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Abstract
In this paper we propose different multi-field variational formulations for electrostatics andmagnetostatics, which can provide
optimal discrete approximation of any particular vector field. The proposed formulations are constructed by appealing to
mechanics point of view amenable to using general constitutive equations, which is quite different from electrostatics and
magnetostatics formulations typical of physics and electrical engineering focusing on the corresponding global form suitable
only for linear case. In particular, the formulations we propose can be combined with mixed discrete approximations that can
ensure the continuity of tangential component of electric or magnetic field and normal component of electric displacement and
magnetic flux even for low order interpolations. The choice of this kind is quite different from currently favorite choice of high
order finite element interpolations used for coupling electromagnetism with mechanics. The discrete approximation is based
upon Whitney’s interpolations representing the vector fields in terms of corresponding differential forms, with electric and
magnetic fields as one-form and electric displacement and magnetic flux as two-form. The implementation of interpolations
of this kind is made for 3D tetrahedron elements with non-standard approximation parameters defined not only at vertices
(for zero-form), but at edges (for one-form) and at facets (for two-form). The results of several numerical simulations are
presented to illustrate the performance of different formulations proposed herein.

Keywords Electrostatics · Magnetostatics · Variational method · Whitney’s element

1 Introduction

Many applications of current interest require merging dif-
ferent engineering fields, such as mechanical, electrical on
civil engineering. The correspondingmulti-physics problems
will have to use different fields, which are each obtained by a
particular solution procedure and a dedicated computer code.
The most efficient approach to such multi-physics problems
is to create a master code that allows to exchange informa-
tion in real time and for every iteration among dedicated
mono-physics simulation codes. The latterwas accomplished
successfully for fluid-structure interactions (e.g., [25,26]),
by using the partitioned solution procedure [14] that allows
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reusing existing codes. This currently seems not to be pos-
sible when it comes to the coupling of mechanics and
electromagnetism, due to complete different philosophy in
representing different fields and governing global equations
on either side, with equilibrium versus global constitutive
law.

Thus, the vast majority of works on coupled mechanics
and electromagnetism turned toward extending the philoso-
phy specialized for their particular field to all the other fields
computations. The current approach by mechanics experts
relies upon the standard isoparametric finite element approx-
imations and the simplest case of using a scalar potential for
electric and magnetic fields [32,33], which can accommo-
date, for instance, piezoelectric or piezomagnetic devices.
This type of approach is further extended to higher order
approximations, large displacement and homogenization
techniques always using the finite element approximation
for all fields; see [15,40] and [27], among others.

A completely different approach is followed by experts in
physics and electrical engineering, with a typical attempt by
[43]where the formalismmost suitable for electromagnetism
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is generalized to also describe mechanics. The theoretical
formulation of this kind does not consider the local fields,
but rather the global quantities set within the correspond-
ing mathematical structure, often called De Rham’s complex
[7]. The discrete approximation based on such formulation
is rather different than standard finite element method [48],
and is based on differential forms and exterior calculus.

Themathematical foundation of that kind of discretization
is found in [34] or [4] and one of the first applications appears
in the literature under the name of edge elements, allowing to
calculate variables on edges for a particular kind of problem
in electromagnetism, the calculation of eddy-currents [8].
The step forward in the right direction is offered by Whit-
ney’s elements with a more complete choice of unknowns
where not only edges, but also facets and volumes could
allocate variables [9]. Since then, several works explored
linear tetrahedron edge elements, [1] or [11], prisms, pyra-
mids and hexahedron linear elements [13,17] or [34], and
more recently some higher order elements [30,45,46] or [47].
However, many of these elements cannot be fully invariant
(as verified for hexahedral elements implementingWhitney’s
discretization) for distorted meshes as revealed by the basic
3D patch test [29,48]; the proof is given in [34], where only
hexahedral element produced by affine isoparametric trans-
formation can be used; in other words, the element cannot
be used for a degenerated parallelepiped. We note in passing
that such condition is always fulfilled for linear tetrahedron,
since the transformation is always affine, unless the Jacobian
is negative or zero.

The cell method proposed in [2,39] or [43] makes use
of different geometrical entities in every element, such as
vertices, edges, faces and volumes in order to provide the
best locations for unknown parameters. The advantage of
such an approach is its ability to preserve tangential and nor-
mal continuity for electric and magnetic variables. This is
achieved by cell-based discretization of the global govern-
ing equations transforming continuumoperators into discrete
operators over each cell. The choice of discrete approxi-
mation and element connectivity is based entirely on the
complete topology of the problem and the connections of
the different elements between them. The main disadvantage
from standpoint of coupling is the end product of discretiza-
tion, which is equivalent to the global constitutive equations,
whichwould be very difficult (if not impossible) to generalize
to any other but linear case. In addition, this method com-
plicates meshing since it requires perfect match between the
primal and the dual mesh when allocating the dual variables
[38].

For eventual coupling with mechanics it is important to
note that the cell method approach is in contrast to the stan-
dard finite element philosophy. The latter relies upon the
weak formulation of (equilibrium) equations to provide the
corresponding discretization [48]. Solving such weak form

does not guarantee that the equation is ensured at every point
of the domain, but rather in average sense in a partitioned
volume. All unknown variables, called degrees of freedom,
are placed at nodes; inside the element the discrete approx-
imation is continuous and offers an important advantage of
partition-of-unity to make sure the basic case (patch test) is
verified. Yet, the finite element approximation typically does
not offer the continuity of field derivatives across element
boundaries, which was the main obstacle of extending the
low-order finite element approximations to electric or mag-
netic fields.

Similarly, the cell method approach is not easily adapted
to mechanics with several attempts to recast all fields within
such unified framework typical for physics, such as [10] or
electromagnetics code likeGetDP [12]. Namely, despite sim-
ilarities in theoretical formalisms, the mechanics primal and
dual variables are second order tensors as opposed to elec-
tric, magnetic, and thermal fields where they remain vectors.
Attempts to generalize the cell method approach to solve the
problemswithmore complicatedmechanicsmodels have not
been recorded, and furthermore, they seem very difficult to
imagine. Namely, plasticity coupled with electric field [32]
requires precise localization of the plastic zone that keeps
changing throughout computations, making a global con-
stitutive equation impossible to describe. However, a few
authors have used the exterior calculus formalism to adapt it
to finite element method philosophy such as [3]

As for theoretical aspects of the problem, the electro-
magnetics community also evaluated a potential energy-type
of variational formulation [20,21,35], which is no different
from mechanical approach in, for instance, [22]. Alterna-
tively, other variational formulations explored concern the
complementary potential energy approach, which dual to
the former variational form, as suggested in [36,37] or [16].
These latter works are again cast in the standard format of
electro-engineeringwith the formulation trying to bracket the
error estimates in term of the constitutive equations. Inter-
estingly enough, one type of error estimates for mechanics
proposed in [28] also considers the same approach where
the potential energy based formulation gives the upper limit
while the complementary gives the lower limit.

The main motivation for this work is seeking the optimal
formulation for coupled electromagnetic and thermome-
chanical fields, which will be amenable to the material
and mechanics point-of-view and the finite element dis-
crete approximations that can be combined with existing
approaches and be integrated within the standard computer
code architecture. This is especially the case when consider-
ing a currently very important issue of seeking to open up the
path toward exploration of the engineering materials which
can be heterogeneous or experience hardening and perma-
nent damage with microscale point-of-view that proved very
successfully in mechanics (e.g., [5] or [23]). This approach
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is in contrast with the cell method, where variables are dis-
cretized by means of global operators as opposed to the
localization that requires phenomena like plasticity or dam-
age. In contrast to the current tendency to introduce higher
order approximations, the discrete approximations proposed
in this work are low-order (linear), which makes them more
suitable for heterogeneous materials and inelasticity regime
where the solution in general is not smooth. In addition, we
recast the novel approach to electrostatics andmagnetostatics
where the constitutive equations are explicit part of the for-
mulation to be easily generalized to more complex behavior
like ferroelectricity. We also recast the discrete approxima-
tion in the manner that can be combined with finite element
codes, by exploiting the partition-of-unity property of the
finite element discretization.

The outline of the paper is as follows. In Sect. 2, two
points of view for electromagnetism are presented and the
differences are discussed. Different variational formulations,
both primal and dual, are introduced in Sect. 3 in the spirit of
mechanicswith their correspondingweak forms.Thediscrete
approximations are constructed in agreement withWhitney’s
elements, and details are presented for tetrahedron element
in Sect. 4. In Sect. 5, several validation tests and exam-
ples are calculated by using the proposed formulations and
implementation in a research version of FEAP- Finite Ele-
ment Analysis Program. Finally, some concluding remarks
are stated in Sect. 6.

2 Electrostatic andmagnetostatic
phenomena

2.1 Classical formulation

The traditional description of the electromagnetic phenom-
ena is defined by four laws first proposed by Faraday,Ampère
and Gauss. These equations feature electric field E, mag-
netic field H and their dual fields, electric displacement D
and magnetic induction B. They can jointly be cast in terms
of four differential equations, known as Maxwell’s equa-
tions for electromagnetism [5]. The latter provides, from the
macroscopic point-of-view, an adequate description formany
electromagnetic phenomena observations on how these fields
evolve in the presence of the free electric flux J and free elec-
tric charge density ρ

f
q :

⎧
⎪⎪⎨

⎪⎪⎩

∇ × E = −Ḃ
∇ × H = J + Ḋ
∇ · D = ρ

f
q

∇ · B = 0

(1)

These equations are enough to describe a pure electro-
magnetic problem. However, if mechanics are involved, the

definition of Lorentz’s force must be added. One can also
recover from (1)2 and (1)3 the condition on the conserva-
tion of electric charge that constraints ρ

f
q and J for coupled

electromagnetic case according to:

ρ̇
f
q + ∇ · J = 0 (2)

Considering static case for the sake of simplicity, with
negligible rate of change of electric and magnetic fields and
time derivatives Ḃ, Ḋ and ρ̇

f
q equal to zero, we uncouple

electrostatics and magnetostatics; thus, one obtains two sep-
arate problems, one for (i) electrostatics:

{∇ × E = 0
∇ · D = ρ

f
q

(3)

and another for (ii) magnetostatics:

{∇ × H = J
∇ · B = 0

(4)

Moreover, for static case the result in (2) simplifies to ∇ ·
J = 0, placing a constraint on the electric flux, treated as
a source term in magnetostatic formulation. Thanks to this
kind ofweak coupling, each of these problems can be handled
independently from one another. For clarity, we first focus on
electrostatics, and then briefly revisit magnetostatic case in
order to point out the prominent differences.

One has to deal with two diametrically different constitu-
tive behaviors for electric field in terms of conductors versus
insulators. The key difference between those two types of
behavior is that the electrons for the conductors are free
to move, whereas for the insulators the electrons remain
bounded to their nucleus [5,23].

In conductors, the field of interest is electric flux J , which
measures the flow of electrons through a surface. For the sim-
plest linear relation between the electric field and the electric
flux defined for conductors through the conductivity coeffi-
cient γ , we can write:

J = γ E (5)

which indicates that the electric flux will clearly go in the
same direction as the electric field. For perfect conductors,
the conductivity coefficient γ → ∞ whereas for perfect
insulators γ → 0. Most of all real materials fall in-between
these two extremes. Namely, an insulator like glass has free
electric flux, although it remains many orders of magnitude
lower than the one in a conductor such as copper; for instance,
the two materials we just compared have a relation of con-
ductivities of the order γcon ≈ 1020γins [31]. Thus, the flux
in an insulator material is simply considered as zero.
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Fig. 1 Different behavior of conductors (left) and dielectric (right) elec-
tric materials

In fact, insulators react to electric fields by orienting
dipoles, deformed atoms or molecules with two opposite
charges held in place by molecular forces. Thus, these
charges are not free to move as it happens with conductors.
The orientation of dipoles is measured by the polariza-
tion vector P . Dielectric materials are a particular case of
insulators where the polarization is proportional to E. There-
fore, the electric displacement definition can be written as:

D = ε0E + P = ε0
(
I + χe

)
E = εE (6)

with ε0 as the permittivity of the vacuum, ε as the
permittivity of the material, and I as the second-order iden-
tity tensor.

In Fig. 1, we illustrate the behavior of conductors and
dielectric materials with respect to an applied electric field.
For conductors, the electrons move through the domain in
the direction of E. For the insulator, the dipoles inside the
domain are also oriented in the samedirection, but net charges
appear only at the boundaries, due to cancellation of opposite
charges inside the domain [19].

In contrast to the complexity of electric behavior placed
between two extremes of conductors and insulators, themag-
netic constitutive behavior is simpler and it does not have a
conductor analogy. For this paper, only diamagnetic mate-
rials are taken into account, where the magnetization M is
proportional to H . Thus, we define the magnetic induction
through linear constitutive relation:

B = μ0 (H + M) = μ0
(
I + χh

)
H = μH (7)

with μ0 as the permeability of vacuum and μ as the perme-
ability of the material.

2.2 Proposed theoretical formulations

In this section we present our main objectives of generalizing
the electromagnetics formulation for the case that can include
heterogeneous materials, and further account for combined
constitutive behavior with mechanics. Hence, we seek to
establish a clear analogy with mechanics point-of-view in
formulating the boundary value problems in electrostatics in

the vein of the mechanical problem formulation. Consider a
domain Ω̄ , with two different parts distinguished: the interior
of domain Ω and its boundary Γ . In addition, the bound-
ary can be separated into two different parts, depending on
the primary or dual variable imposed. For electrostatics, on
ΓV we impose the essential or Dirichlet boundary condition
through scalar electric potential V , and on ΓD the natural or
Neumannboundary condition through thenormal component
of D [5,23]. The complete set of equations that describe the
electrostatic phenomena for such domain can then be written
as follows:

Field equations:
Kinematics E = −∇V
Constitutive D = εE
Equilibrium ∇ · D = ρ

f
q

⎫
⎬

⎭
in Ω

Boundary conditions:
Essential BC V = V̄ in ΓV

Natural BC D · n = D̄ in ΓD

(8)

We indicated in the first equation in (8), that a “kinematics”
equation links V and E in the equivalent manner as dis-
placements are related to strains in mechanics. This equation
automatically implies the electrostatic version of Faraday’s
law (3)1. The second equation in (8) shows the constitutive
relation between E and D through the permittivity tensor,
in a similar way that stresses are related to strains through
the elasticity tensor. The final equation balancing the diver-
gence of D with ρ

f
q corresponds to mechanics equilibrium

equation relating the divergence of the stress tensor with the
volume force.

A complementary problem formulation in terms of dual
variables can also be posed. It will be illustrated for
magnetostatics by usingmagnetic vector potential A, equiva-
lent toAiry’s function for the stress tensorσ . The correspond-
ing complementary single-field formulation can be written
as:

Field equations:
Compatibility B = ∇ × A
Constitutive H = νB
Equilibrium ∇ × H = J

⎫
⎬

⎭
in Ω

Boundary conditions:
Essential BC A = Ā in ΓA

Natural BC n × H = J̄ in ΓH

(9)

where ν = μ−1 is the reluctancy of the material. The key
difference from related problems in mechanics is the choice
of vector potential and the curl operator instead of the gra-
dient to define B . Such a choice allows to automatically
satisfy (4)2.
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3 Variational formulations

In this section, three variational formulations of the elec-
trostatic problem are presented providing the basis for the
corresponding choice of the finite element discrete approx-
imation. The first two are single-field formulations: one
is based on total potential energy with scalar potential V
as the main variable, and the other is based on the total
complementary potential energy with D. A mixed formu-
lation is proposed as well based on the Hellinger-Reissner
principle for mechanics adapted to electrostatics with two
independent variables V and D. A magnetic formulation is
provided in the last place to highlight the analogy between
the complementary energy formulation of electrostatic and
the corresponding formulation for magnetostatics.

3.1 Single field electrostatic formulation with scalar
potential

The simplest approach for the electrostatic problems is by
using a single independent field as electric scalar potential
V [21,44]. The remaining fields are obtained by using the
strong form Eqs. (8)1 and (8)2. Namely, the weak form of
balance equation in (8)3 leads to variational formulation of
the electrostatics:

ΠV (V ) =
∫

Ω

{
1

2
ε ∇V · ∇V

−V ρ
f
q

}
dΩ +

∫

ΓD

V D̄ dΓ (10)

where D̄ is the electric displacement imposed at the Neu-
mann boundary. Any trial functionsmust satisfy theDirichlet
boundary condition with V |ΓV

= V̄ , which should be
applied at least at one point in order to guarantee a unique
solution. Minimizing this potential leads to the correspond-
ing variational equation:

GV
V

(
V ; V ∗) ··=

∫

Ω

∇V ∗ · ε∇V dΩ −
∫

Ω

V ∗ρ f
q dΩ

+
∫

ΓD

V ∗ D̄ dΓ = 0 (11)

where V ∗ is the variation of V , which should take zero value
at the Dirichlet boundary V ∗|ΓV

= 0. The standard choice
of finite element discrete approximation is suitable for this
variational formulation [32].

3.2 Hellinger-Reissner hybrid formulation for
electrostatics

It is possible to further weaken one of the equations in (8)
in order to establish the variational formulation of the prob-

lem by using two independent fields, V and D. This is the
Hellinger-Reissner type of variational formulation [44], for
which the mechanics equivalent is obtained featuring the
complementary energy, which can be written as:

ΠHR (V , D) =
∫

Ω

{

−1

2
ε−1 D · D − ∇V · D − V ρ

f
q

}

dΩ

+
∫

ΓD

V D̄ dΓ (12)

Keeping these two fields V and D independent allows to
improve representation of the electric displacement fieldwith
respect to the one obtained from the single field formulation
in (10) above. The variational equations corresponding to
this potential can be obtained as:

GHR
V

(
V , D; V ∗) ··= −

∫

Ω

∇V ∗ · D dΩ −
∫

Ω

V ∗ ρ
f
q dΩ

+
∫

ΓD

V ∗ D̄ dΓ = 0;

GHR
D

(
V , D; D∗) ··= −

∫

Ω

D∗ · ε−1D dΩ

−
∫

Ω

D∗ · ∇V dΩ = 0 (13)

The first variational equation recovers the strong form of
the Gauss’ law in (8)3 while the second recovers the consti-
tutive relation in (8)2.

3.3 Complementary energy dual formulation with
vector potential for electrostatics

With this type of formulation, we use two different vector
potentials, U and S, in order to fully define the electric dis-
placement field [21,36,37]. Namely, we compute D as the
following decomposition:

D = S + ∇ × U (14)

This decomposition allows to replace both potentials
in (3)2 and then treat (3)1 in weak form. It is possible to
establish the variational formulation for this total comple-
mentary potential energy:

ΠD (U, S) = −
∫

Ω

{
1

2
ε−1∇ × U · ∇ × U + 1

2
ε−1S · S

+ ε−1∇ × U · S
}
dΩ +

∫

ΓV

V̄ S · n dΓ

−
∫

ΓV

n × Ē · U dΓ (15)
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Computing the corresponding variations with respect to
the potentials, the weak form can be obtained as a result:

GD
U

(
U, S;U∗) ··= −

∫

Ω

∇ × U∗ · ε−1∇ × U dΩ

−
∫

Ω

∇ × U∗ · ε−1S dΩ

−
∫

ΓV

n × Ē · U∗ dΓ = 0;

GD
S

(
U, S; S∗) ··= −

∫

Ω

S∗ · ε−1S dΩ

−
∫

Ω

S∗ · ε−1∇ × U dΩ

+
∫

ΓV

V̄ S∗ · n dΓ = 0 (16)

with Ē and V̄ as the imposed electric field and electric scalar
potential.

3.4 Complementary energy dual formulation with
single vector potential for magnetostatics

The dual formulation of this kind is yet easier to construct
for the magnetostatic problem defined in (9), since no source
termwill appear [35]. The complementary energy variational
formulation can then be written as:

ΠA(A) =
∫

Ω

1

2
μ−1∇ × A · ∇ × A dΩ −

∫

Ω

A · J dΩ

+
∫

ΓH

A · J̄ s dΓ (17)

The weak form is obtained by minimizing this variational
formulation with respect to the single field to obtain:

GA
A(A; A∗) ··=

∫

Ω

∇ × A∗ · μ−1∇ × A dΩ −
∫

Ω

A∗ · J dΩ

+
∫

ΓH

A∗ · J̄ s dΓ (18)

where A∗ is the corresponding variation.

4 Finite element discrete approximation
withWhitney’s element basis

The main goal of Whitney’s elements is to construct dis-
crete approximation of vector fields by using differential
forms [6]. These differential forms, yet called i-forms (where
i = 0, 1, 2 or 3), are linear functionals of vector fields which
can be used to fully define the particular vector field. The
unknown variables will the be the values of these differential

forms, to be used as the finite element method degrees of
freedom. The main advantage of using this kind of approx-
imation is the ability of constructing them in somewhat
intrinsic manner, regardless of particular choice of reference
frame. Another big advantage of using differential forms is
that every degree of freedom remains a scalar, even though
the discrete approximation represents a vector field. Thus,
the interpolation functions ought to be of vectorial character,
which allows to preserve boundary conditions in a natural
way. More importantly, such discrete approximation can be
used to enforce the corresponding continuity across element
boundary and thus improve the result accuracy.

The preferred formulation in mechanics in terms of vec-
tor fields [22], can be recast in terms of differential forms.
The latter are linear functionals of the vector field, which are
associated with both geometric and physical entities. Thus,
for the discrete approximation constructed by the finite ele-
ments, we can choose:

– 0-form associated with vertices, which preserves point
continuity.

– 1-form associatedwith edges,which preserves continuity
of the electric field tangential component:

ei =
∫

C
E · dl (19)

where dl is the vector associated to element edge C .
– 2-form associated with faces, which preserves continuity
of the electric displacement normal component over the
facet:

di =
∫

S
D · n dS (20)

where n is the unit exterior normal and dS is an infinites-
imal element of the surface.

– 3-form associated with volumes.

In order to recover the continuumvector fields fromdiffer-
ential forms, special interpolation functions are used. These
functions are scalars for 0- and 3-forms, and vectors for 1-
and 2-forms. In order to reconstruct a particular field, a lin-
ear combination of all the corresponding geometric entities
is established for every element. For instance, for the voltage,
the electric field and the electric displacement:

V =
nv∑

a=1

0Na va; E =
ne∑

a=1

1N a ea; D =
n f∑

a=1

2N a da

(21)

where 0Na , 1N a and 2N a are respectively, 0-, 1- and
2-form interpolation functions for node, edge and facet a,
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Fig. 2 Tonti diagram for electrostatic problem with scalar potential

whereas nv is the number of vertices, ne is the number of
edges and n f is the number of facets per element.

The choice of differential forms is especially suitable for
describing a unified mathematical structure of Maxwell’s
equations in terms of the exterior derivative (e.g. [4]). Here,
we use an operator defined for each i-form to obtain (i + 1)-
form, which is expressed as follows:

0-form
∇−→ 1-form

∇×−−→ 2-form
∇·−→ 3-form

(22)

We show in Fig. 2 operators acting on the different i-forms
and the relations among them. Such a scheme is referred
to as Tonti’s diagram, e.g. [10]. The exterior derivative for
electrostatics with scalar potential formulation reduces to:

The use of differential forms can be represented by dis-
crete approximation by usingWhitney’s finite elements (e.g.
[9]), which have the advantage to unify the traitment of
line, surface and volume integral in the sense of partition-of-
unity. In Fig. 3, we show the isoparametric reference element
used for tetrahedral mesh, where we indicate the different
locations of nodes, edges and faces and their corresponding
orientations forWhitney’s element. There are four vertex, six
edge and four facet unknowns for eachWhitney’s tetrahedral
element. Center of the reference frame {ξ, η, ζ } is located at
local node number 1 and each side starting at this node is of
unit length.

The interpolation functions for 0-form are:

0N1 = 1 − ξ − η − ζ ; 0N2 = ξ ; 0N3 = η;
0N4 = ζ (23)

where the subscript a = 1, . . . , 4 is the local number of node
and the superscript “0” denotes the corresponding index for a
particular i-form. Each of these interpolation functions take
unit value on their corresponding node and 0 at all other
nodes, which make the nodal value at every node indepen-
dent of the others. This will guarantee the field continuity
between adjacent elements; Finally, these shape functions
are differentiable inside the element domain, and guarantee
the partition-of-unity property:

nv∑

i=1

0Ni (ξ, η, ζ ) = 1 ∀(ξ, η, ζ ) ∈ Ωe (24)

This isoparametric element is used to construct the dif-
ferent tetrahedron elements in the mesh by distorting the
reference element. Interpolation functions for 0-form are
used to create the mapping from reference coordinates to
physical coordinates through:

x(ξ) =
nv∑

i=1

0Ni (ξ)xi ⇒

x(ξ, η, ζ ) =
nv∑

i=1

0Ni (ξ, η, ζ )xi

y(ξ, η, ζ ) =
nv∑

i=1

0Ni (ξ, η, ζ )yi

z(ξ, η, ζ ) =
nv∑

i=1

0Ni (ξ, η, ζ )zi

(25)

where xi , yi and zi are the corresponding physical coordi-
nates for every element node. The isoparametric mapping of

Fig. 3 Locations of unknowns at nodes, edges and facets in a tetrahedral element and the corresponding positive orientations, with the reference
frame placed at node 1
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element geometry can be characterized by the corresponding
Jacobian matrix j , which can be written as:

j =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂x

∂ξ

∂ y

∂ξ

∂z

∂ξ
∂x

∂η

∂ y

∂η

∂z

∂η
∂x

∂ζ

∂ y

∂ζ

∂z

∂ζ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

(x2 − x1) (y2 − y1) (z2 − z1)

(x3 − x1) (y3 − y1) (z3 − z1)

(x4 − x1) (y4 − y1) (z4 − z1)

⎤

⎥
⎥
⎦ (26)

We note that the Jacobian matrix for a tetrahedron element
has constant entries that depend only on the element nodal
coordinates. The Jacobian matrix provides direct connection
between the gradientswith respect to natural and the onewith
respect to physical coordinates; denoting the latter as∇x and
the former as ∇ξ , we can easily show (e.g. [22]) that:

∇x = j−1∇ξ (27)

In order to create the gradients of the 0-form interpolation
functions defining the electric field from scalar potential, we
make use of this new definition of the nabla operator in order
to write the corresponding discrete approximation:

0Bi = j−1∇ξ
0Ni (28)

where 0Bi is the gradient of 0-form interpolation functions
for node i .

The edge interpolation functions are constructed as the
linear combination of 0-forms and its gradients, resulting
with vector values. For example, for an edge a between nodes
i and j , such a vector base function is defined as:

1N a = 1N i→ j = ϕa

(
0Ni

0B j − 0N j
0Bi

)
(29)

where two different notations are adopted, referring to either
edge a or to the edge from node i to node j , which illustrates
the edge orientation more clearly. The incidence coefficient
ϕa takes values either + 1 or − 1, depending on the agree-
ment between the edge orientation on the reference element
(see Fig. 3) with the corresponding edge in the global mesh.
The convention sign for global edge orientation is taken arbi-
trarily. In this work, the unique global orientation is obtained
by following the global node numbers: for an edge between
nodes with global numbers i and j , the positive edge orienta-
tion goes from i to j when i < j and negative in the opposite
case. Thus, it follows that 1N i→ j = − 1N j→i .

By following this convention, we can write explicitly 1-
form interpolation functions for the six edges of a tetrahedron
element:

1N 1 = 1N 1→2 = ϕ1 j−1 (1 − η − ζ, ξ, ξ)T ;
1N 2 = 1N 1→3 = ϕ3 j−1 (η, 1 − ξ − ζ, η)T ;
1N 3 = 1N 1→4 = ϕ5 j−1 (ζ, ζ, 1 − ξ − η)T ;
1N 4 = 1N 2→3 = ϕ2 j−1 (−η, ξ, 0)T ;
1N 5 = 1N 2→4 = ϕ4 j−1 (ζ, 0, ξ)T ;
1N 6 = 1N 3→4 = ϕ6 j−1 (0,−ζ, η)T

(30)

As depicted in (22), the exterior derivative of 1-form is
the curl operator and consequently, the derivation of the curl
of these 1-forms 1Ca is needed. This definition is obtained
by applying the curl operator to 1N a :

1Ca = 1Ci→ j = ∇x × 1N i→ j = j−1∇ξ × 1N i→ j

= 2ϕa
0Bi × 0B j (31)

where ϕa as the incidence coefficient and it is defined as for
the 1-form. This convention is in agreement with the right-
hand screw rule since the resulting flow is solenoidal with
respect to edge a.

The facet interpolation functions are a combination of 0-
form and the cross product of the gradients. Facet a is defined
with positive orientation if the set of nodes {i, j, k} defines
the flow normal to the facet by the right-hand rule. The cor-
responding vector base functions are constructed as:

2N a = 2N i→ j→k = 2
(
0Ni

0B j × 0Bk

+ 0N j
0Bk × 0Bi + 0Nk

0Bi × 0B j

)
(32)

These the facet interpolations can be described as the com-
bination of 0-forms and curls of 1-form, following the idea
of the mathematical structure to define (i + 1)-forms:

2N a = 2N i→ j→k = 0Ni
1C j→k + 0N j

1Ck→i + 0N j
1Ck→i

(33)

4.1 Whitney’s element implementation

The finite element code chosen for this numerical implemen-
tation is FEAP [42]. The mesh is prepared in pre-processing
to allocate all kinds of variables in different kinds of nodes
which leads to the enhancement of the standard computer
architecture not with respect to the choice of degrees of free-
dom but with respect to the corresponding shape functions
(using different shape functions for different kind of nodes).

Taking advantage of the 14-node isoparametric elements,
the nodes are classified into vertex, edge and facet nodes as
sketched in Fig. 4, where the numbering of the local nodes for
the isoparametric tetrahedra is also displayed. Depending on
the geometrical entity, the corresponding degree of freedom
is put on nodes 1 to 4, 5 to 10 or 11 to 14. This ensures the
continuity of these variables among elements. For the chosen
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Fig. 4 Schema of the location of the nodes depending on their location
on a regular 15-node isoparametric tetrahedron

Whitney’s interpolations, the position of the nodes does not
matter as long as the node is placed on the corresponding
edge or facet.

4.1.1 Implementation of single-field scalar potential for
electrostatics

The definition of the discrete approximations for scalar
potential, put on vertices according to [36,37]:

V ≈
4∑

i=1

0Ni (x)vi (34)

where vi are the degrees of freedom or unknowns that the
code is going to calculate. Introducing this approximation
into theweak form (11),we obtain the residual corresponding
to the scalar potential, which is written in matrix form:

RV
a ··=

∫

Ω

0BT
a ε

4∑

i=1

[
0Bi vi

]
dΩ −

∫

Ω

0Na ρ
f
q dΩ

+
∫

ΓD

0Na D̄ dΓ ; a = 1, 2, 3, 4 (35)

By consistent linearization of this residual, we obtain the
corresponding tangent matrix, which can also be written in
matrix notation:

KV
ab = −

∫

Ω

0BT
a ε 0Bb dΩ; a, b = 1, 2, 3, 4 (36)

Note that thismatrix and the residual pertain only to vertex
nodes a and b, whereas they are equal to zero for edge and
facet nodes. The central problem to solve for the unknown
nodal values of scalar potential can be written as:

Kv = f (37)

where f is the force vector. For this formulation, each entry
of this vector is defined as:

fa = −
∫

Ω

0Na ρ
f
q dΩ +

∫

ΓD

0Na D̄ dΓ (38)

4.1.2 Implementation of Hellinger-Reissner formulation

The same methodology is taken for Hellinger-Reissner for-
mulation, this time introducing a new approximation for the
electric displacement:

D ≈
14∑

i=11

2N i (x)di (39)

where di are the degrees of freedom associated with D.
Introducing this approximation in (13) the corresponding
residuals can be obtained:

RD
a = −

∫

Ω

2N T
a ε−1

14∑

i=11

[
2N i di

]
dΩ

−
∫

Ω

2N T
a

4∑

j=1

[
0B j v j

]
dΩ;

a = 11, 12, 13, 14;

RV
a = −

∫

Ω

0BT
a

14∑

i=11

[
2N i di

]
dΩ

−
∫

Ω

0Na ρ
f
q dΩ +

∫

ΓD

0Na D̄ dΓ ;
a = 1, 2, 3, 4 (40)

Then, linearizing the previous equations, the problem to
solve is:

K
{
d
v

}

=
{
0
f

}

(41)

where the stiffness matrix K can be split into four different
sub-matrices:

Kab =
(
KDD
ab KDV

ab

KV D
ab 0

)

(42)

The entries of that stiffness matrix are:

KDD
ab =

∫

Ω

2N T
a ε−1 2N b dΩ;

a, b = 11, 12, 13, 14

KDV
ab =

∫

Ω

2N T
a

0Bb dΩ;
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a = 11, 12, 13, 14; b = 1, 2, 3, 4;
KV D
ab =

∫

Ω

0BT
a

2N b dΩ;
a = 1, 2, 3, 4; b = 11, 12, 13, 14 (43)

And the force vector f for node a is:

fa = −
∫

Ω

0Na ρ
f
q dΩ +

∫

ΓD

0Na D̄ dΓ ; a = 1, 2, 3, 4

(44)

4.1.3 Implementation of complementary energy dual
formulation for electrostatics with two vector
potentials

Introducing the split and separate discrete approximations
for U and S, the definition of D can be obtained as:

D ≈
10∑

i=5

1Ci (x)ui +
14∑

j=11

2N j (x)s j (45)

where ui and s j are the degrees of freedom or unknowns that
we are going to compute. Note that even though the poten-
tials U and S are vectors, their corresponding degrees of
freedom (as differential forms) are scalars, since we will use
the vector-type interpolations (namely, one-forms). More-
over, the orientations of chosen unknown differential forms
are defined by edge-curl of 1-forms and face shape functions
2-forms.

Introducing the last definition into the weak forms above,
the final residuals can be written in matrix notation; namely,
for D-form:

RU
a =

∫

Ω

1CT
a ε−1

10∑

i=5

[
1Ci ui

]
dΩ

+
∫

Ω

1CT
a ε−1

14∑

j=11

[
2N j s j

]

+
∫

Γ1

1N T
a (n × E0) dΓ ; a = 5, 6, . . . , 10

RS
a =

∫

Ω

2N T
a ε−1

10∑

i=5

[
1Ci ui

]
dΩ

+
∫

Ω

2N T
a ε−1

14∑

j=11

[
2N j s j

]
dΩ

−
∫

Γ2

2N T
an V̄ dΓ ; a = 11, 12, 13, 14 (46)

Furthermore, the stiffness matrix can be split in different
sub-matrices for D-form:

Kab =
(KUU

ab KUS
ab

KSU
ab KSS

ab

)

(47)

The entries of this stiffness matrix are:

KUU
ab = −

∫

Ω

1CT
a ε−1 1Cb dΩ;

a, b = 5, 6, . . . , 10

KUS
ab = −

∫

Ω

1CT
a ε−1 2N b dΩ;

a = 5, 6, . . . , 10; b = 11, 12, 13, 14

KSU
ab = −

∫

Ω

2N T
a ε−1 1Cb dΩ;

a = 11, 12, 13, 14; b = 5, 6, . . . , 10

KUU
ab = −

∫

Ω

2N T
a ε−1 2N b dΩ;

a, b = 11, 12, 13, 14 (48)

And the components of the force vector f are defined as:

f1,a =
∫

Γ1

1N T
a

(
n × Ē

)
dΓ

f2,a = −
∫

Γ2

2N T
an V̄ dΓ

(49)

4.1.4 Gauging a vector potential and boundary conditions
for complementary energy formulation

The previous formulation makes use of a vector potential U .
The rotational part of the electric displacement is obtained
from such potential. To provide a specific value of electric
displacement D, there is not a unique possibility of U , since
any irrotational potential to be added to this potential would
not affect the electric displacement value, but only act as an
integration constant. This non-uniqueness can be removed
if the vector potential U is gauged. A previous work in [41]
has a complete relation of different references on the existing
methods to gauge such potential. The method chosen in this
paper is the identification of a tree set. This method is based
on the topological aspect of the discretization employed to
define a set of linearly dependent differential forms, which
have to be eliminated in order to return a unique vector
potential. In the finite element method, the removal of those
variables implies prescribing the degrees of freedom on the
tree set corresponding to the edges of the tetrahedral mesh.

The details for identifying one of the tree sets are given
in [18], including a method to determine all possible tree
combinations through the incidence matrix. A tree set must
contain nn − 1 edges, and they cannot close a surface. For
simplicity, the value imposed in those edges is zero.
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In this paper, an algorithm to select a tree set has been
designed based on a matrix that contains as many rows as
edges. In each row, there are the initial and final global num-
bers of the vertex nodes of the corresponding edge. The
method begins evaluating the two global node numbers of
the first row. If they are different, the edge is accepted in the
tree set. Then, the first node number is replaced by the sec-
ond one every time it appears in another matrix entry. The
method is repeated for every row until the tree has nn − 1
branches.

If the mesh is regular, like the one drawn in Fig. 5, a more
specific and systematic algorithm to select the tree can be
used, as stated in [24]. This algorithm starts selecting all the
edges in the line defined by the intersection of the planes
y = z = 0. Then, in the plane z = 0, all the edges in y
direction that start in every vertex node of the previous line
are picked. Finally, every vertical line starting from all vertex
nodes in plane z = 0 are selected as well.

The complementary energy usually provides superior
accuracy of the electric displacement, but presents a diffi-
cultywith respect to the standardV-formulation in not readily
providing all other fields of interest, such as voltage poten-
tial. Moreover, an additional difficulty concerns any problem
where bothDirichlet andNeumannboundary conditions have
to be imposed. Namely, with the chosen differential forms
as unknowns, a particular edge, the topological entity that
contains the variable to solve, leads to an ambiguous situa-
tion that it can belong to both kinds of boundary surfaces,
Dirichlet and Neumann. The difficulty pertains to deciding
for every boundary face which edge should take care of the
Dirichlet boundary condition. Moreover, for the remaining
edge that handles the Neumann boundary, the residual term
ought to be distributed over the edges of the triangle that are
not considered in the Dirichlet boundary.

Fig. 5 Tree set (continuous lines) for regular mesh. Every hexahedron
represents six tetrahedra in cubic disposition. Every point is a vertex
node

4.1.5 Implementation of dual formulation of
magnetostatics with single vector potential

A similar approach to the last formulation for magnetostatics
can be taken by introducing the chosen approximations for
magnetic vector potential A:

A ≈
ne∑

i=1

1N i (x)ai (50)

where ai are the degrees of freedom or unknowns that the
code is going to calculate. Introducing the last definition
into (18), the corresponding residuals can be written as:

RA
a =

∫

Ω

1CT
a μ−1

ne∑

i=1

[
1Ci ai

]
dΩ −

∫

Ω

1N T
a J dΩ

+
∫

ΓH

1N T
a J̄ s dΓ ; a = 5, 6, . . . , 10 (51)

By consistent linearization of this residual, we obtain the
system similar to the one in (37). The corresponding tangent
matrix can be written in matrix notation:

KA
ab = −

∫

Ω

1CT
a μ−1 1Cb dΩ; a, b = 5, 6, . . . , 10

(52)

and the force vector f component is defined as:

fa = −
∫

Ω

1N T
a J dΩ +

∫

ΓH

1N T
a J̄ s dΓ (53)

5 Numerical simulations and validation tests

In this section, we present the results of several numerical
simulations that can illustrate performance of different for-
mulations. First, we choose several validation test examples,
which are compared against known analytic solution. Amore
complex test case where analytic solution is not available is
presented afterwards, including the results of some practical
applications solved with different formulations.

5.1 Validation tests

The following numerical examples are called validation tests
due to the fact that an analytic solution exists for each one
of them. This is a necessary condition to satisfy in order to
prove that the different formulations can all solve the prob-
lems where both analytical and numerical results fully agree.
However, this is not always fully sufficient, if the problem
does not allow to test each and every aspect of the proposed
formulation.
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In order to find an analytic solution, we assume that E is
the negative gradient of V and the constitutive relation for
D in (6) are written for isotropy and that the permittivity
tensor ε can be simplified to ε I . With these hypotheses,
the electrostatic problem can be fully defined in terms of the
scalar potential:

∇2V (x, y, z) = −ρ
f
q

ε
(54)

This equation is the well known Poisson equation, which
reduces to the Laplace equation when ρ

f
q = 0. The latter is

much easier to solve and represents a sort of patch test.

5.1.1 Laplace equation, imposed scalar potential

The geometry of this first example is a cube that has the fol-
lowing boundary conditions turning into a one-dimensional
problem:

∂V

∂x

∣
∣
∣
∣
x=0

= ∂V

∂x

∣
∣
∣
∣
x=lx

= ∂V

∂ y

∣
∣
∣
∣
y=0

= ∂V

∂ y

∣
∣
∣
∣
y=ly

= 0;
V (x, y, 0) = 0; V (x, y, lz) = Vz

(55)

The lateral faces do not allow electric displacement flow-
ing out of the cube, whereas top and bottom faces have
imposed and constant scalar potentials. The solution for the
scalar potential:

V (z) = Vz
lz

z (56)

V is a linear distribution in z. Hence, from this expression
it is possible to calculate the electric displacement as:

D = −ε∇V =
⎛

⎝
0
0

−εVz/lz

⎞

⎠ (57)

The only non-zero component is the third one taking a con-
stant value. The selected dimensions for this example are
lx = ly = lz = 2 × 10−3 m, the imposed Vz = 20 V and
ε = 15 × 10−12 F/m.

As can be seen in Fig. 6, the computed distribution of
voltage potential is indeed linearwith bottomand top values 0
and 20V, respectively. The computed value for Dz = −1.5×
10−7 C/m2 is homogeneous as expected from (57).

Fig. 6 Voltage and electric displacement distributions calculated for the first validation example. First row, V-formulation; second row, Hellinger-
Reissner
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5.1.2 Laplace equation, imposed scalar potential and
electric displacement

In this example, imposing the Neumann boundary condition
is themain difference from the previous example. Thus, there
is only a slight variation in the chosen boundary conditions
with respect to the previous example:

∂V

∂x

∣
∣
∣
∣
x=0

= ∂V

∂x

∣
∣
∣
∣
x=lx

= ∂V

∂ y

∣
∣
∣
∣
y=0

= ∂V

∂ y

∣
∣
∣
∣
y=ly

= 0;

V (x, y, 0) = 0; ∂V

∂z
= −D̄z

ε

(58)

This computed solution can still be simplified to unidi-
mensional and linear in V :

V (x, y, z) = −D̄z

ε
z (59)

The material properties and measures are the same as in
the last example, with Dz = 1.5 × 10−7 C/m2. This gives
V (x, y, lz) = −20 V on top and a constant electric displace-
ment of value Dz = 1.5 × 10−7 C/m2 as shown in Fig. 7.

5.1.3 Poisson equation, imposed scalar potential

In this validation case, a source term is activated to induce
non-homogeneous field values. The boundary conditions
considered in this section are the same as those considered
in the first numerical example with:

∂V

∂x

∣
∣
∣
∣
x=0

= ∂V

∂x

∣
∣
∣
∣
x=lx

= ∂V

∂ y

∣
∣
∣
∣
y=0

= ∂V

∂ y

∣
∣
∣
∣
y=ly

= 0;
V (x, y, 0) = 0; V (x, y, lz) = Vz

(60)

For a problem of this kind, the solution can be obtained as
a superposition of a Poisson equation solution with homoge-
neous boundary conditions and aLaplace problem taking into
account those conditions. The final solution can be expressed
as:

V (x, y, z) = Vz
lz

z +
∞∑

p=1,3,...

4 ρ
f
q l2z

ε p3 π3 sin

(
pπ z

lz

)

(61)

where 50 terms in the summation have been taken into
account, ρ f

q = 0.01 and the other coefficients are the same
as in Sect. 5.1.1 except Vz = 80 V, taken higher to see clearly
the asymmetry of the problem.

Fig. 7 Voltage and electric displacement distributions calculated for the second validation example. First row, V-formulation; second row, Hellinger-
Reissner
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In Fig. 8 left, it can be appreciated in the voltage distribu-
tion that the maximum is concentrated a little bit above the
middle vertical section with a theoretical maximum value
of approximately 374 V, obtained from the maximization
of (61). The closer to this theoretical value, for themesh plot-
ted with 1000 elements, is V-formulation. The distribution
of Dz can be obtained by deriving (61), and the summation
gives an almost linear response with values at the bottom of
Dz = −1.06×10−5 C/m2 and at the top of Dz = 9.37×10−6

C/m2.
One can also notice the existence of slight oscillations

near the edges of the mesh in Fig. 8 right. In the case of V-
formulation, the electric displacement can only be constant
for every element. Taking into account that the analytical
solution is linear, the exact solution can never be reached,
although the more refined the mesh is, the closer to the ana-
lytical solution will be. The number of elements surrounding
a particular point in the mesh is essential to the plot since
the stresses plotted in the figure are smoothened. The edges
are influenced by half of the elements within the same row.
Regarding H-R, even though D field can be indeed linear, it
is limited by (13) as it has to be compatible with the gradient
subspace of voltage. Therefore, the oscillations now appear

Fig. 9 Energy convergence for both V-formulation and Hellinger-
Reissner, and the exact solution

along all iso-stress lines since tetrahedra within the same row
now have different values.

In Fig. 9, a convergence study on the energy by mesh
refinement has been performed. Even though V-formulation
is closer to the maximum expected value of V , H-R is
closer thanV-formulation to the analytical solution for energy
(1/2 E · D = 8.98×10−9 J) at an equal number of elements,
as could be expected from a mixed method, improving the
accuracy of the electric displacement calculation.

Fig. 8 Voltage and electric displacement distributions calculated for the third validation example. First row, V-formulation; second row, Hellinger-
Reissner
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5.1.4 Tubular geometry

This example is also among validation examples, but some-
what more demanding with respect to element distortion,
resulting from a change in geometry turning the paral-
lelepiped shape into a hollowed cylinder or a tube. This
modification allows to determine if there is any mesh depen-
dence of the solutionwith respect to element distortion. Also,
it allows to fully verify proposed formulation for distorted
mesh.

The geometry of the problem is defined in Fig. 10 along
with the boundary conditions and dimensions. Only a quarter
of the geometry is represented since it is an axisymmetric
problem. On the interior lateral face, a voltage V̄1 = 0 V is
imposed; on the exterior lateral face, either voltage V̄2 = 20
V or D ·n = D̄ is imposed depending on the kind of problem.
An electric charge density ρ

f
q is imposed in the material as

well for the Poisson case. The properties for the material of
this example remains the same as the previous ones except
for the permittivity, in agreement with the dielectric material
of the next case ε = 4ε0 I .

The analytical solution for the proposed problem can be
obtained by taking into account the axisymmetry and cylin-
drical coordinates. Thus, both Laplace and Poisson equations
will now be affected by the change of coordinates. Since the
solution V (r) only depends on the radius, the equation to
solve reduces to an Euler-Cauchy ordinary differential equa-
tionwith a particular term in the case of the Poisson equation:

r2
d2V

dr2
+ r

dV

dr
= r2 ρ

f
q (62)

The solution to the previous equation is of the form:

V (r) = C1 ln (r) + C2 + ρ
f
q
r2

4
(63)

The boundary conditions for the equivalent previous numer-
ical examples are:

V (r0) = 0; V (r1) = V̄1; Laplace, imposed V

V (r0) = 0; dV

dr

∣
∣
∣
∣
r=r1

= D̄1

ε
; Laplace, imposed D̄

V (r0) = 0; V (r1) = V̄1; Poisson, imposed V̄

(64)

Fig. 10 Schematic geometry representation of a quarter of the hollowed
cylinder. Symmetry planes in x = 0 and y = 0. Dimensions in cm

Thus, the voltage expressions for each of the three cases are:

V (r) = V̄1 ln (r/r0)

ln (r1/r0)
; Laplace, imposed V

V (r) = D̄1 r1 ln (r0/r)

ε
; Laplace, imposed D̄

V (r) = V̄1 ln (r/r0)

ln (r1/r0)
+ ρ

f
q
r2

4

+ ρ
f
q
(
r20 ln (r/r1) − r21 ln (r/r0)

)

4 ln (r1/r0)
;

Poisson, imposed V̄

(65)

All these cases show good agreement with the analyti-
cal solution. As can be seen in Fig. 11 left, where the case
for Laplace equation and imposed V at the external face is
plotted, voltage distribution is no longer linear, but rather
follows a logarithmic distribution starting from zero at the
internal lateral face to 20 at the external lateral face. The
problem being axisymmetric results with the only variation
in the radial direction.

In the Fig. right, the norm of electric displacement is plot-
ted. This variable follows an inverse distribution with the
radius. In the figure, different plot bounds can be observed
for both formulations as the exact solution cannot be reached
with linear tetrahedral elements. The exact values for |D(r)|
are |D(r0)| = 6.448 × 10−8 C/m2 and |D(r1)| = 2.149 ×
10−8 C/m2.

The complementary energy formulation has also been
used to solve the same problem as a comparison with the
two formulations used through this section. As previously
discussed, the voltage cannot be obtained directly from the
calculated variables. On the other hand, the norm of elec-
tric displacement is plotted, obtaining similar or even more
accurate results as with the previous formulations.

In Fig. 12 left, a smallmesh convergence study for the case
run above is shown. In this study, all formulations converge
to the analytical solution using a few thousands of elements,
being the complementary energy formulation the more accu-
rate for everymesh configuration andV-formulation themore
inaccurate.

However, as can be seen in the Fig right, the latter is
unquestionably the fastest of them all. The slowest, in any
case, is Hellinger-Reissner due to the higher amount of vari-
ables, which also make it the one that spends the most
memory. Complementary energy shoots up as well due to the
necessity to solve the Dirichlet boundary conditions, which
makes it inefficient for being a single field formulation.

5.2 Parallel plate capacitor simulation

This numerical example simulates a parallel plate capaci-
tor that consists of two electrodes, represented by conductor
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Fig. 11 Voltage and norm of electric displacement distributions calculated for the fourth validation example, with both lateral faces with V boundary
condition. First row, V-formulation; second row, Hellinger-Reissner; third row, complementary energy formulation

Fig. 12 Left, energy
convergence for V-formulation,
Hellinger-Reissner and
Complementary energy
formulation compared with the
exact solution. Right,
computation time for all the
formulations tested

plates charged, and a dielectric cylinder with ε = 4ε0 I . Fig-
ure 13 shows the dimensions for a quarter of the geometry
since symmetry conditions on planes x = 0 and y = 0 allow
to reduce the problem.

Despite the fact that in the graphical illustration in this fig-
ure only two different solid materials are presented, for the
actual computation we have to introduce vacuum or air as a
third material connecting the two solid materials. Hence, the
permittivity of this added material is that of the vacuum ε0.

We note in passing that such a solution is typical of electro-
magnetic spectrum,which does not needmatter to propagate,
and yet the finite element method does need the mesh with a
connection between nodes to solve such problem.

Boundary conditions can be imposed numerically by set-
ting all nodes of the twoconductor plates to the corresponding
potential: top to V = 3000 V and bottom to ground potential
or V = 0 V.
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Fig. 13 Schematic geometry representation of a quarter of the parallel
plate capacitor; two charged conductor plates and a dielectric cylinder.
Symmetry planes in x = 0 and y = 0. Dimensions in cm

One can observe that the presence of the dielectric with a
higher permittivity than that of the air and the fact that the
conductor plates are finite breaks the unidimensional nature
of this problem. If the plates as well as the cylinder were infi-
nite, the electric field and displacement would be completely
regular and vertical.

This problem has been extracted from [37] to demonstrate
that potential and complementary energy formulations, after
refinement of the mesh, tend to the same solution. The pur-

pose of this problem is to compare our formulations with an
electrostatic example already solved, although in the cited
reference there are not explicit results for electric field or
displacement, but rather a qualitative representation of both
fields. This representation is replicated in Fig. 14 indicating
the flow orientation of electric field.

As expected, themain difference between E (first column)
and D (second column) in that figure is that the presence of
the dielectric cylinder with different permittivity creates a
discontinuity in electric field as opposed to the continuity
of electric displacement. This fact can be appreciated in the
magnitude difference of the arrows inside the cylinder and
outside. This presence of the dielectric creates also a distor-
tion of both fields, bending them.

The arrows in the air material surrounding the capacitor
bend around the two electrodes as it is expected from an
electrostatic problem, from higher to lower potentials and the
intensity of the fields lower as they come out from symmetry
planes rather than external sides.

The total energy of the system is represented in Fig. 15
for both V-formulation and Hellinger-Reissner formulations.
It is important to note that both formulations approach the

Fig. 14 Electric field and
displacement vector
representation calculated for the
parallel plate capacitor example.
First row, V-formulation; second
row, Hellinger-Reissner
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Fig. 15 Total electrostatic energy by number of elements of the mesh
with two formulations: V-formulation (V-form) and Hellinger-Reissner
(H-R)

same system energy value when sufficient mesh refinement
is carried out, although for this particular case, a finer mesh
was impossible to generate due to our low computational
resources. As the number of elements increase, energy values
for V-formulation come from higher to lower as opposed
to Hellinger-Reissner. This is a consequence of using the
potential or the complementary energy for the calculations.

For the same number of elements, Hellinger-Reissner for-
mulation takes more computation time due to the presence
of an additional degree of freedom. However, the accuracy
is higher energy-wise since no big improvement is obtained
with higher number of elements. Therefore, for a low num-
ber of elements, one can conclude that Hellinger-Reissner
formulation is preferable.

6 Conclusions

This work provides the first step in establishing the firm
link between electromagnetic and mechanical point of view,
introducing several novelties on the way for solving numeri-
cally electrostatic and magnetostatic problems. In particular,
energy-based variational formulations for several single-
field and mixed multi-field formulation have been developed
instead of the constitutive-based global equations currently
used cell method, the preferred tool of physics and electri-
cal engineering community. This energy formulation allows
to study induced heterogeneities typical of inelastic mate-
rial behavior and not only linear constitutive laws typical
of classical works on electromagnetics. Although a detailed
development in this paper is mostly provided for electro-
statics, we briefly showed that an equivalent magnetostatic
formulation can easily be recovered with an adequate change
of the corresponding field variables.

Numerical implementation of discrete approximation is
based uponWhitney’s elements. In this paper, we have devel-
oped in detail the approach granting the partition-of-unity to

chosen discrete approximation in tetrahedron element, which
applies to the corresponding shape functions. Moreover, the
proposed discrete approximation improves the accuracy of
the electromagnetic fields, since it preserves either tangential
or normal continuity of primal and dual variables, respec-
tively. This method can also be extended to higher-order
interpolation, it remains to be seen if it should result in opti-
mal solution when dealing with induced heterogeneities of
materials coming from inelastic non-linear behavior, which
remains our main motivation for the work presented in this
paper.

The numerical examples in this paper provide full vali-
dation of the proposed discrete approximations based upon
tetrahedra elements. They also illustrate the full scope of the
problems and possible applications that can be solved with
this kind of elements, first for the case of electrostatics and
second by analogy for magnetostatics. Of particular interest
is the superior resultwe are able to achieve in the parallel plate
capacitor simulations establishing accuracy even with small
number of elements for here proposed Hellinger-Reissner
formulation in comparison with any other approach.
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