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Abstract
The goal of this article is to provide basic modeling and simulation techniques for systems of multiple interacting Unmanned
Aerial Vehicles, so called “swarms”, for applications in mapping. Also, the paper illustrates the application of basic machine-
learning algorithms to optimize their information gathering. Numerical examples are provided to illustrate the concepts.
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1 Introduction

The advances in Unmanned Aerial Vehicles (UAV) tech-
nologies have the potential to revolutionize rapid mapping
capabilities of complex environments to directly benefit soci-
ety. Furthermore, advances in manufacturing, three dimen-
sional (3D) printing, embedded microscale and nanoscale
electronics, Lidar (Light Detection and Ranging), hyper-
spectral cameras and associated technologies have made the
production of sophisticated multi-UAV systems, so-called
“swarms”, for mapping very economical. One key enabling
technology for such systems is rapid, adaptive, path plan-
ning for such systems. Accordingly, the objective of this
paper is to develop relatively simple mechanistic models and
numerical solution strategies for the direct simulation of path
planning of swarms, which can be achieved with relatively
standard laptop-level computing equipment for deployed use
in the field. The models developed here are simple enough to
be computed several thousand times per hour, thus enabling
machine-learning algorithms to optimize themulti-UAV sys-
tem performance.
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2 A brief history of UAVs/drones

Following a review found in Zohdi [1], in 2019, the use of
UAVs range from (a) hobbyists, (b) mid-sized military and
commercial applications and (c) large-scalemilitary vehicles
and (d) stealth combat vehicles. Issues include (1) structural
design, (2) power supply, (3) onboard computing, (4) sensing
devices, (5) generated acoustics, (6) data acquisition soft-
ware, (7) control algorithms, (8) communications and (9)
autonomy. Research on UAVs started in the early 1900s.
Initially, most of the research was geared towards military
applications. This research accelerated moderately during
World War II, to train antiaircraft gunners and to fly attack
missions. However, with the exception of the V-2 (Vergel-
tungswaffe) rocket system program in Germany, they were
primarily “toy” airplanes. It was not until the 1960’s, dur-
ing the cold war, when the US was involved in a variety
of military conflicts and the US Air Force was concerned
about losing pilots over hostile territory, that UAV research
started to grow rapidly.As of 2012, theUSAir Force operated
approximately 7500 UAVs. As of 2017, nearly every indus-
trialized country has a growing UAV manufacturing base.

Due to a steady increase in inexpensive Unmanned Aerial
Vehicle (UAV) and camera technology, there are a wide
variety of non-military applications, such asworld-wide anti-
poaching and anti-whaling efforts. Furthermore, for example
in oil and gas exploration, UAVs have been used for geo-
physical mapping, in particular geomagnetic surveys, where
measurements of the Earth’s varying magnetic field strength
are used to calculate the nature of the underlying magnetic
rock structure, in order to locate mineral deposits. Because
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of the huge expanse associated with oil and gas pipelines,
monitoring activity can be enhanced and accelerated by
deployment of UAVS. In the field of archaeology, drones
are used to accelerate surveying to protect sites from looters.
Another obvious application is cargo transport, which has
been promoted by Amazon, DHL, Google, etc. The use of
UAVs in agriculture is also obvious for crop dusting and crop
health monitoring.

However, the overarching goal of all of these applica-
tions is the real-time mapping of large areas, such as those
struck by after a multi-location disaster, such as an earth-
quake, fire, tsunami, etc., by multiple UAV’s; so-called
“swarms”. Because of the complex multifaceted infrastruc-
ture that needs to bemapped (roads, bridges, pipelines, power
grid and water) after a disaster, there exists the need for dif-
ferent mapping strategies (Fig. 1). Such sectors need to be
mapped with different technologies (infrared, RF, optical,
microwave, etc). Small UAVs are usually battery powered
(Fig. 1), thus they have limited range and their paths must be
planned carefully to conserve power. Specifically, the objec-
tive of this work is to provide an introduction to the basic
modeling and simulation techniques for multiple interacting
UAVs for a target audience of young scientists. Specifically,
simultaneous advances in inexpensive UAVs, computational
modeling techniques, camera and sensor technologies have
made rapid post-disaster mapping a potential reality. One
motivator for this research is the monitoring/maintenance
of ultra-large facilities, such as industrial-scale solar farms.
However, an over-arching key motivator that is driving
multiple-UAV system development is large-areamapping for
disaster mitigation and management, for example, the dev-
astating 2017 Sonoma/Napa fires and the 2018 Paradise fires
in California. In terms of disaster response, integration of
UAVs, advanced sensing, communications and rapid sim-
ulation techniques with fire-fighting to develop large-scale
rapid-response systems for emergency fire control, manage-
ment and risk assessment is of high interest. A key objective
is to develop paradigms that provide accurate, real-time
feedback to deployed firefighters. A core issue across all
domains of application is the ability of a system to adapt to

DOMAIN

UAVs
SITES TO BE
MAPPED

Fig. 1 A domain with sites of interest to be mapped

rapid changes in the environment and system capabilities by
autonomously modifying tasks and relationships with other
agents, and then to apply various data-collection techniques.
Oftentimes, autonomous capabilities will be necessary for
continued operations due to the large distances, resulting
communications delay, and lack of 24/7 connectivity to the
systems (a function of limited ground stations in the tracking,
telemetry, and commanding network). These factors can be
incompatible with human reaction/decision times.

Simultaneous advances in inexpensive UAVs, computa-
tional modeling techniques, camera and sensor technologies
have made rapid pre- and post-disaster mapping of com-
plex terrain a reality. Agent-based paradigms for simulation
of coupled complex systems have become powerful predic-
tive tools. Because different infrastructures have different
grids and different quantities to be mapped, the optimal path
for a set of released swarms will vary over the same ter-
rain. It is relatively easy to develop so-called agent-based
models for a team of swarm-members (UAVs) intending to
map large areaswith various optimality conditions:minimum
time, minimum energy usage, optical sensing, infrared sens-
ing, acoustic sensing, water spillage sensing, etc. Although
UAV’s in themselves are of interest, the long-term goal is
coordination of large-numbers of them, so-called “swarms”,
which is the focus of this work. At the end of this paper, ancil-
lary technologies, such as UAV integration and Lidar are also
discussed, with an eye towards systemswhich blend artificial
intelligence, machine learning, and software analytics with
data to create living digital computer models that can update
and change in tandem with their physical counterparts.

Remark It is important to note that new FAA regulations
require eligible owners to register their UAV’s prior to flight.
For owners less than 13 years old, a parent or other responsi-
ble personmust file an FAA registration form, and the UAV’s
must have an FAA-issued registration number. In June 2016,
the FAA announced regulations for commercial operation
of small UAVs, those between 0.55 and 55 pounds (about
0.250–25 kg), including payload, which require the onsite
presence of licensed Remote Pilot in Command (above 16
years of age). Because of the growing use of UAVs, privacy
concerns have mounted, and led to property owners shoot-
ing down such vehicles which enter their airspace. Shooting
down a drone is illegal, since the debris can harm people
below. Such vehicles are shot down at a rate of once a month
in the US (in 2016). In Zohdi [2] the dynamical response
of a quadcopter to a series of random external impulses,
such as from shotgun pellets, was formulated using a Dis-
crete Element Method (DEM), and allowed one to compute
trajectories and the distribution of the debris field. This is
potentially useful in settling disputes over location of drones
at the time of shooting. This topic is outside of the scope
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of the current paper, however, we refer interested readers to
Zohdi [2].

3 Modeling and rapid simulation of swarms

The origins of swarm modeling has origins in the descrip-
tion of biological groups (flocks of birds, schools of fish,
crowds of human beings, etc.) responses to to predators or
prey [3].We focus on decentralized paradigms where there is
no leader, making the overall system less vulnerable. Early
approaches that rely on decentralized organization can be
found in Beni [4], Brooks [5], Dudek et al [6], Cao et al [7],
Liu and Passino [8] and Turpin et al [9]. Usual models incor-
porate a tradeoff between long-range interaction and short-
range repulsion between individuals, dependent on the rela-
tive distance between individuals (see Gazi and Passino [10],
Bender and Fenton [11] or Kennedy and Eberhart [12]).
The most basic model is to treat each individual as a point
mass [13], which we adopt here, and to allow the system to
evolve, based on Newtonian mechanics, using a combination
of short-range and long-range interaction forces [10–15].1

Remark For some creatures, the “visual field” of individuals
may play a significant role, while if the agents are robots
or UAVs, the communication can be electronic. However,
in some systems, agents interact with a specific set of other
agents, regardless of whether they are far away [20]. This
appears to be the case for Starlings (Sturnus vulgaris). In
Ballerini et al [21], the authors concluded, that such birds
communicate with a certain number of birds surrounding it
and that that interactions are governed by topological dis-
tance and not metric distance. Interested readers are referred
to Ballerini et al [21].

3.1 Notation

Throughout the analysis, the objects are assumed to be small
enough to be considered (idealized) as point-masses and that
the effects of their rotation with respect to their mass center
is considered unimportant to their overall motion. Boldface
symbols imply vectors or tensors. A fixed Cartesian coor-
dinate system will be used throughout this work. The unit
vectors for such a system are given by the mutually orthogo-
nal triad of unit vectors (e1, e2, e3). We denote the position

1 There are other modeling paradigms, for example mimicing ant
colonies [16] which exhibit foraging-type behavior and trail-laying-
trail-following mechanisms for finding food sources (see Kennedy and
Eberhart [12] and Bonabeau et. al [16], Dorigo et. al, [17], Bonabeau
et. al [16], Bonabeau and Meyer [18] and Fiorelli et al [19]).

Fig. 2 Model problem consisting of targets (red), obstacles (green), dis-
tributed randomly in a (± 500,± 500,± 10) meter domain and swarm-
members (blue, distributed initially in a (− 500, 0,± 10) domain).
(Color figure online)

of a point (swarm) in space by the vector r . In fixed Cartesian
coordinates we have

r = r1e1 + r2e2 + r3e3, (3.1)

and for the velocity we have

v = ṙ = ṙ1e1 + ṙ2e2 + ṙ3e3, (3.2)

and acceleration we have

a = r̈ = r̈1e1 + r̈2e2 + r̈3e3. (3.3)

3.2 Construction of a swarm

In the analysis to follow, we treat the swarm members as
point masses, i. e. we ignore their dimensions (Fig. 2). For
each swarmmember (Ns in total) the equations of motion are

mi v̇i = mi r̈ i = � tot
i = F(Nmt

i , Nmo
i , Nmm

i ) (3.4)

where � tot
i represents the total forces acting on a swarm

member i , Nmt
i represents the interaction between swarm

member i and targets to bemapped, Nmo
i represents the inter-

action between swarm member i and obstacles and Nmm
i

represents the interaction between swarm member i and
other members. In order to illustrate the overall computa-
tional framework, we focus on a model problem having a
sufficiently large parameter set which allows for complex
dynamics. The parameters optimized to drive the system
towards desired behavior via aMachine-Learning algorithm.
This approach can be used on a variety of models.
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4 Characterization of interaction

4.1 Member-target interaction

Consider member-target interaction

||r i − T j || = (
(ri1 − Tj1)

2 + (ri2 − Tj2)
2

+ (ri3 − Tj3)
2
)1/2 def= dmt

i j , (4.1)

where T j is the position vector to target j and the direction
to each target is

ni→ j = T j − r i
||r i − T j || . (4.2)

For each swarm-member (i), we compute a weighted direc-
tion to each target

n̂i→ j = (wt1e
−a1dmt

i j − wt2e
−a2dmt

i j )ni→ j , (4.3)

where the wti are weights reflecting the importance of the
target, ai are decay parameters, which is summed (and nor-
malized later in the analysis) to give an overall direction to
move towards

Nmt
i =

Nt∑

j=1

n̂i→ j . (4.4)

4.2 Member-obstacle interaction

Now consider member-obstacle interaction

||r i − O j || = (
(ri1 − Oj1)

2 + (ri2 − Oj2)
2

+ (ri3 − Oj3)
2
)1/2 def= dmo

i j , (4.5)

where O j is the position vector to obstacle j and the direction
to each obstacle is

ni→ j = O j − r i
||r i − O j || . (4.6)

For each swarm-member (i), we compute a weighted direc-
tion to each obstacle

n̂i→ j = (wo1e
−b1dmo

i j − wo2e
−b2dmo

i j )ni→ j , (4.7)

where the woi are weights reflecting the importance of the
obstacle, bi are decay parameters, which is summed (and
normalized later in the analysis) to give an overall direction
to move towards

Nmo
i =

No∑

j=1

n̂i→ j . (4.8)

4.3 Member-member interaction

Now consider member(i)–member( j) interaction

||r i − r j || = (
(ri1 − r j1)2 + (ri2 − r j2)2

+ (ri3 − r j3)2
)1/2 def= dmm

i j , (4.9)

and the direction to each swarm-member

ni→ j = r j − r i
||r i − r j || . (4.10)

For each swarm-member (i), we compute a weighted direc-
tion to each swarm-member

n̂i→ j = (wm1e
−c1dmm

i j − wm2e
−c2dmm

i j )ni→ j , (4.11)

where the wmi are weights reflecting the importance of the
members, ci are decay parameters, which is summed (and
normalized later in the analysis) to give an overall direction
to move towards

Nmm
i =

Nm∑

j=1

n̂i→ j . (4.12)

4.4 Summation of interactions

We now aggregate the contributions by weighting their
overall importance with weights for swarm-member/target
interaction, Wmt , swarm-member/obstacle interaction, Wmo

and swarm-member/swarm-member interaction, Wmm :2

N tot
i = WmtNmt

i + WmoNmo
i + WmmNmm

i , (4.13)

normalize the result

n∗
i = N tot

i

||N tot
i || . (4.14)

The forces are then constructed by multiplying the thrust
force available by the UAV propulsion system, Fi , by the
overall normal direction

� tot
i = Fin∗

i . (4.15)

We then integrate the equations of motion:

mi v̇i = � tot
i , (4.16)

2 The parameters in the model will be optimized shortly.
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yielding

vi (t + �t) = vi (t) + �t

mi
� tot

i (t) (4.17)

and

r i (t + �t) = r i (t) + �tvi (t). (4.18)

Note that if

||vi (t + �t)|| > vmax , (4.19)

then we define voldi (t + �t) = vi (t + �t) and the velocity
is rescaled

vnewi (t + �t) = vmax
voldi (t + �t)

||voldi (t + �t)|| , (4.20)

with vi (t + �t) = vnewi (t + �t). We then determine if any
targets have been mapped by checking the distance between
swarm-members and targets

||r i − T j || ≤ Tolerance. (4.21)

For any T j , if any swarm-member has satisfied the criteria,
then take T j out of the system for the next time step so that no
swarm-member wastes resources by attempting to map T j .
Similarly, if ‖ri −O j‖ ≤ Tolerance, then ri is immobilized.
This stops the ith swarm-member from contributing further
to the mapping. The entire process is then repeated for the
next time step.

5 An algorithm for mapping of a region

To “map” a region, consider the following algorithm:

1. Initialize the locations of the targets to be mapped: T i =
(Tx , Ty, Tz)i , i=1, 2,…NT=targets.

2. Initialize the locations of the obstacles to be mapped:
O i = (Ox , Oy, Oz)i , i=1, 2,…NO=obstacles.

3. Initialize the locations of the swarm-members (UAVs):
r i = (rx , ry, rz)i , i=1, 2,…Ns=swarm-members.

4. For each swarm-member (i), determine the distance and
directed normal to each target, obstacle and other swarm-
members.

5. For each swarm-member (i), determine interaction func-
tions Nmt

i , Nmo
i , Nmt

i and n∗
i .

6. For each swarm-member (i), determine force acting upon
it, � tot

i = Fin∗
i .

7. For each swarm-member (i), integrate the equations of
motion (checking constraints) to produce vi (t +�t) and
r i (t + �t).

8. Determine if any targets have been mapped by checking
the distance between swarm-members and targets

||r i − T j || ≤ Tolerance. (5.1)

For any T j , if any swarm-member has satisfied the this
criteria, then take T j out of the system for the next
time step so that no swarm-member wastes resources by
attempting tomapT j . As indicated before, if ‖ri−O j‖ ≤
Tolerance, then ri is immobilized.

9. The entire process is then repeated for the next time step.

6 Preliminary numerical example

As a preliminary example, consider the following parame-
ters:

• Mass = 10 kg,
• 100 swarm-members,
• 100 targets,
• 100 obstacles,
• T = 30 s,
• �t = 0.001 s,
• Initial swarm velocity, vi (t = 0) = 0 m/s,
• Initial swarm domain (10,10,10) meters,
• Thrust force available by the UAV propulsion system,

Fi = 106 Nt,
• Domain to be mapped (500,500,10) meters,
• Maximum velocity swarm-member vmax = 100 m/s.

The “design” vector of system parameter inputs

�i def= {�1,�2 . . . �N }
= {Wmt ,Wmo,Wmm, wt1, wt2, wo1, wo2, wm1,

wm2, a1, a2, b1, b2, c1, c2} (6.1)

was given by a randomly generated vector

�i def= {7.96, 7.24, 8.97, 0.259, 0.587, 0.593, 0.831, 0.284,
0.845, 0.136, 0.529, 0.999, 0.764, 0.894, 0.636},

(6.2)
in the following intervals:

• Overall weights: 0 ≤ Wmt ,Wmo,Wmm ≤ 10,
• Target weights: 0 ≤ wt1, wt2 ≤ 1,
• Obstacle weights: 0 ≤ wo1, wo2 ≤ 1,
• Member weights: 0 ≤ wm1, wm2 ≤ 1 and
• Decay coefficients: 0 ≤ a1, a2 ≤ 1, 0 ≤ b1, b2 ≤ 1,
0 ≤ c1, c2 ≤ 1.

We allowed a long enough time to map the whole domain
(30 seconds). The results are shown in Figs. 3 and 4. The
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Fig. 3 From left to right and top to bottom: sequences of mapping the model problem (green=obstacle, red=unmapped target, blue=swarm-
member) The vectors on the swarm-members are the velocities. (Color figure online)

sequences of mapping the model problem show initially
green (unmapped) targets, which are marked as blue after
they are mapped. The vectors on the swarm-members repre-
sent the velocities. The algorithm is quite adept in picking up
missed targets by successive sweeps. We note that as the tar-
gets get mapped, they are dropped from the system, and the
swarm-members naturally aggregate to the targets that are
remaining. The decisions needed to deploy and operate such
systems optimally, require guidance from real-time model-
ing and simulation that the preceeding model can provide,
if the parameters are known, which is the topic of the next
section.

7 Machine-learning for rapid UAV path
planning

There are many parameters in the system, warranting the use
a Machine-Learning Algorithm. Here we follow Zohdi [22–

24] in order to optimize behavior by minimizing a cost
function. For example, let us consider minimizing the fol-
lowing cost function

�(�) = (w1A + w2)Tm, (7.1)

where A represents the percentage of targets remaining to
mapped, 0 ≤ Tm ≤ 1 represents the percentage time (nor-
malized by the maximum simulation time) for this event to
occur. In otherwords, the system is being driven to the param-
eters generating the best case scenario. The design vector of
system parameters is:

� = {�1,�2 . . . �N }
= {Wmt ,Wmo,Wmm, wt1, wt2, wo1, wo2, wm1,

wm2, a1, a2, b1, b2, c1, c2}. (7.2)

Cost functions associated with optimization of complex
behavior are oftentimes nonconvex in design parameter space
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Fig. 4 From left to right and top to bottom: sequences of mapping the model problem (green=obstacle, red=unmapped target, blue=swarm-
member) The vectors on the swarm-members are the velocities. (Color figure online)

and often nonsmooth, as is the case for the system of interest.
Their minimization is usually difficult with direct application
of gradient methods. This motivates nonderivative search
methods, for example those found in Machine-Learning
Algorithms (MLA’s). One of the most basic subset of MLA’s
are so-called Genetic Algorithms (GA’s). Typically, one will
use a GA first in order to isolate multiple local minima, and
then use a gradient based algorithm in these locally convex
regions or reset the GA to concentrate its search over these
more constrained regions. GA’s are typically the simplest
scheme to start the analysis, and one can, of course, use more
sophisticated methods if warranted. For a review of GA’s,
see the pioneering work of John Holland (Holland [25]), as
well as Goldberg [26], Davis [27], Onwubiko [28], Lagaros
et al. [29], Papadrakakis et al. [30–33] and Goldberg and
Deb [34]. TheGA approach is extremelywell-suited for non-
convex, nonsmooth, multicomponent, multistage systems,
and involves the following essential concepts:

1. POPULATIONGENERATION:Generate systempop-
ulation:
�i def= {�i

1,�
i
2,�

i
3,�

i
4, . . . , �

i
N } = {interaction

parameters, . . . , etc.}i
2. PERFORMANCE EVALUATION: Compute fitness/

performance of each genetic string:�(�i ) and rank them
(i = 1, . . . , N )

3. MATING PROCESS: Mate pairs/produce offspring:

λi
def= �(I )�i + (1 − �(I ))�i+1 where 0 ≤ � ≤ 1

(Fig. 5)
4. GENE ELIMINATION: Eliminate poorly performing

genetic strings, keep top parents and generated offspring
5. POPULATION REGENERATION: Repeat the pro-

cess with the new gene pool and new random genetic
strings

6. SOLUTION POST-PROCESSING: Employ gradient-
basedmethods afterwards in the local “valleys”-if smooth
enough
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COST FUNCTION

SUCCESSIVE
PARENT/CHILDREN

GENERATION
Π

Λ

Fig. 5 The basic action of a genetic algorithm

(i) Algorithmic specifics

Following Zohdi [22–24], the algorithm is as follows:

• STEP 1: Randomly generate a population of S starting
genetic strings, �i , (i = 1, 2, 3, . . . , S) :

�i def= {�1,�2 . . . �N }
= {Wmt ,Wmo,Wmm, wt1, wt2, wo1, wo2, wm1,

wm2, a1, a2, b1, b2, c1, c2}.

• STEP 2: Compute fitness of each string�(�i ), (i=1,…,
S)

• STEP 3: Rank genetic strings: �i , (i=1,…, S)
• STEP 4: Mate nearest pairs and produce two offspring,
(i=1,…, S)

λi
def= �(I )�i + (1 − �(I ))�i+1,

λi+1 def= �(I I )�i + (1 − �(I I ))�i+1

• STEP 5: Eliminate the bottom M < S strings and keep
top K < N parents and top K offspring (K offspring +
K parents + M = S)

• STEP 6: Repeat STEPS 1-6 with top gene pool (K off-
spring and K parents), plus M new, randomly generated,
strings

• NOTE: �(I ) and �(I I ) are random numbers, such that
0 ≤ �(I ) ≤ 1, 0 ≤ �(I I ) ≤ 1, which are different for
each component of each genetic string

• OPTION: Rescale and restart search around best per-
forming parameter set every few generations

• REMARK: The system parameter search is conducted
within the constrained ranges of �

(−)
1 ≤ �1 ≤ �

(+)
1 ,

�
(−)
2 ≤ �2 ≤ �

(+)
2 and �

(−)
3 ≤ �3 ≤ �

(+)
3 , etc.,

etc. These upper and lower limits would, in general, be
dictated by what is physically feasible.

7.1 Model problem

Weapplied theMachine-LearningAlgorithmand reduced the
allowable simulation time from T = 30 seconds (as in the
previous example) to T = 10 s, in order to make it difficult
find parameter sets that deliver optimal performance. Shown
are the best performing gene (design parameter set, in red) as
a function of successive generations, as well as the average
performance of the population of the top four genes (designs,
in green). The design parameters were optimized over the
following intervals:

• Overall weights: 0 ≤ Wmt ,Wmo,Wmm ≤ 10,
• Target weights: 0 ≤ wt1, wt2 ≤ 1,
• Obstacle weights: 0 ≤ wo1, wo2 ≤ 1,
• Member weights: 0 ≤ wm1, wm2 ≤ 1 and
• Decay coefficients: 0 ≤ a1, a2 ≤ 1, 0 ≤ b1, b2 ≤ 1,
0 ≤ c1, c2 ≤ 1.

We used the following MLA settings:

• Population size per generation: 20,
• Number of parents to keep in each generation: 4,
• Number of children created in each generation: 4,
• Number of completely new genes created in each gener-
ation: 12

• Number of generations for readaptation around a new
search interval:10

• Number of generations: 120. and
• w1 = 1, w2 = 0.0001 in Eq. 7.1

The algorithm was automatically reset every 10 generations.
The entire 120 generation simulation, with 20 genes per eval-
uation (2400 total designs) took on the order of 4 minutes on
a laptop, making it ideal as a design tool. Figure 6 (aver-
age of all genes performance and top gene performance) and
Table 1 (values of the gene components) illustrate the results.
The MLA/GA is able to home in of a variety of possible
designs, including the one corresponding to the original set of
parameters that generated the observations and alternatives
that achieve virtually the same results. This allows system
designers to more flexibility in parameter selection. We note
that, for a given set of parameters, a complete simulation
takes on the order of 0.1 seconds, thus over 36,000 parame-
ter sets can be evaluated in an hour, without even exploiting
the inherent parallelism of the MLA.

Remark 1 If one wishes to have more detailed descriptions
beyond a point mass model (for example a quadcopter), one
must augment the balance of linear momentum (Gcm,i )

Ġcm,i = mi r̈cm,i = � tot
i , (7.3)
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Fig. 6 Machine learning output, generation after generation-the reduc-
tion of the cost function (�) for the 15 parameter set is shown. This
cost function represents the percentage of unmapped sites in the zone
of interest. Shown are the best performing gene (red) as a function of
successive generations, as well as the average performance of the pop-
ulation of genes (green)

with a balance of angular momentum (Hcm,i ), given by

Ḣcm,i = d(I i · ωi )

dt
= M tot

cm,i , (7.4)

where M tot
cm,i is the total external moment about the cen-

ter of mass, I i is the mass moment of inertia and ωi is the
angular velocity. There are a number of numerical methods
that are capable handling complex interaction of multiple
vehicles, for example see Zohdi [2]. Another issue that was
not taken into account are the details on the actuation and
motor control that appear in the models as simply “attrac-
tion” and “repulsion”. For example, for detailed modeling
of the dynamics and control of UAVs we refer the reader to

Mueller and D’Andrea [35,36], Mueller et al. [37], Hehn et
al [38], Houska et al [39] and Zohdi [2].

Remark 2 In many applications, the computed positions,
velocities and accelerations of the members of a swarm,
for example people or vehicles, must be translated into real-
izable movement. Furthermore, the communication latency
and information exchange poses a significant technological
hurdle. In practice, further sophistication, i.e. constraints on
movement and communication, must be embedded into the
computational model for the application at hand. However,
the fundamental computational philosophy and modeling
strategy should remain relatively unchanged.

Remark 3 One could reformulate the cost function to min-
imized energy usage, incorporating the range and perfor-
mance of actual UAV’s (see Taglibue et al. [40] and Holda et
al [41]).

8 Summary and extensions

A key for multi-UAV technology to flourish are efficient
mapping algorithms. In this regard, agent-based algorithms
are a viable approach. Agent-based paradigms for simulation
of coupled complex systems have become powerful predic-
tive tools. One of the main proposed uses of multi-UAV
systems has been the deployment to help fight fires. Thus,
in closing, we highlight some ongoing technological issues
a that are being pursued in order make such systems a robust
reality. In this regard, it is important to fully embrace mobile
computing, rapid telecommunication and hyperspectral sens-
ing in harsh environments from high- and/or lower-altitude
UAVs, and ground vehicles with “humans in the loop”. An
important part of autonomy is energy autonomy, which is
especially crucial in the performance of aerial vehicles and
all deployed devices. The ability of such systems to adapt
their behavior in response to energy consumption will allow

Table 1 The top 10 system parameter performers

# �1 �2 �3 �4 �5 �6 �7 �8 �9 �10 �11 �12 �13 �14 �15 �

1 2.10 2.01 4.51 0.355 0.848 0.343 1.07 0.521 0.94 0.014 0.220 1.00 0.866 0.423 0.074 0.17

2 2.35 2.41 3.34 0.429 0.527 0.489 1.06 0.522 0.74 0.017 0.144 0.72 0.595 0.472 0.076 0.18

3 1.46 2.00 3.01 0.299 0.593 0.347 0.88 0.361 1.13 0.014 0.175 0.76 0.663 0.376 0.110 0.18

4 2.17 2.45 2.84 0.475 0.816 0.356 1.05 0.402 1.13 0.013 0.170 1.00 0.717 0.432 0.110 0.18

5 1.48 1.93 3.09 0.466 0.517 0.352 1.04 0.481 1.10 0.016 0.191 0.75 0.777 0.456 0.086 0.18

6 1.78 2.79 3.67 0.404 0.656 0.466 1.18 0.415 1.04 0.019 0.188 0.96 0.715 0.393 0.103 0.19

7 2.11 2.99 4.34 0.412 0.752 0.446 1.05 0.537 1.20 0.016 0.233 0.72 0.607 0.423 0.097 0.19

8 1.48 1.96 3.80 0.426 0.729 0.364 1.15 0.441 0.81 0.016 0.187 0.99 0.578 0.415 0.097 0.19

9 2.16 2.75 3.45 0.464 0.724 0.368 0.94 0.498 0.79 0.012 0.225 1.06 0.783 0.443 0.108 0.19

10 1.80 2.88 4.03 0.403 0.806 0.347 1.18 0.381 0.87 0.017 0.229 0.74 0.905 0.481 0.078 0.19
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Fig. 7 Various modes of Lidar
scanning by an aircraft: linear,
angular sweeps and flash-type

them to perform longer. Algorithmic approaches to this prob-
lem are of particular interest, as they may often be retrofitted
onto existing platforms or added to new platforms at negligi-
ble per-unit cost. For example, UAVs equipped with cameras
can collect videos or images for pre-emptive strategic anal-
ysis. Since the swarm would include UAVs to enable visible
inspectionwith the cameras, one can implement a deep learn-
ing approach for image/video pattern/feature recognition.
In this regard, remote sensing has become an integral part
of UAV-based imaging systems. In particular, Lidar (light
detection and ranging) and time-of-flight signal processing
have become key tools. Lidar usually uses light in the high-
frequency ultraviolet, visible and near infrared spectrum
[42–46]). It is classified as a “time-of-flight” type technology,
utilizing a pulse of light and the time of travel to determine
the relative distance of an object. Over the last 20 years,
these devices have steadily improved and have become quite
lightweight [47–53]. There are a variety of time-of-flight
technologies that have been developed, primarily for military
reasons, of which Radar, Sonar and Lidar are prime exam-
ples. The various types range from (1) conventional radar, (2)
laser/radar altimeters, (3) ultrasound/sonar/seismograms, (4)
radiometers and photometers-which measure emitted radia-
tion, (5) hyperspectral cameras, where each pixel has a full
spectrum and (6) geodetic-gravity detection, etc. For exam-
ple, from satellites, the spatial resolution is on the order
of pixel-sizes of 1–1000 m using infrared wavelengths of
700–2100 nm. Hyperion-type cameras have even a broader
range, 400–2500 nm with 200 bands (channels) and 100
nm per band. For example, thermographic/infrared cam-
eras, form a heat-zone image (700–14,000 nm), however,
the focusing lens cannot be glass, and are typically made
of germanium or sapphire. These devices are fragile and
require coatings, making them expensive. There are two
main thermographic camera types: (a) cameras using cooled
infrared detectors, which need specialized semiconductors,
and have a relatively high resolution and (b) cameras using
uncooled detectors, sensors and thermo-electronic resis-
tance, which have relatively lower resolution. Furthermore,
the initial image is monochrome, and must be color-mapped.
Additionally, there are a variety of “corrective” measures
(post-processors), such as (1) radiometric corrections, which
correct the illumination for material properties, (2) topo-
graphic corrections, which correct the reflectivity due to
shade, sunniness, etc. and (3) atmospheric corrections, which

correct for atmospheric haze. There is a wide range of satel-
lites available, such as Landsat, Nimbus (Weather), Radarsat,
UARS (Civil, Research and Military), etc., which utilize
these technologies. Typically, Lidar will employ thousands
of narrow pulses per second to scan a domain, which can be
time-consuming (Fig. 7). Accordingly, wide-area flash pulse
Lidar has started to become popular. In addition to their
speed, flash-type cameras/scanners have some advantages
because:

• The systems are simple, since they do not have moving
parts associated with a scanner, and can thus be made
very compact.

• The systems measure the entire surface in a single pulse,
hence they are fast and can be used in real time and

• The systems do not require sophisticated post-processing
units and are therefore inexpensive.

However, the greatest problems arise from multiple reflec-
tions of a pulse from a nonconvex surface, which can ruin
time-of-flight calculations and other subsequent post pro-
cessing. This is a subject of current investigation by the
author, and we refer the reader to Zohdi [54] for more details.
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