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Abstract
A new data-driven method that generalizes experimentally measured and/or computational generated data sets under different
loading paths to build three dimensional nonlinear elastic material law with objectivity under arbitrary loadings using neural
networks is proposed. The proposed approach is first demonstrated by exploiting the concept of representative volume
element (RVE) in the principal strain and stress spaces to numerically generate the data. A computational data-training
algorithm on the generalization of these principal space data to three dimensional objective isotropic material laws subjected
to arbitrary deformation is given. To validate these data-driven derived material laws, large deformation and buckling analysis
of nonlinear elastic solids with reference material models and engineering structure with microstructure are performed.
Numerical experiments show that only seven sets of data under different stress loading paths on RVEs are required to reach
reasonable accuracy. The requirements for constitutive law such as objectivity are preserved approximately. The consistent
tangent modulus is also derived. The proposed approach also shows a great potential to obtain the material law between
different scales in the multiscale analysis by pure data.

Keywords Computational data-driven · Artificial neural network · 3D objective material laws · Principal strain and stress
space · Engineering structure with microstructure

1 Introduction

Material laws describe the mechanical response between
stress and stretch. They play a key role to solving the
boundary-value problems inmechanics. Thematerial lawcan
determine if the solved boundary-value problem can match
or explain experimental observations and its application in
complex loading modes or extreme environment. The pre-
vailing way in the past is to calibrate the material law with
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experimentally observed data. In this paper, we replace this
phenomenological component of the boundary-value prob-
lem by a data-driven model.

Recently, Kirchdoerfer and Ortiz [1–3], Conti et al. [4],
Leygue et al. [5], Chinesta et al. [6] have proposed a new
paradigm to bypass the empirical fitting of the material law
and formulate the calculation directly from experimental
and/or computational data for elastic material and viscoelas-
tic material from quasi-static loading to dynamics loadings.
A strategy to minimize the discrepancy between experimen-
tal data and predicted response through the optimization is
proposed under the constraint in the phase space of both
stress and stretch. For multiple-dimensional problems with
the rotation of the materials, the convergence is usually slow
because the rotation of the material plays an important role.
Another issue is that many materials have microstructures
spanning several orders in magnitude. For example, the two
dimensional materials such as graphene nowadays are often
mixed into soft materials such as silicone rubber to increase
both toughness and strength. The data obtained from the uni-
axial tension and/or compression are not enough to capture
the material behaviors in general stress states.
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Another approach parallel to those of Ortiz and collabo-
rators is to use the supervised learning to train material laws.
This approach can be dated back to the 1990s and categorized
into two types. One is that the material model is primary
known but the parameters involved in the model needs to
be identified. This parameter identification can be carried
out by solving an optimization or constrained optimization
problem to minimize the objective function, which is usu-
ally defined as a metric to measure the discrepancy between
the benchmark (usually experimental data) and predictions
(usually numerical simulations) [7–9]. Machine learning can
be used to accelerate the identification process and is also
widely employed. We just name a few in our view. Al-
Haik et al. [10] developed a model based on an artificial
neural network (ANN) to predict the stress relaxation of
the polymer matrix composites. Zopf and Kaliske [11] cou-
pled the neural network with microsphere model, which
can take into the microstructure of polymer chains into
account. The pure elastic response and inelastic material
behavior are obtained via Recurrent Neural Network (RNN).
For the other type, nothing is known about the material
model in prior. Ghaboussi and Sidarta [12] first employed
the artificial feed-forward neural network to train their exper-
imental data for the material model. The stress increment
is trained with the input of strain increment and the state
variables in the previous steps by Nested Artificial Neu-
ral Networks (NANN). Their work is limited to the small
deformation regime. The training for nonlinearly elastic–
plastic material is also proposed and the tangent modulus
at the each time step is derived [13]. The authors claim that
the derived tangent modulus is independent of the specific
material response. However, in finite deformation, objectiv-
ity of thematerial laws and loading–unloading of thematerial
are not considered in their training. The complexity of the
microstructured solids inspires the data-driven model to link
information across multiple scales via offline training [14–
16]. The training approach incorporating the microstructural
data and direct numerical simulations (DNS) with the rep-
resentative volume element (RVE) has proposed, aiming at
unifying data-driven framework for designing and model-
ing of materials and structures. A self-consistent clustering
analysis (SCA) method is also proposed to reduce com-
putational costs and avoid the curse of dimensionality in
the offline training [17–22]. SCA is an efficient tool for
concurrent analysis on materials with multiscale structures.
Wang and Sun [23] has extended the ANN training strategy
from the single-physics solid mechanics problem to hydro-
mechanical coupling problem of geological materials. These
data-driven approachs can accelerate the process for the engi-
neering design. Recently, it is further developed for real-time
topology optimization [24].

In practice, it is hard to generate the stress-stretch data
under arbitrary deformation modes/paths to construct the

material laws. However, it is relatively easy to obtain the
experimental or numerically generated data of materials
under the principal deformation modes (uniaxial tension,
biaxial loading or triaxial loading etc.). The experiments
in the principal space are consistent with the spirit of the
principal component analysis (PCA) in data analysis. PCA
is a technique which is widely used to convert a set of
possibly correlated data into a set of linearly uncorrelated
data, called principal component [25]. Further, the generated
data is usually trained by neural network as a black box.
Then building a material law is a pure process from data to
data. It is questionable if the requirements for material law
established in continuum mechanics such as objectivity are
preserved.

Although it is possible to generate the data through physi-
cal experiments in principal space, we will demonstrate data
generation by numerical experiments with the help of the
representative volume element (RVE) approach. The prin-
cipal stretch/stress is imposed on a representative volume
element (RVE) and the principal stress/stretch response is
generated. In this paper, we resort to the established mechan-
ics theory to build the material law for finite deformation
nonlinear isotropic elastic materials based on the data gen-
erated by RVE. The organization of the paper is as follows.
In Sect. 2, two widely used models for hyperelastic material
is employed to generate the data in principal stretch-stress
through RVE: neo-Hookean model [26] and Arruda–Boyce
model [27] based on the homogenization theory.We describe
in Sect. 3 the mechanics-theory-based supervised machine
learning techniques to train the material law. The details on
training procedure, the selection of machine learningmethod
and related techniques, are given in “Appendix B”. Section 4
gives the computational results of the trainedmaterial laws to
simulate the structure in three-dimensional geometry under
different loading modes with and without microstructure.
Finally a short conclusion is drawn in Sect. 5.

2 Data generation

Heterogeneous material usually consists of different phases.
RVE is often used to build the material law for these het-
erogeneous materials. That is, RVE is used to define the
relationship between the imposed homogeneous deforma-
tion gradient F̄ and the homogenous second Piola-Kirchhoff
(PK) stress S̄. The data generated by RVE computation
can be trained for material law. Due to the composition
of different phases, a constitutive response of each phase
should be first given for RVE computations. The readers
who are familiar with data generation with RVE can skip this
section.
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Fig. 1 a A material point X
with/without microstructure in
the deformable body moves
from initial configuration to
current configuration. A RVE
(Representative Volume
Element) can be thought as
being attached at each material
point at the macroscale. b Two
RVEs without microstructure
and with void to generate the
stress-strain data in principal
spaces to be trained for material
laws
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2.1 Homogenization of RVE in principal space

A RVE can be thought as being attached at each material
point (X , Y , Z ) at the macroscale (Fig. 1a) in the reference
configuration. Let�0 be the region occupied by a RVE, con-
sisting of single ormultiple phases, in an unstressed reference
configuration with bounding surface ∂�0 (Fig. 1b). The RVE
is associated with a Cartesian coordinate systemwith orthog-
onal frame {e1, e2, e3}, which are base vectors in Cartesian
coordinates in x , y and z direction respectively. Only widely
used cuboid RVE is considered in this work with lengthes
of Lx , Ly and Lz in x , y and z direction respectively. The
detailed derivation of homogenization on the RVE is given
in “Appendix A”.

In terms of the displacement vector u, the boundary con-
dition on the RVE can be rewritten as

u = (λ1 − 1) Xe1 + (λ2 − 1) Y e2 + (λ3 − 1) Ze3 (1)

It can be seen that (λ1, λ2, λ3) are the principal stretches
which can be computed based on the imposed displace-
ment on RVE. Correspondingly, the homogenized second
PK stress can be computed by

S̄ = S1e1 ⊗ e1 + S2e2 ⊗ e2 + S3e3 ⊗ e3 (2)

with

S1 = 1

λ1LyLz

∫ Ly

0

∫ Lz

0
t1dYdZ , (3)

S2 = 1

λ2Lx Lz

∫ Lx

0

∫ Lz

0
t2dXdZ , (4)

S3 = 1

λ3Lx L y

∫ Lx

0

∫ Ly

0
t3dXdY (5)

Here t1, t2 and t3 are traction forces on the outer boundary
of the RVE and can be numerically computed from the nodal
reaction force. It has shown by many studies that the propor-
tional ratio of Cauchy stresses can be realized even under the
displacement controlled loading [28–31].

2.2 Data of stress-strain in principal space by RVE

Based on the homogenization theory, the data of stress-strain
in principal space can be generated. Two RVEs are used in
the present work (Fig. 1b). One is without anymicrostructure
and the other with a void at the center. The one without the
microstructure is easy for us to compare with the existing
models to verify the accuracy and effectiveness of the pro-
posed method. The material law for a RVE with the void is
not known in prior. It can help to further test the predicability
of the proposed method.

The reference material models of neo-Hookean model
for nonlinear elastic material with μ = 2, Dm = 0.1 and
Arruda–Boyce model with parameters μ = 2, Dm = 0.1
and λm = 7 are adopted in this work. The elastic deforma-
tion energy of neo-Hookeanmodel andArruda–Boycemodel
are
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Table 1 14 and 7 sets of loading
paths with constant ratios
between Cauchy stress
components to generate the data
of principal components of the
second PK stress and principal
stretch components

Load path ID �̄1 �̄2 �̄3 {a1, a2, a3}[α,β] {S1, S2, S3}[α,β]

1∗ −0.43R −0.50R −0.75R Computed Computed

2 0.00R −0.50R −0.87R

3∗ 0.00R 0.00R −1.00R

4 0.43R −0.50R −0.75R

5∗ 0.50R −0.43R −0.75R

6 0.50R 0.00R −0.87R

7∗ 0.50R 0.43R −0.75R

8 0.75R −0.43R −0.50R

9 0.75R 0.43R −0.50R

10∗ 0.75R 0.50R −0.43R

11 0.75R 0.50R 0.43R

12∗ 0.87R 0.00R −0.50R

13 0.87R 0.50R 0.00R

14∗ 1.00R 0.00R 0.00R

The number of loading path with ∗ indicates the 7 data sets among the 14 data sets. The loading path is defined
by Cauchy stress for convenience only, and it is also possible to describe the loading path using other stress
or strain measures

W = μ

2
( Ī1 − 3) + 1

Dm
(J − 1)2

and

W = μ

{
1

2
( Ī1 − 3) + 1

20λ2m
( Ī 21 − 9) + 11

1050λ4m
( Ī 31 − 27)

+ 19

7000λ6m
( Ī 41 − 81) + 519

673750λ8m
( Ī 51 − 243)

}

+ 1

Dm

(
J 2 − 1

2
− ln J

)

respectively where Ī1 = J− 2
3 (λ21 + λ22 + λ23), J = det(F)

and F is the deformation gradient. The stress can be derived
from the deformation energy based on the classical contin-
uum mechanics [32].

Different proportional loading paths are designed to gen-
erate the data by RVE (see Table 1). The loading path can
be defined by the controlling parameter R and the ratios
�̄i/R, (i = 1 · · · 3). Here �̄i are the principal Cauchy stress
(16). History data of principal components of the second
PK stress

(
S1, S2,S3

)
with the principal stretch components

(a1, a2, a3) on each loading path can be generated by increas-
ing the controlling parameter R from 0 to 1.5μ. Where
ai = λ2i (i = 1 · · · 3) and μ is the shear modulus. Each
loading history is divided into Ns time steps evenly and NL

loading paths in the principal stress space. Ns is set to 500 and
NL is set to 7 or 14, see Table 1. The data of {a1, a2, a3}[α,β]
and {S1, S2, S3}[α,β] can be generated through Eqs. (1) and
(3) respectively where α represents the loading path while
β represents the loading step. It should be commented here
that the loading path should be evenly distributed in the stress

space as far as possible. The 14 loading cases in the Table 1
may not be the optimal one, but it can train an isotropic
material models effectively according to our numerical expe-
riences.

Figure 2 visualizes how the data (a1, a2, a3) and(
S1, S2,S3

)
for loading path ID 3, 7 and 14 in Table 1 at dif-

ferent time steps can be obtained through RVE computation
according to Eqs. (1) and (3). Figure 3 shows the generated
data of (a1, a2, a3) and

(
S1, S2,S3

)
versus the controlling

loading parameter R for loading path ID 3, 7, and 14 respec-
tively.

3 Data training and on-line computation

3.1 Data training in principal space by neural
networks

Through RVE computation, the data of {a1, a2, a3}[α,β] and
{S1, S2, S3}[α,β] in the principal space can be generated. Here
α represents the loading path (α = 1 · · · NL ) and β the
time step of loading history (β = 1 · · · Ns). The data of
{a1, a2, a3}[α,β] and {S1, S2, S3}[α,β] can be stored in three-
dimensional arrays a[α, β, k] and S[α, β, k]. The dimension
of both arrays is NL × Ns × 3.

These data will be used to train a data-driven model
between {a1, a2, a3} and {S1, S2, S3} by neural network. It
should be commented here that the generated data on each
loading path is highly correlated, but data on different load
paths is uncorrelated. Therefore, the data from 14 load-
ing paths are evenly distributed in the stress space, which
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Fig. 2 The visualization of data generation of {a1, a2, a3} and
{S1, S2, S3} through RVE for a loading path ID 3; b loading path ID
7; c loading path ID 14 in Table 1. Yellow color represents the original

configuration of RVE and red color represents the configuration of RVE
at the time step when the controlling loading parameter R = 1. (Color
figure online)
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Fig. 3 The generated data of {a1, a2, a3} and {S1, S2, S3} versus the controlling loading parameter of through RVE for a loading path ID 3; b
loading path ID 7; c loading path ID 14 in Table 1. 500 time steps are adopted for data sampling. For the showing purpose, only sampled data at a
few time steps are shown

can meet the i.i.d. assumption for Artificial Neural Network
(ANN) training conditions.

Various types of neural networks are proposed in the past
years.We adopt a standardmulti-layer ANN to train the data,
which is shown in Fig. 4. This neural network includes an
input layer (c1), three hidden layers (c2, c3 and c4) and output
layer (c5). The input layer, the three hidden layer and output
layer have Ninput , Nhidden and Noutput neurons. For neural
network shown in Fig. 4. Ninput , Nhidden and Noutput are 3, 6
and 3 respectively.Wn+1

i j are theweights for the link between

i th neuron on layer cn and j th neuron on layer cn+1. bn+1
j are

the biases on j th neuron on layer cn+1. Here, the superscript
n represents the layer number (n = 1 · · · N ). N is the total

number of the layers of ANN (the input layer is excluded in
this definition and N = 4 in the present work).

Let SNα,β,k (k = 1 · · · 3) denote the output principal stress
of the ANN with input principal strain a[α, β, k]. If ANN
has three layers (one input layer c1, one hidden layer c2 and
one output layer c5), the principal stress predicted by ANN
can be written:

SN=2
α,β,k = tanh

(
a[α, β,m]W 2

mi + b2i

)
W 5

ik + b5k (6)

in which m = 1 · · · Ninput , i = 1 · · · Nhidden and k =
1 · · · Noutput and the summation of dummy index should be
carried out. tanh is the hyperbolic tangent function. And so
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Fig. 4 Artificial neural network
to train the stress-stretch data in
principal space with 3 inputs, 3
hidden layers with the same
number of neurons and 3
outputs. The weights Wn and
biases bn and its components
Wn

i j and bnj (n = 2 · · · 5) are
marked. The principal stress can
be obtained by the input
arbitrary principal stretch after
training
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neuron

on, for ANN with five layers (c1 · · · c5) in the present work,
the principal stress predicted by ANN can be written:

SN=4
α,β,k = tanh

(
tanh

(
tanh

(
a[α, β,m]W 2

mo + b2o
)
W 3

oi

+ b3i

)
W 4

i p + b4p
)
W 5

pk + b5k (7)

where m = 1 · · · Ninput , o, i, p = 1 · · · Nhidden and k =
1 · · · Noutput and the summation of dummy index also should
be carried out.

The training of the data tries to minimize the distance
between the predicted points SN=4

α,β,k and the generated data
points S[α, β, k] on all the loading paths and history, which
can be written as

argmin
W 2

i j ,b
2
j ,··· ,W 5

i j ,b
5
j

3∑
k=1

NL∑
α=1

Ns∑
β=1

(
SN=4
α,β,k − S[α, β, k]

)2
(8)

by optimizing the weights Wn
i j and biases bnj (n = 2 · · · 5).

Thewhole algorithm for training thematerial law is shown
in Table 2. The Neural Fitting Toolbox (nftool) of MATLAB
is used for training. The derivation details about the general
ANN are given in “Appendix B”.

3.2 On-line computation with the trainedmaterial
law

At any material point, the right Cauchy-Green tensor can be
expressed in the principal space:

C̄ = aiNi ⊗ Ni (9)

Here ai (i = 1 · · · 3) are the eigenvalues of C̄ and Ni

(i = 1 · · · 3) are the eigenvector and the second PK stress
can be described in the similar way:

S̄ = SiNi ⊗ Ni (10)

Table 2 The algorithm for training the material law (Offline learning)

Algorithm 1: Offline Learning

1. Database by RVE: {a1, a2, a3; S1, S2, S3}
2. Extend data-set through a symmetric operation.

{a1, a2, a3; S1, S2, S3} {a2, a3, a1; S2, S3, S1}
{a3, a1, a2; S3, S1, S2}

{a2, a1, a3; S2, S1, S3} {a1, a3, a2; S1, S3, S2}
{a3, a2, a1; S3, S2, S1}

3. Train the data through the ANN.

argmin
W 2

i j ,b
2
j ,··· ,W 5

i j ,b
5
j

∑3
k=1

∑NL
α=1

∑Ns
β=1

(
SN=4
α,β,k − S[α, β, k]

)2

weights Wn
i j and biases bni (n = 2 · · · 5) are determined by solving the

optimization problem with the database generated by the RVE

where Si (i = 1 · · · 3) are the eigenvalues. Defining the sec-
ond order tensor Ai = Ni ⊗Ni with no summation on i , the
tangent modulus is given by the following:

CM = 2
∂S̄

∂C̄
=

3∑
i=1

3∑
j=1

2
∂Si
∂a j

∂a j

∂C̄
Ni ⊗ Ni +

3∑
i=1

2Si
∂Ni ⊗ Ni

∂C̄

=
3∑

i=1

3∑
j=1

2
∂Si
∂a j

Ai ⊗ A j

+2
3∑

i �= j,i �=k

Si

(
AiAT

j + A jAT
i

ai − a j
+ AiAT

k + AkAT
i

ai − ak

)

(11)

where ⊗ is dyadic symbol for vectors. The derivation of(
∂Ni⊗Ni

∂C̄

)
can refer to Rosati and Valoroso [33] and Tang et

al. [34]. When ai approaches a j , it looks that Eq. (11) leads
to singularity. Then Eq. (11) should be computed in terms of
limitation. The tangent modulus is composed of two terms,
one corresponding to the derivatives of the principal stress
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with respect to principal stretch; the other corresponding to
the spin of the principal axes.

After the data training by ANN, (Sm,m = 1 · · · 3) are
given by the implicit function:

[S1, S2, S3] = f (a1, a2, a3;W,b) (12)

which are used to update the stress in on-line computations
(ref. Eq. 23). Here it should be noted that (a1, a2, a3) are
arbitrary for on-line computation and (W,b) are known by
the ANN training of the data. In practice, the switch of the
stretch components ai and a j may not lead to the switch of
the stress components Si and S j computed by neural network
(the detailed discussion is given in “Appendix B”). Then per-
mutation of

(
ai , a j , ak

)
is carried out to compute the stress(

Si , S j , Sk
)
. Equation (12) is computed six times by permu-

tation of (a1, a2, a3).

[
S11 , S

1
2 , S

1
3

]
= f (a1, a2, a3;W,b)[

S22 , S
2
3 , S

2
1

]
= f (a2, a3, a1;W,b)[

S33 , S
3
1 , S

3
2

]
= f (a3, a1, a2;W,b)[

S41 , S
4
3 , S

4
2

]
= f (a1, a3, a2;W,b)[

S53 , S
5
2 , S

5
1

]
= f (a3, a2, a1;W,b)[

S62 , S
6
1 , S

6
3

]
= f (a2, a1, a3;W,b)

Then the results from the computation of six times are
summed up and average to get the final Si and ∂Si

∂a j
(ref.

Eq. 24):

Si = 1

6

6∑
m=1

Smi

∂Si
∂a j

= 1

6

6∑
m=1

(
∂Si
∂a j

)m

(13)

Then S andCM can be computed based on the above results.
The whole algorithm for applying the trained material law to
simulate the deformation of structures is shown in Table 3.

Remarks i. In the above, we only show how to derive tan-
gent modulus CM. According to Belytschko et al. [32],
pushing forward of CM can obtain tangent modulus
based on Truesdell rate:

CT
i jkl = 1

J
CM
mnpq Fim Fjn FkpFlq

The tangent modulus based on Jaumann rate can be
obtained through further transformation:

Table 3 The algorithm for applying the trainedmaterial law to simulate
the deformation of structures (Online computation)

Algorithm 2: Online FEM Computation

1. Deformation gradient F̄ is given.

2.Compute C̄ = F̄·F̄T and its eigenvalues {a1, a2, a3} and eigen vectors
{N1,N2,N3}.
3. Call the ANN six times. The order of input variables is switched for
each call.[

S11 , S
1
2 , S

1
3

] = f (a1, a2, a3;W,b)[
S22 , S

2
3 , S

2
1

] = f (a2, a3, a1;W,b)[
S33 , S

3
1 , S

3
2

] = f (a3, a1, a2;W,b)[
S41 , S

4
3 , S

4
2

] = f (a1, a3, a2;W,b)[
S53 , S

5
2 , S

5
1

] = f (a3, a2, a1;W,b)[
S62 , S

6
1 , S

6
3

] = f (a2, a1, a3;W,b)

4. The outputs of ANN is used to compute the principal stress by aver-
aged six outputs.

Si = 1
6

6∑
m=1

Smi

5. The partial derivatives of ANN is used to compute tangent modulus
(Eq. 11).

∂Si
∂a j

= 1
6

6∑
m=1

(
∂Si
∂a j

)m (more details are given in the “Appendix”)

6. Solve equilibrium equation.

C J
i jkl = CT

i jkl+
1

2

(
δikσ jl + δi jσ jk + δ jkσil + δ jlσik

)−δi jσkl

ii. The proposed approach can greatly reduce the computa-
tional cost for data training. In the previous works such
as Hashash et al. [13], the history of all the components
of stretch are used in the training. Wang and Sun [23]
train their model with the history of the principal strain
and history of the incremental rotation. The introduction
of incremental rotation is used to resolve the issue for the
objectivity of the material laws. It can be seen that our
derivation is still within the classical framework. Only
mathematical form in the continuum mechanics theory is
replaced by the trained data. It can preserve the objectiv-
ity of material law approximately. This will be discussed
next in the section of numerical examples.

4 Numerical examples

The numerical algorithm for both data training and online
finite element computation is shown in Tables 2 and 3. The
predictions by the ANN trained model will compare with
those by the reference neo-HookeanorArruda–Boycemodel.
In all our examples, we use the consistent unit of measure-
ment. The unit of length is mm; force is N; bending moment
is N · mm; stress, pressure and modulus are MPa.
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Fig. 5 The finite element analysis on a rectangular plate with a circular
hole. a The geometric model and boundary conditions of the voided
plate. b The load-displacement curves for the voided plate, predicted
by the ANN trained model and the neo-Hookean model. The contour

plots of effective stress by c the ANN trained model and d the reference
neo-Hookeanmodel under the same levels of imposed displacement 10.
The FEM model includes 2348 nodes and 1093 elements

Fig. 6 Difference comparison
between the results obtained
from the ANN trained model
and reference neo-Hookean
model. Frequency histogram of
the mechanical states versus the
relative difference between two
models on the effective stress
and the maximum logarithmic
strain in (a) and (b) respectively.
The mean (E) and variance (σ 2)
of the difference are marked in
the figure
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4.1 Thematerial law by RVE without microstructure

We first show the results for the material law trained by
RVE without microstructure. Because the RVE is without
any microstructure, therefor the material response of RVE
should be the same as the material model chosen for RVE
analysis.

A rectangular plate with a circular hole of radius 10 at the
center under the tensile loading is investigated first under
plane stress conditions. The geometric setup is shown in
Fig. 5a. The mesh is refined around the hole. A displace-
ment of 10 is applied on the right edge and the left edge is
fixed in the x direction. Both the neo-Hookean model and

the ANN trained model are employed (The ANN model is
trained by the data generated with 14 loading paths and 500
time steps of load). Figure 5b shows the load-displacement
curves for both models. A very good agreement between the
two models’ prediction is observed. Figure 5c, d plots the
contour of effective stress predicted by the two models. It is
hard to distinguish the difference obtained by the two mod-
els. Figure 6a, b shows the statistical data to compare the
perdition by both models. Figure 6a counts the frequency of
the states versus the relative difference between two models
on the effective stress. The average relative difference for
two models is around 0.76%. Figure 6b counts the frequency
of the state versus the relative difference between two mod-
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Fig. 7 The finite element analysis on a cuboid bar under the imposed
torsion. a The geometricmodel and boundary conditions. bThe contour
plots of effective stress for the ANN trained model and the reference
Arruda–Boyce model. c Frequency histogram of the mechanical states

versus the relative difference between twomodels on the effective stress
and the maximum logarithmic principal strain. The mean (E) and vari-
ance (σ 2) of the difference are marked in the figure. The FEM model
includes 4352 nodes and 3283 elements

els on the maximum logarithmic principal strain Emax
N . The

average relative difference for two models is around 0.20%.
We then use theANN trainedmodel to predict themechan-

ical response for a three-dimensional problemwhere a torque
(M = 500) is imposed on cuboid beam on the one end of
surface and the beam is fixed on the other end. The torque is
applied at a reference point, and the reference point is coupled
with the end surface. The geometric setup is given in Fig. 7a.
Figure 7b plots the contour of effective stress for the ANN
trained model and the reference Arruda–Boyce model. Same
as the two dimensional problem, there is a tiny difference
between two models. This tinty difference can be identi-
fied through the statistical analysis on the relative difference
of effective stress and the maximum logarithmic principal
strain. The average error for effective stress and maximum
logarithmic strain is around 0.12% and 1.27%. It should be
emphasized that the large rotation of body exists in this exam-
ple. The agreement between the ANN trained model and the

reference Arruda–Boyce implies the objectivity of the ANN
trained model.

A more complicated example is studied. The combined
force (F = 4.5) and torsion (M = 500) is imposed on cuboid
beam on the one end of surface and fixed on the other end.
The geometrical setup is shown in Fig. 8a. A through-hole
with radius 5 at the center of the specimen is introduced.
The material law is trained by ANN using 7 or 14 data-sets
with the neo-Hookean model. Figure 8c plots the contour of
effective stress of the reference neo-Hookean model and the
ANN trainedmodelwith 7 or 14 data-sets. It can be seen from
Fig. 8b there is still no distinct difference between the ANN
trained model and the reference neo-Hookean model even
under the combined complicated loading conditions (see the
statistical data in Fig. 9). It should be noted that the ANN
trained model with 7 data-sets is almost the same as that
trained by 14 data-sets. It looks that the material law trained
by 7 data-sets can cover the full range of stress-states. This
can greatly reduce the offline training costs.
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Fig. 8 The finite element
analysis on a cuboid bar with
voids under the combined
torsion and bending. a The
geometric model and boundary
conditions. b The
load-displacement curves
predicted by the ANN trained
model and the neo-Hookean
model. c The contour plots of
effective stress predicted by the
ANN trained model (14 and 7
data-sets) and Arruda–Boyce
model. The FEM model
includes with 4880 nodes and
3711 elements
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Buckling of soft solids recently attracts a lot of research
attention [34–37]. Buckling of soft solids created many
new opportunities to design the materials with complex
microstructures to realize specific functions. Here we show
an example to analyze the buckling with microstructure with
the ANN trained model. The geometrical setup of the prob-
lem is shown in Fig. 10a. The specimen is cuboid with a
through-hole with radius 5 at the center. The cuboid is under
compressive loadings. As predicted by the stability theory
Timoshenko [38], the cuboid loses stability when the applied

compressive loading is beyond threshold of the critical load.
Buckling analysis is used to predict the critical load andmode
(morphology). To measure the difference between the two
modes (morphology), a L2-norm is defined though u j

i which
is the displacement of node i at the degree of freedom j :

Norm =

√√√√√
Nnode∑
i=1

3∑
j=1

(u j
i )

2
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Fig. 10 Finite element buckling
analysis on a cuboid beam with
holes. a The geometry and
boundary conditions. b The
order of buckling mode versus
relative difference in terms of
buckling force and buckling
mode (morphology) predicted
by the reference neo-Hookean
model and the ANN trained
model. The FEMmodel includes
4880 nodes and 3711 elements
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Fig. 11 The buckling modes
(morphology) of the cuboid
beam through buckling analysis
predicted by the neo-Hookean
model and the ANN trained
model. The first 5 modes are
shown for comparison

mode:1 mode:2 mode:3 mode:4 mode:5

ANN trained model

Reference neo-Hookean model

mode:1 mode:2 mode:3 mode:4 mode:5

where Nnode is the total number of nodes in finite element
model. The relative difference predicted by the ANN trained
model and the reference neo-Hookean model for different
buckling modes is shown in Fig. 10b. The relative difference
of the first four modes is less than 1%, which increases with
mode number. However, high-order modes are rarely consid-
ered in engineering applications. The first to fifth buckling
modes are shown in Fig. 11. The agreement between the
ANN trained model and the reference neo-Hookean model
is shown clearly.

4.2 Thematerial law by RVE with void

In the previous examples, we show the capability of the
proposed method based on the material law trained by the
RVE without the microstructure. We can forecast that the
material model trained by the RVE without microstructure
should almost the same as the adopted neo-Hookean model
orArruda–Boycemodel. However, we do not know themate-
rial model for a void in the neo-Hookean solid in prior. Then
we will use the ANN trained material law based on the data
generated by the RVEwith void to show the predicative capa-
bility.

Let us consider a three-dimensional problem that a cuboid
beamwhich one end surface is imposed a coupling constraint
with a reference point and the other end is fixed. A force
(F = 0.3) is imposed on the reference point. The geometric
setup is given in Fig. 12a. The beam contains 40 spherical
voids with the same size of void in the RVE, which are evenly
distributed. We will use direct numerical simulation (DNS)
with neo-Hookean model to solve the problem first. Then
the spherical voids are smeared out inside the beam and the
material law is described by the ANN trained model. The
DNS involves 50,702 nodes and 35,621 elements to resolve
all the voids in the beam (Fig. 12b). The FEMmesh smearing
out the voids only has 40 elements shown in Fig. 12c.

Figure 13 plots the deformed configuration of DNS and
the ANN trained model in the same coordinates at the final
step of the imposed loading. The displacement scale is 1. It
can be seen clearly that the the deformed shape predicted by
the DNS is also the same as that predicted by the FEMmodel
with the ANN trained isotropic material law even under the
large bending deformation. Figure 14 shows the force ver-
sus displacement curve of the reference point for both DNS
and the FEM model with the ANN trained material law. The
results predicted by both models are almost the same. The
largest difference is less then 1%.We also compare the resid-
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Fig. 12 The finite element
analysis on a cuboid beam under
the imposed force. The beam
contains 40 spherical voids,
which are evenly distributed. a
The geometric model and
boundary conditions. b The
FEM model for direct numerical
simulations (DNS) with 50,702
nodes and 35,621 elements. c
The FEM model with the voids
smeared out (the material is
described by the ANN trained
material law). It involves 40
elements
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Fig. 13 The deformed configuration predicted by theDNSand the FEM
model with voids smeared out in which the ANN trained material law
is used to describe the material behavior

ual norms for both models during the iteration process for
time step 1, shown in Table 4. It is observed that the classical
neo-Hookean model converges faster than the ANN trained
model as expected. However, the ANN trained model also
can converge at the same accuracy with two more iterations.
Because of the consistent tangentmodulus is derived, the sec-
ond order convergence with the ANN trained material law is
implied. Due to the less elements used by the ANN trained
model, the ANN trained model shows some advantages. It
should be commented that this examplewith a single centered
void is slightly orthotropic. However, isotropic assumption
is widely used to approximate slightly anisotropic behavior.
Because of the multiple voids and their even distribution in
the beam, it makes the porous material nearly isotropic. This
is the reason why the trained model for isotropic materials
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Fig. 14 The force-displacement curve predicted by the DNS and the
FEMmodel with voids smeared out in which the ANN trained material
law is employed to describe the material behavior

can compare with DNS very well. The spirit of the proposed
method can be extended to consider the anisotropic nonlinear
elastic solids but further work should be carried out.

Finally, the mesh information for all the above examples
is summarized in Fig. 15.

5 Conclusions

With advent of big data science and machine learning, it
is possible to obtain the material law through a data-driven
approach. In this work, we have presented an efficient data-
driven computational framework to build material law for
nonlinear isotropic elastic materials based on the principal
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Table 4 Comparison of residual norm for the ANN trained model and the reference neo-Hookean model at time step 1 (time increment 5% strain)
for the voided beam problem shown in Fig. 12

Iteration 1 2 3 4 5 6

Reference neo-Hookean model 0.59 4.43E−04 9.17E−07 1.44E−09 – –

ANN trained model 0.40 3.86E−03 5.42E−04 1.14E−04 2.36E−05 4.90E−06

Fig. 15 The summarized mesh
information for all the examples
shown in the present paper.
Corresponding to a Fig. 5; b
Fig. 7; c Fig. 8 and Fig. 10. d
Cross-section view
corresponding to Fig. 12

component expansion. Carefully designed RVE based on
principal stretches is used to generate the stress-stretch data,
which greatly reduces the required training cost for material
law and obtained a high quality model. Our framework can
satisfy the requirements for material law such as objectivity
approximately. With the derived consistent tangent modulus
based on the data in principal space, the second-order con-
vergence capability is implied. The proposed approach can
be used under the multiscale computational homogenization
framework naturally. It can provide a way to obtain the mate-
rial law involved at different scales effectively by pure data.
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Appendix A: Homogenization in principal
space

At the material point inside the RVE, the deformation gradi-
ent tensor F (= ∂x/∂X) and the first Piola-Kirchhoff stress
tensor P constitute one basic work-conjugate pair. Homog-
enization of the micro-variables F and P at finite strains
yields the macro-variables F̄ and P̄ . They are governed by

surface data of their microscopic fields [39].

F̄ = 1

V0

∫
∂�0

x ⊗ N dS, (14)

P̄ = 1

V0

∫
∂�0

t ⊗ X dS (15)

where x is the current position, V0 is the volume of the body
�0 at the original configuration, N the outward normal vec-
tor to surface ∂�0 and t = P · N the traction vector. The
homogenized Cauchy stress can also be expressed:

�̄ = 1

V

∫
∂�0

t ⊗ x dS (16)

where V is the volume of the body �0 at the current config-
uration. The homogenized secondary PK stress S̄ is defined
by

S̄ = F̄
−1· P̄ (17)

We only consider the principal components on RVE. The
boundary conditions on the RVE are given by
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u1 = 0, t2 = 0 t3 = 0 at x = 0, (18)

u2 = 0, t1 = 0 t3 = 0 at y = 0, (19)

u3 = 0, t1 = 0 t2 = 0 at z = 0, (20)

where t1, t2 and t3 are the components of the traction vector,
t = t1e1 + t2e2 + t3e3. At the boundary of the RVE, the
homogenous deformation is applied

x = F̄ · X (21)

where

F̄ = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + λ3e3 ⊗ e3 (22)

in which λ1, λ2, λ3 are the principal stretches in the x , y
and z directions respectively. With the displacement on the
outer boundary of RVE (Eq. 1), substituting (Eq. 22) into
(Eq. 17) and invoking (Eq. 15) yields the stress expressed by
the traction force on the outer boundary.

AppendixB:Data trainingbyANN inprincipal
space

For general ANN, a functional transformation is defined



(
cni ,W

n+1
i j , bn+1

j

)
= tanh

(
cni W

n+1
i j + bn+1

j

)

on nth layer (superscript n represents the layer number),
which can map the data unit on i th neuron (cni ) from the nth
layer to n + 1th. Wn+1

i j are the weights for the link between

i th neuron on layer cn and j th neuron on layer cn+1. bn+1
j

are the biases on j th neuron on layer cn+1 (Wn+1,bn+1 in
vector form).

In terms of stress-strain relationship in principal space,
the training of data tries to minimize Eq. (8), which starts at
the input layer with the initial value:

[c11, c12, c13] = [a1, a2, a3]

The mapping from nth layer to n + 1th (n = 1 · · · N ) layer
takes:

cn+1
j = 


(
cni ,W

n+1
i j , bn+1

j

)

The output at the final layer is the principal stress:

S j = cNi W N+1
i j + bN+1

j (23)

It can be seen from Eq. (11) that ∂Si
∂a j

needs to be computed
for tangent modulus. It can be obtained through a recursion
formula

∂Si
∂a j

= WN+1
ik

∂cNk
∂a j

(24)

where

∂cnk
∂a j

= Bn−1
ki Wn

im
∂cn−1

m

∂a j

can be obtained from above layer. Here

Bn
ki =

(
1 − tanh2

(
cnmW

n+1
mk + bn+1

k

))
δki (25)

no summation on k and δki is Kronecker delta. The process
will return and end at the first input layer:

∂c1i
∂a j

= δi j .

Even with the data in the principal space, data training
using ANN still faces some difficulties (demonstrated in Fig.
16). In Fig. 16a, with the input stretch (a1, a2, a3), we can
obtain the output stress (S�

1 , S�
2 , S�

3 ). When we switch a2 and

Fig. 16 Two issues on artificial
neural network to train material
law for the materials. a The
order of the inputs is switched,
the output stress can be
completely different. b
Although the two inputs
(stretch) are exactly the same,
the output (stress) can be
different
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a3 with input (a1, a3, a2), we cannot get the symmetric result
(S�

1 , S�
3 , S�

2 ). (S
∗
1 �= S�

1 , S∗
2 �= S�

2 , S∗
3 �= S�

3 ). In Fig. 16b,
with the input (a1, a2, a3) with a2 = a3, the output data does
not have S2 �= S3. This is the reason why the permutation
is carried out in the data training and take the average to get
(S1, S2, S3). Then the coefficient 1/6 is introduced in Eq.
(13). It also implies that the data training with the full com-
ponent of stress and stretch is more difficult, demonstrating
the advantage of the present method in principal space.
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