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Abstract
An approximation model based on convolutional neural networks (CNNs) is proposed for flow field predictions. The CNN is
used to predict the velocity and pressure field in unseen flow conditions and geometries given the pixelated shape of the object.
In particular, we consider Reynolds Averaged Navier–Stokes (RANS) flow solutions over airfoil shapes as training data. The
CNN can automatically detect essential features with minimal human supervision and is shown to effectively estimate the
velocity and pressure field orders of magnitude faster than the RANS solver, making it possible to study the impact of the
airfoil shape and operating conditions on the aerodynamic forces and the flow field in near-real time. The use of specific
convolution operations, parameter sharing, and gradient sharpening are shown to enhance the predictive capabilities of the
CNN. We explore the network architecture and its effectiveness in predicting the flow field for different airfoil shapes, angles
of attack, and Reynolds numbers.

Keywords Aerodynamics · Deep learning · Convolutional neural networks · Airfoils · RANS

1 Introduction

With advances in computing power and computational
algorithms, simulation-based design and optimization has
matured to a level that it plays a significant role in an
industrial setting. Inmany practical engineering applications,
however, the analysis of the flow field tends to be the most
computationally intensive and time-consuming part of the
process. These drawbacks make the design process tedious,
time consuming, and costly, requiring a significant amount
of user intervention in design explorations, thus proving to
be a barrier between designers from the engineering process.

Data-driven methods have the potential to augment [8]
or replace [12] these expensive high-fidelity analyses with
less expensive approximations. Learning representations
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from the data, especially in the presence of spatial and
temporal dependencies, have traditionally been limited to
hand-crafting of features by domain experts. Over the past
few years, deep learning approaches [4,15] have shown sig-
nificant successes in learning from data, and have been
successfully used in the development of novel computational
approaches [29–31].

Deep learning presents a fast alternative solution as an effi-
cient function approximation technique in high-dimensional
spaces. Deep learning architectures such as deep neural net-
works (DNNs), routinely used in datamining, are well-suited
for application on big, high-dimensional data sets, to extract
multi-scale features.

Deep convolutional neural networks (CNN) belong to a
class of DNNs, most commonly applied to the analysis of
visual imagery. Previous works [19,40,48] have illustrated
the promise of CNNs to learn high-level features even when
the data has strong spatial and temporal correlations. Increas-
ing attention being received by CNNs in fluid mechanics
partly originates from their potential benefit of flexibility
in the shape representation and scalability for 3D and tran-
sient problems. Figure 1 illustrates the simplified layout of a
typical CNN, LeNet-5 [19] applied to the handwritten digit
recognition task.
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Fig. 1 An example of a typical CNN architecture is a LeNet-5 archi-
tecture [19] in identifying handwritten digits for zip code recognition in
the postal service. The architecture consists of two sets of convolutional

and pooling layers. Convolutional layers use a subset of the previous
layers for each filter and followed by a flattening convolutional layer,
and two fully-connected layers and finally a classifier [19]

(a) S805 airfoil. (b) S809 airfoil.

(c) S814 airfoil.

Fig. 2 Zoomed-in view of the structured C-mesh adjacent to the airfoil surface

The main advantage of a CNN is that it exploits the low
dimensional high-level abstraction by convolution. The key
idea of CNN is to learn the representation and then to use a
fully connected standard layer to fit the relationship between
the high-level representation and the output.

1.1 State of the art in application of CNNs in fluid
dynamics

The use of deep neural networks in computational fluid
dynamics recently has been explored in several contexts.

Guo et al. [12] reported the analysis and prediction of
non-uniform steady laminar flow fields around bluff body
objects by employing a convolutional neural network (CNN).
The authors reported a computational cost lower than that
required for numerical simulations byGPU-accelerated CFD
solver. Though this work was pioneering in the sense that it
demonstrated generalization capabilities, and that CNNs can
enable a rapid estimation of the flow field, emphasis was
on qualitative estimates of the velocity field, rather than on
precise aerodynamic characteristics.
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(a)

(b)

Fig. 3 CNN based network architecture for airfoil geometry in the
prediction of aerodynamicflowfields.Arrows indicate the forwardoper-
ation directions. Below each operation, is the kernel size and the number

of filters. The strides for convolutional and deconvolutional layers are
with the size of one in each direction. Following each layer is a Swish
activation function [32] except in the output layer

Miyanawala and Jaiman [25] used a CNN to predict
aerodynamic force coefficients of bluff bodies at a low
Reynolds number for different bluff body shapes. They pre-
sented a data-driven method using CNN and the stochastic
gradient-descent for the model reduction of the Navier–
Stokes equations in unsteady flow problems.

Lee and You [20,21] used a generative adversarial net-
work (GAN) to predict unsteady laminar vortex shedding
over a circular cylinder. They presented the capability of suc-
cessfully learning and predicting both spatial and temporal
characteristics of the laminar vortex shedding phenomenon.

Hennigh [13] presented an approach to use aDNN to com-
press both the computation time andmemory usage of Lattice

Boltzmann flow simulations. The author employed convolu-
tional autoencoders and residual connections in an entirely
differentiable scheme to shorten the state size of simulation
and learn the dynamics of this compressed form.

Tompson et al. [41] proposed a data-driven approach
for calculating numerical solutions to the inviscid Euler
equations for fluid flow. In this approach, an approximate
inference of the sparse linear system is used to enforce the
Navier–Stokes incompressibility condition. This approach
cannot guarantee an exact solution pressure projection step,
but they showed that it empirically produces very stable
divergence-free velocity fields whose runtime and accuracy
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Fig. 4 A signed distance function contour plotted for the S814 airfoil
in a 150 × 150 Cartesian grid. The magnitude of the SDF values on
the Cartesian grid equals the shortest distance to the airfoil. The airfoil
boundary points are in white

Fig. 5 Zoomed-in view of the discrete structured C-mesh representa-
tion of an airfoil (S814) (in black) on a Cartesian grid (in red). The
airfoil boundary points are in blue. (Color figure online)

is better than the Jacobi method while being orders of mag-
nitude faster.

Zhang et al. [46] employed a CNN as feature extractor
for low dimensional surrogate modeling. They presented the
potential of learning and predicting lift coefficients using the
geometric information of airfoil and operating parameters
like Reynolds number, Mach number, and angle of attack.
However, the output is not the flow field around the airfoil
but the pressure coefficients at several locations. It is unclear
whether this model would have good performance in pre-
dicting the drag and pressure coefficient when producing the
flow field at the same time.

The primary contribution of the present work is a frame-
work that can be used to predict the flowfield around different
geometries under variable flow conditions. Towards this goal
and following Guo et al. [12], we propose a framework with
a general and flexible approximation model for real-time
prediction of non-uniform steady RANS flow in a domain
based on convolutional neural networks. The flow field can
be extracted from simulation data by learning the relation-
ship between an input feature extracted from geometry and
the ground truth fromaRANS simulation. Thenwithout stan-
dard convergence requirements of the RANS solver, and its

Fig. 6 Three-dimensional scatter plots of feature space for training and
testing of the network. Blue points are chosen uniformly at random as
test set on the feature space, and Red points are the training set. (Color
figure online)

Fig. 7 x-component of the velocityfield (U ) aroundS814airfoil.RANS
simulations are performed at the angle of attack of α = 9◦ and with the
Reynolds number (Re) of 3 × 106

Fig. 8 x-Component of the velocity field (U ) around S814 airfoil inter-
polated from the structuredC-mesh initial data in Fig. 7 onto a 150×150
Cartesian grid and normalized using the standard score normalization.
Cartesian grid points inside the airfoil are set to zero
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Fig. 9 Error and learning curve of the network

number of iterations and runtime, which are irrelevant to the
prediction process, we can directly predict the flow behav-
ior in a fraction of the time. In contrast to previous studies,
the present work is focused on a more rigorous characteriza-
tion of aerodynamic characteristics. The present study also
improves on computational aspects. For instance, Guo et al.
[12] use an separated decoder, whereas the present work
employs shared-encoding and decoding layers, which are
computationally efficient compared to the separated alter-
natives.

2 Methodology

2.1 CFD simulation

In this work, flow computations and analyses are per-
formed using the OVERTURNS CFD code [7,18]. This code
solves the compressible RANS equations using a precondi-
tioned dual-time scheme [26]. Iterative solutions are pursued
using the implicit approximate factorization method [28].
Low Mach preconditioning [42] is used to improve both
convergence properties and the accuracy of the spatial dis-
cretization. A third order Monotonic Upwind Scheme for
Conservation Laws (MUSCL) [43] with Koren’s limiter [17]
and Roe’s flux difference splitting [33] is used to compute the
inviscid terms. Second order accurate central differencing is
used for the viscous terms. The RANS closure is the SA [39]
turbulence model and γ − Reθ t model [24] is used to capture
the effect of the flow transition. No-slip boundary conditions
imposed on the airfoil surface. The governing equations are
provided in the Appendix.

Simulations are performed over the S805 [36], S809 [37],
and S814 [38] airfoils. S809 and S814 are among a fam-
ily of airfoils which contain a region of pressure recovery
along the upper surface which induces a smooth transition

from laminar to turbulent flow (so-called “transition-ramp”).
These airfoils are utilized in wind turbines [3]. Computations
are performed using structured C-meshes with dimensions
394× 124 in the wrap-around and normal directions respec-
tively. Figure 2 shows the airfoils and their near-bodymeshes.

Simulations are performedatReynolds numbers 0.5, 1, 2,
and 3 × 106, respectively, and a low Mach number of 0.2 is
selected to be representative of wind turbine conditions. At
each Reynolds number, the simulation is performed for dif-
ferent airfoils with a sweep of angles of attack from α = 0◦
toα = 20◦. TheOVERTURNSCFD code has been validated
for relevant wind turbine applications in [3].

2.2 Convolutional neural networks

In this study, we consider the convolutional neural network
to extract relevant features from fluid dynamics data and to
predict the entire flow field in near real-time. The objective
is a properly trained CNN which can construct the flow field
around an airfoil in a non-uniform turbulence field, using
only the shape of the airfoil and fluid flow characteristics
of the free stream in the form of the angle of attack and
Reynolds number. In this section, we describe the structure
and components of the proposed CNN.

2.3 Network structure

To develop suitable CNN architectures for variable flow con-
ditions and airfoil shapes, we build our model based on
an encoder–decoder CNN, similar to the model proposed
by Guo et al. [12]. Encoder–decoder CNNs are most widely
used for machine translation from a source language to a tar-
get language [6]. The encoder–decoder CNN has three main
components: a stack of convolution layers, followed by a
dense layer and subsequently another stack of convolution
layers. Figure 3 illustrates the proposed CNN architecture
designed in this work.

Guo et al. [12] used a shared-encoder but separated
decoder. We conjecture that the separated decoder may be
a limiting performance factor. To address this issue, we
designed shared-encoding and decoding layers in our config-
uration, which save computations compared to the separated
alternatives. Explicitly, the weights of the layers of the
decoder are shared where they are responsible for extracting
high-level representations of pressure and different veloc-
ity components. This design provides the same accuracy of
the separated decoders but, it is almost utilized 50% fewer
parameters compared to the separated alternatives. Also,
in the work of Guo et al. [12], the authors used only one
low Reynolds number for all the experiments, but here, the
architecture is trained with four high Reynolds numbers,
three airfoils with different shapes and 21 different angles
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without GS. without GS.

with GS.

(a) Prediction (separated decoder) (b) Prediction (shared decoder)

(c) Prediction (shared decoder) (d) Ground truth.

Fig. 10 Ground truth (actual observation) versus prediction of the x-
component of the velocity field around the S805 airfoil with angle of
attack of α = 12.5◦ and the Reynolds number of 1 × 106. Ground

truth data is interpolated from the structured C-mesh CFD results onto
a 150 × 150 Cartesian grid and normalized using the standard score
normalization

of attacks. In this architecture, we use three convolution lay-
ers both in the shared-encoding and decoding parts.

The inputs to the network are the airfoil shape and the
free stream conditions of the fluid flow. We use the convo-
lution layers to extract the geometry representation from the
inputs. The decoding layers use this representation in con-
volution layers and generate the mapping from the extracted
geometry representation to the pressure field and different
components of the velocity. The network uses the Reynolds
number, the angle of attack, and the shape of the airfoil in the
form of 150× 150 2D array created for each data entry. The
geometry representation has to be extracted from the RANS
mesh and fed to the network with images. Using images in
CNNs allows encoding specific properties into the architec-
ture, and reducing the number of parameters in the network.

2.4 Geometry representation

A wide range of approaches are employed to capture shape
details and to classify points into a learnable format. Among
popular examples are methods like implicit functions in
image reconstruction [5,11,14,16], or shape representation
and classification [9,22,44,45]. In applications such as ren-

Table 1 MAPE for the components of the velocity field (U and V
respectively) and pressure in the wake region of the S805 airfoil and the
entire flow field around it (separated decoder Fig. 3a)

U (%) V (%) P (%)

Error in the wake region 24.9 10.15 24.97

Error in the entire flow 13.51 11.92 13.50

Table 2 MAPE for the components of the velocity field (U and V
respectively) and pressure in the wake region of the S805 airfoil and the
entire flow field around it (shared decoder Fig. 3b)

U (%) V (%) P (%)

Error in the wake region 15.08 7.98 14.82

Error in the entire flow 9.62 8.65 7.31

dering and segmentation and in extracting structural infor-
mation of different shapes, signed distance functions (SDF)
are widely used. SDF provides a universal representation of
different geometry shapes and represents a grid sampling of
the minimum distance to the surface of an object. It also
works efficiently with neural networks for shape learning. In
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(a) Separated decoder.

(b) Shared decoder

Fig. 11 Prediction of the x-component velocity profile for the S805
airfoil wake at x = 1.1 with angle of attack of α = 12.5◦ and the
Reynolds number (Re) of 1× 106. Lower plot is for the shared decoder

this study, to capture shape details in different object repre-
sentations, and following [12,27], we use the SDF sampled
on a Cartesian grid. Guo et al. [12] reported the effectiveness
of SDF in representing the geometry shapes for CNNs. The
authors empirically showed that the values of SDF on the
Cartesian grid provide not only local geometry details but
also contain additional information on the global geometry
structure.

2.5 Signed distance function

A mathematical definition of the signed distance function of
a set of points X determines the minimum distance of each
given point x ∈ X from the boundary of an object ∂Ω .

SDF(x) =
⎧
⎨

⎩

d(x, ∂Ω) x /∈ Ω

0 x ∈ ∂Ω

−d(x, ∂Ω) x ∈ Ω

, (1)

where Ω denotes the object, and d(x, ∂Ω) = minxI∈∂Ω

(|x − xI |)measures the shortest distance of each given point
x from the object boundary points. The distance sign deter-

mines whether the given point is inside or outside of the
object. Figure 4 illustrates the signed distance function con-
tour plot for a S814 airfoil.

Here, the SDF has positive values at points which are out-
side of the airfoil, and it decreases as the point approaches the
boundaryof the airfoilwhere theSDF is zero, and it takes neg-
ative values inside the airfoil. Fast marchingmethod [34] and
fast sweeping method [47] are among the popular algorithms
for calculating the signed distance function. To generate a
signed distance function, we use the CFD input structured
C-mesh information and define the points around the object
(airfoil). Figure 5 shows the C-mesh representation of an
airfoil (S814) and its boundary points on a Cartesian grid.

We find the distance of Cartesian grid points from the
object boundary points, using the fast marchingmethod [34].
To find out whether a given point is inside, outside, or just
on the surface of the object, we search the boundary points
and compute the scalar product between the normal vector
at the nearest boundary points and the vector from the given
point to the nearest one and judge the function sign from the
scalar product value. For other non-convex objects, one can
also use different approaches of crossing number or winding
number method which are common in ray casting [10].

After pre-processing the CFD mesh files, we use the SDF
as an input to feed the encoder–decoder architecture with
multiple layers of convolutions. Convolution layers in the
encoding-decoding part extract all the geometry features
from the SDF.

2.6 Convolutional encoder–decoder approach

To learn all the geometry features from an input SDF, we
compose the encoder and decoder with convolution layers
and convolutional filters. Every convolutional layer is com-
posed of 300 convolutional filters. Therefore, a convolution
produces a set of 300 activation maps. Every convolution
in our design is wrapped by a non-linear Swish activa-
tion function [32]. Swish is defined as x · σ(βx) where
σ(z) = (1 + exp(−z))−1 is the sigmoid function and β

is either a constant or a trainable parameter. The resulting
activation maps are the encoding of the input in a low dimen-
sional space of parameters to learn. The decoding operation is
a convolution as well, where the encoding architecture fixes
the hyper-parameters of the decoding convolution.Compared
to the encoding convolution layer, here a convolution layer
has reversed forward and backward passes. This inverse oper-
ation is sometimes referred to “deconvolution”.Thedecoding
operation unravels the high-level features encoded and trans-
formed by the encoding layers and generates the mapping to
the pressure field and different components of the velocity.
When we use the CNN, neurons in the same feature map
plane have identical weights so that the network can study
concurrently, and it learns implicitly from the training data.
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(a) Prediction (separated decoder). (b) Prediction (shared decoder).

(c) Ground truth.

Fig. 12 Prediction of the x-component of the velocity field around the S809 airfoil at α = 1◦ and Re = 1 × 106

(separated decoder). (shared decoder).
(a) Prediction (b) Prediction

(c) Ground truth.

Fig. 13 Prediction of the x-component of the velocity field U around the S814 airfoil with α = 19◦ and Re = 3 × 106
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Table 3 MAPE for the components of the velocity field (U and V respectively) and pressure (shared decoder)

Airfoil AOA (◦) Re ×106 Variable Error in the wake region (%) Error in the entire flow (%)

S809 1 1 U 12.25 10.35

S809 1 1 V 24.27 11.53

S809 1 1 P 5.14 8.40

S814 19 3 U 30.80 13.13

S814 19 3 V 10.43 5.49

S814 19 3 P 13.84 5.70

Table 4 MAPE for the components of the velocity field (U and V respectively) and pressure (separated decoder)

Airfoil AOA (◦) Re ×106 Variable Error in the wake region (%) Error in the entire flow (%)

S809 1 1 U 11.43 7.79

S809 1 1 V 15.53 8.74

S809 1 1 P 5.76 7.36

S814 19 3 U 27.23 13.20

S814 19 3 V 5.57 4.69

S814 19 3 P 12.93 5.71

The training phase of the CNN comprises the input function,
the feed-forward process, and the back-propagation process.

2.7 Data preparation

In total, a set of 252 RANS simulations were performed.
This data includes our CFD predictions for three different
S805, S809, and S814 airfoils. The training data-set consists
of 85% of the full set, and the remaining data sets are used
for testing, as shown in Fig. 6.

The test points are chosen uniformly at random on the
feature space, providing an unbiased evaluation of a model
fit on the training data-set while tuning the model’s hyper-
parameters.

Figure 7 shows the x-component of the velocity field (U )
around the S814 airfoil on the structured C-mesh. The simu-
lation is performed at an angle of attack of α = 9◦ and with
the Reynolds number of 3 × 106.

The CFD data has to be interpolated onto a 150 × 150
Cartesian gridwhich contains the SDF.A triangulation-based
scattered data interpolation method [2] is used. After the
interpolation of the data to the Cartesian grid, the interior
points are masked, and the velocity is set to zero. The com-
parison of the reconstructed data in Fig. 8 and the CFD data
in Fig. 7 shows evidence of interpolation errors.

The interpolated data is normalized using the standard
score normalization by subtracting the mean from the data
and dividing the difference by the standard deviation of
the data. Scaling the data causes each feature to con-
tribute approximately proportionately to the training, and
also results in a faster convergence of the network [1].

2.8 Network training and hyper-parameter study

The network learns different weights during the training
phase to predict the flow fields. In each iteration, a batch
of data undergoes the feed-forward process followed by a
back-propagation (see Sect. 2.6). For a given set of input and
ground truth data, the model minimizes a total loss function
which is a combination of two specific loss functions and an
L2 regularization as follows:

MSEshared = 1

m(nx − 2)(ny − 2)

m∑

l=1

ny−1∑

j=2

nx−1∑

i=2
[(

Ul
i j truth

−Ul
i jpred

)2 +
(
V l
i j truth

− V l
i jpred

)2

+
(
Pl
i j truth

− Pl
i jpred

)2
]

, (2)

GSshared = 1

6m(nx − 2)(ny − 2)

m∑

l=1

ny−1∑

j=2

nx−1∑

i=2
⎡

⎣

(
∂Pl

∂xi j truth
− ∂Pl

∂xi jpred

)2

+
(

∂Pl

∂ yi j truth
− ∂Pl

∂ yi jpred

)2

+
(

∂Ul

∂xi j truth
− ∂Ul

∂xi jpred

)2

+
(

∂Ul

∂ yi j truth
− ∂Ul

∂ yi jpred

)2

+
(

∂V l

∂xi j truth
− ∂V l

∂xi jpred

)2

+
(

∂V l

∂ yi j truth
− ∂V l

∂ yi jpred

)2
⎤

⎦ , (3)
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with GS. (w.r.t ground truth)

(c) Prediction (separated decoder)
without GS. (w.r.t ground truth)

without GS.

(a) Prediction (shared decoder) (b) Absolute difference

(d) Absolute difference

(e) Prediction (shared decoder) (f) Absolute difference
(w.r.t ground truth)

Fig. 14 Prediction of the x-component of the velocity field Up around the S809 airfoil at α = 1◦ and Re = 1 × 106, with and without gradient
sharpening

L2regularization = 1

2m

L∑

l=1

nl∑

i=1

(θ li )
2, (4)

where U , and V are the x-component and y-component
of the velocity field respectively, and P is the scalar
pressure field. m is the batch size, nx is the number of
grid points along the x-direction, ny is the number of
grid points along the y-direction, and L is the number

of layers with trainable weights, and nl represents num-
ber of trainable weights in layer l. MSE is the mean
squared error, and GS is gradient sharpening or gradi-
ent difference loss (GDL) [21,23]. In this paper, we use
gradient sharpening based on a central difference opera-
tor. The network was trained for 30,000 epochs with a
batch size of 214 data points, which took 33 GPU hours.
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with GS. (w.r.t ground truth)

without GS. (w.r.t ground truth)

without GS.

(a) Prediction (shared decoder) (b) Absolute difference

(c) Prediction (separated decoder) (d) Absolute difference

(e) Prediction (shared decoder) (f) Absolute difference
(w.r.t ground truth)

Fig. 15 Prediction of the x-component of the velocity field Up around the S814 airfoil at α = 19◦ and Re = 3 × 106, with and without gradient
sharpening

For the separated decoder, the following loss functions are
used:

MSEseparated = 1

m(nx − 2)(ny − 2)

m∑

l=1

ny−1∑

j=2

nx−1∑

i=2

[(
Xl
i j truth

− Xl
i jpred

)2
]

, (5)

GSseparated = 1

2m(nx − 2)(ny − 2)

m∑

l=1

ny−1∑

j=2

nx−1∑

i=2
⎡

⎣

(
∂Xl

∂xi j truth
− ∂Xl

∂xi jpred

)2

+
(

∂Xl

∂ yi j truth
− ∂Xl

∂ yi jpred

)2
⎤

⎦ , (6)

where X stands for U , V or P .
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Table 5 MAPE for the components of the velocity field (U and V respectively) and pressure (separated decoder)

Airfoil AOA (◦) Re ×106 Variable Error in the wake
region without GS
(%)

Error in the wake
region with GS (%)

Error in the entire
flow without GS (%)

Error in the entire
flow with GS (%)

S809 1 1 U 11.43 11.30 7.79 9.92

S809 1 1 V 15.53 19.43 8.74 8.88

S809 1 1 P 5.76 6.82 7.36 8.09

S814 19 3 U 27.23 9.49 13.20 7.38

S814 19 3 V 5.57 3.09 4.69 2.94

S814 19 3 P 12.93 4.71 5.71 3.11

S805 4 3 U 13.40 4.47 6.44 2.99

S805 4 3 V 3.96 1.42 5.60 4.85

S805 4 3 P 8.48 3.72 5.37 3.22

Table 6 MAPE for the components of the velocity field (U and V respectively) and pressure with and without GS (shared decoder)

Airfoil AOA (◦) Re ×106 Variable Error in the wake
region without GS
(%)

Error in the wake
region with GS (%)

Error in the entire
flow without GS (%)

Error in the entire
flow with GS (%)

S809 1 1 U 12.25 8.35 10.35 5.57

S809 1 1 V 24.27 17.43 11.53 6.52

S809 1 1 P 5.14 3.18 8.40 3.86

S814 19 3 U 30.80 19.89 13.13 11.37

S814 19 3 V 10.43 3.52 5.49 3.04

S814 19 3 P 13.84 7.95 5.70 3.57

S805 4 3 U 15.68 15.15 6.50 9.59

S805 4 3 V 4.20 1.29 7.63 10.70

S805 4 3 P 8.58 32.77 4.03 15.06

Finding the optimal set of hyper-parameters for the net-
work is an empirical task and is done by performing a grid
search consisting of an interval of values of each hyper-
parameter, and trainingmany networks with several different
combinations of these hyper-parameters. The resulting net-
works are compared based on generalization tendency and
the difference between the truth and prediction.

3 Results and discussion

We first show the capability of the designed network archi-
tecture to accurately estimate the velocity and pressure field
around different airfoils given only the airfoil shape. Then,
we quantitatively assess the error measurement followed by
a sequence of results which demonstrate usability, accuracy
and effectiveness of the network.

Figure 9 illustrates the training and validation results from
the network. It shows the working concept of the proposed
structure, by incorporating the fluid flow characteristics and

airfoil geometry. Results are presented at the epoch number
with the lowest validation error.

3.1 Model validation

TheAbsolute percent error (APE) or the unsigned percentage
error is used as a metric for comparison:

APE = |Prediction − Truth|
|Truth| × 100. (7)

The mean value of the absolute percent error (MAPE) is
standard as a Loss function for regression problems. Here,
model evaluation is done using MAPE due to the very intu-
itive interpretation regarding the relative error and its ease of
use.

In this paper, the MAPE between the prediction and the
truth is calculated in the wake region of an airfoil and the
entire flow field around the airfoil. Here, the wake region of
the airfoil is an area defined as {(x, y)|x ∈ [1.1, 1.5] , y ∈
[−0.5, 0.5]}, and {(x, y)|x ∈ [−0.5, 1.5] , y ∈ [−0.5, 0.5]}
is the entire flow field area around the airfoil. The predictions
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(a) S805 airfoil. (b) S809 airfoil.

(c) S814 airfoil.

Fig. 16 Three probes around each airfoil which are leading edge probe (LE), trailing-edge probe (TE), and the probe at the wake region of the
airfoil. Each red star symbol, depicts a probe

Table 7 APE at probe locations (shared decoder)

Airfoil AOA (◦) Re ×106 Variable Error at LE probe (%) Error at TE probe (%) Error at wake probe (%)

S805 12 3 U 2.36 1.67 31.66

S805 12 3 V 0.96 0.74 1.50

S805 12 3 P 9.35 6.56 22.44

S809 1 3 U 0.08 2.38 5.45

S809 1 3 V 0.73 2.22 1.93

S809 1 3 P 0.23 3.16 1.07

S814 15 2 U 0.75 1.98 1.64

S814 15 2 V 0.76 1.17 0.18

S814 15 2 P 5.67 6.56 8.02

contain 2–3%of pointswith an error value greater than 100%,
which are treated as outliers and not included in the reported
errors.

3.2 Numerical simulations

3.2.1 Angle of attack variation

At a fixed Reynolds number (Re = 1×106) and fixed airfoil
shape (S805), we consider simulations with angles of attack
of 1◦ increments fromα = 0◦ toα = 20◦. By using this small
set of data (21data points),we train the networkwith 50filters

instead of the aforementioned 300 filters in each layer (see
Sect. 2.6 for more details). The total loss function comprises
only anMSEandwith no regularization during training. Thus
the cost function over the training set is presented as,

Cost = λMSE × MSE, (8)

where λMSE is a user defined parameter (here it is λMSE =
1). After the network training is complete, testing is per-
formed on four unseen angles of attacks, α = 2.5◦, 7.5◦,
12.5◦, and 19.5◦ respectively. Figure 10 shows the com-
parison between the network prediction and the actual
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(a) Prediction (Up). (b) Ground truth (Ut). (c) Absolute difference.

(d) Prediction (Vp). (e) Ground truth (Vt). (f) Absolute difference.

(g) Prediction (Pp). (h) Ground truth (Pt). (i) Absolute difference.

Fig. 17 Ground truth versus prediction of the velocity field components and pressure around the S805 airfoil at α = 12◦ and Re = 3 × 106

observation from the CFD simulation for the x-component of
the velocity field around the S805 airfoil at an angle of attack
of α = 12.5◦. A visual comparison shows that the prediction
is in agreement with the truth.

Tables 1 and 2 present the MAPE calculated in the wake
region and the entire flow field around the S805 airfoil (see
Fig. 10), where the fluid flow characteristics are the angle of
attack of α = 12.5◦ and the Reynolds number of 1 × 106.

The results in Tables 1 and 2, illustrate that the errors in the
wake region are generally similar to the errors in the entire
flow field. This trend is true not only for this case but also
in subsequent experiments. Figure 11 shows the comparison
between the CFD result and the network prediction of the
x-component velocity profile of the airfoil wake at x = 1.1
(downstream location from the leading edge).

3.2.2 Shape, angle of attack, and Reynolds number
variation

We train the network using 85% of the 252 RANS simulation
data-sets, with the variation of the airfoil shape, angle of
attack and Reynolds number. Every convolutional layer is

composed of 300 convolutional filters (see Sect. 2.6 for more
details). The total loss function during training comprises an
MSE loss function with the L2 regularization. Thus, the cost
function over the training set is presented as,

Cost = λMSE × MSE + λL2 × L2regularization, (9)

where λMSE = 1 and λL2 = 10−5 are user defined parame-
ters.

Figures 12 and 13 present the comparisons between the
network predictions and observations for the x-component
of the velocity field around the S809 and S814 airfoils at
(α = 1◦, Re = 1 × 106) and (α = 19◦, Re = 3 × 106).

Quantitative results are presented in Tables 3 and 4.

3.2.3 Shape, angle of attack, and Reynolds number
variation with gradient sharpening

To penalize the difference of the gradient in the loss func-
tion, and to address the lack of sharpness in predictions, we
use gradient sharpening (GS) [21,23] in the loss functions
combination and present the cost function over the training
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(a) Prediction (Up). (b) Ground truth (Ut). (c) Absolute difference.

(d) Prediction (Vp). (e) Ground truth (Vt). (f) Absolute difference.

(g) Prediction (Pp). (h) Ground truth (Pt). (i) Absolute difference.

Fig. 18 Ground truth versus prediction of the velocity field components and pressure around the S809 airfoil at α = 1◦ and Re = 3 × 106

set as,

Cost = λMSE × MSE + λGS × GS + λL2 × L2regularization,
(10)

where λMSE, λGS and λL2 are the user defined parameters
and their values are set via systematic experimentation, as
0.9, 0.1 and 10−5 respectively.

Figures 14 and 15 present the comparisons between the
network predictions with and without GS loss for the x-
component of the velocity field around S809 and S814
airfoils respectively.

Visual comparisons of the predictions and the absolute dif-
ference with and without GS as illustrated in Figs. 14 and 15
are proofs of further gains and sharpness in the network pre-
dictions. The “absolute difference” between the prediction
and ground truth, for example, is defined as the absolute dif-
ference in the subtraction of each element in prediction from
the corresponding element in ground truth. TheMAPE for the
components of the velocity field and pressure of the airfoils
(S809 and S814 discussed above) are presented in Tables 5
and 6. The errors are reported in the wake region and the
entire flow field around the airfoils with and without GS.

The predictions with GS in the loss function compared to
not having it show significantly reduced errors in the wake
region of the airfoil (20% or more in the x-component of
the velocity and pressure predictions) and obvious gains and
sharpness in the entire flow field around the airfoil.

To further compare the accuracy of the network predic-
tions,weuse three probes arounddifferent airfoils in different
flow conditions. These probes are leading edge probe (LE),
trailing-edge probe (TE), and the probe at the wake region
of an airfoil. Figure 16 illustrates these three probes around
different airfoils, S805, S809, and S814, respectively.

Table 7 presents the APE (Eq. 7) at the probe locations
(LE, TE, and wake region probe).

Figures 17, 18 and 19 illustrate the flow-field predictions
with gradient sharpening in the loss function and in compar-
ison with the reference results from the OVERTURNS CFD
code.

Figures 20 and 21 illustrate the x-component velocity pro-
file of the airfoil wake at x = 1.1 (downstream location from
the leading edge). These predictions include GS in the loss
function.

As a further comparison of the network prediction accu-
racy, we consider the pressure distribution on the upper and
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Up). Ut).

Vp). Vt ).

Pp). Pt).

(a) Prediction ( (b)Ground truth ( (c) Absolute difference.

(d) Prediction ( (e) Ground truth ( (f) Absolute difference.

(g) Prediction ( (h) Ground truth ( (i) Absolute difference.

Fig. 19 Ground truth versus prediction of the velocity field components and pressure around the S814 airfoil at α = 15◦ and Re = 2 × 106

lower boundaries. Figures 22, 23 and 24 depicts the Ground
truth versus Predictions of the normalized pressure using the
standard score normalization along the surface of the S805,
S809, and S814 airfoils respectively. It is noteworthy that the
surface with a one-pixel gap adjacent to the airfoil surface is
used to obtain the pressure values. This change is due to the
masking of the airfoil as an input during the training.

3.2.4 Prediction for unseen airfoil shapes

To further explore the predictive ability and accuracy of the
trained network, three unseen geometries are considered as
shown in Fig. 25). The first one, denoted by “new airfoil” is
an averaged shape of S809 and S814 airfoils. In addition, the
S807 and S819 airfoils are also considered.

Overall, results are in good agreement with the ground
truth simulation results in the entire range of angles of attacks
and Reynolds numbers for the three different airfoils.

Figures 26, 27 and 28 illustrate the prediction of the
network on the unseen airfoils in comparison to CFD simu-
lations.

Fig. 20 Wake velocity (x-component) prediction at x = 1.1 down-
stream of the trailing edge for the S809 airfoil at α = 1◦ and Re =
1 × 106

Table 8 provides a quantification of the results, and sug-
gests good generalization properties of the network to an
unseen shape.

123



Computational Mechanics (2019) 64:525–545 541

Fig. 21 Wake velocity (x-component) prediction at x = 1.1 down-
stream of the trailing edge for the S814 airfoil at α = 15◦ and
Re = 2 × 106

Fig. 22 Pressure prediction (standard score normalization) along the
surface of the S805 airfoil at α = 12◦ and Re = 3 × 106

Fig. 23 Pressure prediction (standard score normalization) along the
surface of the S809 airfoil at α = 1◦ and Re = 3 × 106

Fig. 24 Pressure prediction (standard score normalization) along the
surface of the S814 airfoil at α = 15◦ and Re = 2 × 106

Fig. 25 Illustration of the newly created airfoil in black which is an
averaged shape between the S809 and S814 airfoils respectively. The
S807 and S819 airfoils are also illustrated in blue and red respectively

4 Conclusions and future work

A flexible approximation model based on convolutional
neural networks was developed for efficient prediction of
aerodynamic flow fields. Shared-encoding and decoding
was used and found to be computationally more efficient
compared to separated alternatives. The use of convolution
operations, parameter sharing and robustness to noise using
gradient sharpening were shown to enhance predictive capa-
bilities. The Reynolds number, angle of attack, and the shape
of the airfoil in the form of a signed distance function are
used as inputs to the network and the outputs are the velocity
and pressure fields.

The framework was utilized to predict the Reynolds
Averaged Navier–Stokes flow field around different airfoil
geometries under variable flow conditions. The network pre-
dictions on a single GPU were four orders of magnitude
faster compared to the RANS solver, at mean square error
levels of less than 10% over the entire flow field. Predictions
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Up). Ut).(a) Prediction ( (b) Ground truth (

(c) Absolute difference.

Fig. 26 Ground truth versus prediction of the x-component of the velocity field (Ut vs.Up) and absolute difference (|Ut −Up|) around the unseen
airfoil at α = 9◦ and Re = 3 × 106

(a) (b)

Fig. 27 Ground truth versus prediction of the x-component of the velocity field (Ut vs. Up) around the S807 airfoil at α = 10◦ and Re = 1× 106

(a) (b)

Fig. 28 Ground truth versus prediction of the x-component of the velocity field (Ut vs. Up) around the S819 airfoil at α = 10◦ and Re = 1× 106
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Table 8 MAPE for the
components of the velocity field
(U and V respectively) and
pressure in the wake region of
S807 and S819 airfoils
respectively and the entire flow
field around them

Airfoil Variable Error in the wake region (%) Error in the entire flow (%)

New U 10.55 6.41

New V 5.71 8.59

New P 4.41 5.27

S807 U 11.35 8.4

S807 V 2.2 8.8

S807 P 6.0 7.6

S819 U 13.3 10.3

S819 V 2.4 8.6

S819 P 5.5 7.5

were possible with a small number of training simulations,
and accuracy improvements were demonstrated by employ-
ing gradient sharpening. Furthermore, the capability of the
network was evaluated for unseen airfoil shapes.

The results illustrate that the CNNs can enable near
real-time simulation-based design and optimization, open-
ing avenues for an efficient design process. It is to be noted
that the use of only three airfoil shapes for training is a
limit factor in generalization of the predictive capabilities.
Future work will seek to use a rich data set including mul-
tiple airfoil families in training and to augment the training
data-sets to convert a set of input data into a broader set of
slightly altered data [35] using operations such as translation
and rotation. This augmentation would effectively help the
network from learning irrelevant patterns, and substantially
boost the performance. Furthermore, exploring physical loss
functions can be helpful in explicitly imposing physical con-
straints such as the conservation of mass and momentum by
the networks.
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Appendix: Governing equations

The RANS equations are derived by ensemble-averaging
the conservation equations of mass, momentum and energy.
These equations, for compressible flow are given by:

∂ρ̄

∂t
+ ∂

(
ρ̄ûi

)

∂xi
= 0 (11)

∂
(
ρ̄ûi

)
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+ ∂

(
ρ̄ûi û j
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i u

′′
j

)

,

(13)

where the overbar indicates conventional time-averagemean,
ui is the fluid velocity, ρ is the density, p is the pressure, τi j is
the Reynolds stress term, cP is the heat capacity at constant
pressure, and κ is the kinetic energy of the fluctuating field
(local turbulent kinetic energy). The density weighted time
averaging (Favre averaging) of any quantity ξ , denoted by ξ̂

is given as ξ̂ = ρξ/ρ̄, where,

Ĥ = Ê + p̄

ρ̄
, (14)

σ̄i j = μt

(
∂ ûi
∂x j

+ ∂ û j

∂xi
− 2

3

∂ ûk
∂xk

δi j

)

, (15)

τi j = −ρu′′
i u

′′
j , (16)

k = û′′2
i + v̂′′2

i +̂w′′2
i

2
, (17)

p̄ = (γ − 1)ρ̄

[

Ê − û2 + v̂2 + ŵ2

2
− k

]

. (18)

To provide closure to the above equations, we use the
model proposed by Spalart andAllmaras [39]. In this closure,
the Boussinesq hypothesis relates the Reynolds stress and
the effect of turbulence as an eddy viscosity μt . Employing
the Boussinesq approach, and Reynolds Analogy a transport
equation for a working variable ν̃ is solved to estimate the
eddy viscosity field at every iteration.

∂ν̃

∂t
+ u j

∂ν̃

∂x j
= Cb1 [1 − ft2] S̃ν̃

+ 1

σ

{
∇ · [

(ν + ν̃)∇ν̃
] + Cb2 |∇ν̃|2

}
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−
[

Cw1 fw − Cb1

κ2 ft2

] (
ν̃

d

)2

. (19)

The turbulent eddy viscosity is computed as μt = ρ̄ν̃ fv1,
where,

fv1 = χ3

χ3 + C3
v1

, χ = ν̃

ν
, ν = μ

ρ̄
,

ft2 = Ct3 exp
(
−Ct4χ

2
)

,

S̃ = S + ν̃

κ2d2
fv2,

S = √
2Ωi jΩi j, fv2 = 1 − χ

1 + χ fv1
,

fw = g

[
1 + C6

w3

g6 + C6
w3

]1/6

,

g = r + Cw2(r
6 − r), r = ν̃

S̃κ2d2
,

Cw1 = Cb1

κ2 + 1 + Cb2

σ
,

Cb1 = 0.1355, σ=2/3, Cb2 = 0.622,

κ = 0.41, Cw2 = 0.3, Cw3 = 2.0, Cv1 = 7.1,

Ct3 = 1.2, Ct4 = 0.5.

The first term on the right hand side of this Eq. 19 is the
production term for ν̃ while the second term represents dis-
sipation.
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