGA

The ST-IGA was introduced in [9]. It is the integration of
the ST framework with isogeometric discretization [24,26,
27]. First computations with the ST-VMS and ST-IGA were
reported in [9] in a 2D context, with IGA basis functions in
space for flow past an airfoil, and in both space and time for
the advection equation. The stability and accuracy analysis
given in [9] for the advection equation showed that using
higher-order basis functions in time would be essential in
getting full benefit out of using higher-order basis functions
in space.

As pointed out in [9,10] and demonstrated in [12,28,29],
higher-order NURBS basis functions in time provide a more
accurate representation of the motion of the solid surfaces
and a mesh motion consistent with that. They also provide
more efficiency in temporal representation of the motion and
deformation of the volume meshes, and better efficiency in
remeshing. The ST framework and NURBS in time also
enable, with the “ST-C” method, extracting a continuous
representation from the computed data and, in large-scale
computations, efficient data compression [11,30–35].

In the computational flow analysis presented here, the ST-
IGA gives us increased accuracy in the flow solution and
a smoother and more accurate representation of the lumen
geometry and motion.

1.3 Motion representation

The ST-IGA with IGA basis functions in time provides a
good framework for smooth motion representation. With
cubic NURBS in time, the representation gives us continu-
ous acceleration [12], which is key to obtaining a reasonable
time-dependent behavior from the calculation of the fluid
mechanics forces acting on the moving surface. The desir-
able features of the ST-IGA have been used in many 3D
computations. The classes of problems solved are flapping-
wing aerodynamics for an actual locust [12,23,28,36],
bioinspired MAVs [29,37–39] and wing-clapping [40,41],
separation aerodynamics of spacecraft [42], aerodynamics
of horizontal-axis [38,39,43,44] and vertical-axis [45–47]
wind-turbines, thermo-fluid analysis of ground vehicles and
their tires [11,31], thermo-fluid analysis of disk brakes [32],
flow-driven string dynamics in turbomachinery [33–35], and
flow analysis of turbocharger turbines [13,48–50].
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In the locust flapping-wing aerodynamics [12,23,28,36],
for example, thewing-motion data in discrete form, extracted
from the high-speed video cameras of the wind tunnel,
was least-squares projected to cubic NURBS representa-
tion in time. We use the same method here in obtaining the
cubic NURBS representation of the lumen motion from the
medical-image data in discrete form. With that, we have a
continuous acceleration in the lumen-motion representation.
However, because of the higher-order nature of the NURBS
representation, sometimes we might see sudden unrealistic
changes in time. This would degrade the flow solution qual-
ity. Here, we propose a remedy for that.

1.4 Penalty least-squares projection

Starting with the method of least-squares projection to
cubic NURBS representation given in [12,28], we intro-
duce a penalty least-squares (PLS) projection method to
make the lumen-motion representation anatomically realistic
in patient-specific computational flow analysis of coronary
arteries with time-dependent medical-image data. We sup-
plement the method given in [12,28] with two penalty terms,
corresponding to the first and second time derivatives of the
control-point trajectories. The penalty terms help us avoid
the sudden unrealistic changes and obtain an anatomically
realistic NURBS representation of the lumen motion. We, of
course, still retain the smooth representation that comes with
the NURBS basis functions.

1.5 Outline of the remaining sections

In Sect. 2, we provide the time-dependent anatomical model
in terms of the lumen motion, and a mesh motion consistent
that. Making the lumen motion anatomically realistic with
the PLS projection method is described in Sect. 3. The fluid
mechanics computation method and the computational con-
ditions are described in Sect. 4. The results are presented in
Sect. 5, and the concluding remarks are given in Sect. 6.

2 Time-dependent anatomical model

We obtain the lumenmotion from the coronary artery center-
line motion in [1], which is the step-populated and somewhat
smoothed version of the centerline motion [51] extracted
from MRI data. The cardiac cycle is T = 1 s. There are 400
steps in a cardiac cycle,making the time-step size 2.5ms. The
lumen geometry, represented by the lumen boundary mesh,
is generated as part of the lumenNURBSmesh. In generating
the quadratic NURBS mesh for each time step, we first we
create a quadrilateral control mesh for the inlet section and
sweep it along the centerline (see [52,53]). Figure 1 shows
the lumen geometry at three instants.

t = 0.8 s

t = 0 s
t = 0.2 s

Fig. 1 Lumen geometry at three instants during the cardiac cycle

Fig. 2 Control mesh after the Laplacian smoothing. We identify two
layered zones: external (purple) and internal (yellow). (Color figure
online)

Fig. 3 Control mesh after the refinement for higher-resolution repre-
sentation of the boundary layers

Next we apply Laplacian smoothing [54] to improve the
control mesh quality. Figure 2 shows the control mesh after
the Laplacian smoothing. To have higher-resolution rep-
resentation of the boundary layers, we increase the mesh
refinement. We make the number of external-zone layers 4,
with a progression factor of 1.8, and the number of internal-
zone layers also 4, by evenly splitting the existing layers.
The refined mesh has 44,928 control points and 42,315 ele-
ments. Figure 3 shows the control mesh after the refinement.
Figure 4 shows the control mesh at t = 0.

3 Anatomically realistic representation of
the lumenmotion

Representing the medical-image data given in discrete form
with linear basis functions in time does not result in a
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Fig. 4 Control mesh at t = 0
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Fig. 5 A control point “A” (top) and the time derivative of the x com-
ponent of its position (bottom) in linear temporal representation. We
see a jump at t = 0.12 s, and a kink at t = 0.87 s

smooth representation. The first and second derivatives of
the control-point trajectories, corresponding to the velocity
and acceleration, cannot be expected to be continuous. Fig-
ure 5 shows an example. A continuous acceleration is key
to obtaining a reasonable time-dependent behavior from the
calculation of the fluid mechanics forces acting on the mov-
ing arterial wall. We need a smoother representation of the
lumen motion.

3.1 NURBS representation of the lumenmotion

The ST-IGA with cubic NURBS in time gives us a repre-
sentation with continuous acceleration [12,28]. In addition,
with quadratic NURBS in space, we have increased accu-

racy in the flow solution and a smoother and more accurate
representation of the lumen geometry. Similar to what was
done in [12,28] for the locust flapping-wing aerodynam-
ics, the medical-image data in discrete form is least-squares
projected to cubic NURBS representation in time. As a con-
sequence of the acceleration being continuous, the WSS will
be continuous.

Because of the higher-order nature of the NURBS rep-
resentation, sometimes we might see sudden unrealistic
changes in time.We need tomake the representation anatom-
ically realistic.

3.2 Periodic data

The lumenmotion is roughly periodic.We generate from that
a periodic data set, where the first and last points of the cycle
are colocated and have the desired continuity. Thus, a single
cycle of lumen motion can be repeated to produce as many
cardiac cycles as needed.

To obtain a periodic data set, after the least-squares pro-
jection, we extract one cardiac cycle. To maintain continuity,
the control points corresponding to the knot at the beginning
of the cardiac cycle are colocated with the control points
corresponding to the knot at the end of the cardiac cycle
(three control points correspond to a given knot). To obtain
such repetition, we average those control points. Finally, we
insert knots to extract a single cycle. See [28] for more on
the process, including figures illustrating the averaging.

3.3 PLS projection

A spatial-control point xA will be represented as

xA =
nct−1∑

α=0

Nα,3(ϑ)xα
A, (1)

where xα
A is the temporal-control point associated with the

NURBS basis function Nα,3(ϑ), with ϑ representing the
NURBS parametric space. The basis functions are defined
over the parametric space given by the open knot vec-
tor {ϑ1, . . . , ϑnkt }, where nct and nkt are the number of
temporal-control points and knots.

The PLS projection is derived from the functional

EA(xα
A) =

m∑

k=0

ωk

∥∥∥xA(ϑ̃k) − x̃A(ϑ̃k)

∥∥∥
2

+ λ1

nct−1∑

α=1

∥∥Dtxα
A

∥∥2 + λ2

nct−1∑

α=2

∥∥Dttxα
A

∥∥2 , (2)
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where

Dtxα
A = xα

A − xα−1
A , (3)

Dttxα
A = xα

A − 2xα−1
A + xα−2

A , (4)

m is the number of time steps for themedical-image data, and
ωk , λ1 and λ2 are the PLS projection parameters. The para-
metric value ϑ̃k corresponds to the time step k. It is related
to the temporal knot vector {ϑ1, . . . , ϑnkt } by the formula

ϑ̃k = ϑ1 + k
ϑnkt−ϑ1

m (k = 0, . . . , m).
The first summation in Eq. (2) represents the discrete

least-squares projection, with the option of having different
weights for different time steps of the medical-image data.
The second and third summations represent the penalty terms
corresponding to the first and second time derivatives of the
control-point trajectories.

3.4 Selection of the PLS projection parameters

When λ1 = 0, λ2 = 0, and ωk = 1, the PLS projec-
tion becomes just a least-squares projection, which we will
label “LS” for the purpose of presenting the results. When
ωk = 1 and only one of the parameters λ1 and λ2 is nonzero,
Eq. (2) gives the penalty B-splines [55]. In the computa-
tions reported in this article, λ1 = 1, λ2 = 1, and [ωk]
=

[
1000, 1000, 1, . . . 1, 1000, 1000

]
. The number of ele-

ments in time is 240, which represents the three cycles we
use to extract the middle cycle and generate periodic data as
described in Sect. 3.2.

Figure 6 shows the position and acceleration of a spatial-
control point, from the medical-image data and from the LS
and PLS projections.

4 Fluid mechanics computation

The arterial diameter D at the inflow is 4.02 mm and the
average flow rate Q is 1.08 cm3/s. The average shear rate
in the artery can be estimated from the laminar-flow approx-
imation as γ̇ = 32Q/(πD3) = 169 s−1. As explained in
[56,57], the viscosity of the blood can be approximated as a
constantwhen the shear rate is higher than 150 s−1. Therefore
we assume the blood to be Newtonian here. The density and
kinematic viscosity are 1,060 kg/m3 and 4.0×10−6 m2/s.

The governing equations are the Navier–Stokes equations
of incompressible flow:

ρ

(
∂u
∂t

+ u · ∇∇∇u − f
)

− ∇∇∇ · σσσ = 0, (5)

∇∇∇ · u = 0, (6)
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Fig. 6 Position and acceleration of a spatial-control point, from lin-
ear representation and cubic NURBS representation with LS and PLS
projections

where ρ, u and f are the density, velocity and the body
force. The stress tensor is defined as σσσ(u, p) = −pI +
2μεεε(u), where p is the pressure, I is the identity tensor,
μ = ρν is the viscosity, ν is the kinematic viscosity, and
εεε(u) = (∇∇∇u + (∇∇∇u)T

)
/2 is the strain-rate tensor.

4.1 ST-VMS

The ST-SUPS and ST-VMS formulations (see for example
[9–11,15,17,58]) are written over a sequence of N ST slabs
Qn , where Qn is the slice of the ST domain between the time
levels tn and tn+1, and Pn is the lateral boundary of Qn . At
each time step, the integrations are performed over Qn . The
essential and natural boundary conditions are enforced over
(Pn)g and (Pn)h, the complementary subsets of the lateral
boundary of the ST slab. The ST basis functions are continu-
ous within a ST slab, but discontinuous from one ST slab to
another. The notation (·)−n and (·)+n will denote the function
values at tn as approached from below and above. Each Qn is
decomposed into elements Qe

n , where e = 1, 2, . . . , (nel)n .
The subscript n used with nel is for the general case where
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the number of ST elements may change from one ST slab to
another. The ST-VMS formulation is given as

∫

Qn

wh · ρ

(
∂uh

∂t
+ uh · ∇∇∇uh − fh

)
dQ

+
∫

Qn

εεε(wh) : σσσ(uh, ph)dQ −
∫

(Pn)h

wh · hhdP

+
∫

Qn

qh∇∇∇ · uhdQ+
∫

Ωn

(wh)+n · ρ
(
(uh)+n −(uh)−n

)
dΩ

+
(nel)n∑

e=1

∫

Qe
n

τSUPS

ρ

[
ρ

(
∂wh

∂t
+ uh · ∇∇∇wh

)

+∇∇∇qh
]

· rM(uh, ph)dQ

+
(nel)n∑

e=1

∫

Qe
n

νLSIC∇∇∇ · whρrC(uh)dQ

−
(nel)n∑

e=1

∫

Qe
n

τSUPSwh ·
(
rM(uh, ph) · ∇∇∇uh

)
dQ

−
(nel)n∑

e=1

∫

Qe
n

τ 2SUPS

ρ
rM(uh, ph) ·

(
∇∇∇wh

)
· rM(uh, ph)dQ

= 0. (7)

Here

rM(uh, ph) = ρ

(
∂uh

∂t
+ uh · ∇∇∇uh − fh

)
− ∇∇∇ · σσσ(uh, ph),

(8)

rC(uh) = ∇∇∇ · uh (9)

are the residuals of the momentum equation and incom-
pressibility constraint, and τSUPS and νLSIC are the stabilization
parameters. There are many ways of defining these stabiliza-
tion parameters (for examples, see [11,17,43,58–61]). Here
the stabilization parameters are those given by Eqs. (2.4)–
(2.9) in [45]. We calculate the WSS by using the expression
given by Eq. (5.119) in [23].

4.2 Boundary and starting conditions

At the inflow boundary, we specify the velocity profile as a
functionof time.Thevelocity profile is generatedby applying
theWomersley solution [62,63]with 400Fourier coefficients.
The corresponding time-dependent volumetric flow rate is
shown in Fig. 7. TheReynolds number based on this flow rate
varies from 45 to 300. The inflow data is least-squares pro-
jected to cubicNURBS representation in time. At the outflow
the boundary condition is stress-free. The inflow and out-
flow boundaries are indicated in Fig. 8. We perform the flow
computation with two different representations of the lumen
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Fig. 7 Volumetric flow rate

Fig. 8 Inflow (red) and outflow (yellow) boundaries. (Color figure
online)

motion: linear representation in time and cubic NURBS rep-
resentation in time with PLS projection. We start the lumen
motion suddenly at some instant in the cardiac cycle and
expect that the solution will settle within one or two cardiac
cycles. We compute for three cardiac cycles.

5 Results

First we compare cubic-NURBS lumen-motion representa-
tion with LS and PLS projections. After that we compare the
flow computations based on lumen-motion with linear and
PLS-projected cubic NURBS representations.

5.1 Cubic-NURBS lumen-motion representation with
LS and PLS projections

Figure 9 shows the lumen volume and its first and sec-
ond time derivatives, based on linear representation and
cubic NURBS representation with LS and PLS projections.
Cubic NURBS representation, as expected, with both LS
and PLS projections, brings a smoothness that we cannot
get from linear representation. For the first derivative, with
the PLS projection we circumvent the sudden, unrealistic
changes introduced by the higher-order representation at
around 0.12 s. We make a similar observation for the sec-
ond derivative, this time at instants: 0.12 s and 0.87 s.
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Fig. 9 Lumen volume and its first and second time derivatives, based
on linear representation and cubic NURBS representation with LS and
PLS projections

Figure 10 shows, among all the spatial-control points
on the lumen boundary, the maximum difference between
the linear and PLS-projected cubic NURBS representations.
This deviation from the medical-image data is actually a
small price for an anatomically realistic smooth representa-
tion of the lumen motion. The maximum difference is about
0.2 mm, occurring at around 0.12 s. Compared to the center-
line length, which is over 100 mm (see Fig. 11 for the model
length scales), the difference is about 0.2 %. It is also within
the spatial resolution (0.45 mm) of the images [51].
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Fig. 10 Among all the spatial-control points on the lumen boundary,
the maximum difference between the linear and PLS-projected cubic
NURBS representations

Fig. 11 Model length scales

5.2 Flow computations based on lumen-motion with
linear and PLS-projected cubic NURBS
representations

In both computations, the mesh motion is consistent with the
lumen-motion representation. We use 5 ST slabs for each of
the 80 elements of the cubic NURBS representation in time,
and that makes the time-step size 2.5×10−3 s. The number of
nonlinear iterations per time step is 3, and number GMRES
iterations per nonlinear iteration is 400.

Figure 12 shows the mass balance for the PLS-projected
cubicNURBS representation. By checking themass balance,
we are following an old custom that goes back to early arte-
rial FSI computations with the ST-SUPS (see, for example,
[63–66]). The objective is to make sure that the number of
GMRES iterations is high enough for the part of the equation
system associated with the incompressibility constraint, with
the convergence measured not only by the residual decay, but
also by the mass balance. Here the derivative of the lumen
volume is calculated from the boundary integral of the nor-
mal component of the mesh velocity.

Smooth and anatomically realistic representation of the
lumenmotionmakes theWSS calculationmore reliable. Fig-
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Fig. 12 Mass balance for the PLS-projected cubic NURBS represen-
tation
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Fig. 13 Spatially-maximum WSS from flow computations based on
lumen-motion with linear and PLS-projected cubic NURBS represen-
tations

ure 13 shows the spatially-maximum WSS. As can be seen
from the figure, with the PLS-projected cubic NURBS repre-
sentation, we circumvent the sudden, unrealistic changes at
around 0.12 s and 0.87 s. Figure 14 shows the spatial distribu-
tion of the WSS at t = 0.1275 s. In the linear-representation
case, the high-WSS distribution we see at the lower part of
the artery is consistent with the spikes we see at around 0.12 s
in Fig. 13.

6 Concluding remarks

In making treatment decisions related to coronary arter-
ies, patient-specific computational flow analysis with time-
dependent medical-image data can play a significant role.
A good core computational method, high-fidelity space and

0.0 10.0

Fig. 14 Spatial distribution of the WSS (dyn/cm2) at t = 0.1275 s,
from flow computations based on lumen motion with linear (left) and
PLS-projected cubic NURBS (right) representations. The top end of the
artery is the inflow end

time discretizations, and an anatomically realistic represen-
tation of the lumen motion would make the computational
analysis more reliable. To that end, we have proposed in
this article a method for anatomically realistic representa-
tion of the lumenmotion. The method is used in combination
with the ST-VMS, which has a good track record as a core
method, and the ST-IGA, which is a superior discretization
method. The ST framework, in a general context, provides
higher-order accuracy. The VMS feature of the ST-VMS
addresses the computational challenges associated with the
multiscale nature of the unsteady flow in the artery. The
moving-mesh feature of the ST framework enables high-
resolution flow computation near the moving fluid–solid
interfaces. The ST-IGA, with IGA basis functions in space,
enables more accurate representation of the lumen geome-
try and increased accuracy in the flow solution. With IGA
basis functions in time, it enables a smoother representation
of the lumen motion and a mesh motion consistent with that.
With cubic NURBS in time, we obtain a continuous accel-
eration from the lumen-motion representation, which is key
to obtaining a reasonable time-dependent behavior from the
calculation of the fluid mechanics forces acting on the mov-
ing surface. The method we propose here for obtaining from
medical-image data in discrete form an anatomically realistic
NURBS representation of the lumen motion circumvents the
sudden, unrealistic changes that might be introduced by the
higher-order representation. In the discrete projection from
the medical-image data to the NURBS representation, we
supplement the least-squares terms with two penalty terms,
corresponding to the first and second time derivatives of
the control-point trajectories. The PLS projection helps us
avoid the sudden unrealistic changes. The test computa-
tions presented demonstrate that. In the test computations,
cubic NURBS representation, as expected, brings a smooth-
ness that we cannot get from linear representation. Beyond
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that, the PLS-projected cubic NURBS representation cir-
cumvents the sudden, unrealistic changes introduced by the
higher-order representation. It is known that the WSS plays
a significant role in arterial diseases, and its quantification
can help identify the high-probability regions of the disease.
Smooth and anatomically realistic representation of the coro-
nary artery lumen motion makes the WSS calculation more
reliable, and this has also been demonstrated with the test
computations presented.
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