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Abstract
This paper presents a boundary collocation scheme for transient thermal analysis in large-size-ratio functionally graded
materials (FGMs) with heat source load. In the proposed scheme, Laplace transformation and the numerical inverse Laplace
transformation (NILT) are implemented to avoid the troublesome time-stepping effect on numerical efficiency. The collocation
Trefftz method (CTM) coupled with composite multiple reciprocity method is used to obtain the high accurate results
in the solution of nonhomogeneous problems in Laplace-space domain. The extended precision arithmetic is introduced
to overcome the ill-posed issues generated from the CTM simulation, the NILT process and the large-size-ratio FGM.
Heuristic error analysis and numerical investigation are presented to demonstrate the effectiveness of the proposed scheme
for transient thermal analysis. Several benchmark examples are considered under large-size-ratio FGMs with some specific
spatial variations (quadratic, exponential and trigonometric functions). The proposed scheme is validated in comparison with
known analytical solutions and COMSOL simulation.

Keywords Collocation Trefftz scheme ·Numerical inverse Laplace transformation · Extended precision arithmetic · Transient
thermal analysis · Large size ratio

1 Introduction

Owing to their excellent thermal properties, functionally
graded materials (FGMs) [1–3] have been widely used
in the high temperature environments such as aerospace,
oil exploration, power generation and so on. With ever-
increasing demand on engineering structure performances,
great attentions have been focused on thermal analysis of
large-size-ratio FGM structures, such as large-aspect-ratio
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FGMs (3D cuboid) and the FGMs consisting of the size-
disparity components (airplane) as shown in Fig. 1.

For transient thermal analysis [4–6], several temporal dis-
cretization schemes and spatial discretization schemes can be
selected. The most popular temporal discretization schemes
are the time-stepping method [7–9], Laplace transformation
technique [10, 11], the spectral collocation methods [12]
and convolution quadrature method [13–15]. The spatial dis-
cretization schemes mainly include finite difference method
[16, 17], finite element method (FEM) [18–20], boundary
element method (BEM) [21–23], singular boundary method
[24–26], weak-form meshless methods [27–31] and strong-
formmeshless methods [32–36] and so on. Any combination
of these two discretization schemes can constitute a class of
methods for simulating the transient thermal behavior under
FGMs.

However, the accurate and efficient analysis of transient
thermal problems exhibiting large-size-ratio FGM struc-
tures or the structures including sharp thermal gradients
is currently an open issue of research in computational
mechanics community. Very few studies have been reported
on this topic. Recently, O’Hara et al. [37] proposed an
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Fig. 1 Typical examples on large-size-ratio FGM structures

advanced FEM with global–local enrichment functions and
multi-scale scheme to analyze the transient thermal behav-
ior under the structures including sharp thermal gradients.
Some researchers introduced transformation technique or
element-subdivision method into the BEM for simulating
the thermal behavior under slender structures [38–40]. The
authors proposed Laplace-transform boundary knot method
in conjunction with extended precision arithmetic (EPA) [41,
42] for solving the transient thermal problems under slender
FGMs with exponential variations [43]. It should be men-
tioned that the aforementioned first two schemes require
the modification of the core algorithm to thermal simulation
under large-size-ratio FGMs. The third scheme with the EPA
is free for the modification of the core algorithm. However,
it is restricted to the slender exponential FGMs without heat
source loading.

In this study, a Trefftz-based collocation scheme [44,
45] is presented to transient thermal analysis in large-size-
ratio FGMs with some specific spatial variations (quadratic,
exponential and trigonometric functions [46, 47]) under heat
source loading [48]. In the present scheme, it implements
Laplace transformation technique to obtain series of the cor-
responding time-independent nonhomogeneous problems in
Laplace-space domain. And then it employs the collocation
Trefftz scheme in conjunction with composite multiple reci-
procity technique [49, 50] to solve theseLaplace-transformed
nonhomogeneous problems with boundary-only collocation.
Finally, theFixedTalbot numerical inverseLaplace transform
(NILT) [51] is implemented to retrieve the time-dependent
numerical solutions of transient thermal conduction equa-
tions from the corresponding Laplace-domain solutions.
Moreover, the extended precision arithmetic is introduced to
alleviate the effect of the ill-posed issues generated from the
CTM simulation, the NILT process and the large-size-ratio
FGM.

A brief outline of the paper is as follows. In Sect. 2, the
collocation scheme including the collocation Trefftz method
in conjunction with composite multiple reciprocity method,
Laplace transformation and the extendedprecision arithmetic
(EPA) is introduced, and the heuristic error analysis of the
proposed collocation scheme is presented. Section 3 inves-
tigates the numerical efficiency of the proposed approaches
through several typical benchmark examples. Finally, some
conclusions are presented in Sect. 4.

2 Methodology

2.1 Mathematical model

Consider transient thermal conduction problems in function-
ally graded materials under heat source load. The governing
equation is stated as

∇ · [K(x)∇u(x, t)] + Q(x, t) � ρ(x)c(x)
∂u(x, t)

∂t
, x ∈ �

(1)

with the boundary and initial conditions:
Dirichlet/Essential condition

u(x, t) � g1(x, t), x ∈ �D (2a)

Neumann/Natural condition

q(x, t) � −K∇u(x, t) · n � g2(x, t), x ∈ �N (2b)

Initial condition

u(x, 0) � u0(x), x ∈ � (2c)

where� ⊂ �d represents a large-size-ratio domain bounded
by its boundary �, d is the dimension of the computational
domain, u(x, t) is the temperature on the coordinate x at time
instant t, � � �D ∪�N ,n � {ni } represents the outward unit
normal vector at boundary x ∈ �, g1(x, t), g2(x, t) and u0(x)
are known functions. K � {

Ki j (x)
}
1≤i , j≤d ,ρ(x) and c(x)

denote the thermal conductivity matrix, the mass density and
the specific heat, respectively.

In this study, we assume that the thermal conductivity and
the product ofmass density and specificheat are, respectively,
expressed by

Ki j (x) � ki j f (x), x ∈ �, 1 ≤ i , j ≤ d (3)

ρ(x)c(x) � ρ0c0 f (x), x ∈ � (4)
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in which k � {
ki j

}
1≤i , j≤d (�k � det(k) > 0 and ki j �

k ji ), ki j , ρ0, c0 are all real constants, and f (x) is the function
of coordinates.

By employing the following variable transformation

v(x, t) � √
f (x)u(x, t) (5)

Equations (1)–(2) can be rewritten as

∇ · [k∇v(x, t)] + ηv(x, t) +
Q(x, t)√

f (x)
� ρ0c0

∂v(x, t)
∂t

(6)

v(x, t) � √
f (x)g1(x, t), x ∈ �D (7a)

(7b)

−k
[√

f (x)∇v(x, t) − v(x, t)∇
(√

f (x)
)]

· n
� g2 (x, t) , x ∈ �N

v(x, 0) � √
f (x)u0(x), x ∈ � (7c)

where

η �
d∑

i , j�1

ki j

⎛

⎝
∂ f (x)
∂xi

∂ f (x)
∂x j

(2 f (x))2
−

∂2 f (x)
∂xi ∂x j

2 f (x)

⎞

⎠ (8)

Actually, the parameter η in Eq. (8) can be simplified with
the following special forms of f (x):

(i) Quadratic function f (x) �
(
b0 +

∑d
i�1 bi xi

)2
with

arbitrary constants b0, b1 . . . , bd , then η � 0 can be
determined according to Eq. (8).

(ii) Exponential function f (x) � c1e
∑d

i�1 2ςi xi with arbi-
trary constants ςi (i � 1, 2, . . . , d), c1, then η �
−∑d

i�1
∑d

j�1 ςi ki jς j can be determined according to
Eq. (8)

(iii) Trigonometric function f (x) � ∏d
i�1(di cos(βi xi ) +

ei sin(βi xi ))2 with arbitrary constants di , ei , βi

(i � 1, 2, . . . , d), then η � ∑d
i�1 kiiβ

2
i can be

determined according to Eq. (8) when ki j � 0(i 
� j).

2.2 Implementation procedure

For solving the transformed Eqs. (6)–(7), the following
roadmap is implemented as shown in Fig. 2.

(a) Laplace transformation
Let Laplace transformation (LT) of v(x, t) be defined as

L(v(x, t)) � ṽ(x, ε) �
∞∫

0

v(x, t)e−εt dt (9)

Fig. 2 Roadmaps of the boundary collocation scheme for the problems
(6)–(7)

By using Laplace transformation, the transient thermal
problems (6)–(7) can be converted from time domain to
Laplace-space domain as follows

(10)

∇ · [k∇ṽ (x, ε)
]
+ (η − ρ0c0ε) ṽ (x, ε)

� −ρ0c0v (x, 0) − Q̃ (x, ε)√
f (x)

ṽ(x, ε) � √
f (x)g̃1(x, ε), x � (x1, x2) ∈ �D (11a)

(11b)

−k
[√

f (x)∇ṽ (x, ε) − ṽ (x, ε)∇
(√

f (x)
)]

· n
� g̃2 (x, ε) , x � (x1, x2) ∈ �N

(b) Boundary collocation technique
To simplify the time-independent nonhomogeneous prob-

lems (10)–(11), the domain mapping method (DMM) is
introduced. By using the transformation
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
y1
y2

)
�
⎛

⎝
1
/√

k11 0

−k12
/√

k11�k
√
k11

/√
�k

⎞

⎠
(
x1
x2

)
, d � 2

⎛

⎝
y1
y2
y3

⎞

⎠ �

⎛

⎜⎜
⎝

1
/√

k11 0 0

−k12
/√

k11�k
√
k11

/√
�k 0

ϒ1 ϒ2 ϒ3

⎞

⎟⎟
⎠

⎛

⎝
x1
x2
x3

⎞

⎠, d � 3

, y � k−x

(12)

where ϒ1 � (k12k13 − k23k11)
√
k11

/√
w�k , ϒ2 �

(k12k23 − k13k22)
√
k11

/√
w�k ,ϒ3 � √

k11�K
/√

w,w �
k11k33�k − k11k22k213 + 2k11k12k13k23 − k223k

2
11. One may

rewrite Eqs. (10)–(11) as the following simplified form in
the transformed y coordinate system
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�ṽ(y, ε) � W̃ (y, ε) (13)

(14a)

ṽ (y, ε) �
√

f
((
k−)−1 y

)
g̃1

((
k−)−1 y, ε

)

� D (y, ε) , y ∈ �D

−k
[√

f
((
k−)−1y

)
∇ṽ(y, ε) − ṽ(y, ε)∇

(√
f
((
k−)−1y

))]
· n

� g̃2
((
k−)−1y, ε

)
� E(y, ε)

, y ∈ �N

(14b)

where W̃ (y, ε) � −ρ0c0v
((
k−)−1y, 0

)
− Q̃

(
(k−)

−1y, ε
)

√
f
(
(k−)

−1y
) ,

and ��(� + η − ρ0c0ε) is a differential operator. If η −
ρ0c0ε > 0, � is Helmholtz operator; if η − ρ0c0ε � 0, � is
Laplace operator; if η−ρ0c0ε < 0,� is modified Helmholtz
operator.

Next the collocation Trefftz method (CTM) in conjunc-
tion with composite multiple reciprocity method (CMRM)
is implemented to solve simplified time-independent non-
homogeneous problems (13)–(14) via boundary nodes. The
corresponding Laplace-domain solution can be expressed as

ṽ(y, ε) � ṽh(y, ε) + ṽp(y, ε) (15)

where ṽh(y, ε) and ṽp(y, ε) represent the homogeneous and
the particular solution, respectively. If the particular solution
ṽp(y, ε) satisfies

�ṽp(y, ε) � W̃ (y, ε) (16)

then the homogeneous solution can be solved by the corre-
sponding homogeneous equation

�ṽh(y, ε) � 0 (17)

with the updated boundary conditions

ṽh(y, ε) � D(y, ε) − ṽp(y, ε) (18a)

− k

[√

f
((
k−)−1y

)
∇ṽh(y, ε) − ṽh(y, ε)∇

(√

f
((
k−)−1y

))]

· n

� E(y, ε)+k

[√

f
((
k−)−1y

)
∇ṽp(y, ε) − ṽp(y, ε)∇

(√

f
((
k−)−1y

)
)]

· n
(18b)

Let us get back to Eq. (16) for evaluating the particular
solution ṽp(y, ε). In the CMRM, it applies the composite
differential operators to both sides of Eq. (16) under the
assumption of the smooth-enough functions ṽp(y, ε) and W̃
(y, ε), and then vanishes nonhomogeneous term W̃ (y, ε) by
iterative differentiations

lim
m→∞ Lm . . . L2L1

{
W̃ (y, ε)

}
→ 0, (19)

where L1, L2, …Lm are differential operators of the same or
different kinds. Under the assumption that the annihilation
(19) is finite order or is truncated at certain order M, the
representation can be modified as the following higher order
homogeneous equation

LM . . . L2L1�ṽp(y, ε) ∼� 0, y ∈ �. (20)

To guarantee the uniqueness of the solution, the following
constraint conditions are imposed

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�ṽp(y, ε) � W̃ (y, ε)
L1�ṽp(y, ε) � L1W̃ (y, ε)
...
LM−1 . . . L2L1�ṽp(y, ε) � LM−1 . . . L2L1W̃ (y, ε)

, y ∈ ∂�

(21)

To solve Eqs. (20)–(21), the particular solution ṽp(y, ε)

can be approximated by a sum of higher order homogeneous
solutions,

ṽp(y, ε) �
m∑

i�1

ṽih (22)

where ṽih represents the ith-order composite homogeneous
solutions. Then the solution of nonhomogeneous problem

(13)–(14) can be represented by ṽ(y, ε) � ∑M
i�0 ṽih , where

ṽ0h � ṽh(y, ε).
For 2D problems, the ith-order homogeneous solutions

ṽih can be approximated by a linear combination of ith-order

Trefftz functions with unknown coefficients
{
aij

}

ṽih �
N∑

j�1

aij u
T i
j

(
ry, θy

)
, y � (

ry cos θy, ry sin θy
)

(23)

where N represents the number of boundary collocation
nodes, uT ij denotes jth term of Trefftz function satisfying the
ith-order homogeneous Eq. (20), one may find the different
types of high-order Trefftz functions in “Appendix”. And the

unknown coefficients
{
aij

}
can be determined by imposing

the boundary conditions (18) and constraint conditions (21).
For 3D problems, the directional Trefftz functions are

constructed by using the following variable transforma-
tion ϑ :� q2y2 + q3y3, where q22 + q23 � 1. And
then 3D Cartesian coordinates (y1, y2, y3) can be pro-
jected into two-dimensional polar coordinates (r∗, θ∗) :�(√

y21 +
(
qi2y2 + qi3y3

)2
, arctan

(
qi2y2+q

i
3y3

y1

))
, i � 1, 2,

. . . M1, where qi2 � cos
(
2iπ

/
M1

)
, qi3 � sin

(
2iπ

/
M1

)
is a

direction in the plane (y2, y3), andM1 denotes the number of
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directions. Based on this variable transformation, the afore-
mentioned 2D high-order Trefftz functions can be introduced
to solve 3D problems.

Therefore, the ith-order homogeneous solutions ṽih can be
approximated by a linear combination of ith-order directional

Trefftz functions with unknown coefficients
{
aij

}

ṽih �
N∑

j�1

aij u
T i
j

(
r∗, θ∗), (24)

Similar to 2D problem, the unknown coefficients
{
aij

}
can

also be determined by imposing the boundary conditions (18)
and constraint conditions (21). After the determination of the

coefficients
{
aij

}
, Laplace-domain solution ṽ(y, ε) at any

point can be evaluated by using Eqs. (23) or (24).

(c) Numerical inverse Laplace transformation
Numerical inverse Laplace transformation (NILT) is

implemented to convert the numerical solutions ṽ(y, ε) in
Laplace space domain to the time-dependent solutions vs
(y, t) in time domain. Here the well-established Fixed Talbot
algorithm [51] is implemented, and the approximate value v

(y, t) for time t � T is given by

vs (y, T )

� p

NFT

⎧
⎨

⎩
1

2
ṽ (y, p) epT +

NFT −1∑

μ�1

Re
[
eTω(ημ)ṽ

(
y,ω

(
ημ

)) (
1 + I

(
γ
(
ημ

)))]
⎫
⎬

⎭

(25)

where ω
(
ημ

) � pημ

(
cot ημ + I

)
, γ

(
ημ

) � ημ +(
ημ cot ημ − 1

)
cot ημ, p � 2NFT

5T , I � √−1, and ημ �
μπ
NFT

, μ� 1, 2, . . . , NFT − 1. For a specific time instant
T, one may require to solve NFT boundary value problems
with the corresponding Laplace transformation parameters
ε�p and ω

(
ημ

)
.

Finally the inverse variable transformation of Eq. (5)
is employed to obtain the final time-dependent solution u
(x, T ).

2.3 Error analysis

This section presents error analysis of the proposed colloca-
tion scheme. In the present implementation procedure, all of
Laplace transformation and variable transformation are ana-
lytical, and the numerical error appears mainly in the CTM
+ CMRM implementation of Step (b) and the NILT process
of Step (c).

First, we discuss the numerical error generated in Step
(c), i.e., Fixed Talbot numerical inverse Laplace transform
(NILT). Abate et al. [52, 53] did extensive numerical exper-
iments to investigate the parameter effect on numerical

accuracy. According to his conclusion [53], the follow-
ing heuristic error estimation of Fixed Talbot algorithm is
obtained,

Remark 1 If the error of input data is ‖ṽN−ṽ‖
‖ṽ‖ ≈ 10−Mp

with positive integer NFT � Mp, then the final error is∣∣ vs−v
v

∣∣ ≈ 10−0.6Mp . Therefore the efficiency of the Fixed
Talbot algorithm is

E f f (FT ) ≡ significant digits obtained

precision required
≈ 0.6Mp

Mp
≈ 0.6.

(26)

It can be found from Remark 1 that the Fixed Talbot algo-
rithm tends to demand highly precise input data ṽN in order
to yield satisfactory accuracy in the following NILT calcu-
lations. For this requirement, we implement the collocation
Trefftz scheme (CTM) in conjunction with composite multi-
ple reciprocity method (CMRM) in Step (b) to obtain highly
accurate solution in Laplace-space domain.

As we can see, the computational error in Step (b) is
mainly generated from the CTM + CMRM solution of
Laplace-transformed nonhomogeneous problems (13)–(14).
Since 3D problems are transformed into 2D problems in the
present numerical implementation, the error analysis of the
CTM + CMRM in 2D problems is only considered. In the
error analysis of the CTM + CMRM, we assume that the
solution ṽ ∈ H1(�), the source term function W̃ , and the
boundary condition function g̃1 are smooth enough on �.
At first, the following homogeneous equation with Dirichlet
boundary condition under a polygonal domain is considered

�ṽ � 0, (27)

ṽ|∂� � g̃1. (28)

When � � �, we obtain a simplified error estimation
fromTheorem 3.2 in [54] andmaximum principle of Laplace
equation [55],

‖ṽ − ṽN‖H ≤ C1‖ṽ − ṽN‖B ≤ C1C2

N 1/ 2
h

, (29)

where ‖•‖ is the Sobolev norm and H , B denotes the com-
putational domain � and its boundary ∂�, respectively. And
ṽN is the corresponding approximation solution, Nh denotes
the boundary collocation number on ∂� for obtaining the
homogeneous solution, C1, C2 are constants independent of
Nh .

When � � � + k2 and k is not exactly equal (but may
be very close) to an eigenvalue {λi } of Laplace operator, we
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obtain a simplified error estimation from Corollary 3.1 in
[56].

∥∥ṽ − ṽn1,n2

∥∥
H ≤ C3N 2

hmax
δ

[
α
n1+1
+

(n1 + 1)1/ 2
+

α
n2+1−

(n2 + 1)1/ 2

]

,

(30)

where δ�mini
∣∣∣ k

2−λi
k2

∣∣∣ > 0 represents the smallest relative

distance between k2 and the eigenvalues λi , and the solution
domain � is divided by a piecewise straight line �I into two
subdomains �+ and �−, the solution ṽn1, n2 can be repre-
sented as

ṽn1,n2�
{

ṽ+n1 � a0+0 J0(kr) +
∑n1

i�1 Ji (kr)
[
a0+2i−1 cos iθ + a0+2i+1 sin iθ

]
, in �+

ṽ−
n2 � a0−0 J0(kρ) +

∑n2
i�1 Ji (kρ)

[
a0−2i−1 cos iθ + a0−2i+1 sin iθ

]
, in �−

(31)

and Nhmax�max{n1, n2}, C3 is a bounded constant inde-

pendent of n1, n2, k, δ,
ekr+max

2n1
≤ α+ < 1,

ekρ−
max
2n2

≤ α− <

1, in which r+max�maxin�+ r , ρ−
max�maxin�− ρ. Set α+ ≤

(
C4δ

2C3N2
hmax

)1/ (n1+1)
and α− ≤

(
C4δ

2C3N2
hmax

)1/ (n2+1)
, then

the error estimation becomes

∥∥ṽ − ṽn1,n2

∥∥
H ≤ C3N 2

hmax
δ

[
α
n1+1
+

(n1 + 1)1/ 2
+

α
n2+1−

(n2 + 1)1/ 2

]

≤ C4

2(n1 + 1)1/ 2
+

C4

2(n2 + 1)1/ 2
<

C4

N 1/ 2
hmin

,

(32)

where the boundary node number Nhmin�min{n1, n2} for
obtaining the homogeneous solution, C4 is a bounded con-
stant.

Next we turn to the following nonhomogeneous problem

�ṽ � W̃ , (33)

ṽ|∂� � g̃1. (34)

in which the source term W̃ can be eliminated by using dif-

ferential operator L1, namely, L1

{
W̃
}
�0 on �.

Theorem 1 Let ṽ � ṽh + ṽp and ṽL � ṽLh + ṽLp be
the exact and numerical solution of the nonhomogeneous
problem (39)–(40), where ṽLp is the particular solution of
Eq. (38), and �ṽLp � W̃ . Then

‖ṽ − ṽL‖H ≤ C

N 1/ 2
, (35)

where C is a bounded constant and N�min
{
Nh , Np

}
, in

which the boundary node number Np for obtaining the par-
ticular solution.

Proof Let v̂h be the exact solution of the following problem

�v̂h � 0, (36)

v̂h
∣∣
∂�

� g̃1 − ṽLp. (37)

Let v̂ � v̂h + ṽLp, then we have

‖ṽ − ṽL‖H ≤ ∥∥ṽ − v̂
∥∥
H+

∥∥v̂ − ṽL
∥∥
H . (38)

By using Eqs. (35) or (38), we have

∥∥v̂ − ṽL
∥∥
H�∥∥v̂h − ṽLh

∥∥
H ≤ Ch

N 1/ 2
h

. (39)

when � � �, ṽLh�ṽNh , Ch�C1C2; when � � � + k2,
ṽLh�ṽn1h , n2h , Ch�C4, Nh�Nhmin. Notice that in �

�(ṽ − v̂
) � W̃ − Ŵ , (40)

and on ∂�

(
ṽ − v̂

)∣∣
∂�

� g̃1 − (
g̃1 − ṽLp+ṽLp

)�0. (41)

According to a priori estimate [55], we obtain

∥∥ṽ − v̂
∥∥
H ≤ C5

∥∥∥W̃ − Ŵ
∥∥∥
H

. (42)

Consider the following problems

L1v�0, (43)

v|∂� � W̃ , (44)

where W̃ and Ŵ are its exact and numerical solution, respec-
tively.For L1��, Eq. (42) can be rewritten by using Eq. (29)

∥∥ṽ − v̂
∥∥
H ≤ C5

∥∥∥W̃ − Ŵ
∥∥∥
H

≤ C5C1C2

N 1/ 2
p

. (45)

and then according to Eqs. (38), (39), (45), we get

‖ṽ − ṽL‖H ≤ ∥∥ṽ − v̂
∥∥
H+

∥∥v̂ − ṽL
∥∥
H ≤ Ch

N 1/ 2
h

+
C5C1C2

N 1/ 2
p

≤ C

N 1/ 2
. (46)

For L1�� + k21 and and k1 is not exactly equal (but may be
very close) to an eigenvalue {λi } of Laplace operator, Eq. (42)
can be rewritten by using Eq. (32)

∥∥ṽ − v̂
∥∥
H ≤ C5

∥∥∥W̃ − Ŵ
∥∥∥
H

≤ C4C5

N 1/ 2
p

. (47)
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and then according to Eqs. (38), (39), (45), we get

‖ṽ − ṽL‖H ≤ ∥∥ṽ − v̂
∥∥
H+

∥∥v̂ − ṽL
∥∥
H

≤ Ch

N 1/ 2
h

+
C4C5

N 1/ 2
p

≤ C

N 1/ 2
. (48)

Therefore, the conclusion of the theorem is obtained.

It can be observed from Eq. (35) that the CTM + CMRM
has polynomial convergence rate for nonhomogeneous prob-
lems (33)–(34), and its error decreases but the condition
number of its resultant matrix increases as the boundary node
number N → ∞. In the literatures [9, 38, 44], numerical
experiments show that the CTM + CMRM error tends to
decrease exponentially and then oscillate slightly below a
certain error level with an increase of N .

2.4 Extended precision arithmetic

This section introduces the extended precision arithmetic
(EPA) to eliminate the ill-posed issues encountered in the
implementation procedure and enhance the applicability of
the proposed collocation scheme for transient thermal con-
duction analysis in large-size-ratio FGMs under heat source
loading.Nowadays the common-used double-precisionfloat-
ing point arithmetic (F � 16) [42] has the machine epsilon
εM�2.22E−16, which lead to the following error estimation

εN � εM × κ , (49)

where εN denotes the computational error to measure the
numerical accuracy, κ represents the ratio betweenmaximum
value and minimum value in the present implementation.
To guarantee the numerical error εN ≤ 2.00E − 02, the
value κ ≤ 9.00E + 13. Unfortunately, with the increasing
size ratio, both the CTM resultant matrix with moder-
ate boundary nodes and the Fixed Talbot algorithm with
small term NFT bring very large κ . It could be efficient
to implement the EPA in the present implementation. So
far, several open source libraries (GMP, MPFR and MPC,
etc.) are available for serving on the extended precision
arithmetic. Recently, Holoborodko [57] developed an easy-
to-implement MATLAB toolbox, Advanpix Multi-precision
Computing Toolbox (AMCT). In this study, the AMCT (ver-
sion 3.9.0.9938) is used in the present computation. More
details about the AMCT implementation can be found in
Ref. [57].

3 Numerical example

In this section, the numerical accuracy and efficiency of
the proposed collocation scheme are verified by 2D/3D

Fig. 3 Schematic configuration of rectangle FGMswith boundary nodes
(·) in Example 1

large-size-ratio FGMs with three different types of specific
spatial variations (quadratic, exponential and trigonometric
functions) under heat source loading. Then the proposed
scheme is applied to heat conduction problems under 2D/3D
complex-shaped FGMs in comparison to the analytical
results andCOMSOL results. All the numerical examples are
computed on a personal computer with Intel(R) Core(TM)
i7-6700 CPU 3.40 GHz and 8 GB RAM. In order to measure
the numerical accuracy of the proposed scheme, the rela-
tive error rerr(u) and maximum relative error Mrerr (u) is
defined as follows,

rerr �
∣∣∣∣
u(xi , T ) − ū(xi , T )

ū(xi , T )

∣∣∣∣ (50a)

Mrerr � Max
1≤i≤NT

(∣∣∣∣
u(xi , T ) − ū(xi , T )

ū(xi , T )

∣∣∣∣

)
(50b)

where NT represents the number of test nodes,u(xi ) and ū(xi )
denote the numerical and analytical solutions at test point
xi with the time instant T, respectively. Unless otherwise
specified, the number of boundary nodes N � Nh � Np �
91, the number of directions M1 � 13 in the plane (y2, y3),
the frequency term in Fixed Talbot algorithm is NFT � 8,
and the multi-precision floating point arithmetic F � 30.

3.1 Numerical verifications

Example 1 Transient thermal conduction with inner heat
sources under 2D large-aspect-ratio rectangular FGMs.

Consider transient thermal conduction problemswith heat
sources in 2D rectangle functionally gradedmaterials�1 � {
(x1, x2)| − h1

2 < x1 < h1
2 ,

h2
2 < x2 < h2

2 }, which is shown
in Fig. 3. The size of FGMs are set as the height h2 � 0.1 and
the length h1 � h2× SR, where SR represents the size ratio.
Zero initial temperature and full Dirichlet boundary condi-
tion are considered in this example. The symbol “/” denotes
the numerical accuracy less than the engineering accuracy
(Mrerr >10−2). The test points are uniformly distributed in
the computational domains, and the number of test pointsNT
� 121. Three kinds of FGMs with different types of material
variations are investigated.
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Case 1.1: 2D FGM with quadratic variations

In this case, the thermal conductivity matrix K, specific
heat c(x) and mass density ρ(x) are quadratic functions,
i.e. f (x) � (2 + 8x1 + 2x2)2 in Eqs. (3) and (4), and k �[

1 1
/
2

1
/
2 2

]
,ρ0c0�1. Its analytical temperature distribution

can be represented as

u(x, t) � tex1 sin x2
2 + 8x1 + 2x2

(51)

and the heat source function Q(x, t) �
((t + 1)ex1 sin x2 − tex1 cos x2)(2 + 8x1 + 2x2). In
the proposed implementation procedure, k−�(

1 0

−√
7
/
7 2

√
7
/
7

)

, ��� − ε, W̃ � ey1
ε2

cos

(√
7y2+y1
2

)
− 1+ε

ε2
ey1 sin

(√
7y2+y1
2

)
, and the correspond-

ing annihilating differential operator L1 � � in Eq. (20).

Case 1.2: 2D FGM with exponential variations

In this case, the thermal conductivity matrix K, specific
heat c(x) and mass density ρ(x) are exponential functions,

i.e. f (x) � e2x1+x2 in Eqs. (3) and (4), andk �
[

1 1
/
2

1
/
2 2

]
,

ρ0c0�104. Its analytical temperature distribution can be rep-
resented as

u(x, t) � tex1+6x2 (52)

and the heat source function Q(x, t) �(
104 − 199t

2

)
e3x1+7x2 . In the proposed implementation

procedure, k−�
(

1 0

−√
7
/
7 2

√
7
/
7

)

, ��� − (
104ε + 2

)
,

W̃ �
(
199
2ε2

− 104
ε

)
e2y1+

13(
√
7y2+y1)
4 , and the corresponding

annihilating differential operator L1 � � − 185
4 in Eq. (20).

Case 1.3: 2D FGM with trigonometric variations

In this case, the thermal conductivity matrix K, specific
heat c(x) and mass density ρ(x) are trigonometric functions,
i.e. f (x) � (

sin
(
x2 + π

/
4
))2 in Eqs. (3) and (4), and k �[

1 0
0 2

]
,ρ0c0�102. Its analytical temperature distribution can

be represented as

u(x, t) � e2x1
√
2 sin

(
x2 +

3π

4

)
t (53)

and the heat source Q(x, t) � (2t + 100)e2x1 cos 2x2 sin(
x2 + π

/
4
)
. In the proposed implementation proce-

dure, k−�
(
1 0

0
√
2
/
2

)

, ��� − (
102ε − 2

)
, W̃ �

Table 1 Numerical errors obtained by the proposed collocation scheme
with/without the EPA in Case 1.1 (t � 100 s)

SR Proposed method (N � 91)
without EPA (F � 16)

Proposed method (N � 91)
with EPA (F � 30)

50 6.85E−7 1.01E−7

100 7.75E−7 1.01E−7

150 1.54E−5 1.01E−7

200 3.26E−6 1.01E−7

250 1.77E−6 1.01E−7

300 2.27E−4 1.01E−7

350 1.67E−3 1.19E−7

400 3.29E−2 5.57E−6

450 / 9.48E−4

500 / 7.87E−2

Table 2 Numerical errors obtained by the proposed collocation scheme
with/without the EPA in Case 1.2 (t � 1000 s)

SR Proposed method (N � 91)
without EPA (F � 16)

Proposed method (N � 91)
with EPA (F � 30)

10 7.74E−7 1.01E−7

20 1.03E−7 1.01E−7

30 2.18E−7 1.01E−7

40 2.94E−7 1.01E−7

50 3.71E−5 1.01E−7

60 1.29E−3 1.01E−7

70 1.13E+0 1.01E−7

80 / 1.01E−7

90 / 1.72E−7

100 / 3.09E−5

110 / 6.75E−3

120 / 1.07E+0

−(
2+102ε

)
e2x1 cos 2x2
ε2

, and the corresponding annihilating dif-
ferential operator L1 � � in Eq. (20).

Tables 1, 2 and 3 list the numerical results obtained
by using the proposed collocation scheme with/without the
extended precision arithmetic (EPA). It can be found from
Tables 1, 2 and 3 that the proposed method with the EPA
can enhance the applicability for the large-aspect-ratio FGMs
with larger SR, in particular the FGMs with exponential and
trigonometric material variations. It indicates that the EPA
can alleviate the effect of ill-posed issues generated from the
ill-conditioning resultant matrix, the NILT process and the
large-size-ratio computational domain.

To investigate the effect of N and NFT on numerical accu-
racy, the proposed collocation scheme with large EPA (F �
80) is implemented in the solution of Cases 1.1–1.3. Figure 4
displays the convergence curves ofCases 1.1–1.3 byusing the
proposed scheme with two different NILT terms (NFT�15
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Table 3 Numerical errors obtained by the proposed collocation scheme
with/without the EPA in Case 1.3 (t � 10 s)

SR Proposed method (N � 91)
without EPA (F � 16)

Proposed method (N � 91)
with EPA (F � 30)

20 1.02E−7 1.01E−7

40 1.48E−7 1.01E−7

60 3.26E−6 1.01E−7

80 9.60E−4 1.01E−7

100 1.04E−3 1.01E−7

120 1.80E−2 1.01E−7

140 / 1.01E−7

160 / 1.01E−7

180 / 1.88E−7

200 / 3.46E−4

220 / 3.55E−1

Fig. 4 Convergence curves of Cases 1.1–1.3 by using the proposed
scheme with two different NILT terms (NFT�15 and 30) under large
EPA (F � 80)

and 30). It can be observed from Fig. 4 that the proposed
method can obtain the satisfactory numerical results with
few boundary nodes and converge very fast. Moreover, with
small NILT term number NFT�15, the numerical accuracy
can be improved at the beginning of increasing node num-
ber N(N ≤ 115), and then it cannot improve any more with
the further increasing node number N. This is because the
numerical errors are mainly generated from NILT process in
the present parameter setting with N > 115. At this time,
increasing NILT term number becomes the most effective
way to improve numerical accuracy.

Example 2 Transient thermal conduction with inner heat
sources under 3D large-aspect-ratio cuboid FGMs.

Consider transient thermal conduction problemswith heat
sources in 3D cuboid FGMs �2 � { (x1, x2, x3)| − h1

2 <

Fig. 5 Schematic configuration of 3D cuboid FGMs with boundary
nodes (·) in Example 2

x1 < h1
2 ,

h2
2 < x2 < h2

2 ,
h3
2 < x3 < h3

2 }, which is shown
in Fig. 5. Set the length and width of 3D FGM h1 � h2 �
0.1 and the size ratio is defined as SR � h3

/
h1, and the

number of boundary nodes N � 162, the number of test
points NT � 216.

Case 2.1: 3D FGM with quadratic variations

In this case, the thermal conductivity matrix K, specific
heat c(x) and mass density ρ(x) are quadratic functions, i.e.

f (x) � x21 +2x1x3+x
2
3 in Eqs. (3) and (4), and k �

⎡

⎣
5 0 0
0 5 0
0 0 5

⎤

⎦,

ρ0c0�10. Its analytical temperature distribution can be rep-
resented as

u(x, t) � (x1 + x2 − x3)t (54)

and the heat source function Q(x, t) � 10(
x31 − x33 − x1x23 + x2x23 + x21 x2 + x21 x3 + 2x1x2x3

)
.

In the proposed implementation procedure, k− �⎛

⎝

√
5/5 0 0
0

√
5/5 0

0 0
√
5/5

⎞

⎠, ��� − 10ε, W̃ �

− 10
(
x21−x23+x1x2+x3x2

)

s , and the corresponding annihilat-
ing differential operator L1 � � in Eq. (20).

Case 2.2: FGM with exponential variations

In this case, the thermal conductivity matrix K, specific
heat c(x) and mass density ρ(x) are exponential functions,
i.e. f (x) � e0.2x1+0.4x2+0.2x3 in Eqs. (3) and (4), and k �⎡

⎣
3 0 0
0 3 0
0 0 3

⎤

⎦, ρ0c0�1. Its analytical temperature distribution

can be represented as

u(x, t) � e5x1+4x2+0.1x3−t (55)
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Fig. 6 Convergence curves of Cases 2.1–2.3 by using the proposed
scheme with two different NILT terms (NFT�8 and 16) under large
EPA (F � 80)

and the heat source function Q(x, t) �
−131.89e5x1+4x2+0.1x3e−t . In the proposed implementa-

tion procedure, k− �
⎛

⎝

√
3/3 0 0
0

√
3/3 0

0 0
√
3/3

⎞

⎠, ��� −

(ε − 0.18), W̃ � −e5.1x1+4.2x2+0.2x3 + 131.89e5.1x1+4.2x2+0.2x3
(ε+1) ,

and the corresponding annihilating differential operator
L1 � � − 43.69 in Eq. (20).

Case 2.3: FGM with trigonometric variations
In this case, the thermal conductivity matrix K, specific

heat c(x) and mass density ρ(x) are trigonometric functions,
i.e. f (x) � (cos(x3) − sin(x3))2 in Eqs. (3) and (4), and k �⎡

⎣
7 0 0
0 7 0
0 0 7

⎤

⎦, ρ0c0�100, t � 100 s. Its analytical temperature

distribution can be represented as

u(x, t) � (x1x2 + x2x3 + x1x3)t√
2 sin

(
x2 + 3π

/
4
) (56)

and the heat source function Q(x, t) � √
2(100 − 7t)

(x1x2 + x2x3 + x1x3) sin
(
x2 + 3π

/
4
)
. In the proposed

implementation procedure, k− �
⎛

⎝

√
7/7 0 0
0

√
7/7 0

0 0
√
7/7

⎞

⎠,

��� − (
102ε − 7

)
, W̃ �

(
7−100ε

ε2

)
(x1x2 + x2x3 + x1x3),

and the corresponding annihilating differential operator
L1 � � in Eq. (20).

Figure 6 displays the convergence curves of Cases 2.1–2.3
by using the proposed scheme with two different NILT terms
(NFT�8 and 16). Similar to the conclusion in 2D cases
(Example 1), the proposed method can also obtain the sat-

isfactory numerical results with few boundary nodes and
converge fast in 3D cases. Numerical errors are mainly gen-
erated from NILT process when N > 194 in the present
parameter setting. At this time, increasing NILT term num-
ber becomes the most effective way to improve numerical
accuracy. Moreover, Fig. 7 draws temperature distributions
and relative errors of 3D cuboid FGMs with different size
ratios (SR � 15, 30, 60) at time instant (t � 1 s) in Case
2.2,

3.2 Application to complex-shaped FGMs

Example 3 Transient thermal conduction analysis in double-
head wrench.

Next consider transient thermal conduction in the double-
head wrench. Figure 8 shows the real object of the double-
head wrench and its simplified computational domain, where
h is the opening distance of the wrench. The thermal conduc-
tivity matrix K, specific heat c(x) and mass density ρ(x) of
the double-head wrench are quadratic functions, i.e. f (x) �
(1 + 4x1 + 2x2)2 in Eqs. (3) and (4), and k �

[
1 1

/
2

1
/
2 2

]
,

ρ0c0�1.The initial temperature is assumed to beu(x, 0) � 0,
and the full Dirichlet boundary conditions can be obtained
by using the following analytical solution

u(x, t) �
√
2
100∑

i�1
e
ix2
100 sin

(
i x1
100 + π

4

)
t
i

1 + 4x1 + 2x2
(57)

And the source function is

Q(x, t) � −√
2

(
100∑

i�1

(
i t

104
− 1

i

)
e
i x2
100 sin

(
i x1
100

+
π

4

)

+
i t

104
e
i x2
100 sin

(
i x1
100

+
3π

4

))
(1 + 4x1 + 2x2)

In the proposed implementation procedure,

k−�
(

1 0

−√
7
/
7 2

√
7
/
7

)

, ��� − ε, W̃ �

∑100
i�1

2i2

104
cos iy1

100−ε
(
cos iy1

100 +sin
iy1
100

)

iε2
e
i(

√
7y2+y1)
200 , and the cor-

responding annihilating differential operator L1 � � in
Eq. (20).

In this example, the accuracy and efficiency of the pro-
posed method are investigated in comparison with the COM-
SOL simulation. In the COMSOL simulation, two types of
the meshes and the adaptive time stepping size are automati-
cally generated by implementing the in-built code, which are
shown in Fig. 9. Table 4 lists numerical results obtained by
the proposed method and COMSOL software in Example 3
with different h (h � 1, 1.5, 2) at t � 100 s. Table 5 presents
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Fig. 7 Temperature distributions and relative errors (rerr) of 3D cuboid FGMs with different size ratios (SR � 15, 30, 60) at time instant (t � 1 s)
in Case 2.2, top row: temperature, a SR � 15, b SR � 30, c SR � 60; bottom row: relative error, d SR � 15, e SR � 30, f SR � 60

numerical comparisons on computational costs of the pro-
posed method and the COMSOL simulation in Example 3.
It can be observed from Tables 4 and 5 that the proposed
scheme provides more accurate solutions with fewer compu-
tational resources than the COMSOL software in Example
3.

Example 4 Transient thermal conduction analysis on the air-
plane.

To further validate the accuracy of the proposed method,
we consider transient thermal conduction on the airplane as
shown in Fig. 10. The thermal conductivitymatrixK, specific
heat c(x) and mass density ρ(x) of the airplane are quadratic
functions, i.e. f (x) � x21 −2x1x2+x22 in Eqs. (3) and (4), and

k �
⎡

⎣
1 1/4 1/3
1/4 1 1/4
1/3 1/4 1

⎤

⎦, ρ0c0� 0.01, t � 1 s, and the number

of test points NT � 834. The initial temperature and the full

Dirichlet boundary conditions can be obtained by using the
following analytical solution

u(x, t) � (x1 + x2)t (58)

And the source function is

Q(x, t) � x31 + x32 − x22 x1 − x21 x2
100

In the proposed implementation procedure,

k− �
⎛

⎝
1 0 0√

15/15 4
√
15/15 0

−4
√
435/435 −13

√
435/870 6

√
29/29

⎞

⎠,

��� − 0.01ε,W̃ � −
(
x21−x22

)

100ε , and the corresponding
annihilating differential operator L1 � � in Eq. (20).
In addition, the number of boundary nodes N � 841 is
considered in this example. Figure 11 plots the numerical
and analytical temperature distributions on the airplane
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Fig. 8 a Real object of the double-head wrench and b its simplified
computational domain with boundary nodes (·)

surface. Figure 12 displays the relative error of airplane
surface, where the maximum relative error appeared in the
central region of the wing on both sides is 1.91E−3. It
reveals that the proposed collocation scheme also works
well for transient thermal conduction analysis in 3D FGMs
consisting of the size-disparity components.

Finally computation times of the proposed scheme for
each example are listed in Table 6. It can be observed from
Table 6 that all the present 2Dnumerical implementations can
be done by the proposed collocation scheme in 150 s, and the
present 2D numerical implementations can be done by the
proposed collocation scheme in 400 s, except for Example
4. This is because the node requirement to well represent the
airplane surface is three times more than that of 3D cuboid
model.

4 Conclusions

This paper presents a boundary collocation scheme for
analyzing transient thermal conduction behavior in large-
size-ratio functionally graded materials (FGMs) with heat
source load. In the proposed scheme, it employs the Laplace

Table 4 Numerical errors obtained by the proposed method and the
COMSOL simulation (t � 100 s)

COMSOL Proposed
method

Coarse mesh Refined mesh

Nodes/elements 388 2337 91

Mrerr (h � 2) 6.78E−1 4.78E−2 2.04E−5

Mrerr (h � 1.5) 8.27E−2 2.65E−3 1.01E−7

Mrerr (h � 1) 1.25E−3 1.64E−5 1.01E−7

CPU time (s) 7.70E+1 1.25E+2 6.80E+1

transformation (LT) and the numerical inverse Laplace trans-
formation (NILT) to convert the problem between time
domain and Laplace-space domain to avoid the troublesome
time-stepping effect. The boundary-only collocation scheme
including the collocation Trefftz method and the composite
multiple reciprocity method is implemented in the solu-
tion of Laplace-domain nonhomogeneous problems. More
importantly, it introduces the extended precision arithmetic
to alleviate the effect of ill-posed issues generated from the
ill-conditioning resultant matrix, the NILT process and the
large-size-ratio computational domain.

Heuristic error analysis and numerical investigation are
presented to demonstrate that the proposed method with the
EPA can enhance the applicability for the slender FGMs
with larger SR, in particular the FGMs with exponential and
trigonometric material variations. The proposed method can
obtain the satisfactory results with few boundary nodes for
complex-shaped FGMs with large size ratio, which requires
less computational resource than the method used in the
COMSOL simulation. Therefore the proposed collocation
scheme can be considered as a competitive alternative for
transient thermal conduction analysis in 2D/3D complex-
shaped FGMswith large size ratio under heat source loading.

It is worth noting that the rigorous theoretical analysis of
the proposed collocation scheme needs to be derived. In addi-
tion, this study only considers the thermal conductivity and
the product of mass density and specific heat have the same
special function variation, namely, the thermal diffusivity is
a matrix with constant elements. This assumption allows the
development of the proposed boundary collocation scheme
without any domain discretization for thermal conduction
analysis.Moreover, thismethod canprovidebenchmark solu-

Fig. 9 a Coarse and b refined
meshes in the COMSOL
simulation
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Table 5 Numerical comparisons
on computational costs of the
proposed method and the
COMSOL simulation in
Example 3 (t � 100 s)

COMSOL (refined mesh) Proposed method

Elements Mrerr CPU time (s) Nodes Mrerr CPU time (s)

h � 2 2337 4.78E−2 1.25E+2 75 8.09E−2 4.90E+1

h � 1.5 2337 2.65E−3 1.25E+2 67 2.30E−3 3.80E+1

h � 1 2337 1.64E−5 1.25E+2 53 1.58E−5 2.70E+1

Fig. 10 Schematic configuration of the airplane with boundary nodes
(·) in Example 4

Fig. 11 Temperature distributions on the airplane surface, a numerical
solutions and b analytical solutions

tions to other numerical methods. If thermal diffusivity is
not a constant matrix, some additional approaches related to
nonlinear problems, such as analog equationmethod, domain
decomposition method, dual reciprocity method and so on,
should be introduced. These issues are still under study and
will be reported in a subsequent paper.
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Fig. 12 Relative error distribution on the airplane surface

Table 6 Computational times of the proposed scheme for each example

Example Computational time (s)

1.1 29

1.2 142

1.3 34

2.1 304

2.2 356

2.3 313

3 68

4 2733

Appendix

Consider a two-dimensional problem with the domain

� � {(r , θ)|0 ≤ r < R, 0 ≤ θ ≤ 2π} (A1)

where r , θ denote the polar coordinates in 2D problems,
it can be generated from the Cartesian coordinates (x , y)
with the origin at the center of 2D computational domain

xc � (xc, yc), namely, r �
√

(x − xc)2 + (y − yc)2 and θ �
arctan

(
y−yc
x−xc

)
. The high-order Trefftz functions of common-

used operators are listed as follows:

(i) High-order Trefftz functions of Laplacian operator�n+1

For Laplace equation �u � 0, when n � 0, its Trefftz
function are given in the literature as
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1, rm cos(mθ), rm sin(mθ) m � 1, 2, . . . , (r , θ) ∈ �

(A2)

which are known as zero-order Trefftz function uT 0. The
corresponding nth order Trefftz function uTn is presented as
follows

(A3)

Anr
2n , Anr

m+2n cos (mθ) ,

Anr
m+2n sin (mθ) m � 1, 2, . . . , (r , θ) ∈ �

where An � An−1
4n(m+n)

, A0 � 1.

(ii) High-order Trefftz functions of Helmholtz operator(
� + λ2

)n+1

In the Helmholtz operator, λ > 0 is a real number and
assume that λ2 is not an eigenvalue of Laplace operator. Then
the zero-order Trefftz function uT 0 can be written as

(A4)

J0 (λr ) , J0 (λr) cos (mθ) ,

J0 (λr ) sin (mθ) m � 1, 2, . . . , (r , θ) ∈ �

where J0 is the Bessel function of the first kind. And the
following functions are the corresponding nth order Trefftz
functions uTn .

An(λr)
n Jn(λr), An(λr)

n Jm+n(λr) cos(mθ),

An(λr)
n Jm+n(λr) sin(mθ), m � 1, 2, . . . , (r , θ) ∈ �

(A5)

where An � An−1
2nλ2

, A0 � 1.

(iii) High-order Trefftz functions of modified Helmholtz
operator

(
� − λ2

)n+1

In the modified Helmholtz operator, λ is again a real num-
ber and λ > 0. Then the zero-order Trefftz function uT 0 can
be given in the form

(A6)

I0 (λr ) , I0 (λr) cos (mθ) ,

I0 (λr ) sin (mθ) m � 1, 2, . . . , (r , θ) ∈ �

where I0 is the Bessel and Hankel functions with a purely
imaginary argument. The corresponding nth order Trefftz
function uTn is presented as follows

An(λr)
n In(λr), An(λr)

n Im+n(λr) cos(mθ),

An(λr)
n Im+n(λr) sin(mθ), m � 1, 2, . . . , (r , θ) ∈ �

(A7)

where An � An−1
2nλ2

, A0 � 1.
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