
Computational Mechanics (2019) 64:1655–1667
https://doi.org/10.1007/s00466-019-01743-x

ORIG INAL PAPER

Crack-face frictional contact modelling in cracked piezoelectric
materials

Luis Rodríguez-Tembleque1 · Felipe García-Sánchez2 · Andrés Sáez1

Received: 17 October 2018 / Accepted: 8 June 2019 / Published online: 24 June 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Actuators, sensors, micro- and nano-electromechanical systems and other piezoelectirc components are generally constructed
in block form or as a thin laminated composites. The study of the integrity of such materials in their various forms and
small sizes is still a challenge nowadays. To gain a better understanding of these systems, this work presents a crack surface
contact formulation that includes friction and thus makes it possible to study the integrity of these advanced materials under
more realistic crack surface multifield operational conditions. The dual boundary element method (BEM) is used for modeling
frictional crack surface contact on piezoelectric solids in the presence of electric fields, further taking into account the electrical
semipermeable boundary conditions on the crack. The formulation uses contact operators over the augmented Lagrangian
to enforce contact constraints on the crack surfaces. The BEM reveals to be a very suitable methodology for these interface
interaction problems because it considers only the boundary degrees of freedom, what makes it possible to reduce the number
of unknowns and to obtain accurate results with a much lower number of elements than formulations based on the standard
finite element method or the eXtended finite element method. The capabilities of this methodology are illustrated by solving
some benchmark problems.

Keywords Piezoelectric materials · Crack friction · Fracture mechanics · Contact mechanics · Boundary element method ·
Semipermeable electrical boundary conditions

1 Introduction

Piezoelectric materials exhibit a multifield coupling which
allows for their use as actuators and sensors in many tech-
nological sectors of current interest, such as the aerospace
and automotive industries, or the biomedical and the elec-
tronics industries. Actuators, sensors, micro- and nano-
electromechanical systems and other PE components are
generally constructed in block form or in a thin laminated
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composite. The study of the integrity of such materials in
their various forms and small sizes is still a challenge nowa-
days [1–3].

In general, crack surface contact problems is a key aspect
that should be considered to study integrity problems [4–
6]. These pioneering (analytical) works showed that, when
a closed crack is considered in an elastic material, it is nec-
essary to know the contact condition of the crack surface to
avoid, for instance, physically unrealistic interpenetration of
the crack surfaces or over estimation of stress intensity fac-
tors. Moreover, the crack surface roughness also alters the
direction of crack propagation [7] so it influences the crack
path [8]. Consequently, several numerical methodologies
have been developed to provide engineers with computa-
tional tools to consider crack surface frictional contact in
fractured materials. Due to the extremely good accuracy that
the Boundary Element Method (BEM) presents in fracture
mechanics problems, several works [9–14] have studied the
influence of contact during the last thirty years. This problem
have also been tackled considering other numerical tech-
niques like finite element (FE) formulations with enrichment
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functions, i.e., extended FE method (XFEM) [15–18], new
advanced FE strategies [19] or a scaled boundary finite ele-
ment methodologies (SBFEM) [2].

However, to the best of the authors’ knowledge, numeri-
cal framework has never been proposed for modeling crack
face frictional contact problem in fractured piezoelectric
materials. The BEM has been proven as one of the more suit-
able numerical formulation to study fracture in piezoelectric
materials for the last twenty years [20–25]. The BEM con-
siders only the boundary degrees of freedom involved in this
multifield problem and allows us to obtain a very good accu-
racy with a low number of elements. During those years,
some boundary element based formulations proposed how
to consider nonlinear electrical and mechanical crack face
boundary conditions in fractured piezoelectric (PE) materi-
als [26,27], or in magneto-electro-elastic (MEE) materials
[28,29], considering the crack-face electromagnetic bound-
ary conditions for fracture ofmagnetoelectroelasticmaterials
presented in [30]. Although several authors have modeled
the case of normal contact conditions between crack faces
[26,31–33], frictional contact conditionswere not considered
in those works. Moreover, recent works on mulfield materi-
als under contact conditions [34–37] have revealed the strong
influence of friction on the contact pressures, stress and elec-
tric/magnetic fields.

In this context, this work presents a crack surface contact
formulation which makes it possible to study the integrity of
these advanced materials under more realistic crack surface
multifield operational conditions. The dual BEM [38,39] is
used for modeling frictional crack surface contact on piezo-
electric solids, in the presence of electric fields and using
a singe-domain formulation that permits to easily include
the more realistic semipermeable electrical boundary condi-
tions on the crack, while avoiding the need to define multiple

domains in order to incorporate the crack geometry [40]. The
formulation, based on previous works [23,26,34–36], uses
the BEM for computing the elastic influence coefficients and
contact operators over the augmented Lagrangian to enforce
contact constraints on the crack surface. The capabilities of
this methodology are illustrated by solving some benchmark
problems.

The remainder of this work is organized as follows. Sec-
tion 2 presents the problem description. Sections 3 and 4
present the crack face mechanical and electrical contact
boundary conditions, respectively. The literature on BEM
formulations is quite extensive, so in Sect. 5 we briefly
present the basic ideas of a dual boundary element formu-
lation to tackle fracture problems in piezoelectric materials.
The discrete crack surface contact nonlinear equations set
is presented in Sect. 6 and the solution scheme is summa-
rized in Sect. 7. Section8 presents the numerical results and
discussion and, finally, Sect. 9 concludes the paper.

2 Problem formulation

Let us consider a two-dimensional, homogeneous, anisotropic
and linear piezoelectric (PE) cracked solid Ω ⊂ R

2 with
boundary ∂Ω (see Fig. 1), in a Cartesian coordinate system
(xi ) (i = 1, 2). The mechanical equilibrium equations for
this problem, in the absence of body forces, and the electric
equilibrium equations under free electrical charge are

σi j, j = 0 in Ω,

Di,i = 0 in Ω,
(1)

where σi j are the components of Cauchy stress tensor and Di

are the electric displacements. The infinitesimal strain tensor
γi j and the electric field Ei are defined as

Fig. 1 Fractured piezoelectric domain
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γi j = (ui, j + u j,i )/2 in Ω,

Ei = −ϕ,i in Ω,
(2)

with ui being the elastic displacement andϕ being the electric
potential.

The elastic and electric fields are coupled through the lin-
ear constitutive law

σi j = ci jklγkl − eli j El in Ω,

Di = eiklγkl + εil El in Ω,
(3)

where ci jkl and εil denote the components of the elastic
stiffness tensor and the dielectric permittivity tensor, respec-
tively; and ei jk are thePEcoupling coefficients. These tensors
satisfy the following symmetries: ci jkl = c jikl = ci jlk =
ckli j , eki j = ek ji , εkl = εlk , with the elastic constant and
dielectric permittivity tensors being positive definite.

The boundary ∂Ω is divided in two disjoint parts: ∂Ω =
∂Ωe ∪ ∂Ωc, where ∂Ωe denotes the external boundary and
∂Ωc is the crack surface. Two partitions of the boundary
∂Ωe are considered to define the mechanical and the elec-
trical boundary conditions. The first partition is: ∂Ωe =
∂Ωu ∪ ∂Ωp, i.e., ∂Ωu being the external boundary on which
diplacements ũi are prescribed and ∂Ωp with imposed trac-
tions p̃i . The second partition is: ∂Ωe = ∂Ωϕ ∪ ∂Ωq , being
the electrical potential ϕ̃ prescribed on ∂Ωϕ , and the electri-
cal charges q̃ assumed on ∂Ωq . Consequently, the Dirichlet
boundary conditions are

ui = ũi on ∂Ωu,

ϕ = ϕ̃ on ∂Ωϕ,
(4)

and the Neumann boundary conditions are given by

σi jν j = p̃i on ∂Ωp,

Diνi = q̃ on ∂Ωq ,
(5)

with νi being the outward unit normal to the boundary.
Finally, on the upper and lower crack faces (i.e. ∂Ωc =

∂Ω+
c ∪ ∂Ω−

c ) self equilibrated tractions and electric charges
are considered: Δpi = p+

i + p−
i = 0 and Δq = q+ +q− =

0. However, aditional crack surface contact conditions have
to be considered, as follows, on ∂Ωc.

3 Crack facemechanical contact conditions

In order to avoid material interpepenetration between crack-
faces, the unilateral contact law involves Signorini’s contact
conditions on ∂Ωc:

Δuν ≥ 0, p+
ν ≥ 0, Δuν p+

ν = 0, (6)

where Δuν = u+
ν − u−

ν and p+
ν = p+ · ν+

c , with ν+
c being

the unit normal on ∂Ω+
c .

The normal contact constraints presented in (6) can be
formulated as:

p+
ν − PR+( p̂+

ν ) = 0, (7)

where PR+(·) is the normal projection function (PR+(·) =
max(0, ·)) and p̂+

ν = p+
ν − rνΔuν is the augmented nor-

mal traction. The parameters rν is the normal dimensional
penalization parameter (rν ∈ R

+).
In general, frictional contact condition on crack surfaces

should be considered. So theCoulomb friction restriction can
be summarized as:

Δuτ = −λp+
τ , λ ≥ 0, |p+

τ | ≤ μp+
ν , λ(p+

τ − μp+
ν ) = 0,

(8)

where λ is an scalar, μ is the friction coefficient, Δuτ =
u+

τ −u−
τ and p+

τ = p+·τ+
c , with τ+

c being the unit tangential
vector on ∂Ω+

c .
The frictional contact constraints (8) can be also formu-

lated using a contact operators as:

p+
τ − PEρ

( p̂+
τ ) = 0, (9)

where p̂+
τ = p+

τ − rτΔuτ is the augmented tangential
traction, rτ being the tangential dimensional penalization
parameter (rτ ∈ R

+), and PEρ
(·) : R −→ R is the tangential

projection function defined as

PEρ
( p̂+

τ ) =
{

p̂+
τ if | p̂+

τ | < ρ,

ρ( p̂+
τ /| p̂+

τ |) if | p̂+
τ | ≥ ρ,

(10)

with ρ = μp+
ν , as it was defined in Eq. (7).

4 Crack face electrical contact conditions

The electrical boundary conditions on the crack-faces ∂Ωc

can be defined in the general form as

q+ = κcΔϕ/Δuν, (11)

where Δϕ = ϕ+ − ϕ−. In Eq. (4), κc is the electrical per-
mittivity of the medium between the crack faces and it is
defined by the product of the relative permittivity of the
considered medium (κr ) and the permittivity of the vacuum
(κo = 8.85 × 10−3 C/(GVm)): κc = κrκo. So, in contrast to
the impermeable or the permeable crack-face boundary con-
ditions, this expressionpresents a non-linear relation between
mechanical displacements, electrical potential and electrical
charges.
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In order to consider both semi-permeable crack-face con-
ditions and crack-face contact conditions, Eq. (4) is redefined
as q+ = κ̃Δϕ/Δuν ,

κ̃ =
{

κc if Δuν > 0,
∞ if Δuν = 0.

(12)

According to (12), the electrical contact condition shows
that when there is no contact (i.e. crack opening displace-
ments Δuν > 0) on ∂Ωc, the normal component of the
electric displacement field is q+ = κcΔϕ/Δuν , ∂Ωc being
the permittivity parameter that allows us to impose perme-
able, impermeable or semipermeable crack face conditions.
Nevertheless, when there is contact (i.e., Δuν = 0, and con-
sequently κ̃ = ∞), electric potentials on the crack faces are
the same: Δϕ = 0.

5 Boundary integral equations

The dual formulation for the BE solution of crack problems
considers both the extended displacement (EDBIE) and the
extended traction (ETBIE) boundary integral representations
to overcome the difficulty of having two coincident bound-
aries ∂Ω+

c and ∂Ω−
c . In this way, the EDBIE is applied for

collocation points ξ on ∂Ωe and on either of the crack faces,
say ∂Ω−

c , to yield

cI J (ξ)uJ (ξ) + −
∫

∂Ω

p∗
I J (x, ξ)uJ (x)dS(x)

=
∫

∂Ω

u∗
I J (x, ξ)pJ (x)dS(x), (13)

where x is a boundary point, uJ is the extended displacement
vector (see Barnett and Lothe representation [41])

uJ =
{

u j J � 2
ϕ J = 3,

(14)

pJ is the extended tractions vector

pJ =
{

p j J � 2
q J = 3,

(15)

cI J depends on the local geometry of the boundary ∂Ω at
the collocation point ξ ; u∗

I J and p∗
I J are the extended dis-

placement fundamental solution and the extended traction
fundamental solution at a boundary point x due to a unit
extended source applied at point ξ , respectively [20] .

Consequently, the ETBIE is applied for collocation points
ξ on the other crack surface, ∂Ω+

c ,

cI J (ξ)pJ (ξ)+ =
∫

∂Ω

s∗
I J (x, ξ )uJ (x)dS(x)

= −
∫

∂Ω

d∗
I J (x, ξ)pJ (x)dS(x), (16)

to complete the set of equations to compute the extended
displacements and tractions on ∂Ω . In Eq. (16) s∗

I J and d∗
I J

are obtained by differentiation of u∗
I J and p∗

I J [20], as

d∗
I J (x, ξ) = −Ns(ξ)CsI Kru

∗
K J ,r (x, ξ), (17)

s∗
I J (x, ξ) = −Ns(ξ)CsI Kr p

∗
K J ,r (x, ξ), (18)

with Ns(ξ) being the outward unit normal to the boundary at
the source point and

Ci J Kl =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Ci jkl , J , K = 1, 2
eli j , J = 1, 2; K = 3
eikl , J = 3; K = 1, 2
−εil , J , K = 3,

(19)

where the lowercase (elastic) and uppercase (extended) sub-
scripts take values 1, 2 and 1, 2, 3, respectively. Furthermore,
Symbols −∫ and =∫ in Eqs. (13) and (16) stand for the Cauchy
Principal Value (CPV) and the Hadamard Finite Part (HFP)
of the integral, respectively.

When the cracks are mechanically and electrically self-
equilibrated, i.e., ΔpI = p+

I + p−
I = 0 on ∂Ωc (the

superscripts + and − stand for the upper and lower crack
surfaces), it would be enough to apply the EDBIE for collo-
cation points ξ on ∂Ωe and the ETBIE for collocation points
ξ on either side of the crack, say ∂Ω+

c , to yield

cI J (ξ)uJ (ξ) + −
∫

∂Ωe

p∗
I J (x, ξ)uJ (x)dS(x)

+ −
∫

∂Ω+
c

p∗
I J (x, ξ)ΔuJ (x)dS(x)

=
∫

∂Ωe

u∗
I J (x, ξ)pJ (x)dS(x) (20)

pI (ξ)+ =
∫

∂Ωe

s∗
I J (x, ξ)uJ (x)dS(x)

+ =
∫

∂Ω+
c

s∗
I J (x, ξ)ΔuJ (x)dS(x)

= −
∫

∂Ωe

d∗
I J (x, ξ)pJ (x)dS(x) (21)

Equations (20) and (21) yield a complete set of equations to
compute the extended displacements and tractions on ∂Ωe

and the extended crack opening displacements ΔuI = u+
I −

u−
I on ∂Ωc. In Eq. (21), as previously discussed in Ref. [23],

the free term cI J has been set to 1 because of the additional
singularity arising from the coincidence of the two crack
surfaces.

6 Crack surface contact discrete equations

Numerical evaluation of the ETBIE requires C1 continuity
of the displacements. As in previous works [23], discontin-
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uous quadratic elements with the two extreme collocation
nodes shifted towards the element interior are used to
mesh the cracks. The asymptotic behavior of the extended
displacements near the crack tip is modelled via discontin-
uous quarter-point elements. For the rest of the boundaries,
continuous quadratic elements are employed. A detailed jus-
tification of the discretization procedure can be found in [23].

A collocation procedure on boundary integral equations
(20) and (21) leads to the following system of equations:
Ax = F, where the boundary conditions have been imposed
and all the unknowns have been passed to vector x, to yield

[

Axe AΔuc AΔϕc Apc Aqc

]

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

xe
Δuc
Δϕc
pc
qc

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

= F. (22)

In expression (22), xe collects the nodal external unknowns
(i.e. the nodal unknowns on ∂Ωe), Δuc and Δϕc collect the
nodal crack opening displacements and electric potentials,
respectively, on xc, pc contains the normal and tangential
nodal contact tractions (i.e. pν and pτ ) and qc contains the
nodal electric charges. Matrices Axe , AΔuc , AΔϕc , Apc and
Aqc are constructed with the columns of matrices yielded
from the numerical integration of Eqs. (20) and (21).

The electric charge on every contact node i can be
expressed in terms of the electric potential according to the
electrical contact condition (4), as: (qc)i = −κ̃((Δuν)i )

(Δϕc)i . So equation (22) can be written as

[

Axe AΔuc ÃΔϕc Apc

]

⎧

⎪

⎪

⎨

⎪

⎪

⎩

xe
Δuc
Δϕc
pc

⎫

⎪

⎪

⎬

⎪

⎪

⎭

= F, (23)

being ÃΔϕc = AΔϕc − κ̃(Δuν)Aqc and κ̃(Δuν) a diagonal
matrix, i.e.:

κ̃(Δuν) = diag
(

κ̃((Δuν)1), . . . , κ̃((Δuν)i ), . . . , κ̃((Δuν)Nc )
)

.

(24)

Finally, the mechanical contact restrictions (7) and (9) are
defined on every contact node i as:

(pν)i − PR+( (pν)i − rν(Δuν)i ) = 0, (25)

(pτ )i − PEρ
( (pτ )i − rτ (Δuτ )i ) = 0, (26)

where pν and pτ contain the normal and tangential contact
tractions of every contact node i andΔuν andΔuτ contain the
normal and tangential nodal crack opening displacements,
respectively.

7 Solutionmethod

The nonlinear equations set (23–26) can be solved using dif-
ferent solution schemes according to [42,43]. In this work,
the system (23–26) will be solved using the Uzawa’smethod.
This iterative solution scheme is presented in [42,44–46] and
more recently in [47–49], for contact andwear problems, and
in [34,36], for multifield PE materials in contact.

To compute the variables on load step (k), z(k) =
(x(k)

e ,Δu(k)
c ,Δϕ

(k)
c ,p(k)

c ), when the variables on previous
instant z(k−1) are known:

(I) Initialize z(0) = z(k−1) and iterate using (n) index.
(II) Solve:

[

Axe Auc (Aϕc − κ̃(p(n)
ν )Aqc )

]

⎧

⎨

⎩

xe
Δuc
Δϕc

⎫

⎬

⎭

(n+1)

= −Apc p
(n)
c +˜F, (27)

where ˜F = F − (κ̃ (n)/ΔΦ(n))Aqc , κ̃ (n) is a diago-
nal matrix that depends on the contact status of every
contact node and ΔΦ(n) is a diagonal matrix defined
as: ΔΦ(n) = diag((Δϕ

(n)
c )1, . . . , (Δϕ

(n)
c )i , . . . ,

(Δϕ
(n)
c )Nc).

(III) Update contact tractions and contact status for every
contact node i:

(p(n+1)
ν )i = PR−

(

(p(n)
ν )i + rν(Δu(n+1)

ν )i

)

, (28)

(p(n+1)
τ )i = PEρ

(

(p(n)
τ )i − rτ (Δu(n+1)

τ )i

)

, (29)

where ρ = μ|(p(n+1)
ν )i |. So if (p(n+1)

ν )i < 0, node i is
assumed to be in contact.

(IV) Update diagonal matrix κ̃ (n+1) as a function of the
contact status computed in previous step.

(V) Compute the error Ψ (z(n+1)) = max{‖Δu(n+1)
c −

Δu(n)
c ‖, ‖Δϕ

(n+1)
c − Δϕ

(n)
c ‖, ‖p(n+1)

c − p(n)
c ‖}.

(a) If Ψ (z(n+1)) ≤ ε, the solution for the instant (k) is
reached, so z(k) = z(n+1).

(b) Otherwise, return to (II) evaluating: p(n)
c = p(n+1)

c

and κ (n) = κ (n+1).

After the solution at step (k) is reached, the solution for the
next step is achieved by setting: z(0) = z(k) and returning to
(I).

8 Numerical examples

The previously sketched formulation offers a suitable frame-
work to study the influence of crack face frictional con-
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Fig. 2 Crack in an infinite domain under far field uniform stress (σ22)
and electric displacements (D2)

Table 1 Material properties of PZT-4, from [20]

Elastic coefficients (GPa)

C11 139.00

C12 74.30

C22 115.00

C66 25.60

Piezoelectric coefficients (C/m2)

e21 − 5.2

e22 15.1

e16 12.7

Dielectric constants (C/(GVm))

ε11 6.461

ε22 5.62

tact and nonlinear electric boundary conditions on fracture
response of piezoelectric materials. In order to validate the
formulation and to understand the influences of these factors,
several benchmark problems have been studied.

8.1 Crack in unbounded domain

The first example corresponds to a finite straight crack along
the x1-direction in an infinite PZT-4 plane under a uniform far
field stress or electric displacement (see Fig. 2). This example
allows us to check the formulation under nonlinear electrical
crack face boundary conditions. The material constants are
shown in Table 1, the axis of symmetry of the material being
the x2-axis. Moreover, to mesh the crack, five quadratic ele-
ments are considered, crack tip elements being discontinuous
quarter-point elements.

The obtained crack opening displacements in normal
direction and electric potential increment along the crack due
to an uniform electric displacements loading: D2 = 1C/m2

are shown in Fig. 3a, b, respectively. Results in Fig. 3 are
presented in a non-dimensional form, Δuν,o and Δϕo being
the crack opening displacements and the electric potential
increment, respectively, obtained in [30] for impermeable
crack-face electric boundary conditions . It can observed
how the permittivity parameter κc clearly affects the crack
opening displacements and the electric potential increment
along the crack. Moreover, the results are compared with the
known exact analytical solution obtained by [30] for ideal
crack-face electric boundary conditions (i.e., impermeable
and permeable conditions), showing an excellent agreement.
The extended crack opening displacement components ΔuI

for the ideal crack-face electric boundary conditions can be
written as

ΔuI = 2YI J
(

σ∞
J2 − σ c

J2

)

√

a2 − x21 , (30)

where σ∞
J2 are the applied extended stresses, σ c

J2 are the
extended stresses on the crack surfaces and Y is the com-
pliance (Irwin) matrix, as defined in [23]. In the expression
above, the repeated indexes implies summation.

Same conclusions were observed in Fig. 4 for an uniform
traction loading: σ22 = 1GPa, where it may be observed a
perfect agreement between the numerical and the analytical
solutions for impermeable and permeable crack-face elec-
tric boundary conditions. The increase of Δuν caused by the
increase of the κc value in Fig. 4a is due to the fact that both
the mechanical and the electrical fields are fully coupled, as
it may be observed in the compliance (Irwin) matrix.

To illustrate the convergence of the proposed solution
scheme under nonlinear crack-face electrical boundary con-
ditions, convergence studies have been included for the case
of a Griffith crack in a piezoelectric material. Figure5 shows
the relative error evolution (Ψ (z(n))/Ψ (z(o))) with the num-
ber of iterations for several meshes and different values of the
permittivity parameter (κc). Results reveal that the proposed
methodology is robust and accurate. While the number of
iterations is hardly affected by the number of elements used
to mesh the crack, it is however significantly affected by
the severity of the nonlinear crack-face electrical boundary
conditions: a low number of iterations have been observed
for fully permeable or fully impermeable electrical condi-
tions, whereas a greater number of iterations are required
for convergence when semipermeable conditions hold on the
crack-faces.
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(a)

(b)

Fig. 3 Influence of the permittivity parameterκc on:a the crack opening
displacements and b the electric potential increment along the crack due
to an uniform electric displacements loading: D2 = 1C/m2

The influence of the permittivity parameter κc on extended
stress intensity factors: KI , KI I and KIV , for the uniform
electric displacements loading is presented in Fig. 6. Accord-
ing to [23,50], those extended stress intensity factors are
determined from the nodal values from the extended crack
opening displacements across the crack, as

(a)

(b)

Fig. 4 Influence of the permittivity parameter κc on:a the crack opening
displacements and b the electric potential increment along the crack for
uniform traction loading: σ22 = 1GPa

⎛

⎝

KI I

KI

KIV

⎞

⎠ =
√

π

8r̄
Y−1

⎛

⎝

Δu1
Δu2
Δϕ

⎞

⎠ , (31)

where, in this case, the r̄ is the distance between the crack
tip and the extreme node of the quarter-point elements and
KIV denotes the electric displacement intensity factor.
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Fig. 5 Error evolution for several meshes and different values of the
permittivity parameter (κc)

Fig. 6 Influence of the permittivity parameter κc on the intensity factors
KI , KI I and KIV for the uniform electric displacements loading D2 =
1C/m2

Finally, results in Fig. 6 correspond to the crack subjected
to an uniform remote electric displacements loading and
depicts the intensity factors. Consequently, when the permit-
tivity parameter κc increases, i.e., when perfect permeable
crack-face boundary conditions are considered, the extended
stress intensity factors tend to zero.

8.2 Inclined crack under compression

In order to validate this crack surface frictional contact
formulation, another benchmark problem is solved. In this
example, the formulation is applied for a mathematical
degenerate case, i.e., elastic and isotropic material. Fig-
ure 7 shows a single crack of length 2a in an unbounded
domain and subjected to a compressive remote stress σ (i.e.,
σ11 = −σ ). The analytical solution of this plane strain state
is available in [4] for comparison. The mode-I stress inten-
sity factor (SIF) KI = 0, as the crack surfaces remain closed
under compression. However, the analytical solution for the
mode-II SIF is

KI I = σ
√

πa sin α(cosα − μ sin α) (32)

whereμ can be written as a function of the friction angle (φ):
μ = tan(φ).

The material constants employed are: Young’s modulus
E = 70 GPa and Poisson’s ratio ν = 0.2. Results are pre-
sented in Fig. 8, where the normalized KI I (KI I /σ

√
πa) is

showed for various inclination angles (α) of the crack and dif-
ferent friction angles (φ = 0◦, 15◦, 30◦, 45◦). An excellent
agreement between analytical and numerical solutions can be
observed. In this example, nonlinear crack-face mechanical
boundary conditions (i.e. frictional contact) are considered
for electroelastic problems. The convergence ratios observed
for the Uzawa scheme in these examples are analogous to the
ratios observed in [49] for frictional contact problems using
the BEM in elastic problems.

After validating the frictional contact methodology, this
formulation is now applied for a piezoelectricmaterial whose
properties are presented in Table 1. In order to study only the
influence of frictional contact conditions on cracked piezo-
electric materials, Sects. 8.2 and 8.3 show two benchmark
problems presented in the literature, where impermeable
crack face boundary conditions (i.e., κc = 0) are considered.
Figure9 shows the normalized stress (KI , KI I ) and electric
(KIV ) intensity factors at the tip of the crack due to remote
tension for different crack orientation angles (α) and differ-

Fig. 7 A crack under compression in an unbounded domain
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Fig. 8 Numerical results vs. analytical solutions for normalized KI I
(KI I /σ

√
πa) for various inclination angles (α) and different friction

angles (φ)

ent friction angles (φ). The extended stress intensity factors
(ESIF), i.e., KI , KI I and KIV , were computed according to
(31). Due to themechanical and electrical fully coupled com-
pliance (Irwing) matrix, the crack-face tangential slip (Δuτ )
causes not null ESIFs values. The ESIFs in Fig. 9 show the
same behavior that has been observed in Fig. 7: when the
crack angle (α) is equal or greater than the friction angle
(φ), i.e., α ≥ φ, the crack-face is subject to stick conditions.
So the values of the ESIFs become null. Results show again
the enormous influence of friction on the stress and electric
intensity factors and, consequently, on the integrity of these
systems. Therefore, modeling friction is mandatory in order
to obtain valid results.

8.3 Branched crack

This example considers a branched crack in an unbounded
plane, whose geometry is shown in Fig. 10. The material is
PZT-4 and the material constants are given in Table 2. The
axis of symmetry of the material is the x2-axis and the main
crack is along the x1-axis with a branch with an angle θ

initiating from one of the crack tips. Five quadratic elements
are considered to mesh the main crack. Two equal length
elements are used for the branch when its length is b = a/10
and nine elements when b = a/2. Crack tip elements are
discontinuous quarter-point. The crack is under a uniform
far field stress along the y-axis and the ESIF are evaluated in
accordance to Eq. (31).

Crack branching is a common phenomenon in the fracture
of brittle materials. However, the multifield coupling makes

(a)

(b)

(c)

Fig. 9 Normalized stress (KI , KI I ) and electric (KIV ) intensity factors
at the tip of the crack due to remote tension for different crack orientation
angles (α) and different friction angles (φ)
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Fig. 10 A branched crack under uniform traction in an unbounded
domain

Table 2 Material properties of PZT-4, from [21]

Elastic coefficients (GPa)

C11 139.00

C12 74.30

C22 113.00

C66 25.60

Piezoelectric coefficients (C/m2)

e21 − 6.98

e22 13.84

e16 13.44

Dielectric constants (C/(GVm))

ε11 6.0

ε22 5.47

crack branching more complex for piezoelectric materials
than for elastic materials. One of the pioneering works that
studied this problem was published by Xu and Rajapakse
[21]. They presented a theoretical framework which made it
possible to study crack branching on piezoelectric materials.
For instance, they presented the values of the ESIF versus
the branch angle θ for different lengths of the branch when
an uniform traction along the x2-axis was applied. However,
in those cases, no frictional contact conditions were con-
sidered on the crack faces. So, crack faces interpenetration
were observed for some values of θ and consequently, over-
or-under estimated values of the ESIFs were computed.

Figure11 shows the normalized stress intensity factors KI

at the tip of a branched crack due to remote tension. A com-
parison between the boundary element solution including
frictionless contact and the analytical solution from [21] for

Fig. 11 Normalized stress intensity factors KI at the tip of a branched
crack due to remote tension: Kb

I /Ko, being Ko = σ
√

πa. Comparison
between the boundary element solution including frictionless (μ = 0)
contact and the analytical solution from [21] for different branched
crack orientation angles (θ) and branch lengths (b)

different branched crack orientation angles (θ ) and branch
lengths (b) is considered. We can observe negative values of
KI on [21] when θ is greater than certain value (i.e., θ > 90◦
for b = a/10 and θ > 80◦ for b = a/2). Nevertheless, KI

tends to zero for those branch angles when contact is con-
sidered. So crack closure is observed when θ > 100◦ for
b = a/10 and θ > 90◦ for b = a/2.

Next, the influence of frictional contact on the ESIFs is
studied in detail for a branch length b = a/2. Figure12
presents the normalized stress (KI , KI I ) and electric (KIV )
intensity factors at the tip of a branched crack due to remote
tension for different branch orientation angles and different
friction angles (φ = 0◦, 15◦, 30◦, 45◦). Figure12a shows the
normalized stress intensity factor KI at the tip of a branched
crack. As we would expect, friction does not affect KI ,
only θ and the normal contact constraints. However, KI I

and KIV are clearly affected not only by the normal contact
constraints, but also by friction. Figure12b shows how the
normalized stress intensity factors KI I is affected by crack
closure on the branch when θ > 90◦. Moreover, significant
reduction on KI I can be observed as the friction coefficient
increaseswhen compared to [21]. Same situation is presented
on Fig. 12c for the electric intensity factors KIV . However, in
this case, the effect of contact is significantly stronger, i.e., a
non-smooth peak on KIV is observed for the crack branching
closure around θ ≈ 90◦. This is due to the combined effect
of crack closure (i.e. crack-face contact) and the imperme-
able electrical crack-face boundary conditions (i.e. κc = 0).
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(a)

(b)

(c)

Fig. 12 Influence of frictional contact on the normalized stress (KI ,
KI I ) and electric (KIV ) intensity factors at the tip of a branched crack
due to remote tension for different branched crack orientation angles
(θ), i.e. Kb

I /Ko, Kb
I I /Ko and Kb

IV /Ko, being Ko = σ
√

πa

Fig. 13 Curved crack in unbounded domain

Once again, the influence of friction and the need to incor-
porate this phenomenon in the model is clear from Fig. 12b,
c.

8.4 Curved crack in unbounded domain

Finally, to show the use of the current procedure for curved
crack geometries, this section presents a curved crack in
an unbounded domain (see Fig. 13), where crack-face fric-
tional contact conditions are considered. The crack region
is under a uniform far field stress (σ22 = 1 GPa) along the
material and crack axis of symmetry. The material proper-
ties are the same as in the previous example and they were
presented in Table 2. Several cracks for elastic stress load-
ing are analyzed, with semi-angles θ between 0 and 120
degrees.

The computed values of the normalized ESIFs KI , KI I

and KIV are shown versus θ in Fig. 14. Similarly to [23], the
ratio χ between the dielectric constant ε22 and the piezoelec-
tric constant e22 has been used to represent a dimensionless
value of KIV . Computed values of KI and KI I are shown
in Fig. 14a, b, respectively, whereas the obtained values of
KIV are shown in Fig. 14c. These results show the great
influence that crack curvature has on the ESIFs. It may be
observed that large values of θ (θ ≥ 90◦) imply crack clo-
sure. Moreover, Fig. 14b shows a significant reduction on
KI I when the friction coefficient increases. Aswementioned
in the previous example, the electric intensity factor KIV

presents a non-smooth peak due to the crack closure around
θ ≈ 90◦.
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(a)

(b)

(c)

Fig. 14 Influence of frictional contact on the normalized stress (KI ,
KI I ) and electric (KIV ) intensity factors at the tip of a curved crack
due to remote tension for different curved crack angles (θ)

9 Conclusions

Adual boundary element formulation has been presented and
further applied to study fracture phenomena in PE materials.
The formulation avoids unrealistic assumptions usually con-
sidered for the boundary conditions on the crack surfaces.
In particular, it accounts for both surface frictional contact
between crack faces and electrically semipermeable bound-
ary conditions. The accuracy and validity of the proposed
formulation have been verified by comparison of the obtained
numerical results against some classical benchmark prob-
lems, exhibiting an excellent agreement with the analytical
solution available in the literature. The numerical examples
presented reveal the key importance of including friction
in the model in order to accurately compute the stress and
electric intensity factors in situations where crack closure
occurs. Finally, we would like to emphasize that, although
the paper contains only examples for crack problems in infi-
nite domains, the boundary element formulation is also valid
for bounded domains.
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