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Abstract
The High order Gradient Reproducing Kernel in conjunction with the Collocation Method (HGRKCM) is introduced for
solutions of 2nd- and 4th-order PDEs. All the derivative approximations appearing in PDEs are constructed using the gradient
reproducing kernels. Consequently, the computational cost for construction of derivative approximations reduces tremen-
dously, basis functions for derivative approximations are smooth, and the accumulated error arising from calculating derivative
approximations are controlled in comparison to the direct derivative counterparts. Furthermore, it is theoretically estimated
and numerically tested that the same number of collocation points as the source points can be used to obtain the optimal
solution in the HGRKCM. Overall, the HGRKCM is roughly 10–25 times faster than the conventional reproducing kernel
collocation method. The convergence of the present method is estimated using the least squares functional equivalence.
Numerical results are verified and compared with other strong-form-based and Galerkin-based methods.

Keywords Strong form collocation · Weighted collocation method · Gradient reproducing kernel · Reproducing kernel
collocation method

1 Introduction

Beside FEM, with a solid mathematical basis and a consid-
erably wide range of applications, other methods have been
proposed and developed for solving the partial differential
equations based on the Galerkin weak formulation. Mesh-
free methods using approximation functions with compact
support such as diffuse approximation (DA) [1], moving
least-squares (MLS) [2–4], and reproducing kernel (RK)
[5–7], have been widely used for solving problems in a
Galerkin-form scheme. Partition of unity method (PUM)
[8], H-P clouds [9], meshless local Petrov-Galerkin method
(MLPG) [10], generalized finite element method (GFEM)
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[11], and reproducing kernel element method RKEM [12]
are other examples of weak form based methods imple-
mented for solving various problems. Among all of the
mentioned methods, MLS and RK approximation methods
have been considerably more adopted and applied to engi-
neering problems comparing to others [3–6]. Inheriting all
advantages of FEM, meshfree methods generally address the
issues regarding mesh construction and mesh distortion dif-
ficulties in the finite element method. However, despite of
all the advantages, the domain integration arising from the
Galerkin procedures require special attention to gain desir-
able accuracy since meshfree shape functions are typically
rational and of overlapping support. In addition, essential
boundary condition imposition in Galerkin-based meshfree
methods is not as straightforward as in FEM. This is due
to the lack of Kronecker delta property in general mesh-
free shape functions. Many efforts have been introduced to
overcome the complexities of Galerkin-based formulation
due to domain integration and boundary condition impo-
sition [13–17]. Radial Basis Functions (RBF) are used to
construct meshfree shape functions in the Galerkin form
scheme for stress analysis of three-dimensional solids [18].
Despite the fact that RBFs posses Kronecker delta property
and address the essential boundary conditions imposition
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issues, choosing proper parameters to guarantee the moment
matrix invertibility becomes challenging.
On the other hand, strong form collocation methods [19,20],
seeking the approximation solutions directly based on the
strong form, has gained a considerable amount of inter-
est recently. Mainly, two different type of approximation
functions can be considered in strong collocation mesh-
free methods. Firstly, using an infinite differentiable radial
basis functions [21,22] was proposed. The method was
shown to posses exponential convergence properties [19,23].
However, the discrete linear system using the radial basis
functions becomes fully dense and ill-conditioned due to the
non-local nature of RBFs [24,25]. As a remedy, instead of
RBFs, a smooth approximation using compact support such
as the RK or MLS were introduced in the strong colocation
method [26–30]. Addressing the ill-conditioned discrete sys-
tem issue, reproducing kernel collocation method (RKCM)
avoids the domain integration and the difficulties regarding
the Dirichlet boundary conditions imposition. Nevertheless,
the convergence rate obtained from RKCM is algebraic
[29,30]. In spite of all the advantages offered by RKCM, cal-
culation of higher order derivatives remains as a concern. The
calculation of higher order derivatives of RK is computation-
ally costly and often inaccurate owing to accumulated errors
from inversion of the moment matrix and excessive amount
of matrix multiplication [29,30]. Moreover, for optimal con-
vergence, a considerably larger number of collocation points
comparing to the source points must be used, which makes
the method computationally intense [29,31]. A supercon-
vergant gradient smoothing meshfree collocation method
[32] is recently introduced, which improves the numeri-
cal implementation within the collocation scheme based on
constructing the smoothed gradient derivatives of meshfree
shape functions by interpolation of the standard derivatives
of those functions. Super-convergent solutions are shown to
be obtained for odd-order basis functions within this scheme.
Moreover, to address thementioned issues regardingRKCM,
a gradient reproducing kernel collocationmethod (GRKCM)
was proposed [33]. The basic idea of this method is to
construct the derivative approximation independently using
gradient RK shape functions [34–37]. In GRKCM, the first
derivative approximation is formulated based on the gradi-
ent reproducing condition. The higher order derivatives are
then derived by calculating the explicit derivatives of the
first derivative approximation, which was derived implicitly.
Resolving the issuewith need of larger number of collocation
points comparing to the source points, GRKCM yields the
algebraic convergence similar to RKCM [33]. Nonetheless,
besides all the benefits from GRKCM, calculation of higher
derivatives of RK shape functions remains computationally
challenging. For solving higher order PDEs, computation
effort for derivative approximations may become more cru-
cial since calculating themomentmatrix inversion addsmore

complexities to the problem.Another issuewhichwill be dis-
cussed in detail in the following sections is related to the fact
that higher order derivatives of RK shape functions derived
by direct differentiation exhibit oscillating behavior which
results in a method of nodal distribution pattern dependency.
It is also observed that derivatives of higher orders do not
pass the reproducing conditions test which lead to inaccurate
results. In this paper, a higher order gradient reproducing
kernel collocation method (HGRKCM) is introduced. This
method is implemented for solving second-order PDEs as
well as higher order fourth order PDEs such as Bernoulli
beam and Kirchhoff plate. The method is based on calculat-
ing all RK shape function derivatives implicitly by directly
satisfying derivatives reproducing conditions. The proposed
method is compared with other collocation methods such
as RKCM and GRKCM in term of error analysis and con-
vergence rate. To show the robustness and computational
efficiency of the method, CPU-time comparison between
HGRKCM, RKCM, Galerkin-based methods such as FEM,
and RKPM with Stabilized Conforming Nodal Integration
(SCNI) [38] is performed.
The structure of this paper is as follows. In Sect. 2, the con-
struction of RK approximation procedure is reviewed and the
basic motivation of this work is defined. Section 3 reviews
the strong-form collocation methods including RKCM and
gradient RKCM and the new Higher order gradient RKCM
is presented. HGRKCM implementation process is shown
and the error estimation is presented in Sect. 4. In Sect. 5,
several numerical examples are presented and results are
discussed to show the effectiveness and robustness of the
proposed method. Finally, in Sect. 6, CPU-time comparisons
between the present method and some other existing strong
collocation and Galerkin weak form methods are provided.
Conclusions and remarks are provided in Sect. 7.

2 Reproducing kernel (RK) approximation
and its derivatives approximations

In contrast to mesh-based methods, such as FEM and IGA,
where the shape functions of the approximations are con-
structed in the parent domain and transformed to the physical
domain through mapping, in meshfree methods, the approx-
imation function is constructed directly based on the nodal
positions in the physical domain. Many meshfree approx-
imations have been proposed, see [39]. Commonly used
approximations with basis (shape) functions that possess
compact support are the Moving Least-Squares (MLS) [7]
and Reproducing Kernel (RK) approximation [6]. Despite
derived from different perspectives, the two approximations
yield the same mesh-free approximation structure in the dis-
crete form. The RK approximation is employed in the work
and is reviewed in this section.

123



Computational Mechanics (2019) 64:1421–1454 1423

2.1 Review of reproducing kernel approximation

Consider an open domain� and its boundary ∂� to construct
the closed domain �, such that � = �

⋃
∂�. If this domain

is discretized by a set of nodes x I where I = 1, 2, · · · , N P
and x I ∈ �, the RK approximation of an arbitrary function
u, denoted by uh , is expressed as,

u(x) ≈ uh(x) =
N P∑

I=1

�I (x)dI . (1)

where �I (x) is the RK shape function and dI is the cor-
responding nodal coefficient, also called generalized nodal
value. RK shape function is comprised of a kernel function
φa and a correction function C.

�I (x) = C(x; x − x I )φa(x − x I ). (2)

the kernel function is defined on a bounded space centered
at x I and a is the support measure of the kernel function. It
determines the smoothness (order of continuity) and locality
of shape functions. Usually, B-splines of different orders are
used as the kernel functions. The most common kernel used
for constructing RK shape functions is cubic B-spline which
provides C2 continuity. For higher order PDEs, higher order
kernelB-splines are required to achieve optimal convergence.
On the other hand, the correction function C(x; x − x I )

is introduced for obtaining monomial reproductivity [5] as
below,

N P∑

I=1

�I (x)xα
I = xα, |α| ≤ n. (3)

The multi-index notation is adopted in the paper and defined
as follows. In Eq. (3), α = (α1, α2, · · · , αd) and |α| =∑d

i=1 αi is the length of α, where d is the number of dimen-
sions, and n is the highest order of monomial reproductivity
imposed. α! = α1! · · · αd ! and xα = xα1

1 · · · xαd
d . When xα is

complete, by applying the binomial theorem, Eq. (3) can be
shown to be equivalent to,

N P∑

I=1

�I (x)(x − x I )
α = δα0, |α| ≤ n. (4)

where δ is the Kronecker delta. The correction function can
be expressed in the form below,

C(x; x − x I ) = HT (x − x I )b(x). (5)

where HT (x − x I ) is the basis vector which consists of
a set of linearly independent basis functions and b(x) is the

coefficient vector to be determined.When the set of complete
monomials is selected, HT (x − x I ) is given as,

HT (x − x I ) = {(x − x I )
α}|α|≤n . (6)

Introducing (5) and (6) into (4), b(x) can be obtained as,

b(x) = M−1(x)H(0). (7)

and consequently,

M(x) =
N P∑

I=1

H(x − x I )HT (x − x I )φa(x − x I ). (8)

above H(0) is the vector form of δα0 and M(x) is called
the moment matrix. Finally, substituting (7) into (5) and then
into (2), The RK shape function is obtained as,

�I (x) = HT (0)M−1(x)H(x − x I )φa(x − x I ). (9)

For any sufficiently smooth u, the RK approximation sat-
isfies the following error bound [29,40]:

‖u − uh‖l,� ≤ cκan+1−l |u|n+1,�, (10)

where c is a generic constant, κ is the overlapping factor, and
a is the maximum support size.

The invertibility and conditioning of M(x) controls the
quality of the RK approximation. To ensure that the moment
matrix M(x) is non-singular, the kernel support size must be
chosen large enough such that at least (n+d)!/(n!d!) kernels,
with non-colinear (d = 2) or non-co-planar (d = 3) centers,
cover each evaluation point x. Moreover, the kernel function
φa(x−x I )must be positive to ensure that themomentmatrix
is positive definite. B-spline functions are commonly used as
the kernel function in mesh-free methods, such as cubic B-
spline, with a C2 continuity, in weak-form-based methods.
Higher order B-spline functions are required for the strong-
form-based methods and for high order PDEs. In this study,
three different of cubic, quintic, and sextic B-spline kernel
functions are used:

• Cubic B-spline:

φa(z) =

⎧
⎪⎨

⎪⎩

2
3 − 4z2 + 4z3, 0 ≤ z < 1

2
4
3 − 4z + 4z2 − 4z3

3 , 1
2 ≤ z < 1

0, z ≥ 1,

(11)
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• Quintic B-spline:

φa(z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

11
20 − 9z2

2 + 81z4
4 − 81z5

4 , 0 ≤ z < 1
3

17
40 + 15z

8 − 63z2
4 + 135z3

4 − 243z4
8 + 81z5

8 , 1
3 ≤ z < 2

3

81
40 − 81z

8 + 81z2
4 − 81z3

4 + 81z4
8 − 81z5

40 , 2
3 ≤ z < 1

0 z ≥ 1,

(12)

• Sextic B-spline:

φa(z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5887
1920 − 3773z2

128 + 16807z4
128 − 117649z6

384 , 0 ≤ z < 1
7

7861
2560 − 49z

256 − 13377z2
512 − 12005z3

384

+ 151263z4
512 − 117649z5

256 + 117649z6
512 , 1

7 ≤ z < 3
7

1379
1280 + 8869z

320 − 48363z2
256 + 45619z3

96

− 151263z4
256 + 117649z5

320 − 117649z6
1280 , 3

7 ≤ z < 5
7

117649
7680 − 117649z

1280 + 117649z2
512 − 117649z3

384

+ 117649z4
512 − 117649z5

1280 + 117649z6
7680 , 5

7 ≤ z < 1

0, z ≥ 1

(13)

where z is the normalized nodal distance shown as z =
‖x − x I‖/a, which offers a circular support with a nodal
support domain radius of a. The kernel function in the d-
dimension can be also expressed by the tensor product of the
one-dimensional one as:

φa(x) =
d∏

i=1

φai

(
xi − xI i

ai

)

(14)

where φai and ai denote the kernel function’s value at node x
and the nodal domain support size in the i direction, respec-
tively, where i = 1, . . . , d. The kernel function’s value φa

at point x is obtained by multiplying of kernel values of all
directions shown by φai .

2.2 Direct derivative

The derivatives of the RK approximation of a function u can
be obtained by directly taking the derivations of RK shape
function in Eq. (9), which hereafter are referred to as “direct
derivatives”.

∂αu ≈ ∂αuh =
N P∑

I=1

∂α�I (x)dI (15)

where ∂α = ∂ |α|(.)/∂xα1
1 · · · ∂xαd

d . The general form of
direct derivatives of RK shape function can be expressed
using the general Leibniz rule as:

∂β�I (x) =
∑

∑4
i=1 mi=β

β!
m1!m2!m3!m4!∂

m1HT (0)∂m2

×M−1(x)∂m3H(x − x I )∂
m4φa(x − x I ) (16)

where the derivatives of M−1 can be obtained from

∂β(M−1M) = 0. (17)

The calculation of direct derivatives involves matrix prod-
ucts and the derivatives of inverse of M matrix, making
it computationally costly for high order derivatives. More-
over, when the order of differentiation increases, the direct
derivatives of the RK shape function become highly oscilla-
tory which affects the numerical stability and reliability (see
Fig. 1).

2.3 Implicit gradient

The derivations of a function u can be approximated, in a
similar manner, in Eq. (1), by

∂βu ≈ βuh =
N P∑

I=1

β�I (x)dI . (18)

above β�I is called the implicit gradient of RK [33] or, since
it can be viewed as the approximation of ∂β�I , therefore, is
called the diffuse derivative [1]. In this paper, the implicit
gradient term is adopted. The implicit gradient of the RK is
expressed in a similar manner as in Eq. (2):

β�I (x) = Cβ(x; x − x I )φa(x − x I ). (19)

In the case that the same set of monomials as in (6) are
chosen for Cβ(x; x − x I ), it can be expressed as,

Cβ(x; x − x I ) = HT (x − x I )bβ(x). (20)

the coefficients bβ(x) is determined by enforcing the gradient
reproducing conditions:

N P∑

I=1

β�I (x)xα
I = ∂βxα. (21)

or equivalently,

N P∑

I=1

β�I (x)(x − x I )
α = (−1)|β|∂β H(0). (22)

where ∂β H(0) is the direct derivative of the basis vector up to
desired order ofβ when x = x I . To clear the implementation,
as an example, Eq. (A.10) shows the equivalence in (22) for
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a specific case. Now, by the similar procedures described in
Sect. 2.1, the coefficient vector can be derived as

bβ(x) = (−1)|β|M−1(x)∂β H(0) (23)

and the implicit gradients of the RK follows straightaway:

β�I (x) = (−1)|β|∂β HT (0)M−1(x)

×H(x − x I )φa(x − x I ). (24)

The implicit gradient RK approximation satisfies the fol-
lowing error bound [33,41]:

‖∂βu − βuh‖� ≤ cκan+1−|β||u|n+1,�. (25)

2.4 Direct and implicit gradient comparison

By comparing (24) and the equation for constructing the RK
shape function (9), it can easily be noticed that the differ-
ence of β�I from �I is merely replacing term H(0) in (9)
by the term (−1)|β|∂β H(0) in (24). Therefore, the com-
putational cost of computing β�I is essentially the same
as that of computing �I regardless the order of differenti-
ation (see “Appendix A”). In contrast, the computation of
direct derivative ∂β�I increases with the increase of order
of differentiation. As an example of one-dimensional RK, the
operation count of computing the secondorder implicit gradi-
ent is approximately ten times less than that of computing the
direct derivative counterpart. The details of complexity anal-
ysis can be found in [33]. Moreover, as can be seen in (24),
the order of continuity of implicit gradients does not decrease

Fig. 1 Comparison of one-dimensional RK shape function. a First. b Second. c Third. d Fourth direct derivatives and implicit gradients
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Fig. 2 Condition number of moment (M) matrix increasing rate com-
parison with increase of the basis order

with the increase of differentiation. Thus, higher order kernel
functions is not required when the implicit gradients are used
for derivative approximations. Additionally, since no direct
derivatives involved in the calculation, the implicit gradients
remain much smoother comparing to the direct derivative
counterparts as shown in Fig. 1 for one-dimensional RK.

2.5 Scaling for high order RK approximation

TheRKapproximation has theflexibility to increase the order
of completeness by introducing desired order of complete
monomials as basis functions, see the vector in Eq. (6). The
total number of monomials for n-th order completeness in
the d-dimensional space is (n + d)!/(n!d!). Consequently,
the size of M matrix in Eq. (8), which is the Gram matrix
comprised of monomials, increases exponentially with the
increase of n. Moreover, when the order elevates, monomi-
als become more difficult to distinguish from each other and
their values increases exponentially when input variables get
away from the origin. The M matrix, therefore, suffers ill-
conditioning by increase of n. To control the conditioning
of the M matrix, scaling factors are introduced for mono-
mial bases, such that the monomials are equal to unity when
evaluated at hv , the nominal nodal spacing. The scaled basis
vector is given as follows [41]:

HT (x − x I ) =
{

(x − x I )
α

h|α|
v

}T

|α|≤n
(26)

For a non-uniform nodal distribution, hv is chosen
to be equal to the averaged nodal distance as hv =∑N P

I=1( min
1≤J≤N P, J �=I

‖xI −xJ‖)/N P in thiswork. To demon-

strate, RK approximations with different basis orders of p
are constructed based on a set of equally spaced 10 × 10
nodes over the domain [0, 10]× [0, 10], and the support size
a = (n + 0.5)h is chosen for different basis order with h
the average nodal distance. The comparison of the condition
number of M matrix with and without scaling is shown in
Fig. 2. It can be noted that with scaling, the condition number
of M matrix reduces at least 2 order and, more importantly,
the rate of increase of condition number with respect to basis
order decreases. The theoretical estimation of the condition
number of M matrix is referred to [41].

3 RK based strong collocationmethods
review

In this section, the strong collocation formulation is presented
and RKCM [26], weighted RKCM [30,31], and the gradi-
ent RKCM [33] are discussed. This lays the foundation for
the present method in this paper, where issues regarding the
higher order derivatives of theRKshape functions for solving
higher order PDEs are depicted and addressed.

3.1 RKCM andweighted RKCM

Consider a general linear second-order boundary value prob-
lem shown as follows:

L(∂2u(x)) = f (x) ∀x ∈ � (27a)

Bg(u(x)) = g(x) ∀x ∈ 
g (27b)

Bh(∂
1u(x)) = h(x) ∀x ∈ 
h (27c)

where u is the primary field variable, � is an open domain
enclosed by the boundary ∂� = 
g ∪
h , 
g and 
h are the
Dirichlet and Neumann boundaries, respectively. L, Bg , and
Bh are the algebraic operators associated with the domain
and theDirichlet andNeumann boundaries, respectively. The
notation ∂ j (.) ≡ ∂β(.), |β| = j is adopted.
In the RKCM framework a set of Ns distinct points, x I ∈
� ∪ ∂� , referred to as “source point”, is used to construct
the RK approximation and its direct derivatives as in (1) and
(15), respectively:

u(x) ≈ uh(x) =
Ns∑

I=1

�I (x)d I (28)

and,

∂βu(x) ≈ ∂βuh(x) =
Ns∑

I=1

∂β�I (x)d I (29)
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Introducing uh and ∂βuh into (27) and enforcing the set
of equations at collocation points leads to,

L(∂2�(xd))D = f (xd) ∀xd ∈ � (30a)

Bg(�(xg))D = g(xg) ∀xg ∈ 
g (30b)

Bh(∂
1�(xh))D = h(xh) ∀xh ∈ 
h (30c)

where xd , xg , and xh represent the collocation points in the
domain, on the Dirichlet and Neumann boundaries, respec-
tively, and the total number of collocationpoints is denotedby
Nc. � = {�I }Ns

I=1 , ∂
β� = {∂β�I }Ns

I=1 , and D = {d I }Ns
I=1

are the vector forms of shape functions and shape function
direct derivatives and nodal coefficients, respectively. Equa-
tion (30) could be shown a system of linear equations and
can be expressed in a matrix form as:

K D = F (31)

where K =
[
L(∂2�)|xd , Bg(�)|xg , Bh(∂

1�)|xh
]T

and

F =
[
( f )xd , (g)xg , (h)xh

]T
with dimensions of mNc ×

mNs and mNc × 1, respectively, where m is the number
of unknowns per node. The unknown coefficient D can be
obtained from solving Eq. (31) in the case where the num-
ber of source points Ns is equal to the number of collocation
points Nc. It has been observed that more collocation points
than source points are needed (Nc > Ns) [29–31] for an
optimal convergence in the RKCM, which leads to an over-
determined system. The over-determined system typically
can be solved by the least-squares method. The least-squares
solution of (31) is equivalent to the minimization of the
least-square functional [31]. The problem states finding the
solutions ua ∈ V such that,

E(ua) = in f
uh∈V

E(uh),

ua ∈ V = span{�1, �2, · · · , �NS } (32)

where E(uh) in (32) is defined as follows,

E(uh) = 1

2

∫̂

�

(L(∂2uh) − f ).(L(∂2uh) − f )d�

+ 1

2
wg

∫̂


g

(Bg(uh) − g).(Bg(uh) − g)d


+ 1

2
wh

∫̂


h

(Bh(∂
1uh) − h).(Bh(∂

1uh) − h)d


(33)

Above,
∫̂

denotes the integration with quadrature, in
which the collocation points are viewed as quadrature points.
wg and wh are weights introduced to balance the errors from
the domain and boundary terms [31]. For optimal conver-
gence,

√
wg ≈ O(ρNs) and

√
wh ≈ O(1) are estimated,

whereρ = 1 for thePoisson equation andρ = max{λ,μ} for
the elasticity problem [31]. Introducing the weights into the
discrete equations, the unknown coefficients are obtained by
solving the following weighted equations by the least square
method:

⎡

⎣
L(∂2�(xd))√
wg Bg(�(xg))√

wh Bh(∂
1�(xh))

⎤

⎦ D =
⎡

⎣
F(xd)√
wg g(xg)√
wh h(xh)

⎤

⎦ (34)

The error from RKCM solution is bounded by Hu et
al. [31],

∣
∣
∣
∣
∣
∣
∣
∣
∣u − uh

∣
∣
∣
∣
∣
∣
∣
∣
∣ ≤ Cκan−1|u|n+1,� (35)

where,

|||v||| ≡
(
‖L(v)‖20,� + ‖Bg(v)‖20,
g

+ ‖Bh(v)‖20,
h

) 1
2
(36)

3.2 Gradient reproducing kernel collocationmethod
(GRKCM)

GRKCM was proposed based on [34,35] to address the
issues regarding constructing higher order derivatives of RK
shape functions for solving second-order partial differen-
tial equations. These issues are mostly related to calculating
derivatives of inverse of moment matrix (M−1) at the collo-
cation points.
In the GRKCM, the first derivatives of RK approximation
are obtained by using the implicit gradient derivatives of RK
shape functions and thereafter the second derivatives are cal-
culated using the direct derivatives of the first-order implicit
gradients. The approximation of u and its first and second
derivative approximations in the GRKCM are given:

u(x) ≈ uh(x) =
Ns∑

I=1

�I (x)d I (37a)

∂1u(x) ≈ 1uh(x) =
Ns∑

I=1

1� I (x)d I (37b)

∂2u(x) ≈ ∂1(1uh(x)) =
Ns∑

I=1

∂1(1� I (x))d I (37c)

here, � I denotes a different set of RK basis functions from
�I and 1 represents the implicit gradient of first order. It
is noted that different orders of RK basis functions can be
introduced for u(x) and its first derivative approximation.
Let the orders of {�I }Ns

I=1 and {1� I }Ns
I=1 to be p and q,

respectively. Following the similar analysis in the weighted
RKCM method in Sect. 3.1, the solution of the GRKCM
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is obtained from solving the following system of weighted
equations:

⎛

⎝
L(∂1(1�(xd)))√

wg Bg(�(xg))√
wh Bh(

1�(xh))

⎞

⎠ D =
⎛

⎝
F(xd)√
wg g(xg)√
wh h(xh)

⎞

⎠ (38)

where for optimal convergence
√

wg ≈ O(1) and
√

wh ≈
O(ρaq−p−1) are estimated in [31], with the use of error esti-
mate of gradient RK provided by Li and Liu [35],

‖u − uh, ∂1u − 1uh‖E
≤ aq−1(C1|u|q+1,ω + C2|u|p+1,ω) (39)

where C1 and C2 are genetic constants independent of sup-
port size and,

‖u − uh, ∂1u − 1uh‖E
≡
(
‖L(∂1(1uh)) − f ‖20,� + wg‖Bg(uh) − g‖20,
g

+wh‖Bh(uh) − h‖20,
h

) 1
2

(40)

It is noted that the convergence of GRKCM is depen-
dent only on the order q in the first derivative approximation
of u using the implicit gradients of RK and q ≥ 2 is
required for convergence. More importantly, it has been
shown that since the order of direct derivatives employed
in the GRKCM is reduced, the use of Nc = Ns achieves suf-
ficient solution accuracy for second-order PDEs [35]. This
observation essentially motivates the proposed HGRKCM
to further enhance the computation speed while maintaining
solution accuracy.

4 HGRKCMmodel problem, implementation,
and error analysis

As reviewed in the previous section, weighted RKCM was
shown to resolve the issues regarding unbalanced domain-
boundary errors which yields promising convergence rates.
This method, however, is computationally expensive since
the number of collocation points needed for obtaining an
optimal convergence rate must be more than the number of
source points. On the other hand, calculating the moment
matrix inversion and its derivatives, even for a second order
PDE, remain as a concern. GRKCM addressed this issue par-
tially by reducing the order of differentiation to first order
for a second-order PDE with the same convergence rate
as RKCM but considerably faster approach comparing to
RKCM. Nonetheless, for constructing the second derivatives
of shape functions, a direct differentiation is employed in
the GRKCM framework where complexities issues related

to moment matrix mentioned above emerges again. This
problem becomes bolder in higher order PDE cases. In
the following chapters it is shown and numerically tested
that HGRKCM can address the complexity issues regard-
ing higher order derivatives calculation since all derivatives
of desired orders are calculated implicitly without the need
of direct differentiation of the moment matrix. For clarify-
ing the implementation procedure, two model problems are
discussed. First, a general two-dimensional boundary value
problem is considered to show the implementation for Pois-
son equation and elasticity problems.Using the secondmodel
problem, HGRKCM implementation for fourth order equa-
tion is discussed.

4.1 General HGRKCMmodel problem description

Consider a general high-order boundary value problem
shown as follows:

L(u(x), ∂βu(x)) = f (x) ∀x ∈ � (41a)

Bg(u(x), ∂βu(x)) = g(x) ∀x ∈ 
g (41b)

Bh(∂
βu(x)) = h(x) ∀x ∈ 
h (41c)

similarly, L , Bg , and Bh are the algebraic operators with
the domain and the Dirichlet and Neumann boundaries,
respectively. In HGRKCM, the RK approximation and its
implicit gradients are introduced in the collocation method.
The implementation for specific problems are detailed in the
following sections.

4.2 HGRKCM for Poisson equation and elasticity
problem

For demonstration purposes, the Poisson and elasticity prob-
lems in 2-D are considered, which can be expressed as:

L1u,xx + L2u,yy + L3u,xy = f ∀x ∈ � (42a)

Bgu = ug ∀x ∈ 
g (42b)

B1
hu,x + B2

hu,y = h ∀x ∈ 
g (42c)

where L1 and L2 are coefficientmatrices for domain equation
in�, Bg and Bh are the coefficient matrices for the Dirichlet
boundary 
g and the Neumann boundary 
h , respectively.
The explicit form of these operators for the Poisson and
elasticity problems are shown in Table 1. The coefficient
matrices are the same for RKCM, GRKCM, and HGRKCM.
The difference between each method is merely the choice of
derivative approximations. In HGRKCM, the implicit gradi-
ent approximation is employed. Specifically,
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Table 1 Explicit forms of the Poisson and elasticity problems operators
in two-dimensions

Operators Poisson problem Elasticity problem

L1 1

[
λ + 2μ 0

0 μ

]

L2 1

[
μ 0

0 λ + 2μ

]

L3 0

[
0 λ + μ

λ + μ 0

]

B1
h nx

[
(λ + 2μ)nx μny

λny μnx

]

B2
h ny

[
μny λnx

μnx (λ + 2μ)ny

]

Bg 1

[
1 0

0 1

]

u,x (x) ≈
Ns∑

I=1

10�I (x)d I ≡ �x (x)D (43a)

u,y(x) ≈
Ns∑

I=1

01�I (x)d I ≡ � y(x)D (43b)

u,xx ( y) ≈
Ns∑

I=1

20�I (x)d I ≡ �xx (x)D (43c)

u,xy(x) ≈
Ns∑

I=1

11�I (x)d I ≡ �xy(x)D (43d)

u,yy( y) ≈
Ns∑

I=1

02�I (x)d I ≡ � yy(x)D (43e)

and,

10�I (x) = −H ,x (0)M−1(x)H(x − x I )φa(x − x I )

(44a)

01�I (x) = −H ,y(0)M−1(x)H(x − x I )φa(x − x I )

(44b)

20�I (x) = H ,xx (0)M−1(x)H(x − x I )φa(x − x I )

(44c)

11�I (x) = H ,xy(0)M−1(x)H(x − x I )φa(x − x I )

(44d)

02�I (x) = H ,yy(0)M−1(x)H(x − x I )φa(x − x I )

(44e)

Following the same argument discussed in Sect. 3.1, the
weighted discrete equations for obtaining the unknown coef-
ficients in HGRKCM is:

Table 2 Explicit form of Kirchhoff plate operators

Operators Kirchhoff plate problem

L1, L3, Bg 1

L2 2

B1
h nx

B2
h ny

B1
m G

[
ν + (1 − ν)n2x

]

B2
m G

[
ν + (1 − ν)n2y

]

B3
m 2G

[
(1 − ν)nxny

]

B1
q Gnx

B2
q Gny

B3
q G

[
(2 − ν)ny

]

B4
q G

[
(2 − ν)nx

]

⎛

⎜
⎜
⎝

A1 + A2 + A3

√
wh(A4 + A5)

√
wgA6

⎞

⎟
⎟
⎠ d =

⎛

⎜
⎜
⎝

b1

√
whb2

√
wgb3

⎞

⎟
⎟
⎠ (45)

where sub-matrices Ai (i = 1, . . . , 6) in (45) are defined as
the following,

A1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

L1�T
xx (x

d
1)

L1�T
xx (x

d
2)

...

L1�T
xx (x

d
Nd

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, A2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

L2�T
yy(x

d
1)

L2�T
yy(x

d
2)

...

L2�T
yy(x

d
Nd

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

A3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

L3�T
xy(x

d
1)

L3�T
xy(x

d
2)

...

L3�T
xy(x

d
Nd

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

A4 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

B1
h�

T
x (xh1)

B1
h�

T
x (xh2)

...

B1
h�

T
x (xhNh

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

A5 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

B2
h�

T
y (xh1)

B2
h�

T
y (xh2)

...

B2
h�

T
y (xhNh

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, A6 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Bg�
T (xg1)

Bg�
T (xg2)

...

Bg�
T (xgNg

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(46)
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Fig. 3 Error L2 norm convergence rate of RK approximations of
sinusoidal function by basis orders of p = 1, 2, . . . , 6. Estimated
convergence rate according to theory is p + 1

and sub-matrices bi (i = 1, 2, 3) can are expressed as,

b1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

f (xd1)

f (xd2)

...

f (xdNd
)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, b2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

h(xh1)

h(xh2)

...

h(xhNh
)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, b3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

g(xg1)

g(xg2)

...

g(xgNg
)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(47)

Remark 4.1 If Nc > Ns , the weighted discrete equations can
be solved by the least square method. The weights are the
same as the ones estimated in the RKCM,

√
(wg) ≈ O(ρNs)

and
√

(wh) ≈ O(1) since the direct derivatives and implicit
gradients have the same derivative approximation proper-
ties (25). Moreover, as shown in GRKCM [33], since no
direct derivatives are used in HGRKCM, Nc = Ns main-
tains sufficient solution accuracy and provides computational
efficiency while the implementation and domain nodal dis-
tribution becomes straightforward.

4.3 HGRKCM for fourth order PDEs (Kirchhoff plate)

As the model problem for 4th order PDE, Consider a homo-
geneous isotropic rectangular plate of constant rigidity G
shown in (48) ,

G2u = g(x, y) in � (48a)

u = ug on 
g (48b)

∇u.n = −h̄ on
h (48c)

νGu + (1 − ν)Gn.(∇∇u).n = M on 
m (48d)

G
[
∇(u) + (1 − ν)

⎛

⎝
∂3u

∂x∂ y2

∂3u
∂x2∂ y

⎞

⎠
]
.n = Q on 
q (48e)

where G = Et3/[12(1− ν2)], t is the plate’s thickness, and
g(x, y) is the load per unit area of the plate in z-direction.
ug , h̄, M , and Q are prescribed displacement, rotation,
moment, and effective shear, respectively on the correspond-
ing boundaries. Boundary conditions must be satisfied on the
boundary collocation points xg ∈ 
g , xh ∈ 
h , xm ∈ 
m ,
xq ∈ 
q , where 
g , 
h , 
m , and 
q are the displace-
ment (deflection), rotation, moment, and shear boundaries,
respectively. It is noted that when the edge of the plate is
composed of piece-wise smooth curves that are joined at
corners, a twisting moment condition is required at the free
corner. The details are referred to plate and shell textbooks,
e.g. [42].
With the same approach for Poisson and elasticity problems
in (42), the Kirchhoff plate and its boundary conditions equa-
tions could be written in the following form,

L1u,xxxx + L2u,xxyy + L3u,yyyy = g(x, y)

G
= f in �

(49a)

Bgu = g on 
g

(49b)

B1
hu,x + B2

hu,y = h̄ on 
h

(49c)

B1
mu,xx + B2

mu,yy + B3
mu,xy = M on 
m

(49d)

B1
qu,xxx + B2

qu,yyy + B3
qu,xxy + B4

qu,xyy = Q on 
q

(49e)

where L1, L2, and L3 are the coefficients matrices on the
domain equation. Bg , B1

h , and B2
h are the same as defined in

(42). B1
m , B

2
m , and B3

m represent the coefficient matrices on
the moment boundary equation whereas B1

q , B
2
q , B

3
q , and B4

q
on the shear boundary equation. These operators are given in
Table 2. The implicit gradient approximations of RK shape
functions in (49) are defined as follows,

u,xxxx (x) ≈
Ns∑

I=1

40�I (x)d I ≡ �xxxx (x)D (50a)

u,yyyy(x) ≈
Ns∑

I=1

04�I (x)d I ≡ � yyyy(x)D (50b)

u,xxyy( y) ≈
Ns∑

I=1

22�I (x)d I ≡ �xxyy(x)D (50c)

u,xxx (x) ≈
Ns∑

I=1

30�I (x)d I ≡ �xxx (x)D (50d)
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Fig. 4 Error L2 norm convergence rate of RK approximations of sinusoidal function’s first derivative by basis orders of p = 1, 2, . . . , 6. Estimated
convergence rate according to theory is p
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Fig. 5 Error L2 norm convergence rate of RK approximations of sinusoidal function’s second derivative by basis orders of p = 2, . . . , 6. Estimated
convergence rate according to theory is p − 1
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Fig. 6 Error L2 norm convergence rate of RK approximations of sinusoidal function’s third derivative by basis orders of p = 3, 4, 5, and 6.
Estimated convergence rate according to theory is p − 2

u,yyy(x) ≈
Ns∑

I=1

03�I (x)d I ≡ � yyy(x)D (50e)

u,xxy(x) ≈
Ns∑

I=1

21�I (x)d I ≡ �xxy(x)D (50f)

u,yyx ( y) ≈
Ns∑

I=1

12�I (x)d I ≡ � yyx (x)D (50g)

Taking the same approach as for the 2nd order PDE, the
weighted least-squares functional E(D) of the HGRKCM
for the 4th order PDE after substituting (50) into (49) can be
written as:

E(D) =1

2

∫

�

(R1D − f )T (R1D − f )d�

+ wg

2

∫


g

(R2D − g)T (R2D − g)d


+ wh

2

∫


h

(R3D − h̄)T (R3D − h̄)d


+ wm

2

∫


m

(R4D − M)T (R4D − M)d


+ wq

2

∫


q

(R5D − Q)T (R5D − Q)d


(51)
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Fig. 7 Error L2 norm convergence rate of RK approximations of sinusoidal function’s fourth derivative by basis orders of p = 4, 5, and 6.
Estimated convergence rate according to theory is p − 3

where wq , wm, wh, and wg are boundary weights, and,

R1 ≡ L1�xxxx + L2�xxyy + L3� yyyy, (52a)

R2 ≡ Bg� (52b)

R3 ≡ B1
h�x + B2

h� y, (52c)

R4 ≡ B1
m�xx + B2

m� yy + B3
m�xy, (52d)

R5 ≡ B1
q�xxx + B2

q� yyy + B3
q�xxy + B4

q�xyy, (52e)

then, the stationary condition for the minimization of E(D)

leads to the following variational equation:

δE(D) =δDT
∫

�

RT
1 (R1D − f )d�

+ δDTwg

∫


g

RT
2 (R2D − g)d


+ δDTwh

∫


h

RT
3 (R3D − h̄)d


+ δDTwm

∫


m

RT
4 (R4D − M)d


+ δDTwq

∫


q

RT
5 (R5D − Q)d
 = 0.

(53)
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Fig. 8 Error L2 norm convergence rate of one-dimensional 2nd-order PDE (with Dirichlet boundary conditions) using basis orders of p = 2, 5,
and 6 within RKCM, GRKCM, and HGRKCM schemes
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Fig. 9 Error L2 norm convergence rate of one-dimensional 2nd-order PDE (with mixed boundary conditions) using basis orders of p = 2, 5, and
6 within RKCM, GRKCM, and HGRKCM schemes
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Fig. 10 Error L2 norm convergence rate of one-dimensional 2nd-order PDE using basis orders of p = 4, 5, and 6 within RKCM and HGRKCM
schemes (non-uniform nodal distribution)
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Fig. 11 Error L2 norm convergence rate of one-dimensional 4th-order PDE using basis orders of p = 4, 5, and 6 within RKCM and HGRKCM
schemes

Applying a proper quadrature rule to δE(D) at different
sets of collocation points in the domain and on the bound-
aries, it is equivalent to solving the following linear system
of equations by the least-squares method:

⎛

⎜
⎜
⎜
⎜
⎝

(A1 + A2 + A3)√
wg(A4)√

wh(A5 + A6)√
wm(A7 + A8 + A9)√

wq(A10 + A11 + A12 + A13)

⎞

⎟
⎟
⎟
⎟
⎠

d =

⎛

⎜
⎜
⎜
⎜
⎝

b1√
wgb2√
whb3√
wmb4√
wqb5

⎞

⎟
⎟
⎟
⎟
⎠

(54)

Sub-matrices Ai (i = 1, . . . , 13) and bi (i = 1, . . . , 5) in
Eq. (54) for the 4th-order Kirchhoff plate discrete equation
are shown in “Appendix B”.

4.4 Convergence analysis of 4th-order problem

Consider the problem given in Eq. (48). Based on the least-
squares functional in Eq. (51), E-norm is defined as follows:

‖v, v(1), v(2), v(3), v(4)‖E =
{
‖R1(v)‖20,� + αg‖R2(v)‖20,∂�g

+ αh‖R3(v)‖20,∂�h
+ αm‖R4(v)‖20,∂�m

+ αq‖R5(v)‖20,∂�q

} 1
2

(55)

where Ri , i = 1, . . . , 5, are the associated differential oper-
ators in Eq. (48), and v(i) denotes the i-th-order complete
derivatives of v. Let w and w(i) be the approximations of u
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Fig. 12 Error L2 norm convergence rate of one-dimensional 4th-order PDE using basis orders of p = 4, 5, and 6 within RKCM and HGRKCM
schemes

and u(i) by the RK and gradient RKs described in Eqs. (1)
and (15). HGRKCM error measured in the E-norm is:

‖u − w, u(1) − w(1), u(2) − w(2), u(3) − w(3), u(4) − w(4)‖E
=
{
‖R1(w) − g‖20,� + αg‖R2(w) − ug‖20,∂�g

+ αh‖R3(w) + h̄‖20,∂�h
+ αm‖R4(w) − M‖20,∂�m

+ αq‖R5(w) − Q‖20,∂�q

} 1
2 ≤ ‖R1(w) − g‖0,�

+ √
αg‖R2(w) − ug‖0,∂�g + √

αh‖R3(w) + h̄‖0,∂�h

+ √
αm‖R4(w) − M‖0,∂�m + √

αq‖R5(w) − Q‖0,∂�q

≡ E1 + E2 + E3 + E4 + E5

(56)

where,

E1 = ‖R1(w) − g‖0,� ≤ C1G‖w(4) − u(4)‖0,�
≤ C11Ga−4‖w − u‖0,� (57)

E2 = √
αg‖R2(w) − ug‖0,∂�g ≤ C2

√
αg‖w − u‖1,�

≤ C21a
−1√αg‖w − u‖0,� (58)

E3 = √
αh‖R3(w) + h‖0,∂�h ≤ c3

√
αh‖w(1) − u(1)‖1,�

≤ C31a
−2√αh‖w − u‖0,� (59)

E4 = √
αm‖R4(w) − M‖0,∂�m ≤ C4G

√
αm‖w(2) − u(2)‖1,�

≤ C41Ga−3√αm‖w − u‖0,� (60)
E5 = √

αq‖R5(w) − Q‖0,∂�q ≤ C5G
√

αq‖w(3) − u(3)‖1,�
≤ C51Ga−4√αq‖w − u‖0,� (61)
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Fig. 13 Error L2 norm convergence rate of two-dimensional Poisson equation using basis orders of p = 2, 3, . . . , 6 within RKCM and HGRKCM
schemes
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Fig. 14 RKCM error convergence comparison between determined and weighted over-determined systems using a second (p = 2) and b fourth
(p = 4) order basis

Fig. 15 Error convergence comparison for a weighted over-determined RKCM and b HGRKCM using fourh-order basis and different RK shape
function support domain sizes

Above, Ci denotes the generic constant independent of
support size, a. The approximation properties of RK and
implicit gradient RK, Eqs. (10) and (25), is further introduced
in Eqs. (57)–(61). In order to balance errors from the domain
and boundary terms in Eq. (56), the following weights are
selected:

√
αg ≈ O(Ga−3),

√
αh ≈ O(Ga−2),

√
αm ≈ O(a−1),√

αq ≈ O(1) (62)

with weights in Eq. (62) and the properties in Eqs. (10) and
(25), the E-norm is bounded as follows,

‖u − w, u(1) − w(1), u(2) − w(2), u(3) − w(3), u(4) − w(4)‖E
≤ Cap−3|u|p+1,� (63)

Considering the balance of errors in the E-norm and the
properties in Eqs. (57)–(61), the convergence is therefore
estimated as:

‖u − w‖1,� ≈ O(a p−3), ‖u − w‖0,� ≈ O(a p−2) (64)
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Fig. 16 Sample non-uniform
nodal distribution patterns for
a RKCM over determined
system and b HGRKCM
determined system with
source-points located at similar
locations for both cases

5 Numerical examples

In this section, several numerical problems are presented to
show how the HGRKCM performs for solving one and two-
dimensional second and fourth-order differential equations.
The list of solved problems and their purpose of study are
summarized:

• Function and derivatives approximation: examining the
convergence of derivatives approximations using implicit
gradient, particularly for higher order derivatives.

• One-dimensional 2nd-order PDE: convergence from
three methods are compared with different sets of bound-
ary conditions to show HGRKCM performance, espe-
cially when using higher basis orders.

• One-dimensional 4th-order PDE: demonstrating the per-
formance of HGRKCM and compare with other colloca-
tion methods.

• Two-dimensional Poisson problem: demonstrating the
performance of HGRKCM for two-dimensional Poisson
problem.

• Two-dimensional elasticity problem: an internally pres-
surized tube problem is selected to show HGRKCM
performance in solving elasticity problems with non-
regular geometry.

• Rectangular Kirchhoff plate problem: HGRKCM is
applied forKirchhoff plate problem.This iswhere regular
RKCM fails to show acceptable convergence. Differ-
ent basis orders are used and results are compared with
results from other studies.

Finally,CPU run-time for constructing the shape functions
and stiffness matrices versus accuracy of the method is com-
pared with regular RKCM and two Galerkin-based methods,
FEM and RKPM with SCNI.

5.1 Function and derivatives approximations

A simple one-dimensional sinusoidal function is consid-
ered as in (65),

u(x) = sin
(πx

5

)
, x ∈ [0, 10] (65)

For this problem, the number of collocation points is
considered to be equal to the number of source points (deter-
mined system). Quintic B-splines are used as the kernel
function and basis orders of p = 1, . . . , 6 are used to solve
the problem. For all the numerical examples solved and dis-
cussed in this paper, the normalized support size for RK
shape functions are considered as a = (p + 0.5) × h, unless
otherwise stated. Here h is the average source points nodal
distance. In cases which for nonuniform nodal distribution is
used, a search algorithm is developed such that each arbitrary
evaluation node is covered by the mimum number of source
points to assure the moment matric invertibility. The mini-
mum number of neighbor nodes depends on the basis order
used for approximation. The derivative approximations are
performed up to 4th-order and the error L2 norms are pre-
sented. Error norms for function approximation are shown in
Fig. 3 which are in agreement with the theory [29], equal to
p + 1.

For first-order derivative approximating, all threemethods
show promising results in term of error convergence rate,
almost for all basis orders (shown in Fig. 4). However, in
case of RKCM, when p = 6 is selected, even by using
sextic B-splines, convergence rate decreases when nodal
spaces are considerably refined. This happens because of ill-
conditioning in derivatives of the moment matrix. Although
according to [27] using higher order basis function should
yield more accurate results, obtaining acceptable conver-
gence rate and accurate results become more critical for
regular RKCM and GRKCM when approximating higher
order derivatives by higher order basis functions, as observed
in Figs. 5, 6 and 7.
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Fig. 17 Error L2 norm convergence rate of two-dimensional Poisson equation using basis orders of p = 2, 3, . . . , 6 within RKCM and HGRKCM
schemes
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Fig. 18 Internally pressurized elastic tube. a Configuration and properties. b Dirichlet and Neumann boundaries

Fig. 19 Nodal distribution for over-determined RKCM (left) and determined HGRKCM (right) cases

As observed in Fig. 7c, in the most critical case for the
fourth-order approximation, when using p = 6, RKCM and
GRKCM fail in yielding acceptable convergence rate. This
also happens for second and third derivatives approximation
when using higher-order polynomials as basis terms. On the
other hand, HGRKCM, for which all the shape function’s
derivatives are constructed based on implicit gradient of RK,
yield convergence rates in agreement with theoretical esti-
mations [29,30].

5.2 2nd-order one-dimensional equation

To study HGRKCM performance in solving PDEs, as the
first step, a one-dimensional 2nd-order differential Eq. (66)
with two cases of boundary conditions is considered,

− u,xx + u,x + u =
(

1 + π2

25

)

sin
(πx

5

)

+π

5
cos
(πx

5

)
, x ∈ (0, 10) (66)

In the first case, two Dirichlet boundary conditions are
applied at both ends (u(0) = 0, u(10) = 0). In the sec-
ond case, a Neumann boundary condition is applied on the
right end (u,x (10) = π

5 ). Basis orders of p = 2, 3, . . . , 6
are implemented for error convergence study. While the
same amount of source and collocation points are used
in HGRKCM case, for RKCM and GRKCM, an over-
determined system (Nc = 4 Ns) is employed to get the
optimal convergence rate and a more accurate set of results.
The problem is manufactured such that it contains function u
and all its derivatives to assure all the effects of shape func-
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Fig. 20 Error L2 norm convergence rate of elasticity problem using basis orders of p = 2, 3, . . . , 6 within RKCM and HGRKCM schemes
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Fig. 21 Rectangular Kirchhoff plate. a Source and collocation points pattern configuration. b Error L2 norm convergence rate using basis orders
of p = 4, 5, and 6 using HGRKCM

tion derivatives are considered in the study. The convergence
rates for both cases are shown in Figs. 8 and 9.

This is obvious from the obtained convergence rates
that all three methods perform almost the same in solving
the second-order problem. However, for obtaining a reli-
able error convergence rate using RKCM, over-determined
weighted systems are required. Beside the fact that over-
determined systems needmore computational effort to solve,
proper boundary weight need to be derived for different
PDEs. On the other hand, HGRKCM is shown to yield the
same, if not better, error convergence rates under a deter-
mined system without any weights used on the boundaries.
Beside the advantagesmentioned above,HGRKCMis shown
to be less sensitive to changes in the support domain size.
Error convergence from RKCM is observed to change con-
siderably if different support sizes are used or a non-uniform
nodal distribution is of interest or complicated geometry is
considered. In the case of non-uniform nodal distribution, the
error L2 norm shows oscillations and usually convergence
rate is observed to be sub-optimal, specially when higher
order shape functions are utilized to solve the problem.
To compare the performance of RKCM and the higher
order gradient RKCM, the differential equation shown in
(66) is solved by the same number of source points (with
30% perturbation from the uniform nodal locations), sup-
port domain size, and kernel orders. Again, for RKCM, a
weighted over-determined system is used to guarantee the
optimal error convergence rate. Results shown in Fig. 10
state that HGRKCM yields the same rate as error estimation,

where the results from RKCM show a sub-optimal conver-
gence rate.

Remark 5.1 As shown in [29], analytically, error L2 norm
convergence rate for second-order differential problems is
p − 1, where p is the basis order used for constructing the
shape functions and derivatives. However, numerical results
indicate the convergence error as p − 1 and p when odd
and even values for p are selected. These results are con-
firmed numerically for one-dimensional case in Figs. 8 and
9. Similar convergence behavior has been reported in isogeo-
metric collocation method in [43,44]. Similar results are also
reported in studying the second- and fourth-order structural
vibration problems for the frequency accuracy orders [45].

5.3 4th-order one-dimensional equation

Consider the 4th-order differential equation as below,

−u,xxxx − u,xxx − u,xx + u,x + u = g(x),

x ∈ (0, 10) (67)

where g(x) = 1
625 [5π(25+ π2)] cos(πx

5 ) + (625+ 25π2 +
π4) sin(πx

5 ) and the the analytical solution is u(x) =
sin(πx

5 ). The equation is designed such that all u deriva-
tive terms be included in the problem. Basis orders p =
4, 5, 6 are used for approximation and both quintic and
sextic kernel functions are employed for obtaining the best
convergence rates. For the case of fourth-order differential
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Fig. 22 CPU-time comparison versus source points number comparison betweenRKCMandHGRKCMfor a two-dimensional Poisson.bElasticity
and c Rectangular Kirchhoff plate problems

equations, two cases of boundary conditions must be satis-
fied on each of the boundary collocation points. Two sets
of boundary conditions are considered for this problem. In
both cases, predefined values of u(0) = 0 and u(10) = 0
are applied on two end points. Then, in the first case, prede-
fined values of the first derivative values are considered as
u,x (0) = π

5 , u,x (10) = π
5 . For the second case, predefined

values of second derivatives at end points are considered;
u,xx (0) = 0, u,xx (10) = 0. Same as the 2nd-order problem,
number of collocation points for RKCM and GRKCM are
4 times the source points, where for HGRKCM are set to
be equal (Ns = Nc). Note that since two extra collocation
points are needed on the boundary points for this problem, the
number of domain collocation points are selected to be less
than the number of source points accordingly to keep the

linear system of equations determined. The error L2 norm
convergence rates are presented in Figs. 11 and 12.

This is obvious from the results that regular RKCM starts
losing accuracy when moving to higher order differential
equation, and also the obtained convergence rate is not as reli-
able as HGRKCM. On the other hand, HGRKCM yields the
optimal convergence rate in all cases. Moreover, the method
still forms a determined system which keeps the computa-
tional costs much lower compared to the other two methods.
This is important to mention that results by GRKCM looks
promising, but still a weighted over-determined system is
required for obtaining an optimal convergence rate in this
problem.Nevertheless, fromFigs. 11c and 12c, it is noted that
GRKCM convergence rate decreases, specially when nodal
distance becomes smaller, due to accumulated error rising

123



1448 Computational Mechanics (2019) 64:1421–1454

Fig. 23 Error L2 norm versus CPU-time comparison between RKCM
and HGRKCM for elasticity problem

from direct derivatives calculation. Error convergence rate
for 2nd order differential case is extendable to the 4th-order
problems. The numerical results confirm that for RK approx-
imation of order p, error L2 norm convergence rate will be
p − 3 and p − 2 for odd and even orders of p, respectively.
This is similar to what is reported in isogeometric collocation
method in [44].

5.4 Two-dimensional Poisson’s equation

As the first two-dimensional example, the Poisson’s equation
in (68) is considered.

u(x, y) = (x2 + y2)

16
e
xy
4 � ∈ (0, 2) × (0, 2) (68)

The analytical solution is u(x, y) = e
xy
4 . In this problem,

all the boundary conditions are applied as predefined values
of u as essential boundary conditions. For convergence study,
different number of source points of {12×12, 20×20, 28×
28, 36 × 36, 44 × 44} are used. For HGRKCM, the same
number of collocation points is used as the number of source
points, whereas for regular RKCM, collocation points are
approximately four times the number of source points, {23×
23, 39×39, 55×55, 71×71, 87×87}. The numerical results
are provided in Fig. 13.

Error L2 normconvergence rate for two-dimensional Pois-
son problem is approximately p and p − 1 for even and odd
basis orders, respectively, which is consistent with the obser-
vation in one-dimensional problems. However, when using
higher order basis orders, regular RKCM is unable to yield
the expected optimal convergence rate. As mentioned in the
previous sections, for obtaining optimal convergence rate by

regular RKcollocationmethods, aweighted over-determined
system is required. Although RKCM convergence and error
estimation is comprehensively studied in [29,31], to highlight
the need of using an over-determined system, the Poisson’s
equation is solved by using the same number of colloca-
tion and source points with second- and fourth-order basis
and error convergence rates are compared with the ones
from over-determined systems in Fig. 14a, b, respectively.
As it is obvious from the plots in Fig. 14, error convergence
rate decreases significantly in the case of determined sys-
tem. Besides, even by using more collocation points than the
source points, RKCM shows considerable sensitivity to the
selected support size for constructing theRKshape functions.
To show this sensitivity, the Poisson’s equation is solvedwith
two other choices for support sizes of a = (p + 0.1)h and
a = (p + 1.5)h using the fourth-order basis. Results are
provided in Fig. 15a which imply the sensitivity of RKCM
convergence rate to the shape function support size. In this
specific example, for RKCM, p = 4.5h yields the optimal
convergence rate for the fourth-order basis. On the other
hand, HGRKCM shows considerably lower sensitivity to the
support domain size where for different choices of support
radius, the convergence rate remains the same and solu-
tion accuracy changes insignificantly compared to RKCM
(Fig. 15b).

Sameas the second-order one-dimensional case, this prob-
lem is also solved using a non-uniform nodal distribution
by RKCM and HGRKCM methods to examine the sensi-
tivity of both methods to the nodal distribution. HGRKCM
yields convergence rate consistent with the error estimation
discussed in the previous section, while RKCM shows less
accurate results and in some cases severe fluctuations in the
convergence rate. Similar to 1D case, for RKCM, a weighted
over-determined system with collocation points about four
times the source points is used, while HGRKCM is imple-
mentedwith a determined systemwith noweights. The nodal
distribution for both cases are demonstrated in Fig. 16. The
error convergence rates are also shown in Fig. 17, indicating
that HGRKCM results are reliable and error convergence
rates are stable compared to the RKCM.

5.5 Elasticity problem (internally pressurized elastic
tube)

For testing HGRKCM in solving vector-field problems,
an infinite internally pressurized elastic tube, as shown in
Fig. 18a, is considered. Due to symmetry, a quarter of the
actual configuration is modeled and solved (Fig. 18b). The
boundary value problem and the boundary conditions are
defined as:
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Fig. 24 a CPU-time comparison versus source points number and b Error L2 norm versus CPU-time comparison between HGRKCM, FEM, and
SCNI

σi j, j = 0 in �

h̄i = −Pni on 
1

u2 = 0, h1 = 0 on 
2

hi = 0 on 
3

u1 = 0, h2 = 0 on 
4

(69)

The problem is solved by regular RKCM and HGRKCM.
Since GRKCM performs closely to RKCM in most cases,
it is not applied for solving the remaining problems in the
paper. For both cases, numbers of source points used for con-
structing the shape functions are Ns = {54, 187, 693, 2665}.
While HGRKCM shows promising error convergence rate
using a determined system (Ns = Nc), RKCMneeds roughly
four times more collocation points to converge. Correspond-
ing collocation points are as Nc = {187, 693, 2665, 10449}.
Nodal distribution for bothmethods are depicted inFig. 19. In
this problem, nodal distances are not equal, which shows the
behavior of bothmethods in amore general case of nodal dis-
tribution and domain geometry. Error L2 norm convergence
rates are presented and compared in Fig. 20. This is where
RKCM shows a high sensitivity to the nodal distribution pat-
tern, including cases with the irregular domain geometry. It
is observed that changing the nodal support size affects the
convergence rate considerably. For RKCM, results shown
in Fig. 20 are the best convergence rates obtained by try-
ing different nodal support sizes and kernel orders. Notable
point about HGRKCM is that optimal convergence rates are
obtained with less sensitivity to support domain size and ker-
nel order choices. The error decrease in numerical results on

the corners and areas close to the boundaries is another obser-
vation from this example when using HGRKCM.
This is considered as a notable advantage of to obtain optional
convergence rate and more accurate results for general
problems, with less nodal pattern sensitivity and domain’s
geometry dependency.

5.6 Rectangular Kirchhoff plate

A rectangular plate with clamped boundaries on four sides
and material properties such that G = 1 in the domain � ∈
[0, 10] × [0, 10] is considered. For results comparison, the
problem is selected similar to the one in [44]. The distributed
load equation g(x, y) and the analytical solution uz(x, y) are
respectively:

g(x, y) = −π4

625

[
cos
(πx

5

)
− 4 cos

(πx

5

)
cos
(π y

5

)

+ cos
(π y

5

)]
(70a)

uz(x, y) =
(
1 − cos

(πx

5

)) (
1 − cos

(π y

5

))
(70b)

In the case of 4th-order differential equations, two bound-
ary conditions must be satisfied on each boundary. Conse-
quently, the number of boundary collocation points must be
at least twice the second-order PDEs. For this reason and for
keeping the node construction simple, another set of collo-
cation points are added on the primarily located points on
the boundary. Therefore, the number of rows in A and b in
(54) increases by the number of boundary collocation points.
This is noteworthy to mention that the linear system for the
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4th-order problem could be kept determined by adding extra
source points to the domain or on the boundary. However,
for the sake of simplicity in node construction process, it
is easier to just add needed number of collocation points on
the boundary. Both cases of determined and over-determined
systems are observed yielding the same convergence rate
in HGRKCM scheme. Since the extra boundary collocation
points are added on exactly the same coordinate as the dis-
placement collocation nodes, the shape functions values are
the same as the essential boundary collocation points.

Explicit derivatives of RK shape functions need con-
siderable computational effort, which besides being time-
consuming may result in a high amount of accumulative
numerical errors in the nodal values of the derivatives.
The error is observed to considerably increase for higher
order derivatives. Although for 4th-order one-dimensional
equations RKCM yields solution (but not with an accept-
able convergence rate in most cases), in two-dimensional
case obtaining accurate results becomes almost impossible.
Therefore, for all the following two-dimensional fourth-order
cases, onlyHGRKCM is implemented and results for RKCM
are not presented.

The error convergence rates using basis orders of p =
4, 5, 6 are presented in Fig. 21b. Similar to the 1D case, for
odd and evenbasis orders the error convergence rates are p−3
and p − 2, respectively. Numerical results are in agreement
with those reported in [44] using IGA and [45] using RK col-
location analysis. This is noted that for the simply supported
rectangular plate, the same set of results are obtained.

6 CPU and running time comparison

CPU-time for constructing the shape functions, force and
stiffness matrices are calculated for the purpose of perfor-
mance comparison between conventional RKCM and the
HGRKCM method. CPU-time comparison is performed
for three different problems solved in the paper; two-
dimensional Poisson’s and elasticity problems in Sects. 5.4
and 5.5. and the rectangular Kirchhoff plate. For the first
two problems, as second-order PDEs, HGRKCM is shown
to be ten times faster than RKCM in average. The CPU-time
versus source points number plots in logarithmic scale are
shown in Fig. 22 . Also, as an example, the error L2 norm is
plotted versus CPU-time for the pressurized tube elasticity
problem in Fig. 23. The plot indicates HGRKCM performs
computationally more efficient than RKCM while keeping
the numerical error considerably smaller.

As a more general comparison, HGRKCM is compared
with FEM (4-node linear element with full integration)
and RKPM with stabilized conforming nodal integration
(SCNI) [38]. SCNI was introduced to address the inaccuracy
of solution procedure caused by domain integration using

Gauss quadrature in Galerkin mesh-free methods [38,39,46].
However, since it is required to construct smoothed shape
functions over the nodal representative domains [39,47],
computational effort regarding constructing Voronoi cells
must be considered. Therefore, for this comparison, beside
the force and stiffness matrices construction, mesh and/or
Voronoi-cells CPU-time is taken into account. Fig. 24a com-
pares the error L2 norm versus CPU-time between FEM,
RKPM-SCNI, and HGRKCM for solving Poisson equi-
tation. Results show both FEM and HGRKCM running
CPU-time are close, however HGRKCM shows a higher
accuracy in solution. This should bementioned that for keep-
ing the comparison fair, second-order basis vector is used
for HGRKCM. Obviously, with a negligible add-up to CPU-
time, higher accuracy is obtainable by using higher order
basis for HGRKCM. This is also shown that SCNI yields
less accuracy and considerably higher CPU-time since con-
structingVoronoi cells and integrating over the boundaries of
each cell is considerable. Figure 24b shows CPU-time versus
number of nodes for all three cases. It is obvious from the
results that HGRKCM remains the fastest method comparing
to the other methods used for this comparison.

7 Conclusion

In this paper, the implicit gradient reproducing kernels are
introduced in the collocation framework for solutions of
2nd and 4th order PDEs. All the derivatives approximations
appearing in PDEs in the present method are constructed
using the gradient reproducing conditions, instead of taking
the direct derivatives of the RK approximation. Immedi-
ate advantages of doing so are threefold: in comparison
to the direct derivative counterpart, (1) the computational
cost for construction of derivative approximations reduces
tremendously, (2) basis functions for derivative approxima-
tions are smooth and thus solutions are less sensitive to
collocation point distribution and the support size, and (3)
the accumulated error arising from calculating derivative
approximations are greatly reduced and subsequently solu-
tions become more accurate and stable in terms of error
convergence rate, nodal perturbation, and support size in
comparison to the direct derivative counterpart. Furthermore,
since the direct derivatives are not used in the formulation,
it is theoretically estimated and numerically tested that the
same number of collocation points as the source points can be
used to obtain the optimal solution in the least-squares sense,
which enhances further the computational efficiency. Over-
all, the present method is around 10 to 25 times faster than
its RKCM counterparts, dependent on the problem and dis-
cretization. The convergence property of the present method
is estimated through a least-squares error analysis. The con-
vergence rate of the least-squares error norm, measuring
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errors from the domain equation and boundary conditions,
is estimated to be p − 1 and p − 3 for 2nd and 4th-order
PDEs, respectively. It is interesting to note that although the
further analysis is ongoing and has not yet been established,
numerical results consistently show that the convergence rate
elevates one order, p and p− 2 for 2nd and 4th-order PDEs,
respectively, when even-order basis functions are used. The
overall performance of the present method is compared with
Galerkin based methods for solving 2nd-order PDEs. The
present method shows better efficiency than RKPM with
SCNI and comparable performance as FEM in terms of accu-
racy versus CPU time. The present method is also applied to
solutions of one- and two-dimensional fourth-order PDEs
such as Kirchhoff plate problem. The implementation is
straightforward, solutions are accurate, and the convergence
rates are shown to be stable in comparison to RKCM.

Acknowledgements Research reported in this paper was partially sup-
ported by DoD SERDP under contract number W912HQ18C0099.

Appendix A

To demonstrate how exactly the procedure shown in Sect. 2.4
works for constructing gradient reproducing kernel shape
function’s derivative of a desired order, second derivative
approximation of the two-dimensional vector field u is con-
sidered:

u,xx ≈ wxx =
Ns∑

I=1

�xx
I (x)d I (A.1a)

u,yy ≈ wyy =
Ns∑

I=1

�
yy
I (x)d I (A.1b)

u,xy ≈ wxy =
Ns∑

I=1

�
xy
I (x)d I (A.1c)

where wxx , wxx , and wxy are the gradient second order
derivatives approximation of vector field u. Recalling (19),

�xx
I = C1(x; x − x I )φa(x − x I ) (A.2a)

�
yy
I = C2(x; x − x I )φa(x − x I ) (A.2b)

�
xy
I = C3(x; x − x I )φa(x − x I ) (A.2c)

where C i , i = 1, 2, 3, are the corresponding correction func-
tions for each case constructed by the related coefficients
vector and quadratic basis vector,

C i (x; x − x I ) = HT (x − x I )bi (x), i = 1, 2, 3 (A.3)

where bi in each case is obtained by satisfying the partition
of nullity and derivative reproducing conditions, in this case
second order derivatives reproducing conditions.
For the second derivative with respect to x the reproducing
condition are,

Ns∑

I=1

�xx (x) = 0 (A.4a)

Ns∑

I=1

�xx (x)xI = 0 (A.4b)

Ns∑

I=1

�xx (x)yI = 0 (A.4c)

Ns∑

I=1

�xx (x)x2I = 2 (A.4d)

Ns∑

I=1

�xx (x)y2I = 0 (A.4e)

Ns∑

I=1

�xx (x)xI yI (x) = 0 (A.4f)

By multiplying (A.4a) by x and subtracting (A.4b):

Ns∑

I=1

�xx
I (x)(x − xI ) = 0 (A.5)

Multiplying (A.4a) by y and subtracting (A.4c) results in:

Ns∑

I=1

�xx
I (x)(y − yI ) = 0 (A.6)

For quadratic terms, By multiplying (A.4a) by x2, adding
(A.4d), and then subtracting two times of (A.4f),

Ns∑

I=1

�xx
I (x)(x2 + x2I − 2xxI )

=
Ns∑

I=1

�xx
I (x − xI )

2 = 2 (A.7)

By following the same procedure and multiplying (A.4a)
by y2 and adding (A.4e) and abstracting two time of (A.4f),

Ns∑

I=1

�xx
I (y − yI )

2 = 0 (A.8)

and finally, for the last term, bymultiplying (A.4a) by xy,−y
by (A.4b), −x by (A.4c), and summing up all these expres-
sions with (A.4f),
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Ns∑

I=1

�xx
I (xy − yxI − xyI + xI yI )

=
Ns∑

I=1

�xx
I (x − xI )(y − yI ) = 0 (A.9)

Writing all Eqs. (A.5)–(A.9) and including the partition
of nullity in (A.4a),

Ns∑

I=1

�xx
I (x)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

x − xI

y − yI
(x − xI )2

(y − yI )2

(x − xI )(y − yI )

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
H(x−x I )

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
2
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
H ,xx (0)

(A.10)

The right-hand side in (A.10) is the second-order explicit
derivative of quadratic basis vector where x − x I = 0. By
taking the same steps for satisfying � yy and �xy all the
second-order derivative reproducing conditions become,

Ns∑

I=1

�xx
I (x)H(x − x I ) = H ,xx (0) (A.11a)

Ns∑

I=1

�
yy
I (x)H(x − x I ) = H ,yy(0) (A.11b)

Ns∑

I=1

�
xy
I (x)H(x − x I ) = H ,xy(0) (A.11c)

By using the definitions of gradient derivatives of RK
function in (A.2) and correction function in (A.3) and sub-
stituting those into Eq. (A.11),

M(x)b1(x) = H ,xx (0) (A.12a)

M(x)b2(x) = H ,yy(0) (A.12b)

M(x)b3(x) = H ,xy(0) (A.12c)

where M is the moment matrix defined in (8). Eventually, by
having coefficients vector in (A.12), the second-order gradi-
ent derivatives are derived as,

�xx
I (x) = HT

,xx (0) M
−1(x) H(x − x I ) φa(x − x I )

(A.13a)

�
yy
I (x) = HT

,yy(0) M
−1(x) H(x − x I ) φa(x − x I )

(A.13b)

�
xy
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−1(x) H(x − x I ) φa(x − x I )

(A.13c)

Obviously, equations in (A.13) are just different by their
first terms, which indicates that the method is straightfor-
ward and computationally efficient. More importantly, the
inversion of moment matrix derivatives, which suffer from
ill-conditioning and large condition numbers are no longer
needed to be calculated. Following the same rule, higher
order gradient derivatives could be obtained.

Appendix B

Sub-matrices shown in Eq. (54) are shown in the following.
Ai (i = 1, . . . , 13) in the case of 4th-order Kirchhoff plate
discrete equation is defined as,
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and for sub-matrices bi (i = 1, . . . , 5),
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where Nd denotes the domain collocation points. Ng , Nh ,
Nm , and Nq are the numbers of displacement, rotation,
moment and shear boundary collocation points, respectively.
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