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Abstract
Smart composites with tunable stress–strain curves are explored in a numerical setting. The macroscopic response of the
composite is endowed with tunable characteristics through microscopic constituents which respond to external stimuli by
varying their elastic response in a continuous and controllable manner. This dynamic constitutive behavior enables the
composite to display characteristics that cannot be attained by any combination of traditionalmaterials.Microscopic adaptation
is driven through a repetitive controllerwhich naturally suits the class of applications sought for such compositeswhere loading
is cyclic. Performance demonstrations are presented for the overall numerical framework over complex paths in macroscopic
stress–strain space. Finally, representative two- and three-dimensional tunable microstructures are addressed by integrating
the control approach within a computational environment that is based on the finite element method, thereby demonstrating
the viability of designing and analyzing smart composites for realistic applications.

Keywords Micromechanics · Composites · Smart materials · Adaptivity · Control theory

1 Introduction

Composite materials have led to unprecedented design and
performance capabilities in many areas of engineering, a
prime example being carbonfiber composites thatwere intro-
duced in the 1960s [1]. Today, they enable product design in
aerospace, automotive, sports and medical industries which
are energy efficient, strong and lightweight. Despite the
proven success of a variety of composite materials, they typ-
ically cannot adapt to varying performance criteria because
their microstructures are static with respect to both morpho-
logical as well as mechanical properties. In other words,
their microscopic properties cannot evolve so as to meet
demands which differ from the initial design phase or to
deliver non-trivialmacroscopic thermomechanical responses
that are too complex for any combination of traditional
materials. The exploration of a class of composites with
dynamic microstructures which can achieve such variable
target behavior constitutes the focus of this work.

The main premise of composite materials is that their
macroscopic response may be tailored by altering the
microstructure so as to meet desired performance criteria,
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ideally attempting to achieve an optimal microstructure that
delivers the best response among all alternatives under these
criteria while satisfying design constraints such as volume
fraction. One major class of composites involves particles
or fibers embedded in a matrix material, and the design
procedure attempts to determine the optimal particle mor-
phology [2,3] or fiber orientation [4,5]. Another major class
of composites, including porous ones, rely on more recent
manufacturing techniques which enable large scale produc-
tion of materials with intricate periodic microstructures [6].
The computational design of such microstructures is often
realized through topology optimization techniques [7,8] and
can deliver non-traditional macroscopic responses such as
a negative thermal expansion coefficient or Poisson’s ratio
[9–11] in addition to the possibility of meeting macroscopic
performance criteria such as maximal stiffness at the point
of application of a force when these tailored materials are
employed in structural applications [7,12,13].

When the macroscale performance criteria are fixed, the
design methodology for the types of composites mentioned
above is expected to deliver the optimal microstructure that
ensures the best response possible within the search space.
However, if a design criterion varies with time, for instance
when the direction of the force applied on the structure
changes continuously, the initially optimal microstructure
may be significantly sub-optimal by the time the structural
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Fig. 1 Microstructure design algorithms typically operate under an
objective function that reflects fixed macroscale performance criteria.
However, the optimal design will perform increasingly sub-optimally
if used under an objective function which starts with the original one

and evolves towards an entirely different one. If the microstructure is
additionally tunable, it can adapt to the varying performance demands
in order to ensure (nearly) optimal response at all times

process ends. This points out a shortcoming of such static
microstructures and highlights the need for dynamic ones
which can adapt to the changing criteria so as to ensure that
the microstructure remains (nearly) optimal at all times, as
depicted in Fig. 1, thereby effectively rendering the com-
posite smart. This might be possible, for instance, if (1) the
microstructure topology or (2) the microscopic constitutive
behavior can evolve in a controllable and continuousmanner
through external stimuli, in other words if the microstructure
is tunable. It is important to point out that the evolution should
be controllable for the purposes of this study, in other words
there should be amicrostructural process that can be activated
independently from the macroscopic process which leads to
changing performance criteria. For instance, a microstruc-
ture can change its topology progressively with increasing
load without any external stimulus [14,15] but this change
has no control degree of freedom that is independent from the
loading process. Also, in order to adapt to continuously vary-
ing criteria, the microstructure must also be able to respond
continuously to the stimulus. For instance, if it adapts its
topology to a certain degree only in a preprocessing stage
but remains fixed afterwards [16] then it cannot ensure an
optimal response at all times. Both of these examples were
in the context of topology adaptation. The focus of this work,
however, will be on tunable constitutive behavior as will be
discussed further below in a purelymechanical setting so that
the aim will be to control the path in the macroscopic stress–
strain space. Clearly, a higher degree of freedom in tuning
may be achieved by combining topological and constitutive
adaptation which, however, is beyond the scope of this work.
Additionally, as will be pointed out through various exam-
ples, microstructure topology design can also be beneficial
in constitutive adaptation in microstructures, although this
will not be explored presently. Finally, the degree of free-
dom offered by adaptation should ideally be large enough to

encompass the optimal response at all times. Cases when this
condition is not met will be discussed.

An important ingredient of the idea discussed above is a
microstructural constituent with tunable mechanical consti-
tutive response, presently confined to solid materials. There
are a variety of novel materials which respond to exter-
nal stimuli such as heat in a reversible but on-off manner
[17,18]. However, continuity in tunability is lacking in such
responses.Magnetorheological elastomers stand out as a par-
ticularly suitable candidate for the purposes of this study
due the clearly observable continuous influence of the mag-
netic field on the stress–strain curve under dynamic loading
[19,20]. Consequently, they are suitable for application in
tunable mechanical and structural components such as actu-
ators under cyclic loading [21–23]. Indeed, tunable materials
and smart composites can provide alternative means of
achieving actuation in robotics and aerospace where there is
a need for tunable stiffness [24,25] with the magnetic field as
a particularly suitable method for inducing actutation in the
presence of intricate geometries [26,27], which further high-
lights the underlying motivation of this work from a broad
perspective.

The precise goal of this work can now be stated as the
development of the numerical framework that is necessary
to work with tunable composites in practice and the simul-
taneous demonstration of the capabilities which are offered
by such materials. This work constitutes the first study in the
literature with respect to both of these aspects to the best of
authors’ knowledge. For this purpose, the micromechanical
background, themajor ingredients for tunablemechanics and
indicative examples for how control is achieved are outlined
in Sect. 2 in a one-dimensional setting. In particular, although
linear elasticity is assumed throughout most of this work, an
example based on viscoelasticity demonstrates the applica-
bility of the framework to inelastic behavior that underlies
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tunable materials such as magnetorheological elastomers.
Subsequently, the choice of the controller which is central to
the numerical framework is discussed compactly in Sect. 3
with a focus on the non-standard aspects of control theory
that have been adapted towards the purposes of this study.
Finally, the integration of the controller within a finite ele-
ment method (FEM) environment is carried out in Sect. 4
where various examples will demonstrate the feasibility of
attaining tunable mechanics when the microstructure is com-
plex enough to require the computational determination of
themicroscopic stress field. The study is then concludedwith
a summary of the challenges and recommendations for future
work.

2 Mechanics of smart composites

2.1 Macroscopic response

2.1.1 Average stress–strain relation

Themacroscopic response of heterogeneous materials with a
periodic or randommicrostructure can be expressed approxi-
mately through micromechanical models or more accurately
through homogenization theory [28–30]. In this work, the
focus will be on periodic microstructures that are partic-
ularly suitable for a homogenization-based analysis. The
domain of the unit-cell of periodicity (see Fig. 2) will be
denoted by Y and, for a generic variable Q, cell-averaging
over Y by 〈Q〉 = |Y|–1 ∫

Y Q dv. It will be assumed that the
microstructure is composed of M distinct constituents, each
occupying a domainY(I ) ⊂ Y , with a corresponding averag-

ing operator 〈Q〉(I ) = ∣
∣Y(I )

∣
∣–1

∫
Y(I ) Q dv and a cell fraction

f (I ) = ∣
∣Y(I )

∣
∣ / |Y|. One therefore has the relation

〈Q〉 =
M∑

I=1

f (I ) 〈Q〉(I ) . (2.1)

If the quantityQ happens to be a constant overY(I ), it will be
indicated with Q(I ) so that 〈Q〉 = ∑M

I=1 f (I )Q(I ). The par-
ticular distribution of the constituents overY will be referred
to as the microstructure topology.

Of particular interest are the microscopic stress (σ ) and
strain (ε) distributions that are induced when the unit-cell
is subjected to boundary conditions which are relevant to
homogenization. Their macroscopic counterparts (σ and ε)
are defined through cell-averaging:

σ = 〈σ 〉 , ε = 〈ε〉 . (2.2)

Throughout most of this work, attention will be focused
to an elastic response at the small deformation regime—

exceptionswill be discussed.When themicroscopic response
is linearly elastic, σ (t) = IEε(t) holds where the micro-
scopic elasticity tensor IE is a constant IE(I ) over each Y(I )

and t denotes a possible dependence on time due to temporal
variations in the boundary conditions on the unit-cell. In this
case, the macroscopic response may be explicitly stated as
σ (t) = IEε(t) where IE is the macroscopic elasticity ten-
sor. It is important to highlight that this macroscopic relation
holds as long as the microscopic response is linearly elastic,
even if IE(I ) are also not fixed but rather vary over time.
In other words, temporal variations in IE(I ) cause temporal
variations in IE but σ (t) = IE(t)ε(t) always holdswhere the
determination of IE at anygiven time instant t is subject to the
classical methods of homogenization based on the IE(I )(t)
values. Also note that within these methods, the determina-
tion of IE requires the solution of multiple cell problems
[28]. As a consequence, the inverse problem of determining
the optimal values of IE(I ) in order to obtain a desired IE is
not straightforward, even for a fixedmicrostructure topology.

2.1.2 One-dimensional setting

The control framework will initially be developed in a
single-input-single-output (SISO) setting. Although a uni-
axial loading setup can be constructed for this purpose, a
one-dimensional setting will be considered that is motivated
by classical layered composites with isotropic constituents
(see also Sect. 3.2). In such a scenario, depending onwhether
the loading axis is parallel (‖) or perpendicular (⊥) to the
layers, the macroscopic elastic modulus E which satisfies
σ = Eε may be expressed in terms of the elastic moduli
E (I ) of the constituents:

E‖= f (1)E(1)+ f (2)E(2), E⊥=( f (1)/E(1)+ f (2)/E(2))–1.

(2.3)

Eventually, fromacontrol perspective, E‖ will induce a linear
framework whereas E⊥ will induce a nonlinear framework
that will help demonstrate particular challenges. Note that in
this case, the stress and strainwill both be constants over each
constituent (σ (I ) = E (I )ε(I )) where ε(I ) = ε for parallel
loading and σ (I ) = σ for perpendicular loading. It should be
emphasized that in a multi-dimensional setting (Sect. 4) the
macroscopic elasticity tensor IE discussed earlier will never
be computed because of its computational expense. Instead,
the only quantity of interest will be the macroscopic stress σ ,
which is obtained through cell-averaging after solving for the
microscopic stress field. In the one-dimensional setting based
on the chosen classical composite models, the determination
of σ for cell-averaging towards σ is effectively equivalent to
directly calculating E .
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Fig. 2 Smart composite with a tunable stress–strain curve. The aim
is to tune the elastic modulus E (2)(φ) of a microscopic constituent
(in this case the particle) via a control variable φ(t) so that the actual
macroscopic stress σ(t) approaches a desired value σ ∗(t) as quickly as

possible and tracks this target signal with high accuracy. A numerical
example which closely follows this problem depiction will be presented
in Sect. 4.2.1

2.2 Tunable mechanics

Basedon the simplifiedone-dimensional settingofSect. 2.1.2,
it will further be assumed that the first constituent has a fixed
elastic modulus (E (1)) whereas the second constituent has a
variable one (E (2)). Moreover, suppose that the second con-
stituent has a control variable φ, such as the magnetic field in
the case of magnetorheological elastomers, so that the value
of E (2) can be varied between minimum and maximum val-
ues:

E (2)
min ≤ E (2)(φ) ≤ E (2)

max. (2.4)

In practice, the control variable is a function of time. During
the development of the control framework of this work, the
particular form of the signal φ(t) and the functional form
of E (2)(φ) will actually not be relevant—the temporal vari-
ation of E (2) will be directly controlled instead. Presently,
however, in order to demonstrate the control idea, it will
be assumed that E (2) is a non-decreasing function of φ. The
macroscopic elasticmodulus, therefore, also becomes a (non-
decreasing) function of φ. Now, if φ is varied together with a
prescribed strain signal ε(2)(t), the microscopic stress–strain
response σ (2)(t) = E (2)(φ)ε(2)(t) of the second constituent
can follow a highly nonlinear curve. Consequently, the
macroscopic response σ(t) = E(φ)ε(t) of the composite
can also be highly nonlinear so that, by properly adjusting
the variation of φ(t), the actual stress signal σ(t) can be
controlled in order to follow a target signal σ ∗(t). Within
this framework, ε(t) is prescribed, φ (or, eventually directly
E (2)) is the input that is controlled and σ is the output that
helps assess the control error.

These ideas which underlie tunable mechanics at the
microscopic and macroscopic scales are demonstrated in

Fig. 2 for a generic periodic microstructure. The degree of
accuracy with which σ follows σ ∗ depends on the controller
as well as on the microstructure. In particular, the controller
determines the speedwithwhichσ capturesσ ∗, typically dis-
playing a transient part (Region 1) where the actual response
rapidly approaches the target, followed by a steady-state
part (Region 2) where a high accuracy is achieved. The
microstructure, on the other hand, controls the degree of
freedom in the macroscopic response (adaptation space)
that is characterized by the maximum (Emax) and minimum
(Emin) elastic moduli. It is desirable to choose or design the
microstructure so that the adaptation space contains the tar-
get signal at all times. These aspects will be further discussed
in upcoming sections.

2.3 Templates for cyclic paths in stress–strain space

2.3.1 Macroscopic stress and strain signals

Two simplificationswill underlie the development of the con-
trol framework, based on the setup of Sect. 2.2 and along the
goals stated in Sect. 1. First, instead of controlling E through
an input φ(t), E(t) will be controlled directly. In practice,
materials change theirmechanical response due to an external
stimulus, for instance by controlling the temperature or the
magnetic field, and the response of E to this stimulus is not
immediate so that its incorporation requires additional mod-
eling effort. Although this adds a layer of complexity to the
control framework, the present aim is to address fundamental
challenges that already exist under E(t)-control. Second, it is
clear that complex pathsmay be generated in the stress-space
when E and ε change simultaneously. Alternatively viewed,
complex target paths that are defined by ε(t) and σ ∗(t) may
be followed with an appropriate controller which tunes E(t).
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For the actuator-type applications which were mentioned in
Sect. 1, both ε(t) and σ ∗(t) are cyclic signals. The phase
of one signal with respect to the other together with their
amplitudes, means and periods control the particular cyclic
path in the stress–strain space. These degrees of freedom in
the signals will be reduced without any impact on the con-
trol development by fixing the steady-state strain signal to a
sinusoidal one with fixed mean (εo), amplitude (�ε/2) and
period (Tε):

ε(t) = εo − �ε cos(2π t/Tε). (2.5)

The target steady-state stress signal, on the other hand, will
have a variable mean (σ ∗

o), amplitude (�σ ∗/2), period (Tσ )
as well as a phase (θ ):

σ ∗(t) = σ ∗
o − �σ ∗ cyc(2π t/Tσ + θ) . (2.6)

Here, cyc represents any cyclic signal, such as a sinusoidal or
a triangular pattern. In practice, the strain as well as the target
stress signals will be gradually increased towards the mean
of these steady-state fluctuations through a short transition
period—see Fig. 4. The particular choice for this transi-
tion does not influence the core aspects of the controller
design and therefore will not be explicitly noted. Also note
that changes in the mean or the amplitude of a signal lead
to straightforward shifting or scaling along the correspond-
ing axis in the stress–strain space and therefore will not be
shown. In a multi-dimensional setting, all non-zero strain
components will be assigned the same variation (2.5) while
individual target stress signals may differ.
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Fig. 3 The influence of the period mismatch Tσ /Tε and the phase θ on
the cyclic stress–strain path is summarized, using cyc = cos in (2.6).
The period mismatch bends the initially straight path into a curved one
while the phase splits the line into a closed path. The circle (◦) at the

origin indicates (ε, σ ∗) = (0, 0), the starting point along the cyclic path
is indicated with a bullet (•) and the direction of motion is indicated
with an arrow (�). (Color figure online)
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Fig. 4 The influence of a triangular choice for cyc in (2.6) is summarized, with (∅) and without (∗) matching peaks for the stress and strain signals.
The transition part of the signals are also displayed. The default target macroscopic stress will be chosen as the σ ∗(t) signal shown here

2.3.2 Period ratio and phase

The purpose of this section is to provide templates for
complex cyclic paths in stress–strain space. The aim is to
highlight that such paths can actually be easily achieved by,
for instance, simple changes in the period ratio Tσ /Tε and the
phase θ . Both of these parameters have central practical roles.
For instance, achieving damping in cyclic motion requires a
phase between the stress and strain signals. The period of
the two signals also do not need to match. As an extreme
case, for instance, one may wish to keep the macroscopic
load (or, stress) at a constant value through cyclic macro-
scopic deformation (or, strain). In another extreme case, the
motion of an object cannot be initiated if frictional resistance
is not overcome despite cyclic macroscopic loading. In the
former case, the material in the actuator should be able to
follow Tσ /Tε → ∞ whereas in the latter case Tσ /Tε → 0.
Clearly, any other ratio between these two extremes is also
conceivable.

Figure 3 summarizes the influence of these parameters
when cyc = cos is chosen for the stress signal (2.6). Here,
only the steady-state paths are shown. When Tσ = Tε and
θ = 0, the cyclic path follows a straight line. Even then,
however, this line cannot be followed with an elastic material
with a constant E

∗ = σ ∗/ε because it does not extrapolate
down to the origin due to the particular choices for εo and σ ∗

o,
so that tunable mechanics would be required already. When
a period mismatch is added without phase, the straight path
is bent into a curved one, displaying an increasing number of
inflection points with an increasing mismatch. On the other
hand, when a phase θ > 0 is added at matching period, the
straight line is split open towards a closed cyclic path, with
the direction of motion being clockwise.When θ ′ = θ +π/2
is added as the phase, the cyclic path flips upside down, but
the direction of motion is retained. When θ ′ = θ + π is
added, both the path flips upside down and the direction of
motion is reversed. Hence, only θ ≤ π/2 is shown.

2.3.3 Signal shape

The shape of the stress signal is an additional parameter.
Figure 4 displays the influence of a triangular choice for cyc
in (2.6). Here, two specific choices are displayed, both with
Tσ = Tε . In the first one, the peaks of the stress and strain
signals match, which qualitatively corresponds to zero phase
(indicated by ∅). Because there is no phase, the path in the
stress–strain space is not split. However, it is wavy rather
than straight due to the non-matching shapes of the two sig-
nals. In the second choice, the peak of the triangular stress
signal is shifted, which effectively introduces a phase and
hence splits the cyclic path. This signal, together with its
transition part, will be chosen as the default target macro-
scopic stress variation σ ∗(t) in the SISO setting. Note that
the difference between the macroscopic modulus variations
for the two choices discussed are seemingly small, yet the
impact of this difference on the stress–strain paths is sig-
nificant. This highlights the need for a tuning approach that
directly assesses the error in the stress rather than the modu-
lus. The design of an appropriate controller will be discussed
in Sect. 3.1. Before this discussion, the ability to tune the
macroscopic mechanics and typical performance indicators
will be discussed. This discussion will be cast in a series of
examples which highlight the micromechanical aspects that
influence the tuning ability.

In all of these examples, the base controller of Sect. 3.1
is employed, which specifically makes use of the fact that a
cyclic (or, periodic) path is being targeted. Moreover, the
default macroscopic signals are assigned {εo,�ε, Tε} =
{0.02, 0.01, 5 sec} and {σ o,�σ } = {1.05MPa, 0.25MPa}.
Finally, unless otherwise noted, E (1) = 50MPa and f (1) =
f (2) = 0.5. Note that the particular value of Tε will not
be important—it can be increased/decreased arbitrarily to
describe low/high frequency phenomena. For this reason,
the variation of control quantities will be monitored with
respect to the number of cycles, instead of with respect to
time. Similarly, when a parameter which involves the unit of
time appears, its magnitude should be judged relative to Tε .
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Fig. 5 The controller performance is demonstrated for the macroscopic modulus model E‖ from (2.3)1. The tracking error from (2.7) decreases
below one percent after 15 cycles. The σ signal over the last cycle and its path in the macroscopic stress–strain space is indicated with the σ • curve

2.4 Base controller performance

2.4.1 Elastic model with linear control

Among the macroscopic moduli of (2.3), the model based
on E‖ is linear in the tunable microscopic modulus E (2)

whereas E⊥ is nonlinear. In a first step, the linear model will
be employed in order to predict the macroscopic response of
the composite via σ = E‖ε. In order to assess the controller
performance, the tracking error (�) is defined by evaluating
the error in the immediate past over a duration of one period:

�(t) =
(

1

Tσ

∫ t

t−Tσ

(
σ − σ ∗

σ ∗
)2

dt

)1/2

. (2.7)

For t < Tσ , the duration of averaging is limited to the his-
tory. In a multi-dimensional setting, the notation �i j will be
employed to refer to the particular stress component σ i j for
which the error is calculated with respect to a target signal
σ ∗
i j .

Figure 5 summarizes the output of the base controller for
this setting. Clearly, the chosen controller type can drive the
macroscopic response towards the target signal. In about 15
cycles, the tracking error � already indicates less than one
percent deviation from the target signal. This last cycle will
be explicitly shown in the macroscopic stress–strain space
in order to highlight its excellent visual agreement with the
target signal. In order to achieve this output, the tunable
microscopic modulus E (2) varies significantly, but within
the same order of magnitude as E (1). This indicates that
mediocre tunability may in practice be sufficient to track
complex cyclic paths. Note that the initial value of E (2) does
not have a significant impact on the tracking error variation
and hence is taken to be an arbitrarily small value by default
in all examples.

A number of practical issues may arise during control,
one of which is demonstrated in Fig. 6. In practice, as pre-
viously discussed in Sect. 2.2 and depicted in Fig. 2, there
may be limits to the range over which E (2) may be varied. In
comparison to Fig. 5, if E (1) is decreased to 35MPa from the
default value of 50MPa, E (2) must nowachieve higher values
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Fig. 6 For the setting of Fig. 5, E (1) is varied in order to force E (2)

towards imposed saturation limits E (2)
max = 120MPa and E (2)

min =
10MPa. For case (a), E (1) = 35MPa for which Emax = 77.5MPa

and Emin = 22.5MPa, leading to max-saturation. For case (b), E (1) =
75MPa for which Emax = 97.5MPa and Emin = 42.5MPa, lead-
ing to min-saturation. The macroscopic stress σ saturates to either
σmax = Emaxε or σmin = Eminε type response

over a cycle. If, however, E (2)
max = 120MPa is enforced then

E (2) saturates at this value over portions of the cycle, effec-
tively limiting E to a maximum value Emax and, thereby, σ
to σmax = Emaxε. Thismax-saturation reflects as a constant-
modulus response, i.e. a line which may be extrapolated to
the origin, in the corresponding portion of the cyclic path in
themacroscopic stress–strain space.A similarmin-saturation
effect may also be observed, for instance if E (1) = 75MPa
is employed and E (2) is limited to E (2)

min = 10MPa, which
limits σ to σmin = Eminε. In such cases, the tracking error
over a period will remain at a relatively large value although
it is observed that the pointwise error in portions of the cyclic
path where saturation does not occur is negligible. In prac-
tice, referring to Fig. 2, determination of the bounds for the
adaptation space may be considered as a preprocessing stage
where the saturation values of the tunable microscopic con-
stituent(s) are checked. Subsequently, the target signal should
either be chosen to lie within this space or the significance
of the error due to saturation must be assessed.

2.4.2 Control approach advantages

Clearly, in the particular setting of the previous section, one
may easily calculate the value of E (2) via (2.3)1 so that E
matches the desired value E

∗ = σ ∗/ε without the need for
a control approach. It is therefore important at this stage
to digress momentarily from the numerical investigations
and emphasize two outstanding advantages of the control
approach over such an alternative, in order to also shed light
on the developments of the following sections:

1. Computational complexity As already commented in
Sect. 2.1.1, the inverse problem of determining the opti-
mal microscopic moduli for a desired macroscopic one
is not straightforward in a multi-dimensional setting.
Although this is not a challenging task, it is signifi-
cantly costly because it will require solving multiple cell
problems of homogenization at each step of an iterative
optimization problem. Subsequently, this task needs to be
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repeated at each time step along the macroscopic stress–
strain path. The control approach, on the other hand, will
always carry out a single cell-level computation for a
time step in order to determine the microscopic stress
field, which delivers the macroscopic stress through cell-
averaging.

2. Microscopic uncertainty In the context of an inverse
problem, the characterizationof themacroscopic response
towards a macroscopic modulus rests on assumptions
which can be easily violated in practice, for instance: (i)
the microscopic mechanical response is purely elastic,
(ii) the microscopic elastic moduli are known precisely,
(iii) the microstructure topology is known precisely.
Uncertainties in the microscopic mechanical behavior
or properties as well as a lack of precise knowledge
of the microstructure will always introduce an error if
one attempts to make a macroscopic response predic-
tion through the computation of a macroscopic material
property, in the one-dimensional case through E . On
the other hand, under appropriate feasibility conditions
that will be further commented upon, the tunable micro-
scopic constituent may always be controlled in order to
direct the macroscopic stress signal towards the target
variation.

To summarize, the control approach effectively considers
the smart composite as a black box system which delivers a
measurable stress for a given input signal, without a precise
consideration of the microscopic details. Indeed, a micro-
scopic computation in the present work serves precisely the
purpose of measuring the response from a black box system.
A future aim would be to replace computation with experi-
ment such that the actual smart composite reacts to the control
input, which is to be tuned until a desired steady-state output
is achieved.

2.4.3 Elastic model with nonlinear control

The particular microstructure topology employed has a sig-
nificant impact on control capability. In order to demonstrate
this aspect, the macroscopic modulus model E⊥ of (2.3)2
will be employedwith the default numerical parameters, with
the exception of E (1) = 15MPa. For clarity, no saturation
limit is imposed on E (2). The results in Fig. 7 indicate that
the control algorithm attempts to drive E (2) to ever larger
values, although the tracking error saturates. The reason for
this saturation is clearly observed in the macroscopic stress–
strain space: despite the lack of amax-saturation on E (2), the
microstructure imposes a max-saturation on E because the
modulus model E⊥ which represents this microstructure is
limited to a finite value even for E (2) → ∞. Presently, this
finite value is too low so that the target path lies entirely out-
side the adaptation space and hence the controller can drive

the output to the boundary of this space atmost.Whenever the
microstructure topology imposes constraints on the macro-
scopic response such that the tracking error cannot be driven
to zero, the target path will be referred to as unrealizable.
When E (1) is increased so that the adaptation space starts to
encompass the target path, the tracking error saturation value
decreases although the target is still unrealizable. Once the
target path is entirely contained in the adaptation space the
error can then be driven to zero (Fig. 8a). Note that in the
present setting the control problem is nonlinear in E (2) and
the controller is able to address this nonlinearity to minimize
the tracking error.

2.4.4 Inelastic model

Among microscopic uncertainties, the possible inelastic
response of the constituents causes a nonlinear macroscopic
mechanical response. In order to further demonstrate the
versatility of the base controller, it will be applied to the
case when the tunable constituent is still elastic but the
other is viscoelastic, thereby inducing a macroscopic vis-
coelastic response as well. For this purpose, the layered
composite model is again employed with parallel loading
so that σ = f (1)σ (1) + f (2)σ (2) in view of (2.1) together
with the fact that the strain is a constant over both con-
stituents. The tunable constituent delivers σ (2) = E (2)ε.
The viscoelastic constituent is modeled with the standard
linear solid so that σ (1) = σ

(1)
e + σ

(1)
v with σ

(1)
e = E (1)∞ ε

and σ
(2)
v = E (1)

v (ε − εv). The rate of the microscopic vis-
cous strain εv is governed by the equation τ ε̇v + εv = ε

where τ is the relaxation time. Here, E (1)∞ = 100MPa
and E (1)

v = 10MPa will be employed. For the case when
τ = 1 sec, the controller performance is summarized in
Fig. 9. Due to viscoelasticity, σ even takes negative values in
the early stages of loading. Subsequently, however, the con-
troller quickly drives the macroscopic response towards the
target. Note that the macroscopic stress–strain path would
already exhibit hysteresis even with a constant E (2) because
the relaxation time τ is very close to Tσ = 5 sec. Hence,
the controller is also working against this hysteresis in trying
to achieve the target signal. In fact, the controller perfor-
mance is only weakly influenced by τ . Figure 8b shows that
the target path is effectively achieved in comparable times
despite significant changes in τ , and even when it is larger
than Tσ .

The suite of problems discussed in this section have high-
lighted the mechanics aspects and physical challenges that
are associated with the control of smart composites. Simul-
taneously, the versatility of the underlying base controller
has been demonstrated. A compact discussion of this con-
troller and its further development towards cases of practical
interest will be presented next.

123



384 Computational Mechanics (2020) 65:375–394

0 0.01 0.02 0.03
0

0.5

1

1.5

Macroscopic Strain, [-]

M
ac

ro
sc

op
ic

St
re

ss
[M

P
a]

σ∗

σ

σ•

(a) Macroscopic path

0 5 10 15

0

0.5

1

1.5

Number of Cycles

M
ac

ro
sc

op
ic

St
re

ss
[M

P
a]

σ∗

σ

σ•

(b) Macroscopic stress

0 5 10 15

0

100

200

300

400

500

600

Number of Cycles

M
ic

ro
sc

op
ic

M
od

ul
us

[M
P
a]

E(1) E(2)

(c) Microscopic modulus

0 5 10 15 20 25 30
0.1

1

Number of Cycles

T
ra

ck
in

g
E

rr
or

,
Σ

[-
]

(d) Tracking error

Fig. 7 The controller performance is demonstrated for the macroscopic modulus model E⊥ from (2.3)2. The target path is unrealizable due to the
microstructure topology, leading to a saturating tracking error even if a continuous increase in E (2) is allowed
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Fig. 8 Dependence of the tracking error on microscopic material prop-
erties: a E (1) is varied when the macroscopic response is described by
E⊥ from (2.3)2, eventually delivering a realizable response when E (1)

is sufficiently large, andb the relaxation time is varied beyond the period
Tσ = 5 sec for the case with a non-tunable viscoelastic constituent
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Fig. 9 The controller performance is demonstrated for the case when the non-tunable constituent is viscoelastic, characterized by the material
parameters {E (1)∞ , E (1)

v , τ }, with τ = 1 sec

3 Control framework

In this section, the control framework related to the smart
material system will be presented in a compact setting,
with a specific focus on the non-standard aspects that have
been adapted towards the purposes of this study. For back-
ground on the standard aspects of control theory, the reader
is referred to [31–34]. The presentation will follow a SISO
system configuration. However, the results of this section
are generic enough to be used in a general Multi-Input-
Multi-Output (MIMO) system configuration that is needed
for smart material control in amulti-dimensional framework,
and this generalization will also be briefly commented upon.
For further details regarding the design and operation of the
underlying controller aswell as its stability analysis, see [35].

3.1 Repetitive controller

A non-standard control algorithm that is suitable to the
cyclic nature of the loading as well as for possible operation
in a multi-dimensional setting is the repetitive controller,

first introduced in [36]. The repetitive controller structure
is devised based on the internal model principle, which
states that a zero steady-state error controller with a specific
structure can be designed for the systemwhen the input char-
acteristic is also repeated inside the controller [37]. Indeed,
the base controller that was referred to earlier in Sect. 2.4
and which will be explicitly denoted in this section is built
around this concept and consequently, as a specific example,
the tracking error in the example of Fig. 5 already decreases
below 10−7 after 70 cycles. Repetitive control is used for
systemswhichhavefixedperiodic reference inputs. Theprac-
tical applications of this approach to various problems are
studied in [38]. The repetitive controller structure employed
in this work is based on [39] and adapted towards the smart
composite material system. The structure of this SISO con-
troller is outlined in Fig. 10 and has the following features:

1. C1(s), the repetitive controller, minimizes the steady-
state error of the control system. The controller reacts
to the error e(t) = σ ∗(t)−σ(t). Because e−τ s gives one
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Fig. 10 The structure of the SISO controller in Laplace domain (s)

period delay (τ ) to the error signal and feeds it to the cur-
rent control calculations, the control scheme is endowed
with a simple learning ability. Note that, in this context,
the period τ corresponds to that which allows a cycle to
be completed in the macroscopic stress–strain space, e.g.
τ = max{Tε, Tσ } if the period ratio (or its inverse) is an
integer. Moreover, q(s) is a proper low pass filter which
serves two purposes. First, when the reference signal con-
tains high frequency modes, for instance when it has a
sharp corner, trackingmay become unattainable. Second,
the possible presence of delay in the system adversely
impacts the stability of the system. Onemay address both
of these problems by reducing the loop gain of the con-
troller in the high frequency range, which is achieved by
q(s).

2. C2(s), the compensator, supports the repetitive controller
by improving the transient response of the system. This
controller is structured in state-space form, where opti-
mal controllers can be designed directly, circumventing
the need for explicit calibration of controller parame-
ters. Moreover, this approach handles MIMO systems
easily, thus enabling control in a multi-dimensional set-
ting. Here, Ap represents the system internal dynamics,
Bp is the input gain and the system output is calculated
using Cp. Note that these may not be available explicitly
but can be calculated numerically. Moreover, 
 repre-
sents the Kalman filter gain and K is the gain for the
full-state feedback controller. Overall control, C(s), is
achieved through the combined action of the repetitive
controller and the compensator.

3. P(s), the plant, represents the physical system that the
controller acts on. The smart composite response is rep-
resented here through the linear form (2.3)1, where the
controlled microscopic elastic modulus has been explic-
itly denoted with a subscript (·)c for clarity. Note that
any nonlinear relation, in particular (2.3)2, can also be

represented in a similar form after linearization for con-
trol purposes. The remaining ingredients are associated
with physical actuation effects that are expected in an
experimental setting: (i) an actuator delay of L seconds
is indicated externally through e−Ls , for instance due to
the communication between the controller and the FEM
simulation in Sect. 4, and (ii) A(s) represents actuator
dynamics such as inertia and will be taken in the form of
a low pass filter. Controller stability relies on the com-
bined structure of the plant and the compensator, referred
to as the compensated plant, G(s)—see [35] for relevant
stability analysis.

Now, the base controller of Sect. 2.4 refers to a specialization
of this controller structure, due to a simplified compensator
structure with C2 = K as well as due to the omission of the
actuator dynamics (A(s) = 1), the delay (L = 0) and the
filter (q(s) = 1). All upcoming examples, on the other hand,
will assume the presence of these components. As a conse-
quence, the tracking error will not steadily decay towards
zero but will rather saturate at a small value.

3.2 Multi-input-multi-output setting

Control must be carried out in a MIMO setting in the
multi-dimensional case where multiple stress signals must
be tracked as the smart composite is subjected to multiple
strain signals. As the details of the extension from SISO to
MIMO depend on the particular case, the purpose of this
section is to demonstrate the performance of the MIMO con-
troller with a specific example without going into details of
its structure, which basically entails the replacement of var-
ious scalars in Fig. 10 with vectors and matrices—see [35]
for details. Specifically, the layered composite model from
Sect. 2.1.2 will be employed in a biaxial loading scenario so
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Fig. 11 Controller design for
the layered composite model
under biaxial loading. The
controller matrix C is based on
Fig. 10 and hence is not
explicitly depicted. Moreover,
the volume fractions associated
with the (linearized)
macroscopic moduli are denoted
through the matrix F

that the macroscopic response of the microstructure is avail-
able in closed-form. It is assumed that each constituent has
a variable Young’s modulus E (I ) and zero Poisson’s ratio.
In addition, the strain function is assumed to be the same
along both axes, ε11(t) = ε22(t) = ε(t). The structure of the
corresponding MIMO controller is outlined in Fig. 11. The
results in Fig. 12 indicate that the performance of the MIMO
controller is comparable to that of the SISO setting which
was demonstrated in Sect. 2.4, with respect to both macro-
scopic target signals (σ ∗

11(t) and σ ∗
22(t)) which differ from

each other in phase and shape. Specifically, the tracking error
for both stress components rapidly approach their individual
target signals which clearly lie within the adaptation space.
It is important to highlight that this example already demon-
strates the advantage of employing tunable microstructures
as opposed to a fixed microstructure or a single homoge-
neous material with variable elastic properties: the former
alternative is unable to adapt to the continuously changing
macroscopic performance demands whereas the latter one
is unable to provide independent adaptation for each target
signal. Only a suitably chosen microstructure with tunable
constituents is able to meet the demands of complex load-
ing scenarios in order to ensure that the adaptation space is
properly constructed.

It is instructive to discuss a simple generalization of the
present example to further emphasize the impact of the
microstructure on the adaptation space. If the layered com-
posite is subjected to a shear strain ε12(t) in addition to
the two normal strains with an accompanying target signal
σ ∗
12(t) then the macroscopic normal stress–strain relations

σ 11 = E‖ε11 and σ 22 = E⊥ε22 should be augmented by
the shear relation σ 12 = 2με12. The macroscopic shear
modulus μ for such a composite follows the nonlinear
expression (2.3)2 in terms of the microscopic shear mod-
uli μ = ( f (1)/μ(1) + f (2)/μ(2))–1. Now, it appears that both
theYoung’s and shearmoduli of themicroscopic constituents
are available for tuning. However, additionally recalling the
particular choice of a zero Poisson’s ratio in this example,
there holds μ(I ) = E (I )/2 so that one simply obtains a sim-
ilar relation μ = E⊥/2 for the composite response, leading

to the expression σ 12 = E⊥ε12. Consequently, only one of
the two signals σ 22 and σ 12 may be ensured to track its tar-
get by controlling E⊥, which will dictate the variation of
the remaining signal. Hence, it is clear that the microstruc-
ture topology can easily inhibit tunability of the composite,
rendering the overall target unrealizable. A simple layered
microstructure is conceptually limited from the outset for
addressing the present problem because there are only two
control variables E (I ) for three target signals. Therefore, an
immediate remedy for the present example is to incorporate
a third tunable layer into the microstructure. However, the
critical role of the microstructure topology persists. Clearly,
irrespective of the number of tunable constituents, there will
always be only two microscopic control variables effectively
in action as long as the microstructure is assigned a simple
layered structure. This highlights the need for more complex
distributions of the tunable constituents. The design of the
microstructure so as to ensure independent adaptation for
arbitrary loading scenarios with multiple target signals in a
multi-dimensional setting is an outstanding issue that will
not be addressed presently.

4 FEM-based simulations

4.1 Numerical setup

In a multi-dimensional setting, the macroscopic stress field
is available in closed-form in only a few exceptional cases,
one of which was discussed in Sect. 3.2. In order to
demonstrate the versatility of the overall control framework
towards tunable mechanics for smart materials with arbi-
trary microstructures, the approach developed so far will
now be integrated with a FEM-based computation environ-
ment. Consequently, the solution of a single boundary value
problem will be required at each time step. Although this
leads to a significant rise in computation time compared to
earlier examples, the examples to be discussed will demon-
strate that the framework remains feasible for both two-
and three-dimensional microstructures. In all cases, peri-
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Fig. 12 The controller performance is demonstrated for the layered
composite of Sect. 3.2. Here, σ ∗

11 is constructed using cyc = cos
with Tσ = Tε and θ = π/2 (see Fig. 3) as well as {σ o,�σ } =
{1.25MPa, 0.25MPa} in (2.6)whereasσ ∗

22 is basedon the default signal

from Fig. 4. All non-zero strain components (presently {ε11, ε22}) have
the same variation (2.5) in all multi-dimensional examples, as noted in
Sect. 2.3.1

odic microstructures are discussed so that the macroscopic
strain is imposed through periodic boundary conditions on
the unit-cell. The non-zero macroscopic strain components

will again be assigned the signal described by {εo,�ε, Tε} =
{0.02, 0.01, 5 s} via (2.5), as in Sect. 2.3.3. The non-zero
stress signals will be denoted for each case based on (2.6),
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Fig. 13 The microstructure geometry and the loading scenario (ε12 �=
0) are depicted for the M2C1 setup of Sect. 4.2.1. Here, as well as

in similar figures which follow, E (2) is associated with the turquoise
constituent while the remaining constituent is assigned E (1). Presently,

f (1) = f (2) = 0.5 and only the particle elastic modulus E (2) is vari-
able. The color distribution on the deformed configuration (scaled, at
an instant of loading) is shown as an indicator for the magnitude of the
shear stress, with red corresponding to maximum and blue correspond-
ing to minimum value. (Color figure online)

Tσ = Tε being the common choice unless otherwise noted.
Isotropic linearly elastic constituents are assumed and each
is assigned a zero Poisson’s ratio for simplicity, following
the example of Sect. 3.2, leaving the Young’s modulus as the
only material parameter that is either fixed or variable. Note
that the simple influence of the microstructure in rendering
the macroscopic stress nonlinear with respect to the variable
moduli was demonstrated in Sects. 2.4.3 and 3.2. For the
more complex microstructure geometries to be considered
in this section, this relation is again intrinsically nonlinear.
Moreover, the Poisson effect is non-zero on the macroscale
in the presence of a non-trivial microstructure despite zero
microscopic Poisson’s ratios, which leads to full coupling
among stress and strain components on the macroscale. The
developed control framework is able to address this coupling,
which will be demonstrated in Sect. 4.2.2.

In all d-dimensional examples in a general MIMO set-
ting, the number of input variables n of the control loop is
equal to the number of output variables. The mechanical
(M) dimension d governs the overall cost of the simula-
tion whereas the control (C) variable number n governs
the complexity of the control problem. The notation MdCn
will therefore be employed as an indicator for the challenge
associated with the particular problem of tunable mechan-
ics. Note that the example in Sect. 3.2 already highlighted
the importance of embedding tunable mechanics within a
properly constructed microstructure in order to enable con-
trol towards target signals in complex loading scenarios. In
the examples that follow, representative microstructures will
be employed which already provide a suitable adaptation
space for the prescribed problem. The FEM mesh resolution
for these microstructures will be indicated in corresponding

figures which summarize the setup. The time resolution is
fixed in all examples such that a period is traversed with 104

steps. The underlying controllers follow the presentation of
Sect. 3.

4.2 Two-dimensional mechanics

4.2.1 One-variable control (M2C1)

For M2C1, the particulate microstructure in Fig. 13 is con-
sidered (see also Fig. 2). The unit-cell is subjected to shear,
where the target stress signal σ ∗

12 is described by the default
signal from Fig. 4 and the matrix is assigned the fixed prop-
erty E (1) = 150MPa. Note that a very large value for E (1)

will easily render the target path unrealizable due to the high
shear stiffness that is provided by the matrix material alone.
With the chosen setup, on the other hand, the microstruc-
ture can adapt to the control demands and the tracking error
quickly diminishes below one percent (Fig. 14). The fact that
the tracking error saturates to a non-zero value follows from
the delay and filter components of the control framework.
However, this value is sufficiently small so as to deliver vir-
tually overlapping actual and target stress signals beyond the
first few cycles.

4.2.2 Two-variable control (M2C2)

For M2C2, the microstructure in Fig. 15 is considered. The
unit-cell is subjected to biaxial loading, where the target
stress signals are borrowed from Fig. 12. Note that the
microstructure geometry is chosen so as to ensure both tar-
get signals are realizable when bothmicroscopic constituents
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Fig. 14 The controller performance is demonstrated for the M2C1 setup of Sect. 4.2.1. Here, σ ∗
12 is constructed using cyc = cos with Tσ = Tε/2

and θ = π/3 (see Fig. 3)

Fig. 15 Themicrostructure geometry and the loading scenario (ε11 �= 0
and ε22 �= 0) are depicted for the M2C2 setup of Sect. 4.2.2. Both
constituents are tunable with a cell fraction f (1) = f (2) = 0.25, each
contributing predominantly to the stress component along its individual
axis of orientation. The color distribution on the deformed configura-

tion (scaled, at an instant of loading) is shown as an indicator for the
magnitude of the equivalent (von Mises) stress, with red corresponding
to maximum and blue corresponding to minimum value. (Color figure
online)
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Fig. 16 The controller performance is demonstrated for the M2C2 setup of Sect. 4.2.2

are tunable. Indeed, the results in Fig. 16 demonstrate a
performance that is similar to the former M2C2 exam-
ple of Sect. 3.2. However, unlike this earlier example, the
present microstructure necessitates the numerical determi-
nation of the microscopic stress distribution and therefore
requires a larger computation time to generate the summa-
rized results with the given FEM mesh. Clearly, despite the

identical macroscopic strain variation along both directions,
the entirely independent macroscopic stress variations are an
indication of the non-conventional anisotropic macroscopic
response that goes beyond the expected behavior for the
geometrically orthogonal symmetry of this microstructure,
thereby further highlighting the possibilities enabled by tun-
able composites.
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Fig. 17 The microstructure
geometry and the loading
scenario (ε13 �= 0) are depicted
for the M3C1 setup of Sect. 4.3.
The pore (E (1) = 0) leaves the
matrix elastic modulus E (2) as
the only variable with
f (1) = f (2) = 0.5. The color
distribution on the deformed
configuration (scaled, at an
instant of loading) is shown as
an indicator for the magnitude
of the shear stress, with red
corresponding to maximum and
blue corresponding to minimum
value. (Color figure online)
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Fig. 18 The controller performance is demonstrated for the M3C1 setup of Sect. 4.3. Here, σ ∗
13 is constructed using cyc = cos with Tσ = Tε/3

and θ = π/2 (see Fig. 3) as well as {σ o,�σ } = {1.1MPa, 0.2MPa} in (2.6)

Recalling the challenge that was pointed out in Sect. 3.2, a
discussion of theM2C3 setup will presently not be attempted
with more complex microstructures. Instead, the feasibility

of tunable mechanics in a three-dimensional setting will be
demonstrated next.
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4.3 Three-dimensional mechanics

As a three-dimensional example, the M3C1 setup in Fig. 17
is considered. Here, for notational convenience, E (1) = 0 is
assigned to indicate the porous nature of the microstructure.
Despite the fact that the problem targets a single shear stress
signal by tuning a single microscopic elastic material via
E (2), the microstructure still plays a role because its macro-
scopic response is anisotropic although the microscopic
material is isotropic. The transition from a two-dimensional
setting to a three-dimensional one can significantly increase
the simulation cost, depending on the numerical resolution in
time and space. In view of the fact that, with a suitably con-
structed controller, the number of control variables n does
not by itself lead to a significant change in the simulation
time, the successful results in Fig. 18 already demonstrate
the feasibility of the computational framework in a three-
dimensional setting. Clearly, for the same problem, different
poremorphologies can easily enhance or inhibit the easewith
which control is carried out, for instance by altering the range
over which E (2) is varied. Consequently, this example also
demonstrates the importance of the choice of the microstruc-
ture that was pointed out earlier in Sects. 3.2 and 4.2.2.

5 Conclusion

The goal of this work was to explore smart composites which
display tunable consitutive behavior that enables them to
exhibit nearly optimal behavior under time-varying perfor-
mance criteria. This goal was carried out in a numerical
setting via three major steps: (1) the demonstration of the
possibilities offered by such composites, which sets the
demands on the numerical approach, (2) the development
of controllers that are appropriate for mechanics in multiple
dimensions, and (3) the integration of the control approach
within a general computational method in order to address
realistic microstructures. In view of the envisioned prac-
tical applications of this work, adaptation through tuning
was sought for periodic signals and was realized through
repetitive controllers for which performance demonstrations
were presented. Various examples indicated the success with
which these controllers enable smart response such that com-
plex paths in stress–strain space could be followed with
high precision in the availability of mediocre tunability,
where complexity primarily refers to the qualitative fact that
no combination of traditional materials can display such a
behavior. Finally, despite the need for a large number of
micromechanical simulations throughout the tuning effort,
the feasibility of working in a fully three-dimensional set-
ting was also demonstrated.

A number of challenges form a basis for future work.
Among these, the experimental study with such compos-

ites is an outstanding one, with respect to material selection,
composite manufacturing and controller design. The numeri-
cal framework developed presently certainly forms a starting
point for the proper design and control of a smart com-
posite, although further effort is needed in order to address
practical difficulties such as microstructural defects or feed-
back delays from the sensors. From a pure computational
point of view, another outstanding challenge is addressing the
strong interaction between the microstructure topology and
the freedom in adaptation, especiallywith respect to ensuring
realizable target signals in a multi-dimensional multi-input-
multi-output setting. Here, one can seek to design the
microstructure so as to endow it with maximum tunability,
which will translate into a clear identification of how to dis-
tribute each microscopic constituent so as to follow all target
signals with high precision. These possibilities, among oth-
ers, highlight a rich spectrum of open issues that lie in this
novel field and addressing thesewill particularly benefit from
recent developments in computational mechanics, additive
manufacturing and control theory towards the design, man-
ufacturing and operation of smart composite systems.
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