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Abstract
This paper deals with the fuzzy dynamics of multibody systems with polymorphic uncertainty in the material microstructure.
Macroscopicmaterial properties are obtained using fuzzy-stochastic FEMbased computational homogenization. In particular,
the spectral stochastic local FEM is utilized to simulate a representative volume element of the microstructure. Forward
dynamics of the macroscopic system is modeled using the Graph Follower algorithm. Thereby we propagate the uncertainty
from the lowest level of material microstructure to the highest level of multibody dynamics. Differences in the propagation
of epistemic and aleatoric uncertainties to the macroscale and their influence on the multibody dynamics are discussed. A
particular example of a multibody system used in this paper is a multistory frame, whereby the considered heterogeneous
material is a cement-based concrete.

Keywords Stochastic FEM · Computational homogenization · Forward dynamics simulation · Fuzzy numbers · Epistemic
uncertainty · α-cut-optimization

1 Introduction

In general, the analysis of technical systems in engineering
applications requires precisely defined physical quantities.
These quantities can be parameters such as material proper-
ties or geometrical values. Examining dynamical systems, for
example, often requires certain deterministic quantities that
lead to an output in form of a deterministic mapping. The
approximative solution of the underlying differential equa-
tions of motion is usually found by using numerical time
integration schemes.

However, in reality these parameters are afflicted with
uncertainty. Real heterogeneous materials possess always
either uncertain material properties, some kind of geometri-
cal uncertainty in the microstructure, or both types. In many
cases, the influence of these uncertainties cannot be neglected
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without loss of accuracy. Thus, a non-deterministic modeling
technique is required.

Uncertainties can be divided in two types [1,2]. Aleatoric
uncertainty originates from the natural variability of the
microstructure and cannot be reduced [2]. This type of
uncertainties can be modeled using stochastic approaches.
Epistemic uncertainty derives from insufficient knowledge
regarding the microstructure and parameter distribution,
imperfection of the analytical models, and experimental lim-
itations. It can be described using fuzzy set theory [3]. If
both types of uncertainties are present, the system is subject
to polymorphic uncertainty [2].

The two most widely used approaches for uncertainty
propagation are stochastic analysis [4–9] and fuzzy analy-
sis [10–12]. These mathematical tools may be potentially
applied to the same classes of problems. However, they
require different input quantities, provide different outputs,
and follow different strategies while propagating uncertain-
ties.

The most widely accepted approach is to use stochastic
analysis for aleatoric problems with sufficient and precise
statistical data. In the case that additional information can be
received, themodel can be improved usingBayesian updates.
Fuzzy analysis is often preferred for models with lack of
experimental data, and contradictory or imprecise informa-
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tion. It is suited to describe measurement errors and errors
resulting frommodel simplifications. The different treatment
of aleatoric and epistemic uncertainties is motivated by a
number of studies [13–16]. Fuzzy set theory was developed
byZadeh in the sixties [3] and is explained in detail in [10,11].
In “Appendix 1” a brief reiteration of fuzzy numbers and
fuzzy set theory is given. Based on the extension principle,
the approach allows the transition from deterministic map-
pings to fuzzy mappings [10,11,17].

This paper deals with fuzzy dynamics of multibody
systems with polymorphic uncertainties in the material
microstructure modeled using fuzzy-stochastic FEM and
the Graph Follower algorithm. We apply the homogeniza-
tion scheme presented in [18]. Aleatoric uncertainties are
modeled using the stochastic local FEM [19]. Epistemic
uncertainties are modeled using the extended transformation
method for fuzzy numbers [20]. Here, the microscopic mate-
rial model is considered to be fuzzy-stochastic, while the
macroscopic material properties are described only by fuzzy
parameters.

The specific example used in this paper is concrete, a
typical heterogeneous material consisting of a cement paste
matrix filled with coarse aggregates. Mechanical properties
of heterogeneous materials may strongly differ depending on
the aggregate volume fraction, aggregate size and stiffness,
and cement quality. The effective macroscopic properties
of heterogeneous materials are estimated from the response
of the underlying microstructure by homogenization. The
classical homogenization approach considers a determin-
istic representative volume element of the microstructure.
The response is then transferred to the macroscale. For
an overview of existing deterministic homogenization tech-
niques we refer to [21].

In contrast to that, in this paper the material model of
concrete contains polymorphic uncertainty and requires a
mixed fuzzy-stochastic description. There are four specific
sources of uncertainties in the considered concrete model—
two aleatoric uncertainties and two epistemic uncertain-
ties: random aggregate sizes, random aggregate distribution
within the matrix, measurement error, and error resulting
from model simplification. Aleatoric uncertainties influence
microscopic quantities and are important when considering
local phenomena like crack growth, plasticity and damage.
On the macroscale, an averaging procedure is applied. Thus,
no parameter spread resulting from aleatoric uncertainties in
the microstructure needs to be considered. Epistemic uncer-
tainties cannot be averaged due to their nature. The data
spread resulting from epistemic uncertainties is therefore
transferred from the microscale to the macroscale.

The paper focuses on epistemic uncertainty in the forward
dynamics simulation for the specific example of a multistory
frame. For this, the uncertain parameter determined by the
fuzzy-stochastic finite element analysis of the microstruc-

ture of concrete is integrated. Following [22] and [23], the
fuzzy mapping of the dynamical system is determined from
the deterministic mapping. In [22], an efficient numerical
method calledGraph Follower algorithm is developed,which
is used for the simulation of forward dynamicswith epistemic
parameter-uncertainty. Based on this algorithm, the discrete
envelopes in fuzzy forward dynamics for a multistory frame
are determined.

2 Notation

In this work, we distinguish between deterministic and non-
deterministic variables, vectors and tensors, matrices and
operators. The following notation is used:

• Second order tensors and vectors are denoted by bold
(e.g. F) and bold italic (e.g. x) scripts, respectively.

• Random variables, second order tensors and vectors are
represented [24,25] as functions of the elementary event
ω, e.g. g(ω), F(ω), θ(ω).

• A random field is any function of the spatial coordinates
x and the elementary event ω (e.g. G(x, ω)).

• Fuzzy numbers, vectors, and matrices are denoted by a
tilde like, e.g. p̃.

• Capital calligraphic letters are used for the domains of
functions and sets (e.g. D, S, F).

• Bold calligraphic letters denote function spaces like, e.g.
the Hilbert space H.

• Differential operators are denoted by capital upright let-
ters, e.g. D(x, ω).

• In particular div and grad denote divergence and gradient
operators.

3 Non-deterministic finite element method

3.1 Stochastic finite element method

In contrast to the usual deterministic FEM the stochastic
version works with random parameters thus requiring some
preliminary definitions. Let the Euclidean space E represent
the physical space with coordinates xi assembled in the vec-
tor x. The stochastic FEM (SFEM) requires in addition the
definition of the stochastic space S [4]. This is the space of
random variables (RVs) with the basis set of RVs arranged
in the vector θ . For convenience the basis random variables
in form of truncated Gaussian RVs with zero mean and unit
variance parameter are chosen. The implementation of the
truncated Gaussian RVs instead of normal Gaussian RV is
motivated by the natural limitations of physical processes
(e.g. particle radii cannot tend to infinity) and also for rea-
sons of numerical integration stability [26].
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Fig. 1 Physical, stochastic, and product spaces E, S, and E × S with
corresponding physical, stochastic, and product domainsD,S, andV =
D × S

All other random variables can be described as a possible
nonlinear mapping of the basic set of RVs [24,25]. Thus, the
stochastic space S can be visualized similar to the physical
space E with coordinates θi assembled in the vector θ [19,
27–29]. Thus, all other random variables are functions in
S. Note that the basis RVs are independent and their joint
probability density function f� (pdf) represents the product
of all individual pdfs from the basic set of RVs.

By this definition the SFEM may be regarded as normal
deterministic FEM, only in the n-dimensional physical-
stochastic product space [19,27–29].

Galerkin-type FEM as considered in the present work is
based on the concept of a Hilbert space of functions. For
this the physical domain D ⊂ E, the stochastic domain
S ⊂ S, and the tensor product domain V = D × S are
defined. Following [4] the physical Hilbert spaceH of func-
tions defined over the domainD, the stochastic Hilbert space
Q of functions defined over the domain S, and the tensor
product Hilbert space W = H × Q of functions defined
over the domain V are introduced. Physical, stochastic, and
product spaces with corresponding domains are depicted in
Fig. 1.

SFEM shape functions belong to the spaceW , thus inte-
gration is performed over the domain V .

In this work the stochastic local FEM (SL-FEM) approach
is used, which requires unified treatment of physical and
stochastic dimensions.Thereby, local quadraticn-dimensional
serendipity-type shape functions [19] are used for the dis-
cretization of the domain V .

Let 〈 〉 denote the inner product in the physical-stochastic
product space.

〈g1(x, ω)g2(x, ω)〉 :=
∫

D

∫

S
g1(x, θ)g2(x, θ)dx f�dθ , (1)

where f� is the joint probability density function of the basis
random variables.

Next, a randomdifferential operatorD(x, ω) is considered
such that

D(x, ω)q(x, ω) = f (x, ω), (2)

where f (x, ω) is the random loading and q(x, ω) is the
unknown function.

Thus, Galerkin projections of the differential operator
D(x, ω) and the unknown function q(x, ω) onto the basis
ϕ(x, ω) yield

q(x, ω) =
Nq∑
i=1

qiϕi (x, ω), (3)

〈[
D(x, ω)q(x, ω) − f (x, ω)

]
ϕi (x, ω)

〉 = 0,

∀i = 1, . . . , Nq , (4)

where Nq is the number of basis functions.
For a 2D linear mechanical problem the differential oper-

ator in (2) reads

D(x, ω)q(x, ω) := − div σ
(
ε(x, ω)

)
,

f (x, ω) := f (x, ω),
(5)

where q(x, ω) corresponds to the random deformation map
describing the position of material points, f (x, ω) denotes
the random body forces and σ and ε represent the stress
tensor and the linear strain tensor, respectively. Please note
that the div and D involve differentiation only with respect
to the physical coordinates x.

For simplicity of representation, the random deformation
map is rewritten using matrix notation:

q(x, ω) = x + u(x, ω),

u(x, ω) = ϕ(x, ω)U = [
ϕ1(x, ω)I ϕ2(x, ω)I . . .

]
U,

ε = Du(x, ω) =
⎡
⎢⎣

∂
∂x1

0
0 ∂

∂x2
∂

∂x2
∂

∂x1

⎤
⎥⎦ u(x, ω) = B(x, ω)U,

σ (x, ω) = Eε(x, ω),

where I is the identity matrix and the matrix E represents
Hooke’s law, e.g. for plane strain problems reading

E = E

[1 + ν][1 − 2ν]

⎡
⎣1 − ν ν 0

ν 1 − ν 0
0 0 1

2 [1 − 2ν]

⎤
⎦ , (6)

where E and ν are Young’s modulus and Poisson’s ratio,
respectively.
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Here, U is a vector of coefficients in the finite approxima-
tion of (3)

U =

⎡
⎢⎢⎢⎣

u1
u2
...

un

⎤
⎥⎥⎥⎦ , ui =

⎡
⎢⎣
ui1
ui2
...

⎤
⎥⎦ ,

where ui j represents the j th component of the displacement
field projected onto the i th basis function.

Thus, Galerkin projections yield the necessary condition
of the total mechanical energy minimum:

K · U = Fext ,

K := 〈
BtEB

〉
,

(7)

where K is the linear elastic stiffness matrix, Bt is the trans-
posed matrix B, and vector Fext represents external loading.
Finally a deformed state is obtained as:

q(x, ω) = x + ϕ(x, ω)U .

3.2 Fuzzy finite element analysis

In many cases the system parameters cannot be obtained
exactly due to many reasons: lack of knowledge regarding
the microstructure, limited accuracy of the fitting proce-
dure, imperfection of the model (which can be fitted to
the experimental data but never coincides with them), noisy
experimental data, insufficient number of experimental sam-
ples, etc. Based on the source of uncertainties, available input
data, and required output, either the probabilistic or the non-
probabilistic description of the problem parameters may be
used. The most well-developed non-probabilistic techniques
are interval arithmetic, evidence theory, and fuzzy arithmetic
[10,11].

The fuzzy problem description may be preferred if the
available data is coarse or inconsistent, but more specific
than only upper and lower bounds, or in case the sensitivity
with respect to the parameter spread size is studied. The dis-
cussion on a fuzzy description for the considered problem is
presented in detail in [18].

In case of different types of uncertainties present in the
system, one refers to polymorphic uncertainties. In this case
the interval-stochastic, fuzzy-stochastic or evidence theory
is applied. All of these approaches use p-boxes instead of
precise cumulative probability distribution functions of input
parameters. That is the reasonwhy an alternative terminology
for this techniques is often used: the imprecise probability.
The combination of random variables and fuzzy numbers
used to describe imprecision in the considered problem [18]
results naturally in a fuzzy-stochastic problem treatment.

Fig. 2 Structure of the fuzzy-stochastic FEM based homogenization
framework

The structure of the proposed fuzzy-stochastic homoge-
nization framework is as follows [18]. Based on the exper-
imental data we design a stochastic representative volume
element. Parametrized distributions like, e.g. truncatedGaus-
sian or truncated log-normal, are used to fit statistical data.
The distribution parameters and material properties can-
not be estimated exactly and, thus, become fuzzy numbers.
Every sample generated by fuzzy arithmetic is an indepen-
dent stochastic problem and is solved separately (Fig. 2).
The SFEM output is then analyzed in order to construct the
response surface for every quantity of interest, e.g. for the
homogenized stress mean value. Response surfaces are used
to extract min and max values of the quantities of interest
for every α-cut. Finally fuzzy response curves are plotted
representing upper and lower bounds for every α-cut.

4 Computational homogenization of
heterogeneousmaterials with
polymorphic uncertainties in the
microstructure

4.1 Description of random particle positions

In this section we briefly explain the approach which is
used to describe heterogeneous materials with randomly dis-
tributed circular particles of different sizes. Let us consider
firstly a material with circular particles of equal size and then
generalize this approach to the case of random particle sizes.

An attempt to describe the particle positions in terms
of random variables results in a large and complex sys-
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tem of random variables with strongly nonlinear depen-
dencies between them. Due to the fact that particles are
non-overlapping, inequalities should be used to restrict the
particle positions. However, the extremely high complexity
of such a description necessitates some alternative approach.

The traditional description of random particle distribu-
tions is based on the concept of a n-point probability density.
The one-point probability density represents the relative den-
sity of particles. Thereby, higher one-point probability results
in higher particle density in the given area. Interparticle dis-
tance is characterized by the two-point probability density
function. For the considered case of uniform one-point prob-
ability function and homogeneous particle distribution, the
two-point probability density may be considered as the prob-
ability to find the next particle in a certain distance from the
given particle. Thereby the direction of search is not impor-
tant.

In many cases the interparticle distance plays the key role
in the determination of mechanical stresses. Thus, material
models based on a two-point probability density function
are proven to be very accurate. Examples of that kind of
models may be found in e.g. [30]. The model presented
in [30] considers only one particle (center) surrounded by
an infinite set of particles with random distances to the
center. The disadvantage of this approach is that the inter-
particle distances between the surrounding particles are not
considered. Figure 3 demonstrates the particle distribution
generated using the two-point probabilities only. Note that
the non-overlapping restriction and distribution homogene-
ity,whichwerementioned earlier, are not fulfilled.Moreover,
the introduction of any restrictions on the distances between
the surrounding particles requires the use of three-, four-,
five-, and n-point distribution density functions, thus, result-
ing in an extremely complex system of random variables.

Another disadvantage of two-point probability models is
that there are particles next to the center along somedirection,
which are extremely far and have only a very weak influence
on the deformed state around the center (Fig. 4). Due to the
fact thatmechanical laws are strongly local, only the interpar-
ticle distance to the direct neighbors should be considered.
Thus, an advanced material model must distinguish between
direct neighbors and the rest of the particles andmust account
for the interparticle distances between surrounding particles.

Thus, an alternative approach consists in an application of
the Delaunay triangulation with further statistical analysis.
Let us generate randomly distributed particles of equal sizes
and perform triangulation considering the particle centers as
nodal points (Fig. 5). Delaunay triangulation determines the
nearest particles (neighbors) to the givenparticle and evaluate
the distances to direct neighbors only.

Two important statistical estimations may be obtained
from the produced triangulation: the distribution of inter-
particle distances between direct neighbors (Fig. 6) and the

Fig. 3 Particle distribution around the center particle generated using
the two-point probabilities only. The non-overlapping restriction and
distribution homogeneity are not fulfilled

Fig. 4 Two-point probability considers all presented particles as neigh-
bors, however only the direct neighbors influence the deformed state
near the center

statistics on the number of direct neighbors (Fig. 7). The
interparticle distance is always bigger or equal to the parti-
cle diameter. Thus, the non-overlapping condition is fulfilled
automatically. The number of direct neighbors is bigger or
equal three and the most probable number is six. Using these
two statistical measures one may generate consistent random
samples with the considered properties (homogeneity, non-
overlapping restriction, etc.). The presented statistical data
looks like first order statistics, but contains also the informa-
tion from the two-point distribution function and more.

The interparticle distance is an important quantity for
the estimation of the micromechanical stresses. However,
observations demonstrate that the homogenized stress values
exhibit strong dependency only on some averaged (integral)
quantity, namely thevolume fraction.This is also the underly-
ing reason that thewell-knownMori-Tanaka homogenization
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Fig. 5 Delaunay triangulation of the randomly distributed circular
inclusions of equal sizes. For every given particle the number of neigh-
bor particles and distances to the direct neighbors are known

Fig. 6 Distribution of the distances between direct neighbors in a
Delaunay triangulation. The smallest distance is equal to the particle
diameter, thus, particles are non-overlapping

technique requires only three input quantities: particle size,
particle shape and volume fraction. The simulations per-
formed in [31] demonstrate that a single unit cell with volume
fraction corresponding to the volume fraction of the material
with randomly distributed particles provides already a good
approximation for homogenized stresses. Thus, the volume
fraction is the dominating factor for the estimation of homog-
enized stresses.

In order to take into account the volume fractionwe switch
from the Delaunay triangulation to its dual—the Voronoi tes-
sellation (Fig. 8). The Voronoi tessellation divides the total

Fig. 7 Number of direct neighbors in a Delaunay triangulation. The
smallest number is three, themost frequently observed number of neigh-
bors is six

Fig. 8 TheVoronoi tessellation divides the total area into the cells asso-
ciated with particles such that the every cell contains all material points
which are closer to the associated particle than to any other particle.
The Voronoi tessellation is the dual to the Delaunay triangulation

area into the cells associated with particles such that every
cell contains all material points which are closer to the asso-
ciated particle than to any other particle. This division is
unique for the given Delaunay triangulation. The Voronoi
tessellation contains the same statistical information as the
triangulation. The number of edges of a Voronoi cell is equal
to the number of direct neighbors. The distance to the edge
is half of the distance to the corresponding neighbor.

The average stress values in neighboring cells are only
weakly correlated. Let us divide the Voronoi cells into trian-
gular elements as depicted in Fig. 9. The triangular elements
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Fig. 9 Symmetric triangular components of two neighbor cells pos-
sessing close deformed states

Ω1 andΩ2 associated with particles P1 and P2, respectively,
are equal and symmetric. For all material points in Ω1 the
closest particle is by definition P1, the second closest is P2.
Let us consider that the deformed state in the regionΩ1∪Ω2

is defined principally by the distances to these two particles
and the influence of other particles is neglected. In this case
the deformed states in the P1-cell and the P2-cell are corre-
lated and the correlation is determined by the relative area of
Ω1. In average every cell contains 6 triangular components,
thus the correlation is weak.

The local volume fraction of every Voronoi cell is given
by νi = πr2/Ai , where Ai is the cell area. Considering the
normalized radius rn = r/a, where a = √

A/2, we obtain
νi = π/4 [rn]2i . The variable rn is evaluated accounting for
the two-point probability density function, the number of
direct neighbors, the inequality restriction, the correlation
between these quantities, and is directly related to the local
volume fraction.

The total volume fraction ν f is related to the local volume
fraction as

ν f =
N∑
i=1

Ai

Atotal
νi =

N∑
i=1

Ai

Atotal

π

4
[rn]2i , (8)

where N is the total number of particles and Atotal is the total
area. For convenience we divide the total range of values into
bins Ak . By introducing the newweight functionwk such that

wk =
∑

∀i :Ai∈Ak

Ai

Atotal
, (9)

the total volume fraction reads as

ν f =
K∑

k=1

wk
π

4
[rn]2k . (10)

Similarly, the average rn is simply
∑K

k=1 wk[rn]k . Similar
expressions hold also for other quantities. Thus, in general
the weight wk determines the partition of the whole sample
possessing a r/a = [rn]k ratio, i.e. in the limit case w(rn) is
the probability density of rn(ω).

In the case of random particle radii the Voronoi tessel-
lation fails. If the traditional Voronoi tessellation is used
the Voronoi cell edges may intersect the inclusions bound-
aries (Fig. 10a). Thus in our previous work we proposed an
improved model based on the so-called Apollonius diagram
(additively weighted Voronoi diagram), its dual is the Apol-
lonius graph also sometimes called the Delaunay graph of
disks (Fig. 10b).The computationof theApollonius graph is a
non-trivial problem due to the highly complex predicates and
curvilinear edges of the Apollonius diagram. In the general
case these edges are hyperbolic curves.We used a specialized
package of the Computational Geometry Algorithms Library
[32] in order to compute the Apollonius diagrams.

In the case,when theApollonius diagram is used instead of
Voronoi tessellation, theweightwk of every single realization
of rn is also the sumof the relative areas of all cells possessing
corresponding r/a-ratio.

4.2 Stochastic representative volume element

Homogenization considers typically two separate scales: the
macro scale and the micro scale. Therebymacroscopic mate-
rial properties are obtained from the simulation of the micro-
scopic model. In the case of randommaterial microstructures
the microscopic model should be large enough to exhibit
all macroscopic properties, thus resulting in extremely high
computational costs. Thus the ergodicity assumption is often
used, which states that averaging over one large sample is
equivalent to averaging over an ensemble of small samples.
Thereby time and computer power demanding simulations
can be replaced by the analysis of one small stochastic
representative volume element (RVE), however, including
statistical information about the microstructural variability.

In our work we utilize the homogenization framework
proposed in [18]. Thus the following simplifications are
required:

• Following [33,34], aggregates are presented by round
particles.

• Aggregates are distributed within the matrix fully ran-
domly and uniformly without preferred directions.

• The shape of the stochastic ergodic RVE is rectangular.
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Fig. 10 Part of the virtual
sample with non-overlapping
inclusions divided into Voronoi
cells (a) and Apollonius cells
(b). Note the Voronoi edges
intersecting the inclusions’
boundaries

The corresponding uncertainties are considered:

• Random particle radii (modeled as random variables),
• Random particle distribution within the matrix (statisti-
cal data obtained from the additively weighted Voronoi
diagram),

• Error in statistical data (two fuzzy variables),
• Imprecise information about the particle stiffness (fuzzy
Young’s modulus of particles).

Based on themaximum entropy principle the particle radii
distribution is considered to be log-normal and described in
terms of scale and position parameters σr and μr :

r(ω) = exp(μr + σrθ(ω)), (11)

where θ(ω) is the truncated Gaussian variable.
The cumulative probability density function (cdf) of the

log-normal radii distribution is presented in Fig. 11. The ran-
dom radius r(ω) is expressed here in normalized units. Based
on data presented in [33,35] the radius varies by a factor of
ten.

The randomparticle distribution is evaluated in a few steps
as described in Sect. 4.1:

• Real materials possess randomly distributed non-
overlapping inclusions. One may divide microscopic
material samples into cells wherein every cell represents
the set of material points that are closer in some sense to
the associated inclusion than to any other.

• The cell area distribution can be estimated statistically
based on the analysis of microscopic samples.

• The statistical information is implemented into the con-
sidered RVE model.

Based on the data presented in the literature [33,35] the
total volume fraction may be considered in the range [0 0.5],
but in most cases it is equal 0.2.

Fig. 11 The cumulative probability density function (cdf) of the log-
normal radii distribution. The random radius r(ω) is expressed in
normalized units

Figure 12 demonstrates the statistical area distribution
plotted versus the reduced radius rn formaterialswith volume
fraction of particles ν f = 0.2. The dashed area in the right
part of the figure depicts physically impossible values of rn .

If rn ≥
√

π
4 the area of the inclusion is bigger than the area

of the Apollonius cell, thus impossible for non-overlapping
inclusions. Two vertical blue lines rn = 0.13 and rn = 0.87
are limits covering 99.27% of the entire sample area. Cells
lying outside these limits are depicted by blue color. Only the
cells inside these limits are used for the evaluation of w(rn).
We truncate the distribution at this point for numerical rea-
sons in order to avoid long tails with nearly zero probability
in the resulting pdf.

The obtained cdf of rn(ω) is presented in Fig. 13. The
purple curve represents a histogram obtained from Fig. 12.
This distribution is non-Gaussian. For further applications
the reduced radius rn(ω) should be represented as a nonlin-
ear mapping of the truncated Gaussian basis random variable
[18]. The mapping curve rn(θ(ω)) : θ(ω) → R is com-
puted from the expression fr (r)dr = fθ (θ)dθ , where fr (r)
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Fig. 12 Area of the Apollonius cells Acell plotted versus rn = r/a.
The dashed area in the right part of the picture represents physically
impossible values of rn

and fθ (θ) are the probability density functions. The obtained
function is approximated by a cubic polynomial. To this end,
we introduce a new random variable which is a cubic poly-
nomial of the truncated Gaussian variable θ(ω):

pn(ω) =
4∑

i=1

ai hi (θ(ω)),

h1(θ(ω)) = [1 + 2θ(ω)][1 − θ(ω)]2,
h2(θ(ω)) = θ(ω)[1 − θ(ω)]2,
h3(θ(ω)) = θ(ω)2[3 − 2θ(ω)],
h4(θ(ω)) = θ(ω)2[θ(ω) − 1],

(12)

where the hi are cubic Hermite splines.
This model includes 4 parameters ai . The convenience of

the Hermite representation is that two parameters, namely a1
and a3 are immediately evaluated from the function values
at the ends of the interval. Thus only the parameters a2 and
a4 need to be found from curve fitting. The fitting curve does
not perfectly coincide with the experimental curve, thus we
introduce some variation to the parameters a2 and a4 [18].

Based on the results of curve fitting we design two tri-
angular fuzzy numbers: ã2 with support [0.001, 0.3145]
and modal value ā2 = 0.1 which is obtained from curve
fitting; and ã4 with support [0.001, 0.9975] and modal
value ā4 = 0.1692. The two crisp model parameters are
a1 = 0.1337 and a3 = 0.8663. The obtained function pn
is an approximation of the empirical curve rn and includes
two fuzzy parameters, therefore it cannot be visualized as
one single curve, but as lower and upper limits, i.e. the p-box
(black lines in Fig. 13).

Fig. 13 Experimental cumulative distribution function of rn(ω) and the
p-box containing the underlying experimental curve

Thereby the normalized radius is described by a fuzzy-
stochastic variable with three non-deterministic parameters.

We consider here a rectangular RVEwith size parameter a
and total area A = 4a2. The area of the RVE is considered to
exhibit the same distribution density function as the areas of
the cells. The influence of the cell’s shape is not considered,
thus, we lose some part of the statistical information in order
to reduce the number ofmodel parameters. This is a necessary
model simplification.

Thereby we propose to use a statistically similar repre-
sentative volume element [36]. The idea is to provide some
substitute or surrogate model, which possesses some statisti-
cal properties of the original model, specifically the relation
between the particle radius and the area around the parti-
cle. The statistically similar stochastic model is simple and
contains only one particle. By varying the particle radii dis-
tribution in a one-particle model we may control not only the
average stress, but also the maximum and minimum stress
and the stress standard deviation in the stochastic system.

All simulation are performed with periodic boundary
conditions applied to the boundaries of the RVE. The macro-
scopic loading transfered from the macroscale is presented
by the macroscopic strain tensor ε̄.

The use of periodic boundary conditions for the statisti-
cally similar (substitute) model is motivated by a number of
studies demonstrating that periodic boundary conditions are
the most reliable and converge faster than Dirichlet or trac-
tion boundary conditions [21,31,37]. They are often used
even if the model is not periodic [21,31], because Dirich-
let and traction boundary conditions result in over- and
underestimation for the stress [21,31,37,38] in computational
homogenization. Periodic boundary conditions do not neces-
sarily represent topological periodicity of themicrostructure.
They are in this case just some particular mathematical
abstraction satisfying the Hill-Mandel condition and result-
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Fig. 14 The stochastic representative volume element for a 2D problem
considering a random particle radius

ing in faster convergence compared to Dirichlet and traction
boundary conditions.

Moreover the simple comparison of the homogenized
stresses in periodic composites modeled with only one parti-
cle in the unit cell and composites with random microstruc-
ture, performed in [31], demonstrated close homogenized
stress values in both models. Thus, one of the conclusions
made in [31] is that one unit cell with only one centered
particle and periodic boundary conditions is already a good
approximation for the model with randomly distributed par-
ticles at least in engineering applications.

Thus the resulting stochastic RVE is a rectangular RVE
with the size 2a, where a = 1, with one circular particle
possessing random radius rn(ω). Due to the periodic bound-
ary conditions the particle position inside the RVE does not
influence the homogenized stress values, thus for the sake of
simplicity we consider only a model with the particle in the
center of the RVE.

In case of two physical and one stochastic coordinates
the stochastic RVE can be considered as a stack of thin
sheets with deterministic 2DRVEs in each of them, i.e. every
horizontal slice of the stochastic RVE corresponds to some
deterministic model. Thus the vertical dimension represents
the evolution of the microstructure by varying the random
parameter (Fig. 14).

Material properties of the cement matrix are presented
by the Young’s modulus Em = 20 GPa and the Poisson’s
ratio νm = 0.3 [33,35]. The Poisson’s ratio of the particles
is νi = νm = 0.3. The Young’s modulus of the aggregates
is roughly four times higher than the Young’s modulus of
the cement matrix, also the experimental estimations of the
aggregate stiffness contain often large measurement error.
Therefore we consider the Young’s modulus of the particles
to be a triangular fuzzy number with modal value Ēi = 80
GPa [35] and the support [75, 85] GPa.

We model a particle as a jump in the elastic proper-
ties (C−1-continuity), whereby the displacements are C0-

continuous. We assume for simplicity a constant Poisson’s
ratio ν = 0.3. In the general case the Poisson’s ratio is also
a random field. An interesting analysis for the case of fluc-
tuating Poisson’s ratio is presented, e.g. in [39].

Thus, here only the elastic modulus is a random field and
is given as

Ẽ(x, ω) = Em + 1

2
[Ẽi − Em][1 − signz

(
x, ω

)]
, (13)

where Em and Ei are theYoung’smoduli of thematrix and the
particle, respectively; z

(
x, ω

)
is a cone-like level-set func-

tion [26], which indicates whether the material point with
coordinates x belongs to the matrix or to the particle (z < 0:
particle, z > 0: matrix).

z
(
x, ω

) = r(ω)

⎡
⎣

√
x21

r(ω)2
+ x22

r(ω)2
− 1

⎤
⎦ . (14)

4.3 Simulation results for computational
homogenization

The simulations presented in this section were performed
using 12 element layers in the stochastic dimensions due
to the large radius variation. The mesh generated for one
arbitrary fuzzy sample is depicted in Fig. 15. Lilac is used to
depict inclusion, orange corresponds to the elastomermatrix.

Three fuzzy parameters ã2, ã4 and Ẽ are sampled using
the extended transformation method [20] with 5 α-cuts thus
resulting in 225 fuzzy samples.

Fig. 15 Finite element discretization of the physical-stochastic domain
V . Lilac depicts inclusion, orange corresponds to the elastomer matrix
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The simulations were performed for two different load
cases:

ε(1)=̂
[
0.01 0
0 0.01

]
, ε(2)=̂

[
0 0.01

0.01 0

]
. (15)

The homogenized stresses are obtained as functions of the
basis random variable θ(ω) for every fuzzy sample (Fig. 16).
The effective macroscopic stress is obtained by averaging all
curves along θ(ω), thus, presenting the mean stress value.
Figure 17 demonstrates the mean stress values rearranged
into α-cuts. The reconstructed mean homogenized stress
membership function is slightly asymmetric

The effective macroscopic Young’s modulus is computed
by substituting the mean homogenized stresses σ̄ (ε̄1) and
σ̄ (ε̄2) into the solution for linear isotropic homogeneous

Fig. 16 Stochastic homogenized stress curves plotted versus the basis
random variable θ(ω) ∈ [−3, 3]. Different curve colors correspond to
different α-cuts

Fig. 17 Mean homogenized stress values σ̄11(ε
(1)) rearranged into α-

cuts. Different curve colors correspond to different α-cuts

Fig. 18 Fuzzy effective Young’s modulus evaluated from the homoge-
nized stress mean values

materials.

σ11(ε
(1)) = E

[1 + ν][(1 − 2ν]ε
(1)
11 ,

ε
(2)
12 = 1 + ν

E
σ12(ε

(2)).

(16)

Solving the linear Eq. (16) for every fuzzy sample yields
the fuzzy Young’s modulus depicted in Fig. 18. Note that
the Young’s modulus is well approximated by a triangular
fuzzy number with modal value Ē = 24.7561 GPa and sup-
port [22.7626, 25.8312] GPa. Modal value and spread of
the effective Young’s modulus perfectly coincide with the
experimental data presented in [35].

5 Fuzzy uncertainty in forward dynamics

This section describes the concept of fuzzy uncertainty in for-
ward dynamics. The Graph Follower algorithm developed
in [22] to efficiently compute the envelopes in fuzzy for-
ward dynamics simulation is explained briefly. The uncertain
parameters are modeled as triangular numbers. One fuzzy
parameter is the fuzzy effective Young’s modulus evaluated
from the homogenized stressmean values depicted in Fig. 18.
The time integrator used in this paper is the variational inte-
grator which has shown several advantages in fuzzy forward
dynamics [22].

5.1 Continuous fuzzy forward dynamics

Following [22], the concept of fuzzy uncertainty in forward
dynamics in the continuous setting is briefly introduced in
the following.

We consider convex fuzzy quantities p̃pp ∈ F(K ) with
membership function μp̃pp : K → [0, 1] on a compact set
K , see Fig. 19 and e.g. [11]. Only at the modal value p̄pp,

123



1612 Computational Mechanics (2019) 64:1601–1619

p̄ ppa Pαk
pb

0

1

μp̃

αk

Fig. 19 Membership function μ p̃ of convex fuzzy parameter p̃

the membership function takes the value 1. For the α-cut
αk ∈ [0, 1], the αcut set PPPαk of p̃pp is defined as the sup-
port of membership function values greater or equal to αk ,
i.e. PPPαk = {ppp ∈ K : μp̃pp(ppp) ≥ αk}.

In the time interval [t0, tN ] ⊂ R, consider a dynamical
system

ẏyy(t; ppp) = FFF(yyy(t; ppp); ppp) (17)

with temporally constant and independent parameters ppp and
the state yyy(t; ppp) ∈ R

Ny . Along the solution, a scalar valued
deterministic mapping f : [t0, tN ] → R can be written as

f (t; ppp) = f̄ (yyy(t; ppp); ppp). (18)

It’s smoothness is controlled by the smoothness of f̄ and yyy
(if f̄ and yyy are k times continuously differentiable, so is f ).
When considering fuzzy parameters p̃pp, corresponding to the
deterministic mapping (18), the fuzzymapping f̃ : [t0, tN ]×
K → F(R) maps time and fuzzy parameters onto a fuzzy
quantity f̃ , whose membership function μ f̃ : R → [0, 1]
consequently depends on t and p̃pp as well.

By determining the α-cut sets Fαk

(
t; p̃pp) = {z ∈ R :

μ f̃ (z, t; p̃pp) ≥ αk}, the fuzzy output f̃ (t; p̃pp) at the time t
can be found. With the help of α-cut optimization [11], the
upper and lower bound of Fαk

(
t; p̃pp) can be computed for all

t ∈ [t0, tN ]. They form the upper and lower envelope of the
fuzzy output quantity f̃ at a certain α-cut, see Fig. 20.

5.2 Discrete fuzzy forward dynamics

This concept in now transferred to the temporally dis-
crete setting as in [22]. In computational dynamics, a time
stepping scheme performs the forward integration and the
deterministic mapping (18) is approximated by the discrete
deterministic mapping

fd : {t0, t1, . . . , tN } → R,

fd(t j ; ppp) ≈ f (t j ; ppp), j = 0, 1, . . . , N .
(19)

with shorthand notation f j (ppp), and the discrete fuzzy map-
ping f̃ j ∈ F(R) at every time node f̃ j (p̃pp).

t0 t1 t2 t

f̃

μf̃

μf̃
Fαk

(t1; p̃)
αk

αk

Fαk
(t2; p̃)

z

z

f(t;p)

lower envelope

upper envelope

Fig. 20 Thedeterministicmapping f in combinationwith fuzzy param-
eters p̃pp yields the fuzzy mapping f̃ with envelopes shown for α-cut αk

As in the continuous setting, α-cuts discretize both the
fuzzy parameters and the fuzzy output into α-cut sets PPPαk

and Fj,αk

(
p̃pp
)
. According to Nguyens’s principle [40], the

latter can be computed as

Fj,αk (p̃pp) = {z ∈ R : z = f j (ppp) , ppp ∈ PPPαk }
= [ f (−1)

j,αk
( p(−1,αk )∗), f (+1)

j,αk
( p(+1,αk )∗)] (20)

where the interval bounds can be determined by solving the
global optimization problems

f (s)
j,αk

( p(s,αk )∗) = −s min
ppp∈PPPαk

(−s f j (ppp)), s = ∓1 (21)

for the optimal parameters p(s,αk )∗ . Computing the upper
and lower bound in (20) for all time nodes yields the discrete
upper and lower envelopes of the discrete fuzzy output at a
certain α-cut.

The objective function in (21) involves the evaluation
of the discrete deterministic mapping f j (ppp), thus, forward
dynamics steps are necessary which may cause high compu-
tational effort. In [22], three different formulations of the
general α-optimization problems (21) are formulated and
compared. Based on the third proposed optimization prob-
lems, the so-called approximative optimization problems,
the best results regarding the numerical behavior and the
accuracy were obtained [22]. Hence, the approximative opti-
mization problems are shortly explained in the following.

Optimization Problem (OP) The approximative optimization
problems for α-cut optimization around ppp(0) ∈ PPPαk with the
optimization variables ppp ∈ PPPαk and k ∈ N

+ read

f (κ)
j ( p(s,αk )∗; ppp(0)) = −s min

ppp∈PPPαk

(
−s f (κ)

j (ppp; ppp(0))
)

,

s = ∓1. (22)
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The idea is to approximate the discrete deterministic map-
ping f j (ppp) locally around a guessed parameter ppp(0) by a

Taylor polynomial f (κ)
j (ppp; ppp(0)) of order κ and to repre-

sent and compute the necessary derivatives very efficiently
with the concept of multiple internal numerical differentia-
tion (MIND) introduced in [22]. Hence, only f j (ppp(0)) and
its derivatives have to be determined by forward dynamics
integration andMIND, respectively. Forward dynamics inte-
gration is not required for any other parameter ppp ∈ PPPαk

to evaluate the objective function in the optimization of the
approximate problems in (22). See [22] for an elaborate pre-
sentation and technical details.

5.3 Graph follower algorithm

The determination of the discrete fuzzymapping as the fuzzy
output of the dynamical system requires the computation of
the α-cut sets on each α-cut αk, k = 1, 2, .., Nα for all time
nodes t j , j = 0, 1, .., N . TheGraphFollower (GF) algorithm
can be used to find the upper and lower envelopes on each α-
cut. Note that despite the local approximation of the discrete
deterministic mapping around ppp(0), the approximative opti-
mization problems (22) require global optimization in PPPαk .
The GF algorithm developed in [22] offers a sophisticated
combination of local optimization and forward dynamics
steps together with an appropriate post-processing to avoid
the need of global optimization. It is demonstrated to beat
benchmark methods with regard to accuracy and efficiency.

The concept of the algorithm is based on the fact that dis-
crete envelopes consist piecewise of graph-segments of the
discrete deterministic mapping. Furthermore, a storage con-
tains all previously computed graphs. Consider an α-cut αk .
At j = 0, arbitrary parameters ppp(0) are chosen and (22) is
solved for the upper and lower bound parameters p(s,αk )∗ .
Then the complete graphs f (s)

d (t j ; p(s,αk )∗) are computed
for j = 0, 1, . . . , N and stored in the storage. They are fol-
lowed to the next time node ( j = 1), where the optimized
parameters are used as initial guess for the next optimization
problems, yielding optimal parameters and adding two new
graphs of the discrete deterministic mapping to the storage.
From now on, the parameters corresponding to the best graph
in storage serve as initial guess for the optimization problem
at the next time node. So far, only locally optimal upper
and lower bounds have been computed. However, a post-
processing step compares these with all graphs available in
the storage and—based on this set—the best envelopes are
determined. This procedure is illustrated in Figs. 21, 22, 23,
24 and 25. The plots are snapshots from a video visualizing
the GF algorithm for the fuzzy dynamics of a damped pen-
dulum with fuzzy uncertainty in Np = 6 parameters and the
force in the pendulum bar being the output. It has been cre-

Fig. 21 Discrete fuzzy mapping—initial guess for optimization

Fig. 22 Discrete fuzzy mapping—determination of an optimal graph
with new parameters

Fig. 23 Discrete fuzzy mapping—initial guess for the next time step

ated by the first author of [22] and can be accessed at http://
ltd.tf.uni-erlangen.de/Research/Research.htm.

6 Fuzzy dynamics of a multistory frame

In this section, an example is introduced illustrating results
of the combination of the GF algorithm with the data of
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Fig. 24 Postprocessing step for the optimal result

Fig. 25 Resulting discrete fuzzy mapping

the microstructure achieved in Sect. 4.3. Figure 26 shows
the considered multistory frame which is a commonly used
model in civil engineering applications and Fig. 27 illustrates
a simplified version of the system, which is equivalent in case
of rigid floors and purely bending columns. It is modeled as a
damped spring mass system similar to [41,42]. The columns
are assumed to bemadeof the concrete, i.e. the heterogeneous
material with polymorphic uncertainty in the microstructure
(Sect. 4). The implementation of the GF algorithm for a simi-
lar example (same structure but different uncertainty) in [22]
is used as a basis to determine the output of the system in
form of a fuzzy mapping.

6.1 Model configuration

The masses m1, m2 and m3 build the floors of the build-
ing. For simplicity, the parameters for the masses, which
are modeled as fuzzy triangular numbers, are based on arbi-
trary example values. Based on [41], the supporting vertical
columns are modeled as linear springs with the spring stiff-
ness kz = 24E I

l3z
, z = 1, 2, 3, with lengths l1 = 2.50m and

l2 = l3 = 2.70m and bending stiffness E I .

m3

m2

m1 q1(t;p)

q2(t;p)

q3(t;p)

l2

l3

l1

Fig. 26 Model of the multistory frame; based on [11]

m1 m2 m3

k1 k2 k3

d1 d2 d3

q1(t;p) q2(t;p) q3(t;p)

Fig. 27 Simplified model of the multistory frame; based on [11]

The system is described by the configuration vector
q(t; ppp) = [q1(t; ppp) q2(t; ppp) q3(t; ppp)]T ∈ R

3. Further,
q(t0) = q0 and q̇(t0) = q̇0 are the initial conditions of the
system caused by a previous earthquake. They are defined
as q0 = [

10, 30, 80
]
mm and q̇0 = [

0.0, −0.5, −0.5
] m

s
for the first, second and third floor, respectively. The mass
matrix M(ppp) includes the three masses of the horizontal bars
of the frame while the vertical bars are not afflicted with any
mass. K (ppp) defines the stiffness matrix of the system.

The system is further influenced by viscous dampers with
the damping coefficients d1 = d2 = d3 = 50Ns

m . Altogether,
the dynamical system contains 16 parameters (including the
initial conditions q0, q̇0).

The equations of motions can be written as

ẏ(t; ppp) = F( y(t; ppp); ppp)
=

[
v(t; ppp)

−M−1(ppp) · [K (ppp) · q(t; ppp) + D(ppp) · q̇(t; ppp)]
]

(23)

with the damping matrix D(ppp) and the damping force
−D(ppp) · q̇(t; ppp).

Only Np = 4 specific parameters are considered to be
uncertain values modeled as fuzzy triangular numbers. The
bending stiffness E I consist of the Youngs Modulus E and
the area moment of inertia I . The latter one is a deterministic
valuewhich is set to 1.0m4. The parameter E is considered to
be a fuzzy parameter and modeled as a fuzzy triangular num-
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Table 1 Multistory frame—values for fuzzy triangular numbers; based
on [11]

Variable i pai p̄i pbi Unit

E 1 22.7626 24.7561 25.8312 GPa

m1 2 1.900 2.000 2.100 t

m2 3 0.950 1.000 1.050 t

m3 4 0.475 0.500 0.525 t

ber determined in Sect. 4.3. In reality, the weight of the floors
in large buildings is dependent on several factors such as the
furniture or human load. Hence,masses of the horizontal bars
of the multistory frame can vary and it is hardly possible to
determine the masses at every time of every day. Thus, these
parameters are also afflicted with epistemic uncertainty. The
modal masses of the floors are set based on the values in
[11]. The spread of the upper and lower support amounts to
5% with regard to the modal value. Therefore, the triangular
fuzzy number of the masses are set as shown in Table 1.

6.2 Numerical investigation

The deterministic mapping is defined as the displacement q1,
q2 and q3 of the first, second and third mass, respectively,
leading to f̄ qi ( y(t; ppp); ppp) = qi (t; ppp), i = 1, 2, 3.

At first, only the Young’s modulus E is considered as a
fuzzy parameter while the masses hold deterministic values,
thus Np = 1. Five α-cuts α = [0, 0.25, 0.5, 0.75, 1] are
considered. Figures 28, 29 and 30 show the corresponding
discrete envelopes which are determined with the algo-
rithm explained above. The span between upper and lower
envelopes is relatively small due to the considerably low
deviation between deterministic value and associated sup-
port values.

The graph in Fig. 28 shows a comprehensible progress
regarding the deviation and the curve has a minimum of
−0.293m.While the second graph spreads already to almost
−0.382m, the displacement of the third floor shows a typical
irregular motion influenced by all three displacements of the
different floors and therefore also the biggest spread.

As mentioned above, masses of the floors of a multistory
building vary. Moreover, the behavior of the graph over a
longer time is an interesting factor. Figures 31, 32, 33 show a
longer period of the simulation for the displacements includ-
ing the fuzzy parameters m1,m2 and m3.

The difference of the support values is 200 kg in the first,
100 kg in the second and 50 kg in the third floor. This can
be considered a realistic value considering human weights
assuming the amount of people in the building only varies
between one and three people in the different stories. The
graphs indicate an increase of the spread with time while the
displacement values vary between− 0.32 and 0.32m,− 0.45

Fig. 28 Forward dynamics for the first floor of the multistory frame
with fuzzy Young’s modulus

Fig. 29 Forward dynamics for the second floor of the multistory frame
with fuzzy Young’s modulus

Fig. 30 Forward dynamics for the third floor of the multistory frame
with fuzzy Young’s modulus
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Fig. 31 Forward dynamics for the first floor of the frame for a duration
of 30 s with fuzzy Young’s modulus and fuzzy masses

Fig. 32 Forward dynamics for the second floor of the multistory frame
for a duration of 30 s with fuzzy Young’s modulus and fuzzy masses

and 0.45m and − 0.6 and 0.6m for the first, second and
third floor, respectively, roughly reiterating after one cycle
of approximately 14 s. Moreover, the spread increases due to
the additional fuzzy parameters of the masses.

To evaluate the influences of the fuzzy Young’s modulus
versus the fuzzy masses on the fuzzy mapping, firstly the
Young’s modulus and secondly the masses are defined as
deterministic values for the displacement of the third floor,
see Figures 34 and 35, respectively.

Based on the results, the mass seems to have an irregu-
lar influence on the fuzzy mapping of the simulation, which
increases clearly over time. However, considering that three
masses are included, the influence of the weight still seems to
be smaller than when only considering the Young’s modulus
as a fuzzy parameter, see Fig. 35, which shows a growing of
the spread over time.

Fig. 33 Forward dynamics for the third floor of the multistory frame
for a duration of 30 s with fuzzy Young’s modulus and fuzzy masses

Fig. 34 Forward dynamics for the third floor with fuzzy masses
m1,m2,m3—theYoung’smodulus E is defined as a deterministic value

7 Discussion on numerical efficiency

The key aspect in the application of the Graph Follower
algorithm is the reduction of computational costs in fuzzy
dynamic simulations. This approach allows a drastic reduc-
tion of computational costs since only a relatively small
amount of trajectories needs to be evaluated. However, if the
studied system includes thousands of degrees of freedom,
the simulation becomes infeasible. In this case an alterna-
tive treatment of a discrete system can be useful. First of all,
a discrete system can be replaced by a reduced model with
a relative small number of degrees of freedom. The system
dependency on fuzzy parameters can be further simplified by
introducing a set of intervening variables [43]. The idea is to
represent the most essential system dependencies in terms of
new variables, which have some useful properties. E.g. the
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Fig. 35 Forward dynamics for the third floor with fuzzy Young’s mod-
ulus E—masses m1,m2,m3 are defined as deterministic values

studied system must exhibit a nearly linear dependency on
the intervening variables. This property of the intervening
variables can strongly increase the efficiency of the Graph
Follower algorithm.

Another alternative is to replace a dynamic system by
a suitable metamodel. We would like to highlight here the
approach [44], which includes fuzzy parameters into the
metamodel. This approach is based onmachine learning. The
metamodel is trained to provide the correct upper and lower
bounds for the quantity of interest for the given fuzzy input.
I.e. it is optimized for needs of fuzzy dynamic. High effi-
ciency of this approach is demonstrated on examples of the
failure probability estimation in fuzzy dynamic systems.

In case of the Monte-Carlo method used instead of the α-
cut optimization,method efficiency canbe improvedbyusing
the quasiMonte-Carlomethod [45]. In particular, the interval
quasi Monte-Carlo method, which is suitable for imprecise
probabilities and fuzzy problems, is proposed recently [46].

Further reduction of computational costs can be achieved
by application of the reduced order modeling to the fuzzy-
stochastic homogenization problem [47,48]. Alternative
stochastic reduction methods are presented also in [45].

Thus, the proposed methodology demonstrate a large
potential for further modifications. It can be improved by
incorporation of order reduction techniques, metamodels,
and efficient dynamic models.

8 Summary and conclusions

In this paper,wedemonstrate an example of uncertainty prop-
agation from the lowest level, i.e the material’s microstruc-
ture, to the very top level of dynamic simulations. We
estimate the influence of the considered microscopic uncer-

tainties on the behavior of the entire engineering construc-
tion. The sequential application of two novel uncertainty
propagation techniques is demonstrated, namely the fuzzy-
stochastic FEM based homogenization [18] and the Graph
Follower algorithm [22].

On the micro level we consider four sources of uncer-
tainties, namely the variable size of the concrete aggregates,
the random aggregate positions (aleatoric uncertainties), and
the imprecisely known mechanical properties of aggregates
(epistemic uncertainty). The first two uncertainties are mod-
eled using a probabilistic approach. In contrast, the third
uncertainty (resulting from the insufficient knowledge) is
modeled using fuzzy arithmetic. Moreover, while trans-
ferring the uncertainty associated with random aggregate
distribution into the representative volume element of the
microstructure, some simplifications and numerical evalu-
ations are required, thus, resulting in additional epistemic
uncertainties. Therefore the final model of the material’s
microstructure contains already five different sources of
uncertainties.

Homogenized material properties are obtained by aver-
aging over the volume of the RVE and over the parameters
defining the natural variability of the microstructure. In con-
trast, the epistemic uncertainties cannot be averaged due to
their nature. The data spread resulting from the epistemic
uncertainties is therefore transferred to the macroscale and
results in the fuzzy Young’s modulus of the concrete.

The validation of the presented fuzzy-stochastic FEM
based homogenization scheme is performed by compar-
ing the data with experimental investigations. The modal
value and the spread of the macroscopic Young’s modulus
completely agree with the empirical data presented in the
literature.

The fuzzy Young’s modulus is then used for the fuzzy
forward dynamics simulation of a multistory frame. The dis-
placement of the upper floor is considered to be a valuable
parameter for construction planning having the largest spread
of displacement, since the first and second floor influence the
displacement of the thirdfloor. The results showan increasing
spread between upper and lower envelopewith ongoing time.
The spread of the upper and lower envelope is larger when
considering theYoung’smodulus as the only fuzzy parameter
compared to the results when considering the three masses as
the only fuzzy parameters. This leads to the conclusion that
uncertainties in masses have a lower influence on the fuzzy
mapping of the simulation than uncertainties in the Young’s
modulus.

Based on these results, the correct estimation of the
Young’s modulus in the presence of polymorphic uncertainty
by themethods described in this paper is evenmore important
for the outcome.
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Appendix A: Short introduction to fuzzy set
theory

The history of fuzzy numbers began in 1965 with the intro-
duction of fuzzy sets [3] which are an extension of the
classical set theory based on the notion of different grades of
membership.

Let us briefly repeat some basic definitions from fuzzy
set theory [3]. In the case of a fuzzy set P̃ the grade of
membership of p is defined by the membership function
μP̃ (p) ∈ [0, 1]. Here μP̃ (p) = 1 means that the element

p entirely belongs to the set P̃ , μP̃ (p) = 0 means that p is

not a member of the set P̃ . In the case of a conventional set
P the membership function of an element p may have only
two values μP (p) ∈ {0, 1}, i.e. the element can only belong
to or not belong to the set P .

For practical applications, a few very important types of
fuzzy sets are fuzzy numbers, fuzzy intervals, crisp numbers,
and crisp intervals. A fuzzy number ã is the convex fuzzy
set over the universal set R with the membership function
μã(p) ∈ [0, 1], where μã(p) = 1 only for one single value
of p = ā called the modal value. The fuzzy interval Ã is
the convex fuzzy set defined similarly to the fuzzy number,
however with the difference that μ Ã(p) = 1 holds for some
interval called modal interval Ā. A crisp interval A can be
considered as the fuzzy set of points such that μA(p) = 1,
if p ∈ A, and μA(p) = 0 otherwise. The crisp number a is
then the fuzzy set with the membership function given by the
Kronecker delta function μa(p) = δ(p, a). Figure 36 repre-
sents from left to right: crisp number p = 1, crisp interval
[2, 3], symmetric triangular fuzzy number with p̄ = 4.5,
fuzzy interval with the modal interval p ∈ [6.5, 7.5], and
the arbitrary non-convex subnormal fuzzy set with nonzero
membership function on the interval p ∈ [9, 11].

Zadeh’s extension principle is used to perform unary and
binary arithmetical operations of fuzzy numbers. Due to the
high complexity of calculations performed using the exten-
sion principle, an alternative approach was proposed in the
literature. The fuzzy numbers are reduced to sets of nested
intervals for different degrees of membership, i.e. α-cuts
(Fig. 37). These intervals are also called intervals of con-
fidence [10]. Lower and upper bounds for every quantity of
interest are then evaluated for everyα-cut. Collection of inter-
vals of confidence for output quantity results naturally in the
reconstruction of the output’s membership function.

In most cases, two optimization problems must be solved
for every α-cut. However, if the evaluation of the system
is costly, the optimization approach becomes too expensive.

Fig. 36 Membership function plotted for (from left to right): crisp num-
ber, crisp interval, symmetric triangular fuzzy number, fuzzy interval,
and the arbitrary non-convex subnormal fuzzy set

Fig. 37 Triangular fuzzy number with modal valuem decomposed into
6 α-cuts

As an alternative one may use the extended transformation
method [10].
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