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Abstract
The phase field method is a very effective method to simulate arbitrary crack propagation, branching, convergence and
complex crack networks. However, most of the current phase-field models mainly focus on tensile fracture problems, which
is not suitable for rock-like materials subjected to compression and shear loads. In this paper, we derive the driving force
of phase field evolution based on Mohr–Coulomb criterion for rock and other materials with shear frictional characteristics
and develop a three-dimensional explicit parallel phase field model. In spatial integration, the standard finite element method
is used to discretize the displacement field and the phase field. For the time update, the explicit central difference scheme
and the forward difference scheme are used to discretize the displacement field and the phase field respectively. These time
integration methods are implemented in parallel, which can tackle the problem of the low computational efficiency of the
phase field method to a certain extent. Then, three typical benchmark examples of dynamic crack propagation and branching
are given to verify the correctness and efficiency of the explicit phase field model. At last, the failure processes of rock-like
materials under quasi-static compression load are studied. The simulation results can well capture the compression-shear
failure mode of rock-like materials.

Keywords Phase field method · Mohr–Coulomb failure criterion · Compression-shear failure · Explicit time integration ·
Dynamic crack propagation

1 Introduction

Due to the complexity of the crack pattern in engineering
applications, numerical methods play a crucial role in frac-
ture analyses. In particular, finite element methods (FEMs)
are used extensively in conjunction with Griffiths-type linear
elastic fracture mechanics models. Among the most com-
monly usedfinite elementmodels are the virtual crack closure
technique (VCCT) [1], cohesive zone model [2] and, in more
recent years, the extended finite element method (XFEM)
[3,4]. These methods explicitly represent cracks as discon-
tinuities. Such methods usually have one or more of the
following limitations: (1) They need to adjust themesh in tra-
ditional FEMs [5]. (2) They need to introduce extra degrees
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of freedom (DOFs) like XFEM [6]. (3) They need the arti-
ficial introduction of criteria for crack initiation, branching
and coalescence [7]. The counterpart method is to describe
the crack by dispersion. In these methods, cracks are usually
not tracked explicitly but locate the location or region of the
crack surface according to the values of some field variables,
such as phase fieldmethod [8,9], peridynamics (PD) [10] and
cracking-particle method (CPM) [11].

Phase-field method, as a widely concerned method in
recent years, can simulate arbitrary propagation, branch-
ing and convergence of cracks based on the basic theory
of Griffith elastic fracture mechanics [12–15]. In the phase
field method, no additional discontinuity is required in the
model. Instead, the distribution of cracks is approximated by
a phase field variable which smoothes the crack boundary
in a small area [16–18]. The main advantage of using phase
field variable is that the evolution of fracture surface follows
the solution of coupled partial differential equations (PDEs).
Thus, no additional tracking of the crack surface is required.
This description method of the crack surface is in sharp con-
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trast to the complexity of many discrete fracture models and
is especially beneficial to the 3D complex fracture network.

The origin of the phase field method is due to the phased
phase field implementation by Francfort and Marigo [19],
and Bourdin et al. [20].Mumford and Shah [21] have derived
variational formulas and energy functional for quasi-static
brittle fracture. Ambrosio and Tortorelli [22] proposed the
phase field approximation of Mumford-Shah potential based
on C-convergence theory. Verhoosel and Borst [23] devel-
oped a phase-field model for cohesive fracture. Waisman et
al. developed phase field models that are capable of cap-
turing the ductile-brittle transition for shear band problem
[24] andmodeling fracture propagation of viscoelastic solids
[25]. Borden et al. [26] introduced several contributions such
as stress triaxiality effects to further develop phase-field
models for ductile fracture. In recent years, the phase field
method has been comprehensively expounded by Miehe et
al. [27–29], and applied to complex fracture problems such
asmulti-field coupling and large deformation. A great deal of
research work on the phase-field method to simulate crack
propagation mainly focuses on quasi-static crack propaga-
tion, andmainly based on implicit time integration algorithm.
Recently, dynamic crack growth has attractedmore andmore
attention [30]. Many studies have successfully introduced
dynamic crack growth into phase field models in implicit
algorithms, such as the work by Spatschek et al. [31] and
Hofacker et al. [32]. In terms of explicit algorithms, Ziaei-
Rad and Shen [33] developed a massively explicit parallel
algorithm on the graphical processing unit (GPU) to solve
the problem of high computational cost in the phase field
method with two-dimensional (2D) cases. Borden et al. [34]
used fully parallel explicit and implicit algorithms to imple-
ment field models and combined isogeometric analysis to
solve complex crack propagation problems. In this paper, we
developed a 3D explicit parallel phase field model to study
dynamic and quasi-static problems, and focused on the fail-
ure behavior of rock-like materials.

As typical engineering materials, rock-like materials have
very complex fracture modes [35]. Cajuhi et al. [36] pro-
posed a phase-field model to describe the coupling of pore
mechanics and cracks in porous media with variable satura-
tion, such as soil and concrete. Zhang et al. [37] introduced
a modified phase field model to simulate mixed mode crack
propagation in rock-like materials. Bryant and Sun [38] pro-
posed amixed-mode phase field fracturemodel in anisotropic
rocks. Choo and Sun [39] coupled a pressure-sensitive plas-
ticity model with a phase-field approach and simulated shear
slip zone of the rock. As we known, the Mohr–Coulomb cri-
terion is a very widely used criterion to describe rock-like
materials failure [40]. However, up to now, there has been no
research on the combination of the Mohr–Coulomb criterion
and phase field method. Based on the 3D explicit phase field
method, theMohr–Coulomb failure criterion is introduced to

successfully simulate the compression process of rock-like
materials in this paper. The failure mode of compression-
shear is captured. To improve computational efficiency, we
take advantage of the ease of parallel computingwith explicit
time integration. The solution domain is divided into several
parts, and multiple central processing units (CPUs) is used
for time integration.

This paper is organized as follows: In Sect. 2, we review
the basic principle and the governing equation of the phase
field method and introduce the Mohr–Coulomb failure cri-
terion for rock-like materials. In Sect. 3, we discretize the
governing equations in space and time, and discuss the sta-
ble time increment of the explicit integration algorithm. In
Sect. 4, three typical dynamic and quasi-static numerical
examples are presented to verify the correctness and effi-
ciency of the numerical implementation. As applications, we
studied the compression-shear failure of rock-like materials
in Sect. 5. The concluding remarks are given in Sect. 6.

2 Phase-field description of diffuse crack

2.1 Geometric description of phase field crack

Compared to the discrete description of the geometry of the
crack, such asXFEM[3], interface elementmethod [41], etc.,
the phase field method avoids artificially tracking the crack
path by introducing a diffuse crack geometry. Considering
the displacement field and crack phase field

u:
{
B0 × T → Bt ⊂ R

δ

(X, t) �→ u (X, t)
and d :

{
B0 × T → [0, 1]
(X, t) �→ d (X, t)

(1)

where B0 ⊂ R
δ and Bt ⊂ R

δ are the reference and
current configurations of a material body with dimension
δ ∈ [1, 2, 3] in space and ∂B0 ⊂ R

δ−1 is its boundary,
T ⊂ R

1 is the time domain. The phase field d is similar to a
scalar damage variable and its evolution process determines
the failure of local material points. If d = 0, the material is
unbroken; if d = 1, it is fully broken.

Following the idea that the crack is not a discrete phe-
nomenon, but initiates with micro-cracks and voids, an
exponential function for approximating the diffuse crack
topology in one-dimensional (1D) case is introduced by
Miehe et al. [42]

d(x) = exp

(
−|x |

lc

)
(2)

where lc is a characteristic scale parameter representing the
width of diffuse crack. Eq. (2) has the property d(0) = 1 and
d(±∞) = 0 (i.e. Dirichlet-type boundary condition). The
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Fig. 1 Description of cracks in a one-dimensional bar: a diffuse crack and b sharp crack

value of lc controls the rate at which d decreases from 1 to 0
as x moves from 0 to±∞. When lc → 0, the above equation
degenerates into a sharp crack, as shown in Fig. 1.

The function d(x) in Eq. (2) is the solution of a homoge-
neous differential equation, which is

d (x) − l2c d
′′ (x) = 0 (3)

Theweak form corresponding to the strong form in Eq. (3)
can be obtained by variational principle

d = Arg

{
inf
d∈W I (d)

}
(4)

where Γd = {d|d(0) = 1, d(±∞) = 0} is the Dirichlet-type
boundary condition and

I (d) =
∫
B0

1

2

(
d2 + l2c d

′2) dV (5)

For the case of one dimension, we have dV = Γl · dx .
Substituting Eq. (2) into Eq. (5) leads to I

(
d = e−|x |/lc) =

lcΓl . Therefore, the crack surface density function can be
introduced to assist the phase field description

Γl = 1

lc
I (d)

=
∫
B0

(
1

2lc
d2 + lc

2
d ′2

)
dV =

∫
B0

γl(d, d ′)dV (6)

where γl(d, d ′) = 1
2lc

d2 + lc
2 d

′2 is the crack surface density
function in 1Dcase and can be extended tomulti-dimensional
case

Γl(d) =
∫
B0

γl(d,∇d)dV (7)

where γl (d,∇d) is the crack surface density function in
multi-dimensions

γl (d,∇d) = 1

2lc
d2 + lc

2
|∇d|2 (8)

The Euler equations of the variational principle Eq. (4)
with I (d) = lcΓl(d) are

d − l2c∇2d = 0 in B0 and ∇d · n0 = 0 on ∂B0 (9)

where n0 is the unit outer normal of the boundary ∂B0.

2.2 Governing equations of phase field evolution

Ageneralized formulation for the evolution of the phase field
d(X, t) for different constitutive models of energetic and
non-energetic driving forces is used here.We assume that the
evolution of the crack surface function is driven by the consti-
tutive crack driving function S(d, ḋ,H), which depends on
the crack phase field d, its rate ḋ and the local crack driving
force fieldH. The force fieldH depends on the full history of
the considered local bulk response, such as the energy state
or stress state of the solid.

d

dt
Γl (d) = S

(
d, ḋ,H

)
(10)

The Eq. (10) can be viewed as a balance of crack surface,
that equalizes the rate of the crack generation with the power
of crack driving force.

2.2.1 Geometric resistance of phase field

By deriving Eq. (7) with respect to time, the geometric resis-
tance of the phase field evolution can be obtained

d

dt
Γl (d) = 1

lc

∫
B0

[
Dcḋ

]
dV+

∫
∂B0

[
(∂∇dγl · n0) ḋ

]
dA

(11)

The function Dc is a dimensionless geometric resistance
of phase field evolution. It is related to the variational deriva-
tive of the crack density function γl introduced in Eq. (8)
by

Dc := lcδdγl = d − l2c∇2d (12)
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2.2.2 Constitutive driving function of phase field

Similar to thefirst term in the right side ofEq. (11), the driving
source of crack propagation in Eq. (10) can be written as the
power expression [42]

S = 1

lc

∫
B0

{
[(1 − d)H − R] ḋ

}
dV (13)

where, H is the local crack driving force and R is the local
viscous crack evolution dissipation. It is assumed that both
fields are governed by constitutive expressions. For the local
crack driving force H, we assume that it’s a function of the
history of state variables φ (X, s) associated with the solids
bulk response, such as stress state, energetic state or selected
internal variables. For the local viscous crack evolution dis-
sipation item R, we assume that it has a simple one-to-one
dependency on ḋ

R (X, t) = R̃
(
ḋ (X, t)

)
and H (X, t) = H̃ ((φ (X, s) ,

s ∈ [0, t])) (14)

Further, we assume a linear viscous dissipation process.
That is, the viscous dissipation term of crack evolution is
proportional to the time derivative of phase field variable d

R̃
(
ḋ (X, t)

) = η̃ḋ (15)

where η̃ is a parameter that characterizes the viscous dissi-
pation of phase field evolution.

2.2.3 Evolution equation of crack phase field

By combining Eqs. (11–15), the strong form and boundary
conditions of the governing equation for the evolution of
crack phase field at a local material point can be obtained

η̃ḋ︸︷︷︸
evolution

= (1 − d) H̃︸ ︷︷ ︸
driving force

−
[
d − l2c∇2d

]
︸ ︷︷ ︸

geometric resistance

in B0 and ∇d

·n0 = 0 on ∂B0 (16)

The Eq. (16) controls the evolution of time-dependent
crack phase field, that is, the evolution of crack phase field
depends on the difference between effective driving force
(1 − d)H̃ and geometric crack resistance Dc.

2.2.4 Irreversible phase field evolution conditions

The initiation and propagation of cracks is an irreversible pro-
cess. Therefore, there are the following phase field evolution
constraints

d

dt
Γl (d) = S

(
d, ḋ,H

) ≥ 0 (17)

In other words, the constitutive crack driving functional is
always positive. Combinedwith the general expression of the
constitutive crack driving functional Eq. (13), the following
constraints can be obtained

d (X, t) ∈ [0, 1], ḋ (X, t) ≥ 0, H (X, t) ≥ 0 (18)

The above constraints ensure that the phase field variables
can evolve in the right way within a reasonable range. To
further understand the constitutive definition of the driving
force H, considering a time-independent phase field evolu-
tion with η̃ = 0 for a homogeneous solid with�d = 0. Then
Eq. (16) gives a one-to-one relationship between the crack
phase field d and the nominal driving force H. As a conse-
quence, conditions Eq. (18) can be recast into the following
constraints

d = H
1 + H ∈ [0, 1] , ḋ = Ḣ

(1 + H)2
≥ 0, H ≥ 0 (19)

Through the above constraints, we can get the value ofH
corresponding to d = 0 (unbroken state) and d = 1 (fully
broken state)

⎧⎪⎪⎨
⎪⎪⎩

d = 0 ⇔ H = 0 ⇔ H̃
∣∣unbroken
state = 0

d = 1 ⇔ H → ∞ ⇔ H̃
∣∣broken
state = ∞

ḋ ≥ 0 ⇔ Ḣ ≥ 0 ⇔ ˙̃H ≥ 0

(20)

Arbitrary evolution of the state variableφ(X, t) associated
with the time-bulk response is considered to be related to the
loading and unloading of the solid under consideration. The
monotonic growth condition of H in Eq. (20) is satisfied by
assuming the relationship between H and the constitutive
crack driving force as follows.

H̃ (X , t) = max
s∈[0,t]

{
D̃ (φ (X, s))

}
(21)

Then the constraint for the constitutive crack driving force
H can be transformed to the constraint on the crack state
function D̃

D̃
∣∣∣unbrokenstate = 0 , D̃

∣∣∣brokenstate = ∞ (22)

2.3 Driving forces for brittle failure

The only point that remains to make the phase field Eqs. (16)
and (20) concrete is the definition of the crack state function
D̃. This makes the formulation very flexible with regard to
the incorporation of alternative crack driving criteria. In the
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following, we outline some of the evolutionary criteria for
brittle failure.

2.3.1 Governing equations in gradient damagemechanics

A class of gradient damage approaches for the modeling of
brittle fracture assumes a total pseudo-energy density W per
unit volume, which contains the sum of a degrading elastic
bulk energy Wbulk and a contribution due to fracture Wfrac

that contains the accumulated dissipative energy

W (ε, d,∇d) = Wbulk (ε; d) + Wfrac (d,∇d) (23)

where ε is the strain tensor. We calculate it using small strain
theory: ε = 1

2

[
(∇u)T + ∇u

]
. In this paper, we assume the

bulk contribution as the simple form

Wbulk (ε; d) = g (d) ψ̃ (ε) = (1 − d)2ψ̃ (ε) (24)

where ψ̃ (ε) = 1
2ε : C : ε is the effective elastic energy

stored in the undamaged material, C is the material stiffness
matrix and g(d) = (1 − d)2 is a degradation function that
satisfies the properties: Wbulk(ε; 0) = ψ̃ (ε), Wbulk(ε; 1) =
0, ∂dWbulk (ε; d) < 0 and ∂dWbulk (ε; 1) = 0.

Due to damage, the elastic energy is degraded with func-
tion g(d). By calculating its first derivative with respect to
the strain tensor, we can get the expression of stress (Cauchy
stress)

σ = g (d)
∂ψ̃ (ε)

∂ε
= (1 − d)2

∂ψ̃ (ε)

∂ε
(25)

Also, the stress needs to satisfy the momentum balance
equation and the traction boundary condition

∇ · σ + ρb = ρ ü in Bt and σ · n = tN on ∂Bt (26)

where ü means the second derivative of displacement vector
with respect to t , ρ is the density of the solid, b is the body
force per unit mass exerted to the solid, n is the unit outer
normal to ∂Bt and tN is the prescribed traction boundary
conditions on ∂Bt .

2.3.2 Strain criteria with and without threshold

An energetic criterion without threshold used byMiehe et al.
[42] is based on the fracture contribution to the total pseudo-
energy

Wfrac (d,∇d) = gcγl (d,∇d) = gc
2lc

[
d2 + l2c |∇d|2

]
(27)

where, gc is Griffiths critical energy release rate. Hence, a
fracture surface energy per unit volume is obtained by multi-
plying Griffiths critical energy release rate gc with the crack

surface density functionγl . The total pseudo-energy potential
takes the form

W (ε, d,∇d) = (1 − d)2ψ̃ (ε) + gcγl (d,∇d) (28)

According to the variational principle

− δdW (ε, d,∇d) = 2 (1 − d) ψ̃ (ε)

−gc
lc

[
d − l2c∇2d

]
(29)

Compared with the previous equations, Eq. (16) can be
rewritten into the following form

ηḋ︸︷︷︸
evolution

= 2 (1 − d) max
s∈[0,t]

{
ψ̃ (ε (X, s))

}
︸ ︷︷ ︸

driving force

− gc
lc

[
d − l2c∇2d

]
︸ ︷︷ ︸
geometric resistance

in B0 (30)

where η = η̃ (gc/lc) is the viscous parameter that controls
phase field evolution. Hence, The crack driving state function
is

D̃ = 2ψ̃ (ε)

gc/lc
(31)

Note that this criterion does not distinguish between ten-
sion and compression modes. Miehe et al. [42] considered a
formulation based on the decomposition of free energy into
tensile and compressive parts.

Criterion in Eq. (31) is a monotonically increasing func-
tion of the strain, which results in damage degradation of the
material at lower stress levels. To avoid this effect, an energy
criterion with a threshold can be constructed based on the
contribution of the crack to the “total” pseudo energy [27],
i.e.

D̃ =
〈

ψ̃ (ε)

ψc
− 1

〉
+

(32)

where ψc is a specific fracture energy per unit volume and
〈a〉± := (a ± |a|) /2 for all a ∈ R.

2.3.3 Stress criteria with and without threshold

To obtain a simple stress-based criterion for brittle fracture
and to take into account the decomposition of the tensile and
compressive forces, Miehe et al. [42] derived the stress crite-
rion. To this end, consider converting the effective energy ψ̃

to its conjugate residual energy ψ̃∗ by the Legendre-Fenchel
transformation.
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ψ̃∗ (
σ̃
) = sup

ε

[
σ̃ : ε − ψ̃ (ε)

]
(33)

where σ̃ := σ/(1−d)2 is effective Cauchy stresses. Accord-
ing to the theory of linear elastic mechanics

ψ̃∗ (
σ̃
) = ψ̃ (ε) = 1

2
σ̃ : ε (34)

Similar to the previous strain criteria with and without
threshold in Sect. 2.3.2, we can get the stress criteria with
and without threshold

D̃ = 2ψ̃∗ (
σ̃
)

gc/lc
and D̃ =

〈
ψ̃∗ (

σ̃
)

ψc
− 1

〉
+

(35)

2.3.4 Mohr–Coulomb criterion

The Mohr–Coulomb criterion is primarily used to describe
the response of brittlematerials (such as concrete and rock) to
shear and normal stresses. Most classical engineering mate-
rials follow this rule in at least a portion of their shear failure
envelope. Generally, this criterion applies to materials with
compressive strengths far exceeding tensile strength.

The Mohr–Coulomb failure criterion represents a linear
envelope obtained from a plot of the shear strength of the
material versus the applied normal stress. This relationship
is expressed as

|τ | = σ · tan (φ) + c (36)

where τ is the shear stress, σ is the normal stress and com-
pression is positive, c is the intercept of the failure envelope
with the τ axis, and tan(φ) is the slope of the failure envelope.
The quantity c is often called the cohesion and φ is called
the angle of internal friction. The Mohr–Coulomb criterion
in three dimensions is often expressed as

±σ1 − σ2

2
=

[
σ1 + σ2

2

]
sin φ + c · cosφ (37a)

±σ2 − σ3

2
=

[
σ2 + σ3

2

]
sin φ + c · cosφ (37b)

±σ3 − σ1

2
=

[
σ3 + σ1

2

]
sin φ + c · cosφ (37c)

whereσ1,σ2 andσ3 are the principal stress in three directions.
TheMohr–Coulomb failure surface is a cone with hexagonal
cross section in deviating stress space.

In order to obtain the phase field evolution conditions
based on the Mohr–Coulomb criterion, we first define an
over shear stress

τd = 〈|τ | − (σ · tan (φ) + c)〉+ (38)

For 3D cases, it can be written as

τd = max

{〈
τ 1d

〉
+,

〈
τ 2d

〉
+,

〈
τ 3d

〉
+

}
(39)

where τ 1d , τ 2d and τ 3d are the over shear stress, which are
defined as follows

τ 1d =
∣∣∣∣σ1 − σ2

2

∣∣∣∣ −
[
σ1 + σ2

2

]
sin φ − c · cosφ (40a)

τ 2d =
∣∣∣∣σ2 − σ3

2

∣∣∣∣ −
[
σ2 + σ3

2

]
sin φ − c · cosφ (40b)

τ 3d =
∣∣∣∣σ3 − σ1

2

∣∣∣∣ −
[
σ3 + σ1

2

]
sin φ − c · cosφ (40c)

In the second step, the quadratic over shear stress function
is defined for the definition of the fracture driving force

ψ̃∗
d (τd) = 1

2G
τd

2 (41)

where G = E/2 (1 − ν) is the shear modulus, E is Young’s
modulus, and ν is Poisson’s ratio. Similarly, we can get the
crack driving state function for the Mohr–Coulomb criterion

D̃ = 2ψ̃∗
d (τd)

gc/lc
(42)

Note that this is a threshold criterion that the phase field
will evolve only when the state of the material exceeds the
envelope of the Mohr–Coulomb failure surface, as shown in
Fig. 2. When the stress state is in the gray area of the figure,
the material is intact and no damage is generated; otherwise,
the damage will rapidly evolve to produce cracks.

elastic range

phase field evolution

0D

0D

c

Fig. 2 Failure surface for Mohr–Coulomb failure criterion in Eq. (42).
Stress states above the failure surface, determined by the cohesion c and
internal friction angle φ, raise the driving force function D̃ in Eq. (42)
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3 Numerical strategy

In the previous section, we deduced the governing equations
of the phase fieldmethod and introduced theMohr–Coulomb
failure criterion.Next,wewill discretize themnumerically. In
space, the standard finite elementmethod is used to discretize
the displacement field and the phase field. In time, the explicit
central difference scheme and the forward difference scheme
are adopted to discretize the displacement field and the phase
field. These time integration methods have good robustness
and are easy to be implemented in parallel. Through this we
can solve the problem of the high computational cost of the
phase field method to a certain extent.

3.1 Spatial-discrete Galerkin scheme

The domainB is discretized using a mesh family {Th}, which
has a feature element size of h. We can approximate (u, d)

with the standard first-order finite element shape function

ue (x, t) =
n∑

I=1

Ne
u I (x) ueI (t) (43a)

de (x, t) =
n∑

I=1

Ne
d I (x) deI (t) (43b)

where ue and de are the displacement and phase fields of the
element e, n is the number of nodes in the element, Ne

u I and
Ne

d I are the standard finite element shape functions [43].
Then the spatial discrete equations of the problem are

obtained by standard Galerkin approximation

Mü = Fext (u) − Fint (u, d) (44a)

Cḋ = 〈Y (u, d)〉+ (44b)

where u = {ue} and d = {de} are displacement and phase
field vectors that contain the time-dependent nodal DOFs
of u and d, respectively, and the explicit expressions of the
matrices involved in Eq. (44) are as follows

M =
Ne

A
e=1

∫
Be

ρNe
u
T Ne

udV (45a)

Fext =
Ne

A
e=1

∫
Be

ρNe
u
T bdV +

Nt
s

A
e=1

∫
�e
t

Ne
u
T t̄d� (45b)

Fint =
Ne

A
e=1

∫
Be

Be
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where the operator
Ne

A
e=1

represents the element-to-global

assembly in classic finite element method, Ne is the total
number of elements, Ne

u and Ne
d are the vectors of the finite

element shape functions: Ne
u = Ne

d = [N1, · · · , Nb] (where
b = 4 for 2D and b = 8 for 3D), Be

u and Be
d are the shape

functions’ spacial derivatives [43]. The local gradient of d
reads similarly as: ∇d = Be

dd.

3.2 Temporal-discrete scheme

In order to integrate over time, we first discretize the time
interval [0, t f ] into a number of small time intervals 0 =
t0 < t1 < · · · < tN = t f and define �tk = tk − tk−1.
In addition, we define the middle time of each time interval
tk+ 1

2
= 1

2 (tk + tk+1) for calculating the velocity vector at that
time.

In this paper, the displacement field is integrated using
the explicit central-difference integration rule and the phase
field is integrated using the explicit forward-difference time
integration rule with the use of diagonal or lumped element
mass/capacity matrices. The approximate solutions of u(tk),
u̇(tk+ 1

2
), ü(tk), d(tk), and ḋ(tk) are denoted as uk , vk+ 1

2
, ak ,

dk , and rk , respectively.
(1)Central differencemethod for displacement phase inte-

gration. The central difference method is used to compute
uk+1, vk+ 1

2
, ak+1 from uk , vk− 1

2
, ak and dk according to

ak = M−1(Fext (uk) − Fint (uk, dk)) (46a)

vk+ 1
2

= vk− 1
2

+ �tk+1 + �tk
2

ak (46b)

uk+1 = uk + �tk+1vk+ 1
2

(46c)

The central differenceoperator is not self-starting, because
the value of velocity v− 1

2
needs to be defined. For this pur-

pose, we use the following two equations to deal with the
initial condition of velocity.

v+ 1
2

= v0 + �t1
2

a0 (47a)

v− 1
2

= v0 − �t0
2

a0 (47b)

(2)Forward-difference method for phase field integration.
The forward-difference method is used to compute dk+1,
rk+1 from dk , uk and rk according to
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rk = C−1(〈Y (uk, dk)〉+) (48a)

dk+1 = dk + �tk+1rk (48b)

Because both forward and central differential integrals are
explicit, the solutions of displacement and phase fields can
be obtained simultaneously by explicit coupling. Therefore,
there is no need for iterative solution or tangent stiffness
matrix, and the solution process in each incremental step is
very efficient. Moreover, explicit integrals are independently
integrated at eachnode. Themodel can be divided into several
regions, and each region can be computed by an independent
CPU, so that parallel computing can be implemented and
computing efficiency can be improved. A detailed study of
parallel performance is provided in “Appendix A”.

3.3 Stable time increment

Explicit time integration uses many small time intervals to
integrate over time. The central difference operator and the
forward difference operator are conditionally stable. The sta-
ble time increments of two explicit integral operators can be
obtained under the following conditions

�t ≤ min{�tu,�td} = min

{
2

ωmax
,

2

λmax

}
(49)

where ωmax is the highest frequency in the system of equa-
tions of the displacement field solution response and λmax is
the largest eigenvalue in the system of equations of the phase
field solution response.

An approximation to the stability limit for the central dif-
ference operator in the displacement field solution response
and the forward-difference operator in the phase field solu-
tion response are given by

�tu ≈ Lmin

cd
(50a)

�td ≈ L2
min

2α
(50b)

where Lmin is the smallest element size in the mesh, cd is the
dilatational wave speed and α = (gclc) /η is the phase field
diffusivity.

To reduce the possibility of solution instability, we intro-
duce a scale factor ζ = 0.5 to adjust the stable time incre-
ment. Thus the final stable time increment is determined by

�tc = ζ · min

{
Lmin

cd
,
L2
min

2α

}
(51)

Note that the time increment for each incremental step is
dynamically adjusted to achieve the highest computational
efficiency.

4 Verification examples

In this section, we demonstrate the correctness and efficiency
of the numerical implementation through three examples of
typical 2D and 3D dynamic crack propagation and branch-
ing. Energy-based criteria are used in all three examples. For
dynamic crack branching problems, crack propagation veloc-
ity is an important indicator. We give the crack propagation
velocity and compare it with the wave speed of shear and
Rayleigh waves, which are two typical elastic waves in solid
materials.

4.1 Kalthoff test verification

The simulation of the edge-cracked plate under impact load-
ing is carried out to verify the accuracy of the method. The
experiment data are reported byKalthoff andWinkler [44]. A
platewith two initial symmetry cracks are subjected to impact
by anobject, as shown inFig. 3.The experiment demonstrates
two different failure modes with different impact speeds: at a
higher speed, a shear band is observed to propagate from the
notch tip at a negative angle about −10◦; at a lower impact
speed, a brittle fracture mode is observed with a propagation
angle about 70◦. The 2D and 3D analysis of this problem is
carried out by Belytschko et al. [45] with XFEM, Remmers
et al. [41] with cohesive segments and Borden et al. [34] with
phase field method.

Owing to the symmetry, only the upper part of the plate
is simulated. The boundary conditions are given as: the sym-
metry condition is applied on the bottom edge; a velocity
v0 = 20.0 m/s is applied at the initial time increment and

100 mm

v0=20.0 m/s

10
0 

m
m

50 mm

25
 m

m

Fig. 3 Experiment set-up for edge-cracked plate under impact loading
reported by Kalthoff and Winkler [44], The crack is modeled by an
actual discontinuity in the mesh with a sharp crack tip
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Table 1 The material properties and viscosity parameter used in
Sect. 4.1

E (GPa) ν ρ (kg/m3) gc (J/m2) η (kN ∗ s/mm2)

190.0 0.3 8000.0 2.213 1.0 × 10−7

held constant throughout the simulation on the left edge for
0 ≤ y ≤ 25 mm; other edges are traction-free, as shown
in Fig. 3. The material properties and viscosity parameter
used here are listed in Table 1. The corresponding material
shear and Rayleigh wave speeds are vs = 3022 m/s and
vR = 2803 m/s. The plate is discretized with 4,000,000
eight-node hexahedron elements (h = 0.05 mm).

The simulating results for the evolution of the phase field
through time with feature element size h = 0.05 mm and
lc = 2h are shown in Fig. 4. The resulting crack propagation
angle is nearly 70◦ and in good agreement with the exper-
imentally observed angle reported by Kalthoff and Winkler
[44]. The crack propagation paths under different element
feature size h and crack characteristic width parameter lc
are shown in Fig. 5. It can be found from the figure that the
crack propagation paths under different element feature size

Fig. 6 A post-processed plot of deformation at t = 75 us. The dis-
placements have been scaled by a factor of 5 and areas of model where
d > 0.99 have been removed from the plot to show cracks. The contour
of strain component ε11 is shown

h and crack characteristic width parameters lc are in good
agreement, which shows that the simulation results are mesh
convergent.

su001=t(d)su57=t(c)su05=t(b)su52=t(a)

Fig. 4 Evolution of the phase field through time in original configu-
ration with characteristic element size h = 0.05 mm and lc = 2h for
the simulation of Kalthoff experiment. The resulting crack propagation

angle is nearly 70◦ and in agreement with the experimentally observed
angle reported by Kalthoff andWinkler [44] : a t = 25 us, b t = 50 us,
c t = 75 us and d t = 100 us

Fig. 5 Comparison of phase field distribution at t = 100 us in the original configuration under different feature element size h and feature crack
width lc : a h = 0.1 mm, lc = 2h, b h = 0.1 mm, lc = 4h and c h = 0.05 mm, lc = 2h
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50 mm

20 mm

40 mm initial crack

100 mm

1.0 MPa

1.0 MPa

Fig. 7 The geometric dimensions and boundary conditions of a plate
under transient tensile loading

Table 2 The material properties and viscosity parameter used in
Sect. 4.2

E (GPa) ν ρ (kg/m3) gc (J/m2) η (kN ∗ s/mm2)

32.0 0.2 2450.0 3.0 1.0 × 10−11

In Fig. 6 we show the deformation of the cracked plate at
time t = 75 us. The displacements have been scaled by a
factor of 5 and areas of the model where d > 0.99 have been
removed from the plot for visualization.

4.2 Dynamic crack branching

The second example concerns a dynamic crack branching
process of a central crack in a plate under transient tensile
loading, as shown in Fig. 7. The dimension of the specimen
is 100×40 mm, and the length of the initial crack is 50 mm.
The tensile stress of 1.0MPa is applied instantaneously on the

top and bottom surfaces of the plate. The material properties
and viscosity parameter used here are listed in Table 2. The
corresponding shear and Rayleigh wave speeds are vs =
2333 m/s and vR = 2125 m/s. The plate is discretized with
400,000 eight-node hexahedron elements (h = 0.1 mm).

This problem has been experimentally investigated by
Sharon et al. [46] and Fliss et al. [47] and numerically studied
by Belytschko et al. [45] and Xu et al. [48] by XFEM and
Borden et al. [34] by phase field method. These experimental
and numerical studies have shown that the crack will branch
in the process of rapid propagation.

The propagation paths and phase fields under different
timeobtained from the simulationwith characteristic element
size h = 0.1 mm and lc = 2h are shown in Fig. 8. The crack
starts to propagate as a typical mode I crack. The initial crack
grows along the original direction for a certain distance and
then branching occurs at about 36 us. After that time, the two
branches continue to propagate separately. Figure 9 shows
the curve of crack propagation velocity with time. It can be
seen from the figure that the crack velocity increases with
time, and when a certain value is reached, the crack begins
to branch.

4.3 Multiple branching of crack in a pressurized
cylinder

In this example, we show a 3D computation of a multiple
branching of crack in a pressurized cylinder with a spherical
end cap. The geometric dimensions and boundary conditions
of a pressured cylinder are shown in Fig. 10, where symme-
try is used to reduce the computational cost. A hydrostatic
pressure load linearly increase to 10 MPa within 2.0 ms

su63=t(b)su41=t(a)

su08=t(d)su05=t(c)

Fig. 8 Evolution of the phase field through time in original configuration with characteristic element size h = 0.1 mm and lc = 2h for the dynamic
crack branching problem: a t = 14 us, b t = 36 us, c t = 50 us and d t = 80 us
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Fig. 9 The crack propagation velocity over time during the entire analy-
sis under different element size h for dynamic crack branching problem

150 mm

75 mm initial crack
500 mm

symmetry

10 mm

Fig. 10 Geometric dimensions and boundary conditions of a pressured
cylinder model with initial crack

is applied to the inner surface. The material properties and
viscosity parameter are the same as that in Sect. 4.1 (i.e.,
in Table 1). The corresponding shear and Rayleigh wave
speeds are vs = 3022 m/s, vR = 2803 m/s. The cylinder
is discretized with 589,032 eight-node hexahedron elements
(h = 2.0 mm).

The Evolution of the phase field for pressured cylinder
example through time in original configuration with charac-
teristic element size h = 1.5 mm and lc = 2h is shown
in Fig. 11. It can be seen that there are two branches in the
process of crack propagation, and a complex crack mode is
formed. We also compare the results of crack propagation
paths under different mesh sizes, as shown in Fig. 12. It can
be found that the crack propagation paths under three mesh
sizes are in good agreement. This shows that the algorithm in
this paper can still get accurate crack propagation path under
the coarse mesh.

A post-processed plot of deformation at t = 2.0 ms is
shown in Fig. 13 with the displacements scaled by a factor
of 2 and the areas of the model where d > 0.99 have been
removed from the plot to show cracks.

The crack propagation speed over time during the entire
analysis under different element size h is shown in Fig. 14.
The first branching occurs at t = 1.34 ms, and the second
branching occurs at t = 1.78 ms, corresponds to the two
gray bands in Fig. 14. It can be seen from the figure that the
crack propagation speed under different element size h has
a good consistency. Also, when the crack branching occurs,
the crack propagation speed is slightly increased. At the same
time, we also notice that the crack propagation speed is not
very fast when it branches, which is less than 0.2 times of
the Rayleigh wave speed. It is also lower than that of the
dynamic crack branching in Sect. 4.2. This may be due to the
local stress field of the cylindrical structure.

To understand the multiple branching behavior of a crack
from another perspective, we first took out the semicircular
path along the circumference of the cylinder near the crack
tip before the two branchings began, as shown in Figs. 15a
and 16a. Thenwe drew the distribution of themaximumprin-
cipal stress along the path at different time before branching

(a) t=1.2 ms (b) t=1.4 ms (c) t=1.8 ms (d) t=2.0 ms

Fig. 11 Evolution of the phase field for pressured cylinder example through time in original configuration with characteristic element size h =
1.5 mm and lc = 2h: a t = 1.2 ms, b t = 1.4 ms, c t = 1.8 ms and d t = 2.0 ms
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Fig. 12 Comparison of phase
field distribution at t = 2.0 ms
in the original configuration
under different feature element
size h: a h = 1.5 mm, b
h = 2.0 mm and c h = 4.0 mm

(a) h=1.5 mm (b) h=2.0 mm (c) h=4.0 mm

Fig. 13 A post-processed plot of deformation at t = 2.0 ms. The
displacements have been scaled by a factor of 2 and areas of the model
where d > 0.99 have been removed from the plot to show cracks. The
contour of displacement component u1 is shown

occurs, as shown in Figs. 15b and 16b. It can be found from
the figures that when the crack is about to branch, the maxi-
mumprincipal stress near the crack tipwill be converted from
one peak to two peaks, which directly leads to the branching
of the crack.

5 Compression-shear failure of rock-like
materials

Rock is a typical engineering material that can withstand
compression. Normally, its compressive strength is higher
than its tensile and shear strength. And it often works
under compressive loads, at which point the compression-
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Fig. 14 The crack propagation speed over time during the entire anal-
ysis under different element size h

shear failure is its main failure mode. By introducing the
Mohr–Coulomb criterion in the phase field method, we
can well capture the compression-shear failure process of
rock-like materials. In this section, we illustrate the appli-
cability of the model to rock-like materials by studying the
compression-shear failure process of rock slabs and rock pil-
lars, respectively.

5.1 Quasi-static compression-shear failure of rock
slabs

In this example, we simulated the compression process and
failure mode of rock slab under quasi-static loading. The
geometric dimensions, loading and boundary conditions of
the model are shown in Fig. 17a. The Mohr–Coulomb fail-
ure criterion of the crack driving state function is used. The
material properties used here are listed inTable 3. To simulate
quasi-static loading, we linearly load the axial displacement
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(a) (b)

Fig. 15 Maximum principal stress along an annular path when the crack begins to branch for the first time: a annular path for extracting stress, b
maximum principal stress along an annular path

(a) (b)

Fig. 16 Maximum principal stress along an annular path when the crack begins to branch for the second time: a annular path for extracting stress,
b maximum principal stress along an annular path

slowly so that the kinetic energy during the simulation is
much smaller than the internal energy and external work of
the system. The rock slab is discretized with 250,000 eight-
node hexahedron elements (H = 100 mm, h = 0.2 mm).
As reinforcement, a displacement constraint is applied in the
z-direction of the plate (perpendicular to the direction of the
paper). Unless the effect of η on the results is studied, η in all
simulations in this section is set to 1.0× 10−8 kN ∗ s/mm2.

The phase field evolution for compression of 3D rock slab
(H = 100 mm) through axial displacement in original con-
figuration with characteristic element size h = 0.2 mm and
lc = 2h is shown in Fig. 18. As can be seen from the figure,
there are two sets of typical slip zones near the upper and
lower parts of the rock slab. Each set of slip zones has two
main cracks at an angle of approximately 45 degrees to the
loading direction, which are the main failure modes of rock
slab when they are compressed.

For comparison, we simulated another case of rock slabs
with a height of 50 mm. The simulation results of the phase
field evolution for compression of 3D rock slab (H =
50 mm) through axial displacement in original configuration
with characteristic element size h = 0.2 mm and lc = 2h
are shown in Fig. 19. It can be seen that when the height of
the rock slab is reduced by half, only a pair of mutually per-
pendicular main cracks are formed. The failure mode is still
the same as the previous result, that is, shear friction damage
is dominant. To more clearly observe the final shape of the
crack in the rock slabs, we plot the crack distribution of the
two slabs in three dimensions in Fig. 20.

The load-displacement curves of two rock plates with dif-
ferent heights under different length scaling parameters are
shown in Fig. 21. It can be found that the calculation results
under different length scale parameters are consistent, which
shows the mesh convergence of the numerical method. In the
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50 mm 10 mm

H

uz

Simple support

H

R=25 mm

uz

Simple support

(b) rock pillar(a) rock slab

Fig. 17 Geometric dimensions and boundary conditions of uniaxial
compression model of rock slab and pillar: a rock slab and b rock pillar

Table 3 The material properties used in Sect. 5.1

E (GPa) ν ρ (kg/m3) gc (J/m2) c (MPa) φ (◦)
30.0 0.2 2700.0 28.0 30.0 30.0

initial stage, thematerial is intactwithout failure damage, and
the load increases linearly. When the load increases to a cer-
tain value, the material begins to locally damage and the load
increment begins to decrease. As the damage accumulates,
a set of macroscopic main cracks is generated. At this point,
the load suddenly drops to zero and the rock slab cannot con-

tinue to withstand the load. Besides, we also found that the
ultimate load of different height slabs is consistent. In this
example, it is 227.0 ± 0.3 kN.

To study the influence of viscous parameter η on the
results, we compressed rock slabs with a height of 50 mm
under different values of η (η = 2.0 × 10−8 kN s/mm2,
η = 1.0×10−8 kN s/mm2 and η = 0.5×10−8 kN s/mm2 ),
and extracted their compression reaction force-displacement
curves, as shown in Fig. 22. From the figure, it can be seen
that the calculated results under different values of η are in
good agreement at the load rising stage. Since the material
is elastic before phase field damage initiation, the viscous
dissipation parameter η used to characterize the damage pro-
cess has little effect on the results.With the accumulation and
evolution of damage, the viscous dissipation of damage has a
certain impact on the results, but because the viscous param-
eters we take are very small, the effect of η on the results is
still very small. We also found that as η decreases, the results
gradually converge to the case of non-viscous damage dissi-
pation.

5.2 Compression-shear failure of 3D rock pillars

In this example, we simulate the quasi-static compression
process of a rock pillar. This is a typical rock experiment,
which usually results in very complex 3D crack morphology.
The geometric dimensions, loading and boundary conditions
of the model are shown in Fig. 17. The Mohr–Coulomb fail-
ure criterion of the crack driving state function is used. The
material parameters are the same as that in Sect. 5.1 (i.e., in
Table 3). The rock pillar is discretized with 1,943,200 eight-
node hexahedron elements (H = 100 mm, h = 0.2 mm).

(a) uz=1.94 mm (b) uz=1.96 mm (c) uz=2.0 mm

Fig. 18 Evolution of the phase field for compression of 3D rock slab (H = 100 mm) through axial displacement in original configuration with
characteristic element size h = 0.2 mm and lc = 2h: a uz = 1.94 mm, b uz = 1.96 mm and c uz = 2.0 mm
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(a) uz=0.96 mm (b) uz=1.02 mm (c) uz=1.08 mm

Fig. 19 Evolution of the phase field for compression of 3D rock slab (H = 50 mm) through axial displacement in original configuration with
characteristic element size h = 0.2 mm and lc = 2h: a uz = 0.96 mm, b uz = 1.02 mm and c uz = 1.08 mm

(a) H = 100 mm (b) H = 50 mm

Fig. 20 The final crack path of rock slabs with different heights (H =
100 mm and H = 50 mm) under compressive loading (3D view)

Fig. 21 Reaction force versus displacement at different rock slab
heights (H = 100 mm and H = 50 mm) and different length scale
parameters (lc = 0.4 mm and lc = 0.2 mm) for rock slabs compression

Fig. 22 Reaction force vs. displacement at different values of viscous
parameter η ( η = 2.0 × 10−8 kN s/mm2, η = 1.0 × 10−8 kN s/mm2

and η = 0.5 × 10−8 kN s/mm2 ) for rock slabs ( H = 50 mm )
compression

Similar to the previous section, we studied the compres-
sion failure process of two heights of rock pillars (H =
100 mm and H = 50 mm ). The morphology of the
cracks and the failure modes of the rock pillars at the two
heights are shown in Fig. 23 (H = 100 mm) and Fig. 24
(H = 50 mm), respectively. As the displacement is loaded,
two3D fan-shapedmain crack surfaces are formed.The angle
of the fan-shaped surface and the loading direction is about
45 degrees.

The reaction force-displacement curves at two different
heights of the rock pillars (H = 100 mm and H = 50 mm)
are shown in Fig. 25. The compression-shear failure process
of rock pillar is similar to that of rock slab. In the initial stage,
the material is intact without damage, and the load increases
linearly.When the load increases to a certain value, the mate-
rial begins to locally damage and the load increment begins to
decrease. As the damage accumulates, a set of macroscopic
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(a) uz=0.48 mm (b) uz=0.485 mm (c) uz=0.49 mm (d) uz=0.50 mm

Fig. 23 Evolution of the phase field for compression of 3D rock pillars
(H = 100 mm) through axial displacement in original configuration
with characteristic element size h = 0.2 mm and lc = 2h (a quarter

of the model is cut off to show internal cracks): a uz = 0.48 mm, b
uz = 0.485 mm c uz = 0.49 mm and d uz = 0.50 mm

(a) uz=0.24 mm (b) uz=0.2425 mm (c) uz=0.25 mm

Fig. 24 Evolution of the phase field for compression of 3D rock pillars (H = 50 mm) through axial displacement in original configuration with
characteristic element size h = 0.2 mm and lc = 2h (a quarter of the model is cut off to show internal cracks): a uz = 0.24 mm, b uz = 0.2425 mm
and c uz = 0.245 mm

main crack clusters is generated. The number of main crack
clusters depends on the height of the rock pillars. Finally,
the load suddenly drops to zero and the rock pillars cannot
continue to withstand the load. In addition, we also found
that the ultimate load of different height pillars is consistent.
In this example, it is 205.8 ± 1.6 kN.

At the same time, we also noticed that the compression
of the rock pillars and the rock slabs is different. After the
reaction force-displacement curve of the rock pillars’ com-
pression reaches the highest point, there is a descending
section (as shown in Fig. 25). On the contrary, after the com-
pression load of the rock slab reaches the highest point, it
is quickly reduced to 0 (almost instantaneously, as shown in
Fig. 21). This may be because the compression process of
the rock slab is an approximate 2D crack evolution process,
while the rock pillar is 3D.

The Reaction force-displacement curves of the compres-
sion of the rock pillars (H = 50 mm) under different rock
cohesive strength c and internal friction angle φ are shown
Fig. 26. It can be seen that the ultimate load of the rock pillars

Fig. 25 Reaction force versus displacement at different pillar heights
(H = 100 mm and H = 50 mm) for rock pillars compression
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=30 MPac

Initial damage of phase field

=20
=25

=30

=30 MPac
=20 MPac

=25 MPac

Initial damage of phase field

(b)(a)

(d)(c)

Fig. 26 Reaction force vs. displacement at different cohesion strength
c and internal friction angle φ for compression of 3D rock pillars
(H = 50 mm): a initial damage line of phase field for different c,

b initial damage line of phase field for different φ, c reaction force vs.
displacement for different c and d reaction force vs. displacement for
different φ

and the load at the beginning of the damage of the pillars will
increase with the increase of c and φ.

6 Concluding remarks

In this paper, we review the basic idea of the phase
field method, derive the governing equations of an explicit
phase field model with compression-shear failure mode, and
numerically discretize them. The main conclusions of this
paper are as follows.

(1) The 3D explicit parallel phase field method is numer-
ically implemented to simulate a large-scale complex
dynamic and quasi-static crack network. The explicit
central difference scheme and the forward difference
scheme are used to discretize the displacement field and
the phase field respectively.

(2) The Mohr–Coulomb failure criterion is introduced into
the framework of the phase fieldmethod and numerically
implemented, which is suitable for shear friction damage
of rocks and other brittle materials.

(3) Some typical 2D and 3D dynamic crack propagation and
branching examples are simulated to illustrate the cor-
rectness and effectiveness of the algorithm.

(4) The quasi-static compression-shear failure processes of
3D rock slabs and pillars are simulated. The results show
that the rock will produce a set of shear crack surfaces
with an angle of about 45 degrees in the loading direction
during compression.

In summary, the model proposed in this paper can be used
to simulate complex dynamic and quasi-static crack growth
problems of brittle materials, especially the rock-like mate-
rials with compressive-shear failure behavior.

Acknowledgements This work is supported by National Natural Sci-
ence Foundation of China, under Grant No. 11532008, the Special
Research Grant for Doctor Discipline by Ministry of Education, China
under Grant No. 20120002110075.

Appendix A Performance study

The phase-field method usually requires large-scale compu-
tation, and parallel computing is particularly important at this
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(a) number of CPUs = 8 (b) number of CPUs = 12

Fig. 27 The domain division for different number of CPUs (8 and 12),
each color represents a domain

time.Explicit time integration scheme is very suitable for par-
allel computation.We usemulti-CPU subregional computing
to implement parallel computing. Here we take the example
in Sect. 5.2 to study the efficiency of the parallel computing.
To carry out parallel computation, we divide thewholemodel
according to the number of CPUs used. Figure 27 gives the
results of domain division of the model when using 8 CPUs
and 12 CPUs, and then calculates each region with one CPU.
The information on the common boundary of each domain
is stored in the public variables, which are synchronized in
multiple cpus via MPI function.

Thewall time of themodel with different number of CPUs
is shown in Fig. 28a. The model has 7939500 DOFs and
53244 incremental steps. We can find that using multiple
CPUs can greatly improve the efficiency of calculation, and
the wall time is approximately inversely proportional to the
number of CPUs used. Figure 28b shows the wall time con-
sumed by the same model with the same number of CPUs
(16) and different DOFs. It can be seen that the relationship
between the wall time and the number of DOFs is basically
linear, which is better than that of the implicit scheme.

(a) (b)

Fig. 28 Performance study: Calculating wall time consumption under different numbers of CPUs and DOFs: a Computing time under different
number of CPUs and b Computing time under different number of DOFs
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