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Abstract
This work studies the approximation of plane problems concerning transversely isotropic elasticity, using a low-order virtual
element method (VEM), with a focus on near-incompressibility and near-inextensibility. Additionally, both homogeneous
problems, in which the plane of isotropy is fixed; and non-homogeneous problems, in which the fibre direction defining
the isotropy plane varies with position, are explored. In the latter case various options are considered for approximating the
non-homogeneous fibre directions at an element level. Through a range of numerical examples the VEM approximations are
shown to be robust and locking-free for several element geometries and for fibre directions that correspond to both mild and
strong non-homogeneity. Further, the convergence rate of the VEM is shown to be comparable to classical low-order standard
finite element approaches.

1 Introduction

The popular finite elementmethod has the status of a classical
approach for obtaining approximate solutions to problems
formulated as systems of partial differential equations or
inequalities, or alternatively, in their variational form. Par-
ticularly in the domains of solid and fluid mechanics, the
method has been used with great success for problems with
high degrees of complexity such as non-linear problems and
problemswith intricate geometries (see for example the treat-
ments in [1,2]).

A number of variants of standard conforming finite
element methods have been developed over the last four
decades, with a range of motivations in mind. Mixed meth-
ods, for example, have allowed all variables of interest to
be approximated explicitly; and in addition have provided
avenues through which stable and convergent finite ele-
ment approximations can be developed in situations where
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the selection of the values of certain parameters might
lead to non-convergence. Key examples are those of near-
incompressibility, or problems in structural mechanics in
which the geometry is characterized by a small length scale.
These two features lead, in the context of low-order stan-
dard finite element methods, to volumetric and shear locking
respectively. Phenomena that are circumvented by the use of
mixed methods [3,4].

Yet another variant of the standard conforming finite ele-
ment method is the discontinuous Galerkin (DG) method,
in which interelement continuity is abandoned in favour of
greater flexibility with regard to meshing (see for example
[5]). In addition, DGmethods, when designed appropriately,
are stable and uniformly convergent in situations of near-
incompressibility for low-order approximations [6–8].

Amore recent development in the context of finite element
methods is the virtual element method (VEM). In contrast to
the geometric restrictions on finite elements, which are most
generally triangular or quadrilateral in 2D, and tetrahedral
or hexahedral in 3D, the VEM permits elements to be arbi-
trary polygons in 2D or polyhedra 3D. Furthermore, there is
no need for elements to be convex, and degeneracies such
as element sides having small interior angles or arbitrarily
small edges pose no problems. Some key works in a rapidly
growing literature include [9–11]. Applications of the VEM
to nonlinear problems include works on nonlinear elasticity
[12,13], elastoplasticity [14–16], and contact [17].

Applications of the VEM to elasticity have been largely
confined to the isotropic problem, although there have been
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treatments of inextensiblematerials [18]. Problems involving
anisotropic materials pose additional challenges in the con-
text of VEM approaches, particularly for non-homogeneous
materials in which the anisotropy varies with position. In
[19] limiting extensibility is investigated in an otherwise
isotropic material using penalty, Lagrange multiplier, and
perturbed Lagrangian approaches. The work was consider-
ably extended in [20]. Here, finite element approximations
are studied using both conforming and reduced integration
approaches. An error analysis gives an indication of condi-
tions under which low-order approximations are uniformly
convergent in the incompressible and inextensible limits, and
a set of numerical experiments provides further insight into
the conditions under which locking-free behaviour occurs. It
is shown that locking-free behaviour occurs in conditions
of moderate anisotropy for low-order conforming quadri-
laterals, in contrast to the situation for isotropic materials.
Furthermore, for high degrees of anisotropy leading to near-
inextensibility, locking occurs, but is circumvented by the
use of selective under-integration.

Relevant works dealing with the determination or recov-
ery of stress fields for VEM formulations concerning linear
elasticity include [21], a stress-displacement mixed VEM,
and [22], in which a stress error analysis is presented for an
equilibrium-based stress recovery procedure performed on
patches of elements. Both works are characterised by adap-
tation or extension of the standard displacement-based VEM
formulation. In [21] the stresses are calculated using constant
projection and the displacements are assumed to be constant
on an element. The convergence rates of both the stresses and
displacements are reported to be approximately equal to 1. In
[22], using a patch of elements comprising a central element
and those immediately surrounding it a convergence rate of
approximately 2 is achieved. However, in the case of a degen-
erate patch comprising a single element, the convergence rate
is reported to be approximately equal to 1.

The purpose of this work is to study low-order VEM
approximations for plane problems concerning transversely
isotropic elasticity. Of particular interest is the behaviour
of VEM approximations for the limiting situations of near-
incompressibility and near-inextensibility. Whereas in the
case of conventional finite element approximations, as dis-
cussed above, some form of modification such as selective
under-integration is necessary in order to circumvent lock-
ing, VEM approximations exhibit locking-free behaviour in
the incompressible and inextensible limits.

A further novel aspect of this work is the treatment of non-
homogeneous transverse isotropy; that is, situations in which
fibre directions varywith position.Here it becomes necessary
to approximate the non-homogeneous terms appropriately
in order to preserve the simplicity of the VEM approach,
in which integrals are evaluated only on element bound-
aries. The approximations adopted are shown to be robust,

with the locking-free behaviour also evident for the non-
homogeneous problem.

The structure of the rest of this work is as follows. Sec-
tion 2 sets out the details of the constitutive relations for
transversely isotropic linear elastic materials, the set of gov-
erning equations, and the associated weak formulation. The
details of the virtual element method are presented in Sect. 3
and the set of numerical results are presented and discussed
in Sect. 4. This work concludes with a summary of results
and a discussion of open problems.

2 The governing equations for transverse
isotropy

Consider a linear elastic bodywhich occupies a plane, polyg-
onal bounded domain Ω ⊂ R

2 with boundary ∂Ω . The
boundary comprises a non-trivial Dirichlet part ΓD and Neu-
mann part ΓN such that ΓD ∩ ΓN = ∅ and ΓD ∪ ΓN = ∂Ω .

2.1 The elastic relation

Transversely isotropic materials exhibit isotropic behaviour
in a specified plane, this plane being defined by a unit vector
a referred to also as the fibre direction.

The Cauchy stress tensor σ is related to the infinitesimal
strain tensor ε through the elastic relation

σ = Cε. (2.1)

Here C is a fourth-order tensor of elastic moduli. For a trans-
versely isotropic material (2.1) takes the form [20]

σ = λ(trε)I + 2μT ε + β(M : ε)M + α((M : ε)I

+ (trε)M) + 2(μL − μT )(εM + Mε). (2.2)

Here M = a ⊗ a, λ and μT are the conventional Lamé
parameters, μL is the shear modulus in the fibre direction,
and I denotes the second-order identity tensor. The mate-
rial constants α and β do not have a direct interpretation,
though it will be seen that β → ∞ in the limit of inextensi-
ble behaviour in the fibre direction.

The special case of an isotropic material is recovered by
setting α = β = 0 and μL = μT .

The five material constants in (2.2) may be related to the
“engineering” constants, viz. Young’s moduli EL and ET in
the fibre direction and plane of isotropy, respectively, and the
corresponding Poisson’s ratios νL and νT , by inverting (2.2),
specializing it to the case in which a = e3, and comparing
it with the compliance relation written in the form (see for
example [23])
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(2.3)

For the purposes of a parametric study we make the assump-
tion for the remainder of this work that

νT = νL := ν and μT = μL := μ. (2.4)

Further, we set

p = EL

ET
, (2.5)

so that the parameter p measures the degree of transverse
isotropy, with inextensible behaviour corresponding to the
limit p → ∞. Note that this is not equivalent to the case
of limiting extensibility in an otherwise isotropic material
as presented in [19], which would require, in addition, that
α = 0.

The parameters in (2.2) may then be expressed in terms
of the engineering parameters as [20]

λ

ET
= ν(ν + p)

D
,

α

ET
= ν2(p − 1)

D
,

β

ET
= p2(1 − ν2) − p(1 + 2ν2) + 3ν2

D
, (2.6)

in which the denominator D is given by

D = (1 + ν)(p(1 − ν) − 2ν2) . (2.7)

We also have the relation

μT = ET

2(1 + ν)
. (2.8)

We now consider the case of incompressible behaviour in
which trε = 0. With the assumptions (2.4) and the relation
(2.5) we have from (2.3)

trε = 1

ET

(
1 − ν − ν

p

)
σ11 + 1

ET

(
1 − ν − ν

p

)
σ22

+ 1

pET
(1 − 2ν)σ33. (2.9)

For the most general case of σ11, σ22, σ33 	= 0, trε = 0 if
and only if

{
ν = p

p+1

ν = 1
2

⇔ p = 1 and ν = 1

2
. (2.10)

Thus incompressible behaviour is only possible in the
isotropic case. In the case of plane strain with ε22 = 0 and
eliminating σ22, we have

trε = 1

ET

(
1 − ν2 − ν2

p
− ν

p

)
σ11

+ 1

pET

(
1 − ν − ν2 − ν2

p

)
σ33. (2.11)

Assuming σ11, σ33 	= 0, trε = 0 if and only if

{
ν = p

p+1

ν = 1
2

⇔ p = 1 and ν = 1

2
. (2.12)

We thus have the same conditions for incompressibility as in
the general 3D case (2.10).

Furthermore, noting that D → 0 in the incompressible
limit, ν → 1

2 when p → 1, it is evident from (2.6) and (2.7)
that

⎧⎨
⎩

λ is bounded as ν → 1
2 , if p > 1,

and as p → ∞ (inextensibility)
λ → ∞ as ν → 1

2 , for p = 1 (isotropy)
(2.13)

{
α is bounded as ν → 1

2 , if p > 1
α → 0 as p → 1 (isotropy)

(2.14)

{
β is bounded as ν → 1

2 , if p > 1
β → ∞ as p → ∞ (inextensibility) .

(2.15)

The elasticity tensor is assumed to be pointwise stable;
that is, to satisfy the condition

ε : Cε > 0 for all ε .

General conditions on the material constants for pointwise
stability are readily available, see for example [24], and are
given by

EL > 0 ET > 0 νL > 0 νT > 0, (2.16a)

−1 < ν2T < 1, (2.16b)

ν2L < p, (2.16c)

1 − 2ν2L p > νT . (2.16d)

We henceforth assume (2.16) to hold.
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2.2 Governing equations

The body is subjected to a body force f , prescribed loading
h on ΓN , and a prescribed displacement g on ΓD .

The equation of equilibrium is

−div σ = f on Ω. (2.17)

Small displacements are assumed, and the strain displace-
ment relation is given by

ε(u) = 1

2
(∇u + [∇u]T ) or εi j (u) = 1

2
(ui, j + u j,i ).

(2.18)

Here u denotes the displacement, and ∇u the displacement
gradient with components ui, j . Here and henceforth we
choose a fixed Cartesian coordinate system xi with orthonor-
mal basis ei .

The boundary conditions are

u = g on ΓD, (2.19a)

σ · n = h on ΓN . (2.19b)

Equations (2.17)–(2.19), together with the elastic relation
(2.2), constitute the boundary-value problem for a trans-
versely isotropic body.

2.3 Weak formulation

Wedenote by L2(Ω) the space of square-integrable functions
on Ω , and by H1(Ω) the Sobolev space of functions which,
together with their generalized first derivatives, are square-
integrable, and set V = [H1

D(Ω)]d = {v | vi ∈ H1(Ω), v =
0 on ΓD}.

We also define the function ug ∈ [H1(Ω)]d such that

ug
∣∣
ΓD

= g .

The bilinear form a(·, ·) and linear functional �(·) are defined
by

a : [H1(Ω)]d × [H1(Ω)]d → R,

a(u, v) =
∫

Ω

σ (u) : ε(v) dx, (2.20a)

l : [H1(Ω)]d → R,

�(v) =
∫

Ω

f · v dx +
∫

ΓN

h · v ds − a(ug, v). (2.20b)

The weak form of the problem is then as follows: given f ∈
[L2(Ω)]d and h ∈ [L2(ΓN )]d , findU ∈ [H1(Ω)]d such that

Fig. 1 An arbitrary virtual element

U = u + ug, u ∈ V , and

a(u, v) = �(v) ∀v ∈ V . (2.21)

We write the bilinear form as

a(u, v) = aiso(u, v) + ati(u, v), (2.22)

where

aiso(u, v)=λ

∫
Ω

(∇ · u)(∇ · v) dx + 2μ
∫

Ω

ε(u) : ε(v) dx,

(2.23a)

ati(u, v)=α

∫
Ω

[(M : ε(u))(∇ · v)

+ (∇ · u)(M : ε(v))] dx

+ β

∫
Ω

(M : ε(u))(M : ε(v)) dx . (2.23b)

The bilinear form is clearly symmetric. The well-
posedness of the weak problem requires the bilinear form
to be continuous and coercive, and the linear functional con-
tinuous. With the assumptions in (2.16), it is shown in [20]
that the problem has a unique solution that depends continu-
ously on the data.

3 The virtual element method

The domain Ω is partitioned into a mesh of elements com-
prising non-overlapping polygons E with ∪E = Ω̄ . A
typical polygonal element is shown in Fig. 1.We denote by ei
the edge connecting vertices Vi and Vi+1 with i = 1, . . . , N ,
where N is the total number of vertices of element E .

We construct a conforming approximation in a space
V h ⊂ V . The space V h comprises functions that are con-
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tinuous on Ω , piecewise linear on the boundary ∂E of each
element, and with divCε(vh) vanishing on E [9,10]:

V h = {vh ∈ V | vh ∈ [C(Ω)]2, (3.1)

divCε(vh) = 0 on E, vh |e ∈ P1(e)} .

Here and henceforth Pk(X) denotes the space of polynomials
of degree ≤ k on the set X ⊂ R

d (d = 1, 2). We assign
degrees of freedom to the nodes, which are located at the
element vertices, and write, for each element,

vh |E = ϕd (3.2)

in which ϕ denotes a matrix of virtual basis functions, and d
is the 2N × 1 vector of degrees of freedom.

All computations are carried out on the edges e of ele-
ments, and it is convenient to write also

vh |∂E = Nd and ε(vh) = Bd , (3.3)

in which N and B are respectively matrices of standard
Lagrangian linear basis functions and their derivatives. Thus,
the basis functions ϕ are not known, and are not required to
be known; their traces on the boundary are however required,
and are simple Lagrangian functions.

We will require the projection Π : Vh |E → P0(E),
defined on E by

∫
E

Πvh dx =
∫
E

ε(vh) dx . (3.4)

Thus Π is the L2-orthogonal projection onto constants of
the strain associated with the displacement vh on an element
E . From (3.3), and given that Πvh is constant we have, in
component form,

(Πvh)i j = 1

2

1

|E |
∫
E
((vh)i, j + (vh) j,i ) dx

= 1

2

1

|E |
∮

∂E
((vh)i n j + (vh) j ni ) ds

= 1

2

1

|E |
∑
e∈∂E

∫
e
(Ni Ad

E
A n j + N j Ad

E
A ni ) ds . (3.5)

Here dE
A denotes the degrees of freedom associated with

element E , summation is implied over all repeated indices,
and we have used integration by parts and the representa-
tion (3.3)1. The integrals in (3.5) are readily evaluated as the
edge basis functions are known. Thus the projection Πvh is
available as a function of the degrees of freedom.

To construct the virtual element formulation we start by
writing

aE (u, v) := a(v, v)|E

=
∫
E

ε(uh) : Cε(vh) dx , (3.6)

so that aE (·, ·) denotes the contribution of element E to the
bilinear form a(·, ·) defined in (2.20a). Considering (3.4) we
have

aE (uh, vh) =
∫
E

Πuh : CΠvh dx

+
∫
E
(ε(uh) − Πuh) : C(ε(vh) − Πvh) dx

(3.7a)

+
∫
E

Πuh : C(ε(vh) − Πvh) dx

+
∫
E
(ε(uh) − Πuh) : CΠvh dx (3.7b)

=
∫
E

Πuh : CΠvh dx +
∫
E
(ε(uh)

− Πuh) : C(ε(vh) − Πvh) dx (3.7c)

=
∫
E

Πuh : CΠvh dx
︸ ︷︷ ︸

consistency term

+
∫
E

[
ε(uh) : Cε(vh) − Πuh : CΠvh

]
dx

︸ ︷︷ ︸
stabilisation term

.

(3.7d)

The last line is obtained by noting the definition of the pro-
jection operator, so that the two terms in (3.7b) are zero.
Furthermore, the definition of the projection is invoked again
in going from (3.7c) to (3.7d). The terms in (3.7d) are referred
to respectively as the consistency term and stabilisation term.

The consistency term After substitution of (3.5) in the
consistency term, evaluation of the integral leads to the
expression

∫
E

Πuh : CΠvh dx = (d̄)T K E
cond (3.8)

in which K E
con is the consistency stiffness matrix for element

E and dE and d̄
E
are respectively the vectors of nodal degrees

of freedom of uh and vh on element E .

The stabilisation term Use of the consistency term alone
would lead to a rank-deficient stiffness matrix. The second
term on the right hand side of (3.7d) serves the purpose of
stabilising the formulation. The basic idea behind the VEM
is that integrals are evaluated on the boundaries of elements
only; the stabilisation term in its original form would require
that integrals be evaluated on the elements. Nevertheless, it is
not necessary to evaluate this term exactly, and it suffices to
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replace it with an approximation. There are several methods
that can be employed, see for example [11,15]. However, we
choose the robust stabilisation method presented in [25], and
defined by

aE
stab(uh, vh) = τd

T [I − D(DT D)−1DT ]d . (3.9)

Here d and d are, again, respectively the vectors of nodal
degrees of freedom associated with vh and uh , and D is the
matrix that relates the nodal degrees of freedom d1 of a linear
vector polynomial to its degrees of freedom s relative to a
scaled linear monomial basis. That is, for an element with N
nodes,

d1 = Ds . (3.10)

Note that D has dimensions 2N ×6, and has the basis mono-
mials

M = {1, ξ, η} =
{
1,

x − xc
dE

,
y − yc
dE

}
, (3.11)

where dE is the diameter of element E , with xc and yc the
x− and y−coordinates of the centroid of E respectively.
This approximation may be motivated by seeking a stabili-
sation term of the form

τ(dT d − dT1 d1) (3.12)

in which d1 are the nodal degrees of freedom of a linear
polynomial that is closest to uh in some sense, and τ is a
suitable scalar to be chosen. In the event that uh is a linear
polynomial this term vanishes of course.

From (3.10) we have

dT1 d1 = (sT DT )(Ds)

= sT (DT D)(DT D)−1(DT D)s

= dT1 D(DT D)−1DT d1 . (3.13)

Then we obtain (3.9) by replacing d1 with the actual vector
degrees of freedom.

We need to choose a suitable value for the scalar τ, such
that it is some value representative of the constitutive tensor.
We consider the transversely isotropic material properties
λ, α, β, μL and μT . As seen in Sect. 2.1 λ, β → ∞ as
ν → 0.5, to keep the VEM locking-free we therefore reject
these options. We choose τ = μT as it is bounded and is
representative of both isotropic and transversely isotropic
materials. As we have set μ := μL = μT , we then have

K E
stab = μ

[
I − D

(
DT D

)−1
DT
]

. (3.14)

As we have used scaled coordinates, no area scaling of the
stabilisation term is necessary. The complete stiffness matrix
is then given by

K E = K E
con + K E

stab. (3.15)

4 Numerical results

In this section we present numerical results for three model
problems to illustrate the performance of the VEM. We con-
sider homogeneousmaterials, for which the plane of isotropy
is fixed across the domain, and also non-homogenous mate-
rials, for which the plane of isotropy, as defined by the vector
a, varies with position. Plane strain conditions are assumed.
As in Sect. 2.1 we set νT = νL = ν and μT = μL = μ.
We consider values of p ≥ 1, unless stated otherwise, and
Poisson’s ratio of ν = 0.3 or, to test behaviour in the
near-incompressible limit, ν = 0.49995. In all cases the con-
ditions for pointwise stability (2.16) are met.

We define â := ̂(Ox, a) to be the angle between the x-
axis and the fibre direction a. The results in the examples that
follow are obtained for the following element types:

Q1 The standard bilinear quadrilateral
Q2 The standard biquadratic quadrilateral
Quad The VEM formulation with four-noded elements
Hex The VEM formulation with six-noded elements
Voronoi The VEM formulation with Voronoi elements

Figure 2 depicts patches of the meshes comprising six-
noded and Voronoi elements for a mesh density d of 7,
where d = √

nelements . Meshes are constructed on a refer-
ence domain and then mapped to the problem domain, Fig. 2
depicts meshes after this mapping.

4.1 Constant fibre direction

We present results here for the case in which fibre directions
are constant on the domain. The emphasis is on near-
incompressibility and near-inextensibility, either separately
or combined. Unless indicated otherwise, in the examples
that follow Poisson’s ratio is set at ν = 0.49995. To satisfy
the conditions for pointwise stability (2.16) we require, for
ν = 0.49995, that p > 0.9997. Thus, for simplicity, we con-
sider the range p ≥ 1 in which p = 1 corresponds to the
near-incompressible limit.

Cook’s membrane problem This problem consists of a
trapezoidal panel fully fixed along its left edge with a uni-
formly distributed load along its right edge, as shown in
Fig. 3. The applied load is P = 100N and ET = 250 Pa.
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Fig. 2 Cook’s membrane
problem, showing the hexagonal
and Voronoi meshes for d = 7

(a) Hex mesh (b) Voronoi mesh

Fig. 3 Cook’s membrane problem, showing fibres inclined at â = π
4

This test problem has no analytical solution. The vertical
displacement at point C is recorded.
Figure 4 shows a convergence plot of tip displacement versus
mesh density for fibre angle â = π

4 , as illustrated in Fig. 3,
and with p = 5, for the VEM formulation with the three can-
didate meshes, and for standard finite element formulations.
The various VEM formulations are seen to exhibit degrees of
accuracy comparable to that of the Q2 approximation, where
the Q2 approximation is assumed to accurately represent the
solution.

The results that follow have been generated using meshes
with a density of d = 50.

Figure 5 shows semilog plots of tip displacement versus p
for 1 ≤ p ≤ 105 and for fibre angles â = π

4 and â = π
9 . The

well-known locking behaviour of Q1 is clear in the isotropic
limit (p → 1). On the other hand, the VEM formulation
using quadrilaterals is not equivalent to the conventional Q1

formulation, and is locking-free. We note, additionally, the
rapid transition to locking behaviour of the Q1 formulation
as p → 1. The formulation exhibits severe locking for p =
1, for p = 1.01 we observe mild locking behaviour and
with p = 1.02 the behaviour is near locking-free. Thus the

0 10 20 30 40 50

2.5

3

3.5

4

Mesh Density

D
is

pl
ac

em
en

t
Quad
Hex

Voronoi
Q1

Q2

Fig. 4 The Cook problem: convergence test for fibre angle â = π
4 and

p = 5

locking behaviour of the Q1 formulation is not discontinuous
at p = 1.

Figure 6 shows a plot of tip displacement versus fibre
orientation for a nearly inextensible material (p = 105).
Again, we note the poor performance and locking behaviour
of Q1 over most of the range, and on the other hand the
robust behaviour of the VEM formulation. The Q2 element
displays sub-optimal accuracy for fibre angles greater than
â = π

2 and close to zero. This is somewhat surprising, in that
the behaviour of this element in the near-inextensible limit
would be expected to mirror its good performance for near-
incompressibility. On the other hand, while the element has
been shown to be uniformly convergent for incompressible
materials, there does not exist a corresponding analysis for
near-inextensibility, to the best of the authors’ knowledge.
Such an analysis could shed light on the behaviour seen in
Fig. 6.

The beam problem This problem consists of a beam sub-
jected to a linearly varying load at its right edge, and pinned
at its left extrema, as depicted in Fig. 7. The load has max-
imum and minimum values of Fmax = ± 30N. The beam
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Fig. 5 The Cook problem: tip displacement versus p for a fibre direction â = π
4 ; b fibre direction â = π
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Fig. 6 The Cook problem: tip displacement versus fibre orientation, for
p = 105

has width w = 10, height h = 2 and Young’s Modulus
of ET = 1500 Pa. The vertical displacement at point C is
recorded.

The displacement of point C is given by [20]

u(x, y) = 2Fmax

h

[
S11xy + S31

2

(
y2 − h2

4

)]
, (4.1)

v(x, y) = Fmax

h

[
S21

(
y2 − h2

4

)
− S11x

2
]

; (4.2)

the coefficients Si j are lengthy functions of the material con-
stants, and are given in the Appendix to [20].

Figure 8 shows a convergence plot of tip displacement
versus mesh density for a fibre orientation of â = π

4 , and
with p = 5. It is seen that for the various VEM meshes the
convergence behaviour is similar to that of the Q2 mesh for
sufficiently fine meshes.

Fig. 7 The beam problem, showing fibres inclined at â = π
4
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Fig. 8 The beam problem: convergence test for fibre angle â = π
4 and

p = 5

The results that follow have been generated using meshes
with a density of d = 50.

Figure 9 shows semilog plots of tip displacement versus p
for 1 ≤ p ≤ 105 for fibre angles of â = π

4 and â = π
9 . Again,

as with the Cook problem, the VEM solutions are locking-
free and display high accuracy. As pointed out in [20], for
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Fig. 9 Beam problem: tip displacement versus p for fibre angle a â = π
4 ; b â = π
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â (Degrees)

D
is

pl
ac

em
en

t

Quad
Hex

Voronoi
Q1

Q2

Sol

Fig. 10 The beam problem: tip displacement versus fibre orientation,
for p = 105

mild anisotropy, that is, low values of p, the tendency to
lock for the Q1 mesh is mitigated as a result of the Lamé
parameter being bounded for p > 1 in conditions of near-
incompressibility, with ν very close to 0.5. This behaviour is
evident in Fig. 9, where the Q1 mesh is seen to be locking-
free for p > 1 and for p up to p ≈ 10 for fibre angle
â = π

4 , and p ≈ 100 for fibre angle â = π
9 . However, the

rapid transition to locking behaviour of the Q1 formulation
as p → 1 is again evident, as observed in Fig. 5.

Figure 10 shows a plot of tip displacement versus fibre
orientation for the case of near-inextensibility (p = 105).
Again, we note poor performance of Q1 and robust and accu-
rate behaviour of the VEM formulations. In contrast to the
result for the Cook problem, here the Q2 element demon-
strates equally accurate behaviour.

To investigate the effects of p < 1wepresent in Fig. 11 the
beam problem, as above, with â = π

4 . We consider Poisson’s
ratios of ν = 0.3 and ν = − 0.5 in Fig. 11a, b respectively.

To satisfy the conditions for pointwise stability we require
for a Poisson’s ratio of ν = 0.3 that p > 0.2571, and for
ν = − 0.5 that p > 1

3 .
Figure 11a shows a plot of tip displacement versus p for

the case ν = 0.3. We note the accuracy of the VEM for-
mulations and the biquadratic approximation throughout the
domain as both closely match the analytical solution. The
bilinear approximation exhibits accuracy for values of p cor-
responding to mild anisotropy, i.e for p up to p ≈ 10. As
the degree of anisotropy increases the bilinear approximation
exhibits locking behaviour consistent with that seen in Fig. 9.

Figure 11b shows a plot of tip displacement versus p
for the case ν = −0.5. We note similar behaviour to that
seen in Fig. 11a, with high accuracy displayed by the VEM
formulations and the biquadratic approximation throughout
the domain, and locking behaviour exhibited by the bilin-
ear approximation as the degree of anisotropy increases.
Additionally, we note inaccuracy and locking of the bilin-
ear approximation as p → 1

3 .

4.2 Non-homogeneousmaterials: variable fibre
orientation

For a given distribution of fibre directions a(x) it follows that
some approximation has to bemade for a(x)within each ele-
ment so as to preserve the general approach to carry out VEM
computations. A simple optionwould be to approximate a by
its centroidal value. However, such an approximation can be
somewhat inaccurate for situations in which the fibre orien-
tation varies significantly across a length scale comparable
to mesh size. A more reliable approach is to use the aver-
age fibre direction at the element nodes; this approach is
observed to yield more stable and faster convergence. When
dealing with rapidly varying fibre directions a more stable
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Fig. 11 The beam problem: tip displacement versus p with â = π
4 , for a ν = 0.3; and b ν = −0.5
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approach was achieved by using a weighted average of the
fibre direction at the centroid and the average direction at
the vertices. This approach applies an equal weighting to
the centroidal direction and the average of its nodal val-
ues for very coarse meshes; for finer meshes, that is, as the
mesh density increases, the weighting of the centroidal value
decreases rapidly. Thus for veryfinemeshes and rapidly vary-
ing fibre directions, it is the nodal average that dominates.
With the mesh density denoted by d, the centroidal weight
wc is defined by

wc =
π
2 + arctan(dcr − d)

2π
. (4.3)

This function is shown in Fig. 12. Here dcr is a user-defined
critical mesh density beyond which the value of the weight
drops rapidly.

The average fibre direction a is then given by

aave|E = wca(xc) + (1 − wc)
1

N

N∑
i=1

a(xi ) , (4.4)

where, as before, N denotes the number of nodes of element
E , and xc and xi are respectively the coordinates of the ele-
ment centroid and node i . We then approximate the elasticity
tensor on an element E by

C|E � C(aave) . (4.5)

The critical density used is problem specific as it depends on
the degree of variation in fibre orientation. However, for sim-
plicity a critical density of dcrit = 10 was used as it worked
well across a range of problems.

Except where otherwise stated, Poisson’s ratio is set at
ν = 0.3 in the examples that follow.

We present results for two families of fibre distributions,
corresponding to curves y = c+ f (x) where f (x) is chosen
to be, respectively, (x−24)2(x−12)(x−36) and 2 sin x . The
polynomial distribution corresponds to mild variation with
position,while the sinusoidal distribution is amore severe test
of performance under conditions of rapidly varying direction.
Figure 13 shows schematically the curves corresponding to
these two cases for the Cook problem, one of the examples
considered in what follows.

Cook’s membrane problem Figure 14a, b show the tip
displacement as a function of mesh density for fibres cor-
responding to the quartic distribution, with p = 5, and in
which the value of a is based respectively on its value at the
element centroids and the average of its values at the nodes.
We note smooth and stable convergence of theVEM,with the
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Fig. 13 Cook’s membrane
problem with curves showing
variable fibre orientation for a
quartic, and b sinusoidal
distributions

(a) Quartic distribution (b) Sinusoidal distribution
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Fig. 14 Tip displacement versus mesh density for Cook’s membrane problem for p = 5, with fibre directions defined by quartic curves, and using
a the centroidal value of a; b the average of nodal values of a

quadrilateral VEMmesh performing somewhat more poorly
for the case in which the average nodal value of a is used.

Figure 15 shows tip displacement as a function of mesh
density for fibres corresponding to the sinusoidal distribution.
In Fig. 15a we calculate aave based on its value at the ele-
ment centroid. Again we see good performance by the VEM
elements, with an accuracy comparable to that of Q2. In con-
trast to the results for polynomial variation in Fig. 14a, b, the
coarse-mesh behaviour is somewhat erratic, with a smooth
dependence onmesh density only after d ≈ 25. Figure 15c, d
present results for the cases in which, respectively, firstly an
equal weighting of centroidal and nodal values of a is used,
and secondly, using (4.4), a varying weight is used. Similar
behaviour is seenwhen comparedwith the results in Fig. 14b,
though the dependence on mesh density becomes smoother
for coarser meshes at d ≈ 15.

Next, we consider behaviour in the near-incompressible
limit, with ν = 0.49995. Figure 16a, b show tip displace-
ment as a function of p, for the quartic and sinusoidal fibre
distributions respectively. For the polynomial fibre distribu-

tion the centroidal values of fibre direction are used, while
the weighted method is used for the sinusoidal distribution.
There is little variation in the performance of the various
VEM meshes, though for the Voronoi mesh and for near-
inextensibility small scatter is observed. The sub-optimal
behaviour of the Q2 mesh seen in the Cook example in Fig. 6
is not evident here. The Q1 mesh again displays locking
behaviour except in a narrow range of mild anisotropy.

Beam in bending We consider next the problem of a
beam in bending, shown in Fig. 17, with boundary conditions
slightly different to those shown in Fig. 7; the left edge is now
constrained horizontally and pinned at the bottom left cor-
ner. The fibre distributions considered are once again quartic
and sinusoidal, as for the Cook problem, and are depicted in
Fig. 17. However, the quartic distribution is now defined by
y = (x − 5)2 (x − 2.5) (x − 7.5)+ c, and the sinusoidal dis-
tribution is as defined previously. The vertical displacement
at point C is recorded. A value of Poisson’s ratio of ν = 0.3
is used, except where indicted otherwise.
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Fig. 15 Tip displacement versus mesh density for Cook’s membrane problem and with fibre directions defined by curves 2 sin x , and using a the
centroidal value of a; b the average of nodal values of a; c equal weighting of nodal and centroidal values; and d a varying weighted average as in
(4.3) and (4.4)
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Fig. 16 Tip displacement versus p for the Cook problem, for near-incompressibility and using a the quartic, and b the sinusoidal fibre distributions
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(a) Quartic distribution (b) Sinusoidal distribution

Fig. 17 Quartic and sinusoidal fibre distributions for the beam in bending problem
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Fig. 18 Tip displacement versus mesh density for the beam in bending problem, with p = 5, and fibre directions defined by a quartic polynomial,
using a the centroidal value of a; b the average of nodal values of a

In Fig. 18a, b we present convergence plots of vertical dis-
placement versus mesh density, for mild anisotropy; that is,
p = 5, for the quartic distribution of fibres, and with aave
calculated using respectively the centroidal value, and the
average nodal value. We note stable convergence in all cases.
For the case in which the average nodal direction is used, it
is seen that the standard Q2 element performs best for coarse
meshes.

Figure 19 shows tip displacement as a function of mesh
density for a sinusoidal distribution of fibres. In Fig. 19a
we calculate aave based on its centroidal value. Again we
see good performance by the VEM elements, though the Q2

mesh performs best. Rapid numerical convergence is how-
ever observed after a density of d ≈ 25.

As with the Cook problem, we next consider behaviour in
the near-incompressible limit with ν = 0.49995. Figure 20
shows tip displacement as a function of p, for the quartic
and sinusoidal fibre distributions. For the polynomial fibre
distribution the average value of fibre direction at the vertices
is used, while the weighted method is used for the sinusoidal
distribution. There is little variation in the performance of the
various VEM meshes, though for the Voronoi mesh and for
near-inextensibility small scatter is again observed. The Q2

mesh performs rather poorly, displaying some evidence of
mild locking. This should be compared with the sub-optimal
behaviour seen in Fig. 6 for constant fibre directions. Except
in a narrow range of mild anisotropy, the Q1 mesh displays
locking behaviour.

4.3 Error analysis

To further investigate the performanceof theVEMwepresent
here a convergence analysis. We consider the beam problem
depicted in Fig. 7 and set p = 5 and ν = 0.49995. In this
section we present error estimates of both the displacement
and stress fields using an L2 norm.

Displacement error The L2 norm of displacement is defined
by

Eui ,Ω =
(

N∑
i=1

∫
E

∣∣∣ui − uhi

∣∣∣2 dΩ

)0.5

= ||ui − uhi ||0. (4.6)

This definition poses problems for VEMs as it requires the
computation of uh over the area of an element. As the basis
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Fig. 19 Tip displacement versus mesh density for the beam in bending problem, with fibre directions defined by curves 2 sin x , and using a the
centroidal value of a; b the average of nodal values of a; c equal weighting of nodal and centroidal values; and d a varying weighted average as in
(4.3) and (4.4)

functions ϕ are defined implicitly, and thus only known on
the element boundary, some approximation of the displace-
mentwithin an element is required.A simple approachwould
be to decompose a polygonal element into a collection of
triangular sub-elements and to use the standard P1 (linear)
triangular shape functions as interpolants. Such a decompo-
sition is undesirable and not in keeping with the spirit of the
VEM.We therefore present an alternative approach in which
the displacement is approximated by a linear polynomial,
at an element level, such that its nodal values are closest to
the degrees of freedom d in the sense of least squares. We
minimise

F(d1) = 1

2
|d − d1|2 (4.7)

= 1

2

(
dT d − 2sT DT d + sT DT Ds

)
(4.8)

with respect to the independent degrees of freedom s. The
minimiser satisfies

(DT D)s = DT d, (4.9)

and the degrees of freedom of the linear polynomial are then
given by

s = (DT D)−1DT d. (4.10)

We can then express (4.6) as

Eui ,Ω =
(

N∑
i=1

∫
E

∣∣ui − mi j s j
∣∣2 dΩ

)0.5

, (4.11)
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Fig. 20 Tip displacement versus p for the beam in bending problem, for near-incompressibility and using a the quartic, and b the sinusoidal fibre
distributions
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Fig. 21 The beam problem: L2 error versus mean element diameter h̄ for a x-displacement; and b y-displacement

where m is the matrix of linear basis monomials given by

m =
[
1 0 ξ 0 η 0
0 1 0 ξ 0 η

]
. (4.12)

Figure 21a, b show plots of L2 error, as defined by (4.11),
versus mean element diameter h̄ for displacements in the x−
and y−directions respectively. We note, in both figures, that
the convergence rate, as indicated by the gradient, is approxi-
mately equal to 2 for all formulations as is expected. Further,
we note that the Q1 formulation has a very slightly steeper
gradient than that of theVEMformulations. This is likely due
to the bilinear interpolation of the degrees of freedom used
for the Q1 formulation in calculating the error, as opposed to
the linear polynomial approximation used for the VEM for-
mulations, and does not necessarily imply greater accuracy
of the respective degrees of freedom.

To further assess the performance of the VEM, and to
investigate the small differences in convergence rate between
the VEM formulations and the bilinear approximation, we
propose an error measure considering only behaviour along
element boundaries. Such an error estimate would require
no approximations of the displacements beyond those made
during the original formulation of the method. Further, it
would allow for a more accurate comparison of the accuracy
of the degrees of freedom of the VEM formulations relative
to those of the bilinear approximation. We define this edge-
based error norm as

Eui ,Γ =
⎛
⎝

ne∑
i=1

∫
e

∣∣∣∣∣
ui − uhi

L

∣∣∣∣∣
2

dΓ

⎞
⎠

0.5

, (4.13)
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Fig. 22 The beam problem: L2 edge error versus mean element diameter h̄ for a x-displacement; and b y-displacement
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Fig. 23 The beam problem: L2 stress error versus mean element diameter h̄ for a σ11; b σ22; c σ12 and; d σVM
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where L denotes the length of all unique edges in a mesh,
and ne is the number of unique edges.

Figure 22a, b show plots of L2 edge error, as defined by
(4.13), versus mean element diameter h̄ for displacements
in the x- and y-directions respectively. We note, in both fig-
ures, that the convergence rate is approximately equal to 1 for
all formulations. Further, the convergence behaviour of the
VEM Quad formulation closely matches that of the bilinear
approximation. Thus the accuracy of the degrees of freedom
of the two formulations are comparable, and the slight dis-
crepancy in the gradients noted in Fig. 21 is therefore a result
of the different interpolants used in computing the error and
not due to differences in accuracy of the degrees of freedom.

Stress error Wemake use of an L2 norm as an error estimate
of the stress field with the error defined as

Eσi j =
(

N∑
i=1

∫
E

∣∣∣σi j − σ h
i j

∣∣∣2 dΩ

)0.5

. (4.14)

To determine the stress field associated with an element
we employ the projection operator, allowing (4.14) to be
expressed as

Eσi j =
(

N∑
i=1

∫
E

∣∣σi j − (CΠuh)i j
∣∣2 dΩ

)0.5

. (4.15)

As an additional stress measure we introduce the equivalent
Von Mises stress σVM given by

σVM =
√

σ 2
11 − σ11σ22 + σ 2

22 + 3σ12. (4.16)

Figure 23 shows plots of the L2 error of the stress fields,
as defined by (4.15), versus mean element diameter h̄. Fig-
ure 23a, b, c and d plot the error for σ11, σ22, σ12 and the
equivalent Von Mises stress σVM respectively. We note in
all cases a convergence rate, as indicated by the gradient, of
approximately 1 as expected. Furthermore, the convergence
rate of the stresses associated with the VEM formulations are
comparable to those of the bilinear approximation in which
the stress field is not assumed to be constant.

The convergence rates we have presented conform with
those presented in [21] and [22] using a mixed formulation
and stress recovery procedure on degenerate patches respec-
tively. Both works considered the case of isotropic elasticity,
however, it is noteworthy that similar convergence results
were obtainedwithout adaptation or extension of themethod.

5 Concluding remarks

In this work we have formulated and implemented a virtual
element method for plane transversely isotropic elastic-
ity, making provision for homogeneous as well as non-
homogeneous bodies. In the latter case, various options for
taking account of the non-constant elasticity tensor are inves-
tigated. The formulations have been studied numerically
through two model problems, and for three different kinds of
polygonal meshes. The results have been compared against
those obtained using conventional conforming finite element
approximations with bilinear and biquadratic approxima-
tions.

The VEM approximations are found to be locking-free for
both near-incompressibility and near-inextensibility, with-
out the need to make modifications to the formulation. In
the case of finite element approximations, the well-known
volumetric locking behaviour of bilinear approximations is
evident, except for a range of parameters corresponding to
mild anisotropy. This behaviour is consistent with what has
been shown in [20]; for mild anisotropy the Lamé parameter
related to the volumetric response is bounded. Locking does
however occur in the inextensible limit. Further, the VEM
formulations are shown to exhibit the expected convergence
rates for both displacement and stress fields, again, requiring
no modification to the method.

There have been few studies of transverse isotropy in the
context of development of new finite element and related
methods. The present study and the work cited above con-
stitute two new contributions. Further work is in progress
on alternative formulations such as, for example, the use of
discontinuous Galerkin methods. The extension to problems
involving nonlinear material behaviour and large deforma-
tions is also in progress. It would be of interest to investigate
the extension of the work presented here to include higher
order VEMs as well as problems in three dimensions.
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