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Abstract
In this paper, a thermodynamically consistent visco-elastic growth model driven by nutrient diffusion is presented in the finite
deformation framework. Growth phenomena usually occur in biological tissues. Systems involving growth are known to be
open systems with a continuous injection of mass into the system which results in volume expansion. Here the growth is
driven by the diffusion of a nutrient. It implies that the diffusion equation for the nutrient concentration needs to be solved
in conjunction with the conservation equation of mass and momentum. Hence, the problem falls into the multi-physics class.
Additionally, a viscous rheological model is introduced to account for stress relaxation. Although the emergence of residual
stresses is inherent to the growth process, the viscous behaviour of the material determines to what extend such stresses remain
in the body. The numerical implementation is performed using the symbolic tool Ace-Gen while employing a fully implicit
and monolithic scheme.

Keywords Visco-elasticity · Biological growth · Finite strain · Biofilm growth

1 Introduction

Unlike structural material, biological tissues are able to
change their geometry and internal structure even when they
are not subjected to mechanical loads. Such processes are
referred to as either growth or “remodeling”. Healing in a
cracked bone and development of tumors are examples of
biological tissue remodeling and growth, respectively. Soft
tissues like tumors, biofilms and arteries generally expe-
rience growth, while hard tissues such as bone and teeth
undergo remodeling. However in some cases, such as arter-
ies, both processesmight take place simultaneously. Roughly
speaking, in a growth process the mass generation leads to
an increase in the volume, whereas in remodeling the vol-
ume remains almost constant and the micro structure of the
tissue changes, instead. For the remodeling case, the mate-
rial behavior is characterized by a constitutive approach, see
[7,15]. In case of growth a kinematic approach in conjunction
with a constitutive model is utilized, see [8,16]. Biological
tissues undergoing growth and remodeling involve strong
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coupling of different physical phenomena. Several distinct
types of physics such as mass transport, nutrient diffusion
and mechanical deformation are governed by the associated
equations in a coupled fashion. Here the focus is on the volu-
metric growth driven by nutrient diffusion using a combined
constitutive-kinematic approach.

The key idea for modeling the mechanics of volumetric
growthhas beenborrowed from the central ideaoffinite strain
plasticity by decomposing the deformation gradient into an
inelastic growth and an elastic part. In an analogywith elasto-
plastic deformations, a strain energy function is definedbased
on the elastic part and the growth part is governed by an evo-
lution equation translating the mass resorption at a material
point. The local nature of the growth-elastic decomposition
inherently creates residual stresses in the body so as to accom-
modate to the incompatible growth-related deformation. This
is the cost for maintaining the continuity of the solid, see
[35]. In the presence of dissipative processes such as viscous
effects in large time scales, residual stresses may diminish.

Tailoring available FEM-based tools or numerical codes
for deformable solids to those undergoing growth requires
careful attention. The reason is that the growth phenomena
have to be characterized in the context of an open system
in which mass can cross the boundary of the reference vol-
ume. In other words, the mass conservation equation needs
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to be solved, unlike an ordinary deformable solid in which
this equation is trivial and consequently it is not explicitly
resolved. Such a mass source complicates the momentum
equation, since any mass source is also an inherent momen-
tum source. Furthermore, it is even reflected in the outcome
of the angular momentum equation and determines whether
the well-known Cauchy stress remains symmetric or not.
Additionally, any assumed constitutive equation should be
thermodynamically consistent in the sense that the second
law of thermodynamics is not violated. Interested readers
may refer to [11] for more details on theoretical framework
of growth.

The diffusion induced growth is a matter of investiga-
tion among researchers in different areas. In [38] the folding
patterns of brain as a growing soft tissue have been stud-
ied while a diffusion-reaction equation has been employed
to model the cell migration and proliferation. Similar wrin-
kledmorphology has been observed in the growth of bacterial
macroscopic colonies (biofilms) in [37].Under scarcity of the
nutrient, biofilms may exhibit more complex shapes referred
to as “finger patterns” [18]. In [39] the growth of tumor has
been investigated using a fourth order equation of Cahn-
Hilliard-type coupled with reaction-diffusion equations for
the substrate components. More sophisticated growth model
driven by the diffusion are presented in [5] and [1] that are
based on characterizing the fluid transport through a chem-
ical potential. Such models are used to capture the swell or
squeeze of elastomeric hydro-gels embedded in a solvent.
Under critical conditions, instabilities in the geometry of the
swollen hydro-gels bring even more complication in such a
diffusion-driven growth process [10]. Since the objective of
developing our diffusion-driven growth model is to employ
it in biofilm simulations, the numerical examples are entirely
related to this area. Nonetheless, one can use the developed
model with minor modifications in other applications such
as tumor growth or hydrogel swelling. The significance of
biofilms in medical and industrial application is undeniable.
They might be either harmful or advantageous. The forma-
tion of dental plaque on the teeth surface that may result in
an infection in the oral cavity [28] is an example of detri-
mental biofilms. On the contrary, the beneficial biofilms are
the main actors in water treatment system [13] in which the
toxic substances are removed from the waste water. Inter-
ested readers may refer to [23] for an up-to-date review of
the current application of biofilms.

As mentioned before, biofilm growth is also an example
of the growth process driven by the nutrient diffusion. It is
a complex process in the sense that several physical phe-
nomena are coupled and consequently different time-scales
are involved. An argument about the order of magnitude
related to the different time scales in biofilm processes can
be found in [27]. This leads to the assumption that all fast
processes (smaller time scales) such as nutrient diffusion

reach their steady state values when a slower process (large
time scale) such as biofilm growth is taking place. Early
attempts to mathematically model biofilms can be traced
back to 1980s, see [30] in which a one dimensional system
of partial differential equation describes the biofilm growth.
Since then, a various number of methods has been pro-
posed to model two and three dimensional biofilms, all of
which fall into either continuum-based [3,9,26] or hybrid
discrete-continuous models that are known as Individual-
Based Methods (IBM) [20,21,25]. In the second group, the
overall behavior and spatial structure of biofilms is a result
of biological interactions at the individual level between
discrete agents. The presentedmethod is entirely continuum-
based and in the framework of the Finite Element Method
(FEM).

The author has already developed a numerical tool for
modeling biofilms, especially biofilm growth, based on the
Smoothed Particle Hydrodynamics (SPH) method, see [34].
In the previous work, biofilms were treated in a hypo-
elastic approach and a staggered explicit solution scheme
was employed, whereas in the present paper a finite visco-
hyperelastic formulation is chosen along with a fully mono-
lithic and implicit procedure. The objective of this work is to
develop further the theory of finite-elastic growth presented
in [16] to be employed in biofilm simulation. There are two
main novelties in this regard. Firstly, the theory is extended
and reviewed in order to accommodate the viscous effects
using the framework introduced in [17]. Secondly, an addi-
tional scalar field variable is introduced for the diffusion of
a nutrient as the driver of the growth. A fully implicit and
monolithic scheme is employed to solve the resulting multi-
physics problem.

2 On the theory of visco-elastic growth
mechanics

2.1 Kinematics of growth

To start with the mathematical framework, we consider the
well known deformation map in continuum mechanics as
a body, see Fig. 1. Let B0 be the initial configuration of
the body. F is the local deformation gradient that relates an
infinitesimal material line element from B0 to its map in the
deformed configuration Bt at time t. In fact the motion of the
body during the time interval [0, T ] is given by x = ϕ(X, t)
and F is essentially the tangent of this map defined as
F = ∂x

∂X . In this formulation, the deformation from B0 to
Bt is decomposed into two steps. First the material points are
mapped into a newly grown, stress-free state. It means that
an intermediate auxiliary configurationBg is introduced. The
collection of these grown states is denoted Bg and is not nec-
essarily compatible i.e., parts of the body may intersect. The
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Fig. 1 Multiplicative decomposition of deformation gradient in finite
growth

second step applies an elastic deformation to the incompati-
ble state Bg , obtaining the state Bt which may now contain
residual stresses in order to accommodate the incompatibil-
ity of the previous state and maintain the continuity of the
solid body. Such model yields a multiplicative split of the
gradient deformation tensor

F = FeFg. (1)

This decomposition is formally analogous to the well-known
decomposition of elasto-plastic deformation gradient into its
elastic and plastic parts and was first introduced in biome-
chanics by [31]. While the mass generation is assumed to
take place only between the states B0 and Bg , the elastic
response occurs only between Bg and Bt . In fact the state Bg

is assumed to be stress free. Now, one needs to construct the
Fg . Volume change during growth can be specified by

Jg = det(Fg) = Vg
V0

, (2)

withVg andV0 being the local tissue volumes before and after
the growth increment, respectively. It is common to assume
that the new tissue constituents are deposited in all directions
equally (isotropic growth) and hence Fg has the form

Fg = J
1
3
g I = α I, (3)

in which I is the identity tensor and α := J
1
3
g .

Now we have to relate the stimuli of growth to the growth
tensor by means of a phenomenological description. Several
variables can be regarded as growth stimulus such as stress,
concentration field of a chemical agent and so on. Exactly
here is the point of departure from the constitutive equation
presented in [16]. In the present work, the growth is assumed
to be driven solely by the concentration of a chemical agent
denoted by a scalar field variableC . The constitutive equation

is governedby the so-calledMonod law [30]which relates the
rate of generated mass (volume) to the concentration accord-
ing to

α̇ = Y
K1C

K2 + C
, (4)

where Y , K1 and K2 are biological constants and C is the
concentration of the nutrient. This constitutive equation is
widely used in the biofilm growth. Equation (4) actually
reflects bacteria growth due to nutrient (food) consumption.
C is governed by the diffusion equation.

In practice, Eq. (4) is discretized in time so that the value of
α can be found. Here a backward Euler method is employed
according to

αn+1 − αn

Δt
= Y

K1Cn+1

K2 + Cn+1
. (5)

When it comes to the concentration field C , in analogy
with the heat transport equation, the associated weak form
for C in the spatial coordinate (in B) reads

∫
B
D grad(C).grad(δC)dv +

∫
∂B

qC .nδCds = 0, (6)

where grad refers to the gradient operator in the spatial con-
figuration and D is the diffusivity tensor which is commonly
assumed to be spatially isotropic. It means that it is defined
as D = D I with I being the second order identity ten-
sor. Moreover, δC is a virtual variation of the concentration
field C . Additionally, qC stands for the spatial concentra-
tion flux and n is the normal of the boundary. It should be
noted that the time dependent part is absent in Eq. (6) due
to the time scale argument which was discussed in the intro-
duction. One can express the weak form with respect to the
material coordinate (in B0) by invoking the Piola transfor-
mation grad(•) = F−TGrad•) as follows

∫
B0

D Grad(C) ·Grad(δC)JdV +
∫

∂BC
0

QC · NδCdS = 0,

(7)

in which N is the normal to the boundary in the initial
configuration which is related to n through the well-known
Nanson’s formula. Similarly, QC is the material counterpart
of qC .

The weak form of mechanical balance equation (linear
momentum conservation) governs the other unknown field
variable u. in practice, u plays the role of the primal variable
which characterizes the deformation ϕ through Grad ϕ =
F = I + Grad u with I being the identity tensor. It can be
written in the initial configuration as
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∫
B0

1

2
S : GradδC)dV +

∫
∂Bu

0

PN · δudS = 0, (8)

in which P ,S correspond to first and second Piola-Kirchhoff
stress, respectively. Furthermore, C denotes right Cauchy
strain tensor. It is obvious that the expression PN accounts
for the traction boundary condition. We need to emphasize
that here the use of usual balance of linear momentum (with-
out extra terms due to the growth) is permissible due to the
assumption of “slow growth”, see [14]. Otherwise, the extra
terms associated with the momentum source are not negligi-
ble and should be taken into account in Eq. 8.

REMARK: It is worthwhile to recognize that the coupling
between mechanical deformation u and concentration field
C happens via twomechanisms: firstly, the growth part of the
deformation gradient tensor is a function of the concentra-
tion field [see Eqs. (3) and (4)] and secondly, the postulation
of fulfilling the diffusion equation in the current configura-
tion [see Eq. (6)] will lead to another interlocking between
the mechanical deformation and concentration via the Piola
transformation upon transforming the weak form into the
initial coordinate [see Eq. (7)]. It entails a consistent lin-
earization in theNewton-Raphson procedure and this is taken
care of by using AceGen and its automatic differentiation
capability.

At this point, one needs to assume a free energy function
from which the stress can be extracted. Since the mass of a
control volume changes due to the growth, the free energy
density is expressed with respect to unit mass (Ψ̂ ) rather than
commonly used unit volume (Ψ ). One can write

Ψ̂ = Ψ̂ (Ĉ, Γ̂ , ρ̂) = 1

ρ̂
Ψ (Ĉ, Γ̂ ), (9)

where Ĉ = FT
e Fe is the right Cauchy-Green tensor con-

structed by the elastic part of the deformation. Furthermore,
a hat over it signifies that the variable lies in the intermedi-
ate configuration. Additionally, Γ̂ is an internal variable for
the viscous effects and can be perceived as a strain-like ten-
sor analogous to strain tensor Ĉ. It should be noted that ρ̂ is
the density in the intermediate configuration including added
mass due to growth. This variable accounts for the growth
contribution in the free energy. It is related to the density in
the reference configuration via

ρ0 = Jgρ̂ = α3ρ̂. (10)

Combining Eqs. (10) and (9), energy density per unit ref-
erence volume (Ψ0) can be computed using

Ψ0 = ρ0Ψ̂ = JgΨ . (11)

The remaining point is tomodel the rate dependent viscous
effects which here are reflected in Γ̂ . Generally, there are two

possibilities to dealwith the viscoelasticity: either to use a lin-
ear evolution equation for the so-called non-equilibrium part
of the stress or a nonlinear one. The former is termed “finite
linear viscoelasticity”, see [33] and [17] .The latter is referred
as the “finite viscoelasticity”, see [32] and [29]. The second
approach entails extending the multiplicative decomposition
of the gradient deformation to account for the viscous-related
part and consequently introducing an additional intermedi-
ate configuration. That is why we adopt the first approach
in which a rheological model composed of linear spring and
dash-pots, is extended to finite elasticity. To characterize the
viscoelastic behaviour, the free energy function is postulated
as follows

Ψ = Ψ (Ĉ, Γ̂ ) = Ψ ∞(Ĉ) + γ (Ĉ, Γ̂ ). (12)

In the limit where t → ∞, viscous effects fade away and the
free energy of an elastic body is recovered. The superscript
•∞ denotes function which characterizes a purely hyper-
elastic response being governed by the following equation

Ψ ∞(Ĉ) = λ

2
(Je − 1)2 + μ

2

(
(tr(Ĉ) − 3) + 2 log(Je)

)
,

(13)

where λ and μ denote the elastic Lame-constants and Je =
det(Fe). It should be noted that unlike Ψ ∞(Ĉ) an explicit
form for the γ (Ĉ, Γ̂ ) is neither needed nor it is possible to
compute this function. In practice, its derivative with respect
to the strain measure plays a role in the stress computa-
tion procedure and dissipation equation. Such a derivative
is treated as an internal variable which evolves according to
an evolution equation.

With the assumption of an isothermal process, one can
examine the thermodynamical consistency of the model. The
dissipation of the process per unit reference volume accord-
ing to the second law of thermodynamics is given by

Dint = S : Ċ/2 − Ψ̇0 + θS0 ≥ 0. (14)

Here,Ψ0 is the free energy density per unit reference volume
introduced in Eq. (11). The expression θS0 is a non-negative
additional term in the dissipation equation comparing to the
well-known form of this equation. It accounts for the entropy
production due to the openness of the system. It means that,
the system exchanges mass with its environment in addi-
tion to the energy. In this expression θ and S0 stand for the
absolute temperature and extra entropy source per unit vol-
ume, receptively. This source of entropy is referred to as a
“non-compliant” source in [14]. It will be later shown that
the presence of this extra term is necessary in case of growth
driven by nutrient diffusion.
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Using Eq. (11), one can rewrite Eq. (14) as follows

Dint = S : Ċ/2 − JgΨ̇ − J̇gΨ + θS0. (15)

By means of the push forward operator

Ĉ = F−T
g CF−1

g , (16)

and the time derivative (denoted by �̇) identity

Ψ̇ = ∂ĈΨ : ˙̂C + ∂
Γ̂
Ψ : ˙̂

Γ , (17)

one can expand Eq. (15) as

Dint =
(
S − 2JgF−1

g
∂Ψ

∂ Ĉ
F−T
g

)
: Ċ/2

+
(
2Jg Ĉ

∂Ψ

∂ Ĉ
F−T
g

)
: Ḟg

− J̇gΨ − Jg∂Γ̂
Ψ : ˙̂

Γ + θS0 ≥ 0. (18)

Invoking the standard argument known as “Coleman and
Noll method” [6], one can say that since Eq. (18) must hold
for all admissible processes, a constitutive equation for the
second Piola Kirchhoff stress can be obtained according to

S = 2JgF−1
g

∂Ψ

∂ Ĉ
F−T
g . (19)

where one can imagine that the fictive stress Ŝ = 2Jg ∂Ψ

∂ Ĉ
has

been transformed from the intermediate configuration to the
initial configuration using a pull-back operator. Following
the procedure introduced in [17] and in an analogy with the
linear spring-dashpot system, in the evaluation of Eqs. (18)
and (19) one takes 2Jg∂Ĉγ = −Jg∂Γ̂

γ = Q̂ where Q̂ is a
stress-like measure which characterizes the viscous response
and is a work conjugate of Γ̂ . Furthermore, using the identity

(
2Jg Ĉ

∂Ψ

∂ Ĉ
F−T
g

)
: Ḟg =

(
2Jg Ĉ

∂Ψ

∂ Ĉ

)
: ḞgF−1

g , (20)

one can rewrite Eq. (18) as follows

Dint = M̂ : L̂g − Jgtr(L̂g)Ψ + Q̂ : ˙̂
Γ + θS0 ≥ 0, (21)

in which M̂ = Ĉ Ŝ is calledMandel stress in the intermediate
configuration whose work conjugate is the growth velocity
gradient L̂g = ḞgF−1

g in the intermediate configuration. It

is obvious that J̇g in Eq. (18) has been replacedwith Jgtr(L̂g)

in Eq. (21). To understand the physical interpretation of this
term, one can write the mass conservation equation in the
reference configuration as

D

Dt

∫
B0

ρ0dV =
∫
B0

R0dV , (22)

whereR0 reflects the mass production (mass source) rate per
unit reference volume due to the growth.

The local form of Eq. (22) can be written as

Dρ0

Dt
= R0. (23)

Recalling the constant density assumption in growth
process( ˙̂ρ0 = 0) and differentiating (10) with respect to time
yields

Dρ0

Dt
= ρ̂0 Jgtr(L̂g) = ρ0tr(L̂g). (24)

Comparing Eqs. (23) and (24) one can note that the mass
source R0 is related to L̂g via

R0 = ρ0tr(L̂g). (25)

It means that defining the evolution equation for the
growth part is equivalent to the definition of the mass source
term and this way they are consistent.

One can rewrite Eq. (21) using the identity tr(L̂g) = L̂g :
I (with I being the second order identity tensor) in a more
compact form as

Dint = −Σ̂ : L̂g + Q : ˙̂
Γ + θS0 ≥ 0. (26)

inwhich Σ̂ := JgΨ I−M̂ is calledEshelby stress as the driv-
ing stressmeasure of the growth here. It is commonly utilized
in biological growth [11] and also non-volume preserving
plasticity [4]. Comparing to metal plasticity in which the
volume is preserved during the plastic deformation (Jg = 1
or equivalently J̇g = 0), one realizes that in metal plastic-
ity Mandel stress appears in dissipative term pertaining to
the plastic deformation rather than Eshelby stress. If one fol-
lows the sequence of Eqs. (14) to (26) with careful scrutiny,
it can be understood that the emergence of Eshelby stress
in growth is an immediate result of J̇g �= 0. Unlike metal
plasticity, growth is not an isochoric process and that is why
the proper dissipative work conjugate of the growth velocity
gradient L̂g is Eshelby stress Σ̂ not Mandel stress M̂ which
some authors come up with, see for example [16]. A similar
discussion has been presented in [4] about the non-volume
preserving plasticity which is similar to the growth phenom-
ena.

Following the argument presented in [16], one can find a
thermodynamically consistent choice for the entropy source
term S0 in Eq. (26) by taking

−Σ̂ : L̂g + θS0 = 0. (27)
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Table 1 Implementation
algorithm in the AceGen

This leads to

S0 = Σ̂ : L̂g/θ. (28)

As discussed in Eq. (14), now one can understand why
the presence of θS0 in Eq. (27) is necessary. Otherwise, a
non-negative dissipation is not guaranteed. To clarify this
issue more, the Eq. (27) is simplified by virtue of the fact
that L̂g = ḞgF−1

g = α̇
α
I , one can write

−3
α̇

α
tr(Σ̂) + θS0 = 0. (29)

Referring to Eq. (4), it is obvious that α̇
α

> 0. Since the

sign of tr(Σ̂)might varies, one can not judge at the beginning

if the first term in the left hand side of Eq. (29) is positive or
negative. In fact the role of source term is to rule it out, if it
is negative. This way, the condition of non-negative dissipa-
tion is fulfilled. A comparison between the growth driven by
nutrient diffusion and the stress-regulated growth can shed
more light on this point. In the former the growth function α̇

is exclusively ruled by concentration diffusion C according
to Eq. (4), while in the latter α̇ is a function of stress. In the
latter, there is the possibility to construct an always positive
dissipation even in the absence of the source term (θS0) by

taking, for example, α̇ = −sign
(
tr(Σ̂)

)
f (α, Σ̂), in which

f (α, Σ̂) is generally a positive scalar-valued function of α

and Σ̂ . sign (�) is the Sign function whose value is either
+1 or -1, see [16]. Such an evolution function can capture

123



Computational Mechanics (2019) 64:1289–1301 1295

Table 2 Model parameters and
constants (Material property
from [12,34])

Parameter Symbol Value Unit

Biofilm initial height H 60.0 micrometer

Biofilm initial

Maximum width W 300.0 micrometer

3D biofilm diameter d 2.0 micrometer

Cylinders radius R 2.5 mm

Cylinders distance S 20.0 mm

Box length L 30.0 mm

Biofilm density ρb 60.0 kg/m3

Reaction Constant

In Monod law K1 10−5 s−1

Reaction Constant

In Monod law K2 4.0 × 10−5 kg/m3

Nutrient Concentration

In Bulk fluid C f 4.0 × 10−3 kg/m3

Yield Constant

In Monod law Y 0.1 kg/kg

Diffusion coefficient D 2 × 10−9 m2/s

Biofilm Young’s modulus E 10 Pa

Biofilm Poisson ratio ν 0.45 –

Biofilm relaxation parameter τ 0.01 s

both growth and resorption processes driven by tensile and
compressive stress, respectively.

Taking into account Eq. (27) in simplifying Eq. (26) one
can realize that, the second law of thermodynamics holds true

if the remained term Q̂ : ˙̂
Γ in Eq. (26) is non-negative. With

reference to [17], this can be satisfied by using a suitable
evolution equation for the internal variable Γ̂ . A commonly
used evolution equation for Γ̂ is

˙̂
Γ = V : Q̂, (30)

in which V is a positive definite forth order tensor relating
to the viscous effect. It is obvious that such a condition on
V ensures that Q̂ : ˙̂

Γ ≥ 0. Inspired by a one-dimensional
Maxwell model with linear geometry, the internal variable Q̂
is modeled using a relaxation process whose characteristic
relaxation time is τ , see [17]. Extension of a 1D linear spring-
dashpot system to a 3D solid leads to an ordinary differential
equation (ODE) as follows

˙̂Q + Q̂
τ

= d

dt

(
∂Ψ ∞

∂ Ĉ

)
. (31)

Following a procedure similar to what is described in
[17], the solution of the ODE (31) using a mid-point

discretization scheme leads to a practical recursive
formula

Q̂n+1 = exp

(−Δt

τ

)
Q̂n + exp

(−Δt

2τ

)(
∂Ψ ∞

∂ Ĉn+1
− ∂Ψ ∞

∂ Ĉn

)
.

(32)

It should be noted that the right hand side of Eq. (31)
slightly differs from what has been taken in [17] in which
the viscous response affects only the isochoric part of the
deformation. Here, we assume that the entire deformation
is subjected to the viscous effects without differentiating
between the isochoric and volumetric parts of the deforma-
tion. The reason is that we are going to apply this growth
model to biofilm growth which is an extremely slow process
and it is expected to reach a zero stress-state in large time
scales compared to the relaxation time. In such slow growth
process, all residual stresses are released (dissipated). That is
whybiofilms can also bemodeled as viscous fluid or potential
flow, see [12], rather than a visco-elastic solid. It is obvious
that in case of modeling the biofilm as a deformable solid,
one can not capture the stress decay (relaxation) without
incorporating the viscous effects. In the numerical exam-
ple section, a continuous transition from a viscous fluid to
an elastic solid will be observed by changing the relaxation
time τ .
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Fig. 2 Geometry of the test cases and the boundary conditions

Fig. 3 Validation of the height
of the grown biofilm layer

TDG Method and AQUASIM software [12]
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Fig. 4 Concentration field in the grown biofilm layer

3 Numerical implementation using Ace-Gen

In this work, the formulation of a single element with
multi-field (mechanical deformation, growth and nutrient
concentration) has been implemented in Ace-Gen, see [19]
which is a very powerful tool in automatic differentiation
(hybrid symbolic/numeric differentiation). Its output is tai-
lored to a FORTRAN subroutine which can be used as a
user element in different FEM codes. We use Ansys since,
one can benefit from its well-developed pre-processor, solver
and post-processor.

The topology of the element is a common 3D brick ele-
ment with 8 nodes. Each node has four degrees of freedom.
Three of them represent the displacement vector u compo-
nents and the fourth one is allocated to the concentration field
C which is scalar-valued. Furthermore, in the Gauss points
there are two sets of internal variables: Tensor-valued vari-
able Q̂ pertaining to the viscous behaviour as well as the
scalar α which captures the biological growth. It is assumed
that all internal and field variables are known at the previous
time step. This is underlined using an n subscript for those

Fig. 5 Concentration distribution in biofilm

variables. An implicit Newton-Raphson is used as the solu-
tion procedure. The solution of the global system yields the
current gradient deformation Fn+1 and concentration Cn+1.
The objective is to find the update procedure for the current
unknowns. To be concise, a summary of the entire algorithm
is presented in Table 1.

4 Numerical examples

4.1 Test Case 1

In order to verify the validity of the developed model as well
as the numerical implementation, the growth of a simple layer
of biofilm is simulated and the results are compared with
those reported in [12] using time-discontinuous Galerkin
(TDG) method and the open source software AQUASIM
which has been developed for 1D biofilms. The material
constants and simulation parameters are chosen according
to Table 2. The initial setup of the biofilm and the applied
boundary conditions are depicted in Fig. 2.
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Fig. 6 Residual stress distribution in biofilm (τ = 0.01)

In order to reproduce the plot in [12], the dimensionless
time (horizontal axis) and height (vertical axis) are computed
using T = t

tre f
and Z = Z

Zre f
. It is taken tre f = 24 hours and

Zre f = W . Figure 3 shows a good agreement between the
results of the proposed method and those presented in [12].

Figure 4 displays the concentration field distribution in
the biofilm. The linear variation of concentration across the
Z-direction is even intuitively expectable, since the problem
is in practice a 1D problem due to the applied boundary con-
ditions. Looking to Fig. 4, one can see that while the biofilm
movement is confined inX andYdirection, it can freely grow
in the Z direction.

4.2 Test Case 2

In this example a truly 3D biofilm with an initial semi-
spherical shape undergoing growth is modeled. The geom-
etry of the model as well as the boundary condition are
illustrated in Fig. 2. It isworthmentioning that in reality,most
biofilms are submerged in a fluid from which they uptake the
nutrient. It is commonly assumed that the transport mecha-

Fig. 7 Total volume of grown biofilm in time

nism in the fluid is convection-dominated [27]. Hence, it is
well mixed and has a uniform concentration of the nutrient
which is denoted by C f . Here we have prescribed this bulk
fluid concentration at the exterior of the biofilm geometry.
This way, we exclude the fluid flow from the simulation and
neglect boundary layer effects [22].

In Fig. 5 the contour of concentration field is shown in the
beginning and the end of the time interval. For visualization
purposes, one half of the biofilm is plotted. As expected, the
concentrationfieldmaximumvalue lies at the outermost layer
of the biofilm and it gradually tends to zero by approaching
the substratum. Itwill result in a non-uniformgrowth, namely
the outer layers of biofilm grow faster than the inner ones.

This non-uniform growth even manifest itself in the resid-
ual stresses pattern. Figure 9 demonstrates the dimensionless
Von-Mises stress (σ/E) in the biofilm.One can notice that the
boundary condition (constraint) along the substratum results
in relatively large stress concentration there. The biofilm can
not penetrate the substratum while it can freely spread par-
allel to it (Fig. 6).

The effect of different parameters on the biofilm growth is
investigated. Since the growth happens in all three directions,
the total volume of the biofilm is taken to be a quantitative
indicator of the growth process rather than the displacement
in a specific direction. Figure 7 shows the total volume of
the grown biofilm during a time interval of 200 hours for
different values of viscous parameter (relaxation time). The
interesting point is that this parameter does not have an influ-
ence on the growth (displacement). The reason is that in our
model, the growth is only derived and affected by the nutri-
ent diffusion. Hence, neither stress field nor stress relaxation
have an impact on the growth. Additionally, it is trivial that
the steady state solution of a system is independent of the
damping forces.However, the stress values dependon the vis-
cous parameter, because this parameter determines “to what
extent” and “how fast” the stresses are released (dissipated).
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Fig. 8 Volume average of
Von-Mises stress in biofilm

Figure 8 depicts the volume average of dimensionless Von-
Mises stress (σ/E) in the entire biofilm.One can see the effect
of the relaxation time on the residual stresses in the biofilm.
The transition from a pure elastic solid (infinite relaxation
time) to a viscous fluid (zero relaxation time) is interesting
and intuitively expectable.As stated before, in biofilmgrowth
phenomenon the stresses are nearly completely released due
to the fact that the growth time scale is much larger than the
characteristic relaxation time. The stresses should asymptot-
ically approach zero values. The smaller the relaxation time,
the faster the stresses decay.

4.3 Test Case 3

This test case is an interesting one inspired by an example
presented in [2]. The idea is to investigate the growth of
biofilms against rigid barriers. In such circumstances where
the contact mechanics inherently plays a role in the model,
the developed numerical implementation should be robust
and stable enough in order to be capable of coping with the
the strong nolinearities arising from the contacts. Figure 2
shows a schematic view of the problem. It consists of an
spheroid which starts to grow at the center of a cubic box. It
has been surrounded by four rigid barriers. Such an arrange-
ment of obstacles to the biofilm growth can mimic the real
situation in water treatment systems [24] where a network of
solid skeleton serves as the so-called biocarrier. The empty
available space to be filled with the growing biofilm has a
very complex geometry. A frictionless contact (for the sake
of simplicity) is assumed between the biofilm surface and the
rigid walls.

The biofilm undergoes a very severe shape change due to
forces rising from the contact. Figure 9 shows dimensionless
Von-Mises stress (σ/E) in the biofilm during growth pro-
cess. For the visualization purposes, the cube and cylinders
are transparent. The biofilm comes into contact with not only
the cylinders but also the cube faces. One should note that
quantitative comparison of the results here with those pre-

sented in [2] is not possible due to major differences between
the two works. The reason is that in this work the growth is
driven by the nutrient diffusion, whereas in [2] the diffusion
equation is not present in the model. Moreover, the growth
function in [2] is dependent on (basically restricted by) the
hydrostatic pressure, while such a dependency does not exist
in this work.

The interesting point is that unlike test cases 1 and 2 in
which the biofilm grows freely without facing mechanical
barriers, themechanical stresses in the biofilm remain notice-
able and do not decay that rapidly. This happens in spite of
the the fact that all the material parameters are the same in
three test cases and they are compared together based on an
identical relaxation time (τ = 0.01) associated with the vis-
cous effects. In such cases, it is a good idea to incorporate
the impact of the mechanical stresses on the growth function
in addition to the nutrient diffusion. This can be a matter of
further development of this work in future based on the well-
developed framework of stress-regulated growth, see [36]
and [8]. Such stress dependency renders the growth tensor
Fg anisotropic. It means that there is a preferred direction
for growth. Intuitively speaking, the biofilm is more likely
to grow in the direction along which the compressive stress
reaches its minimum value.

5 Conclusion

A mathematical model along with the numerical implemen-
tation in FEM framework was presented for the growth
processes which are driven by the nutrient diffusion. The
model was developed in a continuum-based framework and
in the realm of finite visco-elastic growth. Special attention
was paid to the concerns about the thermodynamical con-
sistency of the model. An application of this model is the
simulation of the biofilm growth. The numerical implemen-
tation was done using AceGen whose output was tailored as
a user element for Ansys. Several numerical examples were
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Fig. 9 Dimensionless
Von-Mises stress in biofilm

carried out to show the robustness and performance of the
proposed tool. This work can be extended in different direc-
tions. More complex growth function can be developed in
order to account for the anisotropy rising from the presence
of micro structure in the biofilm or the stress dependency.
Furthermore, one can extend the model here to multi-species
(heterogeneous) biofilm using mixture theories. Addition-
ally, the impact of the surrounding fluid on the biofilmgrowth
can be a matter of further development in the context of a
fluid-solid interaction (FSI) problem.
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