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Abstract
We introduce a comprehensive framework for the efficient implementation of finite deformation gradient-regularised damage
formulations in existing finite element codes. The numerical implementation is establishedwithin a thermo-mechanically fully
coupled finite element formulation, where the heat equation solution capabilities are utilised for the damage regularisation.
The variationally consistent, gradient-extended and geometrically non-linear damage formulation is based on an overall free
energy function, where the standard local free energy contribution is additively extended by two non-local terms. The first
additional term basically contains the referential gradient of the non-local damage variable. Secondly, a penalty term is
added to couple the local damage variable—the evolution of which is governed by an ordinary differential equation—and the
non-local damage field variable that is governed by an additional balance equation of elliptic type.

Keywords Gradient-enhanced damage · Heat equation · Finite element implementation · Abaqus

1 Introduction

This work deals with a modern, variationally consistent,
gradient-enhanced finite strain continuum damage frame-
work, where the focus of the work at hand is set on a new and
efficient strategy concerning the numerical implementation
in existing finite element codes. The considered non-local,
gradient-enhanced damage framework is based on the work
by Waffenschmidt et al. [47], where, following a concept by
Dimitrijević andHackl [8], the local free energy of the under-
lying material is enhanced by a non-local gradient term.

Classic works on the modelling of damage, such as the
work of Kachanov [15], consider damage to be a local effect
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where an effective area reduction of the stress-bearing region
leads to material degradation. For an overview of the large
variety of classic damage-related models, we refer the reader
to the overview by Krajcinovic and Lemaitre [20] or to well-
established textbooks such as the ones by Kachanov [16],
Lemaitre [24], Lemaitre and Chaboche [25], and the compre-
hensive study of damagemechanics provided by Krajcinovic
[19] and references cited therein. Common ductile damage
formulations are based on the pioneering work by Gurson
[13] or variations thereof, cf., e.g., Skallerud and Zhang [42].
More recent works, combining damagemechanicswith com-
plex formulations such as crystal-plasticity formulations or
a micro-sphere scheme, include the articles by Ekh et al. [9]
and Sáez et al. [40], respectively.

From a modelling perspective, a significant drawback of
classic continuum damage formulations is their inherently
local character. In the context of the finite element method,
the purely local consideration of continuum damage leads
to mesh-dependency and therefore to mostly meaningless
results. More specifically speaking, upon mesh refinement
the damage zone decreases and even tends to vanish in the
limiting case. To regularise the localised damage zone, dif-
ferent approaches have been established in the literature. In
addition to the use of viscous regularization approaches, see,
e.g., Peña [35] for amodern application, non-local continuum
theories have been developed, see, e.g., Eringen [10], and
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the works by Aifantis [2,3], Rogula [39]. For the comparison
of two such non-local continuum formulations, see, e.g., de
Vree et al. [7]. Non-locality can in general be incorporated by
either integral or gradient-type extensions of the underlying
continuum formulation. Gradient-type formulations provide
several advantages over integral-typenon-local formulations,
as discussed by, e.g., Lasry and Belytschko [23], Polizzotto
et al. [38], or Mühlhaus and Aifantis [32], making gradient-
extended formulations the more popular choice for damage
regularisation. The gradient-enhancement induces an addi-
tional Euler–Lagrange equation, i.e. balance equation, that
needs to be fulfilled for an additionally introduced indepen-
dent variable that constitutes an additional degree of freedom
of the boundary value problem.

Applications of such gradient-extended non-local theories
were introduced by de Borst and Pamin [6], see also Pamin
[33] and Peerlings et al. [34]. For the geometrically linear
case, different formulations for the simulation of gradient-
extended damage are presented by, e.g., Liebe et al. [27]
for the case of isotropic gradient damage, or by Kuhl and
Ramm [21] and Kuhl et al. [22] for the anisotropic case.With
respect to the geometrically non-linear case, the work by
Steinmann [44] was one of the first to introduce a non-local
strain energy density as an additional primary variable. This
approach, also used by Liebe and Steinmann [26] and Liebe
et al. [28], relies on a numerically rather cumbersome global
active set strategy to enforce the correspondingKuhn–Tucker
conditions.

The work at hand, in contrast, is based on the geometri-
cally non-linear formulation presented by Waffenschmidt et
al. [47], where a variational framework leads to a symmetric
global equation system that is solved by standard symmetric
equation solvers. The local free energy function of the under-
lying material is enhanced by a gradient-term that essentially
contains the gradient of the non-local damage variable,
where the latter is introduced as an additional indepen-
dent field variable. The equivalence between local damage
variable—governing the local scalar [1 − d]-type damage
formulation—and its non-local counterpart is enforced by
introducing an additional penalty termwithin the free energy
function. This overall approach is directly related to the
micromorphic thermo-mechanical framework proposed by
Forest [11,12] as well as to the multi-field incremental vari-
ational framework elaborated by Miehe [31].

Recent applications and extensions of the particular dam-
age formulation considered in thiswork have been introduced
by Polindara et al. [36,37], Waffenschmidt et al. [48], and
Kiefer et al. [17], all based on the implementation of an elab-
orate user element formulation within the commercial finite
element code Abaqus. However, the use of a user element
formulation—enabled in Abaqus via the UEL subroutine—
has several drawbacks. First, there is a noteworthy effort in
development and testing that accompanies any kind of user

element formulation, see, e.g., Kouhia [18] for an account
on the solution of the non-linear heat respectively diffusion
equation. Additionally, Abaqus cannot genuinely visualise
the results of a simulation utilising such a UEL subroutine.
Workarounds as highlighted by Waffenschmidt et al. [47]
involve considerable additional programming effort includ-
ing particular Fortran and C++ subroutines in connection
with the Abaqus scripting interface. Moreover, the incor-
poration of advanced element features such as contact or
incompressibility requires further extensions and testing of
the UEL subroutine. Finally, before being able to use other
element types such as structural elements, the corresponding
element formulation needs to be developed basically from
scratch again.

To overcome these drawbacks, we provide a compre-
hensive framework for the regularisation of damage for-
mulations, eliminating the necessity of implementing an
appropriate user element routine. The framework is based
on the observation that the underlying damage-related bal-
ance equation is a partial differential equation of elliptic type,
as is the steady-state heat equation. Accordingly, we show
that the damage regularisation can be accomplished by using
the heat-equation solution capabilities included in thermo-
mechanically coupled finite element formulations. In this
work, we exemplarily focus on the finite element software
Abaqus for the implementation, where we utilise the two
most general Abaqus subroutines for this particular coupled
problem, i.e. the UMAT and UMATHT subroutine. The frame-
work provided in this work circumvents the cumbersome
user element formulations and their associated drawbacks.
Note, however, that using the heat equation in the con-
text of gradient-enhanced damage restricts the model to a
scalar variable for the gradient enhancement and, moreover,
that further coupling such as thermo-mechanical coupling is
excluded.

Our work is structured as follows. In Sect. 2, the mechan-
ical and the damage-related balance equations governing the
coupled boundary value problem are derived in a variational
framework. The associated Euler–Lagrange equations are
additionally presented in spatial formulation, enabling us
to relate them to the spatial heat equation in Sect. 3. Sec-
tion 4 then discusses the details of the exemplary Abaqus
implementation, including the proper definitions of the return
variables required by the UMAT and UMATHT subroutines,
respectively. Here, we additionally provide general algo-
rithms for the automatic numerical computation of the
required Abaqus tangent contributions for general thermo-
mechanically coupled user materials. An exemplary local
constitutive model is considered in Sect. 5, including a brief
examination of the local material behaviour and a presen-
tation of representative finite element computations. In this
section, we also show that regularised damage and advanced
element features, such as contact, can be directly combined
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and basically work out of the box. The contribution is con-
cluded by a brief summary and discussion provided in Sect. 7.

2 Variational framework

This section deals with the derivation of both mechanical
and damage-related balance equations governing the coupled
boundary value problem. The balance equations are derived
within a variational framework, using the principle of mini-
mum total potential energy. The resulting variational forms
and their associated Euler–Lagrange equations are addition-
ally presented in spatial formulation, which constitutes the
basis for the finite element implementation.

In Sect. 2.1 we define the local and nonlocal inter-
nal and external energy contributions that constitute the
overall potential energy of the body under consideration.
Section 2.2 then applies variational principles to obtain the
general stationarity conditions of the problem. These are then
transformed to a spatial form in Sect. 2.3, facilitating the
derivation of the general Euler–Lagrange equations in spatial
format in Sect. 2.4. Finally, we specify the damage-related
Euler–Lagrange equation—or rather balance equation—by
specifying the gradient-enhanced internal energy contribu-
tions in Sect. 2.5.

2.1 Internal and external energy contributions

We start by assuming the existence of an overall inter-
nal free energy potential Ψint. For conceptual clarity, we
restrict the work at hand to an underlying hyperelastic
material response, governed by the internal, local elastic
energy potentialψe(F). Damage to thematerial is accounted
for by introducing a damage function fd(κ) : R

+ →
(0, 1] | { fd(0) = 1, lim

κ→∞ fd(κ) = 0}. To regularise the

damaged material response in the context of the finite ele-
ment method, a gradient-extended nonlocal free energy term
ψ

grad
nloc (∇Xφ; F) is additionally accounted for in the overall

internal free energy. Finally, a penalty term ψ
plty
nloc(φ, κ) con-

necting local and non-local damage variables, κ and φ, is
taken into account. The overall internal free energy potential
Ψint thus is of the form

Ψint(F, φ,∇Xφ, κ) = fd(κ) ψe(F) + ψ
grad
nloc (∇Xφ; F)

+ ψ
plty
nloc(φ, κ) . (1)

Here, F = ∇Xϕ(X, t) denotes the deformation gradient,
where x = ϕ(X, t) ∈ Bt is the current placement of mate-
rial points with referential position X ∈ B0, and φ is the
additional damage-related degree of freedom introduced for
the regularisation of the damage formulation. The cofactor
of the deformation gradient reads cof(F) = J F−t with
J = det(F) > 0.

For conceptual clarity, we furthermore restrict the formu-
lation to conservative external loads that only depend on the
current placement ϕ and thus can be incorporated in terms of
Ψext(ϕ) = Ψ vol

ext (ϕ) + Ψ sur
ext (ϕ), where a decomposition into

volume loads, referred to Ψ vol
ext , and surface loads, referred

to Ψ sur
ext , is considered. The total free energy Ψtotal is then

additively composed of overall internal and external energy
contributions, i.e.

Ψtotal(ϕ, F, φ,∇Xφ, κ) = Ψint(F, φ,∇Xφ, κ)

+ Ψ vol
ext (ϕ) + Ψ sur

ext (ϕ) . (2)

Integrating (2) over the reference domain B0 of the body
under consideration results in the total potential energy
Π(ϕ, F, φ,∇Xφ, κ) = Πint(F, φ,∇Xφ, κ) + Πvol

ext (ϕ) +
Π sur

ext (ϕ), with

Πint(F, φ,∇Xφ, κ) =
∫
B0

Ψint(F, φ,∇Xφ, κ) dV , (3)

Πvol
ext (ϕ) =

∫
B0

Ψ vol
ext (ϕ) dV = −

∫
B0

B̄ · ϕ dV , (4)

Π sur
ext (ϕ) =

∫
∂B0

Ψ sur
ext (ϕ) dA = −

∫
∂B0

T̄ · ϕ dA . (5)

For the particular format assumed, B̄ represents the body
force per unit volume in the reference configuration and
T̄ denotes the traction per unit reference surface area. In
Sect. 2.2 we apply a variational framework in view of the
minimisation of the total potential energy defined above.

2.2 Variational form—general stationarity
conditions (material format)

With the contributions to the total potential energy defined in
(3)–(5), we now employ a variational framework to derive the
general stationarity conditions. The boundary value problem
is governed by the principle of minimum potential energy,

min
ϕ,φ

Π(ϕ, F, φ,∇Xφ, κ) , (6)

so that the first variation of the total potential energy with
respect to both degrees of freedom ϕ and φ has to vanish, i.e.

δΠ(ϕ, F, φ,∇Xφ, κ) = ∂Π

∂F
: δF + ∂Π

∂ϕ
· δϕ

︸ ︷︷ ︸
δϕΠ

+ ∂Π

∂∇Xφ
· δ∇Xφ + ∂Π

∂φ
δφ

︸ ︷︷ ︸
δφΠ

= 0 . (7)
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Assuming that both contributions δϕΠ and δφΠ in (7) van-
ish independently and using representations (3)–(5) for the
contributions to the total potential energy Π induces

δϕΠ = 0 =
∫
B0

∂Ψint

∂F
: δF dV −

∫
B0

B̄ · δϕ dV

−
∫

∂B0

T̄ · δϕ dA , (8)

δφΠ = 0 =
∫
B0

∂Ψint

∂∇Xφ
· δ∇Xφ dV

+
∫
B0

∂Ψint

∂φ
δφ dV . (9)

In (8) and (9) we can identify flux terms P and Y , and source
terms B̄ and Y , namely

P := ∂Ψint

∂F
, Y := ∂Ψint

∂∇Xφ
,

B̄ := − ∂Ψ vol
ext

∂ϕ
, Y := − ∂Ψint

∂φ
,

(10)

so that the general stationarity conditions (8) and (9) take the
more compact form

δϕΠ = 0 =
∫
B0

P : ∇Xδϕ dV −
∫
B0

B̄ · δϕ dV

−
∫

∂B0

T̄ · δϕ dA , (11)

δφΠ = 0 =
∫
B0

Y · ∇Xδφ dV −
∫
B0

Y δφ dV , (12)

with δF = ∇Xδϕ and δ∇Xφ = ∇Xδφ. Note that surface
contributions related to the damage field φ are assumed to
vanish identically.

2.3 Variational form—representation in terms of
spatial arguments

To formulate the general stationarity conditions (11) and
(12) in terms of spatial arguments, a Piola transformation is
applied to the flux terms P andY , yielding σ = P ·cof(F−1)

and y = Y · cof(F−1). The spatial representations of the
source terms B̄ and Y are obtained via b̄ = J−1 B̄ and
y = J−1 Y . Moreover, for the gradient terms we find the
relations ∇Xδϕ = ∇xδϕ · F and ∇Xδφ = ∇xδφ · F by defi-
nition of the deformation gradient F = ∇Xϕ. Finally, for the
transformation of volume and surface elements in (11) and
(12) we employ the definition of the Jacobian J = dv/ dV
and Nanson’s formula, n da = cof(F) · N dA, with n and N
denoting the spatial andmaterial surface outward normal unit
vectors, resulting in the general variational forms in spatial
description,

0 =
∫
Bt

σ : ∇xδϕ dv −
∫
Bt

b̄ · δϕ dv −
∫

∂Bt

t̄ · δϕ da ,

(13)

0 =
∫
Bt

y · ∇xδφ dv −
∫
Bt

y δφ dv . (14)

2.4 Derivation of the general Euler–Lagrange
equations in spatial format

In order to obtain the Euler–Lagrange equations fulfilling
the general stationarity conditions in spatial format, (13) and
(14), we use the product rule for the divergence operation

σ : ∇xδϕ = ∇x · [δϕ · σ ] − δϕ · [∇x · σ ] , (15)

y · ∇xδφ = ∇x · [δφ y] − δφ ∇x · y . (16)

Integration of (15) and (16) over the domain Bt and applica-
tion of Gauss’s divergence theorem yields

∫
Bt

σ : ∇xδϕ dv =
∫

∂Bt

[δϕ · σ ] · n da

−
∫
Bt

δϕ · [∇x · σ ] dv , (17)

∫
Bt

y · ∇xδφ dv =
∫

∂Bt

[δφ y] · n da −
∫
Bt

δφ ∇x · y dv ,

(18)

so that the general stationarity conditions in spatial format,
(13) and (14), can be represented via

0 =
∫

∂Bt

δϕ · [σ · n − t̄] da −
∫
Bt

δϕ · [∇x · σ + b̄] dv ,

(19)

0 =
∫

∂Bt

δφ [ y · n] da −
∫
Bt

δφ [∇x · y + y] dv , (20)

fromwhich the Euler–Lagrange equations in spatial form are
identified as

∇x · σ + b̄ = 0 in Bt , (21)

σ · n = t̄ on ∂Bσ
t , (22)

∇x · y + y = 0 in Bt , (23)

y · n = 0 on ∂By
t , (24)

with ∂By
t = ∂Bt , i.e. for the damage field we assume homo-

geneous Neumann boundary conditions—also referred to as
natural or zero-flux boundary conditions—on the entire sur-
face of the body.
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2.5 Specification of gradient-enhanced energy
contributions

To obtain an Euler–Lagrange equation for the damage vari-
able that has the form of the heat equation, the spatial flux
and source terms y and y governing balance equations (23)
and (24) have to be of proper format. From the definition of
flux and source terms provided in (10), Y := ∂Ψint/∂∇Xφ

and Y = −∂Ψint/∂φ, we recall that both quantities depend
on the specification of the overall internal free energy Ψint.
Based on the additive structure of Ψint assumed in (1), we
particularly find that both Y and Y depend only on the non-
local energy contributions ψ

grad
nloc (∇Xφ; F) and ψ

plty
nloc(φ, κ).

In line with, e.g., Waffenschmidt et al. [47], we specify these
nonlocal terms as

ψ
grad
nloc (∇Xφ; F) = cd

2
∇Xφ · C−1 · ∇Xφ

= cd
2

∇xφ · ∇xφ , (25)

ψ
plty
nloc(φ, κ) = βd

2
[φ − κ]2 , (26)

where cd is a damage-related regularisation parameter,
βd denotes a penalty-type parameter penalising deviations
between local and non-local damage variables, κ and φ,
respectively, and C = Ft · F represents the right Cauchy-
Green deformation tensor. Alternatively, a material represen-
tation of the form ψ

grad
nloc = cd/2∇Xφ · ∇Xφ could have been

chosen, see, e.g., Askes et al. [4], Sprave and Menzel [43] as
well as the references cited therein for further discussions on
the choice of non-local terms.

These nonlocal free energy contributions in combination
with the spatial transformation rules introduced in Sect. 2.3
result in the specific flux and source terms

y = J−1 Y · Ft = J−1 ∂Ψint(F, φ,∇Xφ, κ)

∂∇Xφ
· Ft

= J−1 cd ∇xφ , (27)

y = J−1 Y = − J−1 ∂Ψint(F, φ,∇Xφ, κ)

∂φ

= − J−1 βd [φ − κ] . (28)

Inserting these specific flux and source terms in the relation
representing the general format of the spatial variational form
of the damage field variable (14) yields the representation

0 =
∫
Bt

J−1 cd ∇xφ · ∇xδφ dv

+
∫
Bt

J−1 βd [φ − κ] δφ dv . (29)

Considering the product rule for the divergence operator in
terms of ∇xφ · ∇xδφ = ∇x · [∇xφ δφ] − ∇x · ∇xφ δφ and
applying Gauss’s theorem, the first integral in (29) can be
expressed as∫
Bt

J−1 cd ∇xφ · ∇xδφ dv =
∫

∂Bt

J−1 cd [δφ ∇xφ] · n da

−
∫
Bt

J−1 cd ∇x · [∇xφ] δφ dv.

(30)

Assuming zero-flux boundary conditions, i.e. ∇xφ · n = 0
on ∂By

t = ∂Bt in line with (24), the surface integral vanishes
and the weak form (29) finally takes the representation
∫
Bt

J−1 cd ∇x ·[∇xφ] δφ dv−
∫
Bt

J−1 βd [φ−κ] δφ dv = 0 .

(31)

As a result, the Euler–Lagrange equations for the non-local
damage field variable in spatial format, (23) and (24), result
in

cd ∇x · [∇xφ] − βd [φ − κ] = 0 in Bt , (32)

∇xφ · n = 0 on ∂By
t = ∂Bt . (33)

The structure of the above balance equation for the damage
field is compared to the heat equation in Sect. 3.

3 Heat equation-based solution framework

The idea behind a ‘heat equation-based’ solution frame-
work is to use thermo-mechanically coupled finite element
formulations for the regularisation of damage. As thermo-
mechanically coupled finite elements solve for the mechan-
ical equilibrium conditions (21) and for the heat equation
simultaneously, we rearrange the damage-related balance
equation (32) such that it formally corresponds to an appro-
priately specified form of the heat equation. Conceptually
speaking, we ‘abuse’ the heat equation solution capabilities
to solve the damage balance equation, using the ‘temper-
ature field’ to store the non-local damage field variable φ.
The reason for this approach is that many existing commer-
cial and non-commercial finite element codes do not offer
regularised damage formulations, but on the other hand pro-
vide the ability to include thermo-mechanically coupled user
material subroutines to be used in connection with a given
library of thermo-mechanically coupled finite element for-
mulations. The great advantage from a user’s perspective in
using these capabilities for the damage regularisation is that
the necessity for writing an own user element, e.g. via the
UEL subroutine in Abaqus, is eliminated. A ‘local’ mate-
rial subroutine that returns appropriate ‘thermo-mechanical’

123



852 Computational Mechanics (2019) 64:847–877

tangent contributions to be processed by the implicit finite
element code is sufficient to regularise the damage formula-
tion. As a result, existing element features such as contact,
hybrid element formulations, structural elements, and poten-
tially others—if provided for thermo-mechanically coupled
problems—can be used out of the box in conjunction with
regularised damage.

In the following, we briefly introduce the general format
of the heat equation that can be solved within thermo-
mechanically coupled Abaqus user subroutines. The general
form of the heat equation presented in Sect. 3.1 is the refer-
ence representation that is required for the proper derivation
of general thermal constitutive sensitivities as discussed in
detail later on, cf. Sect. 4.2. In Sects. 3.2 and 3.3 we proceed
with the discussion of two approaches for the regularisation
of damage using the heat equation.

3.1 Heat equation—general format

The general form of the heat equation that can be solved
within Abaqus in the context of a thermo-mechanically cou-
pled user material formulation can be represented in spatial
local form as

ρ(J ; X) cp(θ, F,I; X) θ̇ + ∇x · q(θ,∇xθ, F,I, t; X)

= rθ (θ, F,I, t; X) , (34)

with ρ(J ; X) as the spatial mass density, cp(θ; X) as the
heat capacity, θ̇ as the material time derivative of the abso-
lute temperature θ > 0, q(θ,∇xθ, F,I, t; X) as the spatial
heat flux density, and rθ (θ, F,I, t; X) as the spatial heat
source. The argument I denotes a set of internal variables.
The heat flux density q is most commonly expressed in terms
of Duhamel’s law of heat conduction, where the direct tem-
perature dependence is neglected and a linear function of the
temperature gradient is assumed, so that the spatial descrip-
tion reads q = − κ t (θ; X) · ∇xθ . Here, κ t (θ; X) denotes the
positive semi-definite spatial thermal conductivity tensor.

In view of identifying a representation formally equiv-
alent to balance equation (32), we now assume a homo-
geneous mass density ρ, a homogeneous and temperature-
independent heat capacity cp as well as thermal isotropy
in terms of κ t = κt I , so that the differential form of
Duhamel’s law of heat conduction simplifies to Fourier’s
law, q = − κt ∇xθ . As a result, relation (34) is expressed
in a simpler form as

ρ cp θ̇ − κt ∇x · [∇xθ ] = rθ (θ, F,I, t; X) . (35)

This relation represents the well-known spatial transient heat
equation for a homogeneous body with internal heat sources
where Fourier’s law is included as a thermal constitutive

assumption. Next, we turn to the comparison of this equa-
tion with the damage balance equation.

3.2 Damage regularisation using the heat
equation—transient formulation

In this section we briefly review the approach introduced
by Hortig [14], where a regularisation of damage using the
heat equation within Abaqus was established. However, note
that the regularisation technique applied there corresponds to
a rate-dependent damage formulation and thus differs from
the approach proposed in the work at hand as presented in
Sect. 3.3. Starting with the local spatial form of the transient
heat equation for a homogeneous and isotropic continuum
(35), Hortig [14] discussed that transient heat equation and a
damage balance equation of the form presented in (32) differ
in the rate term, i.e.

transient heat equation, see (35) :
ρ cp θ̇ − κt ∇x · [∇xθ ] = rθ , (36)

damage balance, see (32) :
βd φ − cd ∇x · [∇xφ] = βd κ . (37)

The formal difference in the above relations lies in the first
term of both equations. To bemore specific, the heat equation
contains the rate of the field variable, i.e. θ̇ for a thermal
problem, whereas the damage balance contains the variable
itself, i.e. φ.

To cast the damage balance equation into the form of the
transient heat equation within Abaqus, Hortig [14] assumed
unit mass density and implemented a ‘time and space-
adaptive’ heat capacity that is locally adapted in suchmanner
that the terms cp θ̇ and βd φ numerically coincide in the
equilibrium state. Technically speaking, an additional user-
defined field (USDFLD) was introduced,which thenwas used
to compute a modified heat capacity c̃p(Δt) which depends
on the discrete time step Δt used within the simulation.
With this approach, damage-induced softening effects and
mesh-objective finite element solutions were successfully
computed for inhomogeneous boundary value problems.

In the work at hand, however, we introduce an alterna-
tive approach for the regularisation of damage using the heat
equation, this time based on a steady state formulation as
presented in Sect. 3.3. The advantage of the approach pro-
posed in this work is that the numerical implementation is
more convenient because the necessity for the introduction
of an additional user-defined field (USDFLD) is eliminated.
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3.3 Damage regularisation using the heat
equation—steady state formulation

We now consider the steady state thermal problem within a
homogeneous, isotropic continuum. In this case, the time-
dependence of the temperature vanishes, inducing θ̇ = 0. As
a result, the formerly parabolic partial differential equation
that governs the transient heat distribution (35) reduces to an
elliptic equation, reflecting a steady state thermal problem.
We further note that the balance equation governing the non-
local damage field variable (32) is a Poisson-type equation
and thus of elliptic nature as well. Hence, appropriate rear-
rangement of terms in (32) results in a formal structure that
is equivalent to the structure of the steady state heat equation,
i.e.

steady state heat equation, θ̇ = 0, cf. (35) :
− κt ∇x · [∇xθ ] = rθ , (38)

damage balance, see (32) :
− cd ∇x · [∇xφ] = βd [κ − φ] . (39)

Note that the right-hand side of (39) reflects a ‘damage source
term’ that we denote as rd in the following, i.e. we introduce
the definition rd := βd [κ −φ]. We now take a closer look at
relations (38) and (39) to examine how the damage-related
parameters governing (39) can be interpretedwhen compared
to the steady state heat transfer problem. First, it is immedi-
ately apparent that the regularisation parameter cd used in the
damage formulation formally corresponds to the spatial heat
conductivity κt . Secondly, we observe a quite interesting—
and reasonable—structure that is obtained for the ‘damage
source term’. We find that the penalty-related parameter βd

introduced in (26) appears, penalising deviations between
the local damage variable κ and its non-local counterpart φ.
In other words, the structure of the right-hand side of (39)
represents a significant ‘damage source’ affecting the field
variable φ, scaled by the penalising coefficient βd, as long as
κ and φ do not coincide. We now turn to the Abaqus imple-
mentation presented in Sect. 4, where Sect. 4.2 particularly
focuses on the user implementation of the above specified
heat—or rather damage balance—equation.

4 Abaqus implementation—UMAT
subroutine for thermo-mechanically
coupled problems

Due to the formal equivalence of the governing partial differ-
ential equations demonstrated in (38) and (39), a numerical
implementation of the damage regularisation framework
derived in Sect. 2 can be conveniently carried out by making
use of the solution procedures already included in existing

thermo-mechanically coupled finite element formulations.
For the specification of thermo-mechanically coupled user
materials, Abaqus requires the coding of the UMAT and the
UMATHT subroutine. In Sect. 4.1, we discuss the required
return variables and tangent operators to be coded within
the UMAT subroutine, where we additionally focus on the
corresponding expressions relevant in the context of the reg-
ularised damage framework presented in this work. Note that
the UMAT subroutine only specifies the heat source and the
mechanical constitutive behaviour and their related tangent
operators. With Abaqus being able to handle general thermal
constitutive relations in the form of (34), the use of thermo-
mechanically coupled user material behaviour additionally
requires the definition of the thermal constitutive properties
and related sensitivities within the UMATHT subroutine as
elaborated in Sect. 4.2.

After the tangent operators to be computed within the
UMAT and UMATHT subroutines are established in Sects. 4.1
and 4.2, we then turn to the automatic numerical computa-
tion of these operators in Sect. 4.3. To this end, the latter
section provides generic algorithms that automatically com-
pute all of the required non-trivial tangent operators based on
the repeated numerical evaluation of a classical constitutive
routine.

4.1 Overview—Abaqus UMAT subroutine return
variables

After the formal equivalence between steady state heat equa-
tion and damage balance equation was shown in Sect. 3.3 we
now turn to the details of implementation. For a mechanical
user material model, the return variables STRESS, STATEV,
and DDSDDE need to be computed and returned within the
UMAT user subroutine. For thermo-mechanically coupled
user material formulations as used in this work, the addi-
tional quantitiesRPL,DRPLDT,DRPLDE and DDSDDTmust
be properly specified. The proper definitions of the afore-
mentioned variables required by Abaqus are summarised
in Table 1. For the mechanical subproblem, the Cauchy
stresses σ and a vector of internal state variables I have
to be returned. The additionally required mechanical tangent
DDSDDE requires special attention as it must be consistent
with the Jaumann rate formulation employed by Abaqus.
Details on the derivation of the specific structure of DDSDDE
are given in A.5. For conceptual clarity, we restrict this
work to an isotropic, purely hyperelasticmechanical material
model that is formulated in terms of the right Cauchy-Green
deformation tensorC and the corresponding Piola–Kirchhoff
stress tensor S. With this local model and the damage frame-
work introduced in Sect. 2, the Cauchy stresses σ to be
returned as STRESS follows from a weighted push-forward
operation applied to the Piola–Kirchhoff stress tensor S, i.e.
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Table 1 Overview of the Abaqus return variables that have to be spec-
ified within the UMAT user subroutine when a thermo-mechanically
coupled user material is employed. Note that we assume the consti-
tutive relation to be formulated in terms of the material quantities C
and S, i.e. the right Cauchy-Green deformation tensor and the Piola–

Kirchhoff stress tensor. We therefore require ϕ∗(•) as the push-forward
operator to transfer related material sensitivities to the spatial form.
Special attention has to be paid to the mechanical tangent contribution
DDSDDE, which must be consistent with the Jaumann rate formulation
that Abaqus is based on, see Sect.A.5 for details on the derivation

UMAT variable Thermo-mechanical Damage model Derivation

STRESS σ (Identical) see (40)

STATEV I κ –

DDSDDE J−1
[
ϕ∗

(
2
dS
dC

)
+ ecor

]
(Identical) see (41)

RPL rpl rd := βd[κ − φ] see (42)

DRPLDT
drpl
dθ

βd

[
dκ

dφ
− 1

]
see (43)

DRPLDE ϕ∗
(
drpl
dC

)
βd ϕ∗

(
dκ

dC

)
see (44)

DDSDDT ϕ∗
(
dS
dθ

)
ϕ∗

(
dS
dφ

)
see (45)

STRESS := σ = J−1 ϕ∗(S) = J−1 F · S · Ft

= J−1 τ , (40)

with the Kirchhoff stress tensor τ . For the mechanical tan-
gent, we first compute its material representation in terms of
E := 2 dS/dC , followed by a push-forward operation, addi-
tion of the Jaumann co-rotational correction term, cf. A.5,
and division by J = det(F), yielding

DDSDDE : = J−1
[
ϕ∗

(
2
dS
dC

)
+ ecor

]

= J−1 [
e + ecor

]
. (41)

Here, ecor = 1/2 [I ⊗ τ + I ⊗ τ + τ ⊗ I + τ ⊗ I] is the
additional tangent contribution accounting for the Jaumann
rate formulation, see (97), where I denotes the second-order
identity tensor and where the non-standard dyadic prod-
ucts are defined as [A1 ⊗ A2] : A3 = A1 · A3 · At

2 and
[A1 ⊗ A2] : A3 = A1 · At

3 · At
2. The representations of

both stress response and mechanical tangent are basically
unaffected by the regularised damage framework, and as
internal state variable only the local damagevariable remains,
STATEV := κ , cf. Table 1.

As this work focuses on the damage regularisation using
the heat equation, we next discuss the associated thermo-
mechanical return values and sensitivities RPL, DRPLDT,
DRPLDE and DDSDDT that Abaqus expects to be returned
in appropriate format. The scalar-valued variable RPL rep-
resents the heat source rpl that Abaqus expects to be defined,
where the index ‘pl’ refers to a plastic process, which in a
standard thermo-mechanical formulation is the main source
for the occurrence of local heating. To regularise the damage
formulation at hand, however, we return the expression

RPL := rd := βd [κ − φ] (42)

as ‘heat source’ instead, as elaborated in Sect. 3.3. Next, the
sensitivity of the heat source with respect to the temperature,
DRPLDT, must be provided. Within the presented damage
framework, this translates to the sensitivity of the damage
source term rd with respect to the non-local damage field
variable φ that we consider in place of the temperature field.
With the damage source term specified in (42), the required
sensitivity takes the form

DRPLDT := drd
dφ

= βd

[
dκ

dφ
− 1

]
. (43)

Note that the derivative dκ/dφ in (43) depends on the specific
local constitutive formulation that is chosen to undergo regu-
larised damage, see Appendix B for an exemplary derivation
of the required expression. Besides ‘temperature’ sensitivity,
the sensitivity of the source termwith respect to the deforma-
tion, DRPLDE, must be specified.We compute the sensitivity
of the source term with respect to the material deformation
measure C and then apply a push-forward operation in order
to obtain the consistent spatial tangent expression required
by Abaqus. With the source term given in (42), we obtain

DRPLDE := ϕ∗
(
drd
dC

)
= βd ϕ∗

(
dκ

dC

)
, (44)

where we used the fact that βd is a constant coefficient and
that φ and C result from independent field variables, so that
dφ/dC = 0. As with (43), the derivative dκ/dC in (44)
depends on the particular local constitutive formulation. An
exemplary derivation of dκ/dC for a Neo–Hookean local
model with a given damage function fd(κ) is provided in
AppendixB. Finally, the sensitivity of stresseswith respect to
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the ‘temperature’ field variable is to be specified as DDSDDT
in spatial form. Accordingly, for a constitutive model for-
mulated in terms of the Piola–Kirchhoff stress tensor S, and
with the non-local damage variable φ taking the place of the
temperature field, we find

DDSDDT := ϕ∗
(
dS
dφ

)
. (45)

A further particularisation of (45) is possible as soon as the
local constitutive model is specified. See Sect. 5 for the par-
ticular local formulation chosen for the examples provided
in this work.

The push-forward a = ϕ∗(A) of material stress-type
second-order tensors A such as the ones involved in rela-
tions (40), (44), (45), reads

ϕ∗(A) = F · A · Ft . (46)

For the push-forward representation a = ϕ∗(A) of a related
material fourth order tensor A such as the tangent operator
given in (41) we have

ϕ∗(A) = [F ⊗ F] : A : [Ft ⊗ Ft] . (47)

With these relations at hand, the return variables to be speci-
fied in theAbaqusUMAT subroutine for thermo-mechanically
coupled usermaterials are fully defined. The above described
UMAT return variables and tangent operators are summarised
in Table 1 where the Abaqus expressions required for clas-
sic thermo-mechanical user problems on the one hand, and
the regularised damage formulation on the other hand are
compared to each other.

4.2 Specification and implementation of the
thermal constitutive
behaviour—UMATHT subroutine

For the complete user specification of coupled thermo-
mechanical behaviour in Abaqus, besides the standard user
material subroutine UMAT, see Sect. 4.1, the heat transfer
subroutine UMATHT also needs to be coded. The reason is
that Abaqus allows for the solution of a general form of the
heat equation as given in (34), where the heat transfer rela-
tion does not necessarily need to be of the form of Fourier’s
or even Duhamel’s law of heat conduction. The subroutine
UMATHT is called at every integration point of elements that
include a user defined thermo-mechanically coupled mate-
rial behaviour and is used to fully define the constitutive
properties of the heat equation. To be more specific, within
this routine the internal energy per unit mass U , its varia-
tion with respect to temperature dU/dθ and spatial gradients
of temperature dU/d∇xθ , need to be returned as variables

U, DUDT, and DUDG, respectively. Moreover, the heat flux
vector q and its variation with respect to temperature dq/dθ
and to gradients of temperature dq/d∇xθ , need to be speci-
fied and returned as FLUX, DFDT, and DFDG, respectively.
All these quantities can be specified as functions of time, of
internal variables, and of other parameters.

In view of the subsequent derivations, we briefly recall
that the general format of the spatial local form of the heat
equation introduced in Sect. 3.1 was simplified to constant
coefficients and thermal isotropy including Fourier’s law,

ρ cp θ̇ + κt ∇x · [∇xθ ] = rpl , (48)

by analogy with the damage balance equation (32). In line
with Abaqus conventions, the heat source is denoted as rpl
here. Even though we aim to carry out steady state heat trans-
fer computations, cf. Sect. 3.3, the transient part of (48) can
be specified in the UMATHT subroutine as well.

To this end we note that for a standard heat transfer
problem, i.e. a rigid heat conductor, the internal specific
energy depends solely on the temperature θ . In the case of a
homogeneous and constant heat capacity cp, the temperature-
dependent internal energy is simplyU (θ) = cp θ . Within the
regularised damage framework where the damage field vari-
able φ is used in place of the temperature θ , we return

U := U (φ) := εcp φ , (49)

where εcp is a ‘small’ numerical value.1

The required sensitivities with respect to temperature,
DUDT, and spatial gradient of temperature, DUDG, follow
as

DUDT := dU (φ)

dφ
= εcp (50)

and

DUDG := dU (φ)

d∇xφ
= 0 , (51)

respectively.
Considering Fourier’s law, the heat flux vector q(∇xθ)

to be returned as FLUX within the UMATHT subroutine is
specified as a function of the spatial temperature gradient
∇xθ only, taking the form q(∇xθ) = − κt ∇xθ , where κt
denotes the thermal conductivity, see (48). In the context of

1 For a steady state heat transfer problem, this value has no influence
on the computation and can even be set to zero. For practical purposes,
however, the damage regularisation can also be achieved by solving
the transient heat equation (48) with a numerically small value for the
heat capacity. This amounts to an only approximate fulfillment of the
damage balance equation (39).
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Table 2 Abaqus return variables to be specified within the UMATHT
user subroutine. For the damage balance equation given in the form
presented in Sect. 3.3, the internal energy U and the flux vector FLUX
as well as their sensitivities with respect to the field variable and the
spatial gradient of the field variable can be specified as shown. For a

standard thermo-mechanical problem the field variable is constituted by
the temperature θ . Within the presented ‘heat equation-based damage
regularisation framework’, the temperature is replaced by the non-local
damage field variable φ

UMATHT variable Thermal problem Damage model Derivation

U cp θ εcp φ See (49)

DUDT dU/dθ εcp See (50)

DUDG dU/d∇xθ 0 See (51)

FLUX q − cd ∇xφ See (52)

DFDT dq/dθ 0 See (53)

DFDG dq/d∇xθ − cd I See (54)

the regularised damage framework used in this work, this
translates to

FLUX := − cd ∇xφ , (52)

with cd denoting a lengthscale-type regularisation parameter,
cf. Sect. 3.3. With the definition of the flux vector given in
(52), the corresponding variations with respect to tempera-
ture and spatial gradient of temperature are given in terms of

DFDT := dq(∇xφ)

dφ
= 0 (53)

and

DFDG := dq(∇xφ)

d∇xφ
= − cd I . (54)

An overview of the required expressions for the Abaqus
return variables for a standard thermal problem and their cor-
responding counterparts for the current regularised damage
formulation is provided in Table 2.

In the current context, it is important to note that
the subroutine UMATHT is recommended to be used with
reduced-integration or modified2 thermo-mechanically cou-
pled element formulations only in the case wheremechanical
and thermal field are not coupled via plastic dissipation,
i.e. reduced-integration elements should be used only if the
right-hand side of the heat equation (48) vanishes, so that
rpl = 0. This is, however, not the case for the regularised
damage framework presented in this work, where rpl, or

2 Reduced-integration Abaqus elements are identified by an ‘R’ in the
element name, such as in ‘C3D8RT’ or ‘C3D20RHT’. ‘Modified’ ele-
ments carry an ‘M’ in the element name, such as in ‘C3D10MT’ or
‘C3D10MHT’. Following the Abaqus documentation, these elements
are not recommended to be used with formulations such as the one
established in this work. The authors of this work did not test the imple-
mentation with reduced-integration or modified elements in the context
of the present work.

rather rd = βd [κ − φ], represents a source term that in gen-
eral represents a significantly non-zero contribution during
the iterative solution process. In conclusion, fully integrated
thermo-mechanically coupled Abaqus element formulations
are utilised in this work.

4.3 Automatic numerical approximation of Abaqus
tangent contributions for thermo-mechanically
coupled user materials

In Sects. 4.1 and 4.2 we elaborated the coupled tangent
operators to be specified within both UMAT and UMATHT
subroutines, respectively. A direct comparison between the
classical thermo-mechanical tangent contributions and the
sensitivities required for the current regularised damage
framework was provided in Table 1 for the UMAT subroutine.
The analogous comparison for the tangent operators and sen-
sitivities required for the UMATHT subroutine was given in
Table 2. Due to the rather simple format of the damage bal-
ance equation—corresponding to a homogeneous, isotropic,
steady state heat transfer problem, cf. Sect. 3.3—the thermal
sensitivities to be specified within the UMATHT subroutine
turned out to be either zero, constant or trivial as summarised
in Table 2. In conclusion, the tangent operators required for
the UMATHT subroutine are easy to implement and, since
they are unaffected by the particular choice of the local con-
stitutive formulation, they are valid for any local constitutive
behaviour.

On the other hand, the sensitivities to be specified within
the UMAT subroutine strongly depend on the choice of the
local constitutive formulation as discussed in Sect. 4.1. For
the purpose of development and testing of local constitu-
tive formulations that undergo regularised damage, it might
be advantageous to be able to compute numerical approx-
imations of the associated sensitivities in a fully automatic
manner. To this end, we provide perturbation-based algo-
rithms for the numerical evaluation of all of the consistent
algorithmic tangent operators required by the Abaqus UMAT

123



Computational Mechanics (2019) 64:847–877 857

Input: F , θ,I,p – deformation gradient, temperature, set of SDVs, set of material parameters
Output: DDSDDE – Voigt representation of the consistent spatial tangent accounting for Abaqus’

Jaumann-Zaremba rate formulation, cf. Appendix A for the derivation of eAbq

1 define perturbation: e.g. = 10−8

2 compute right Cauchy-Green tensor: C = F t · F

3 backup internal state variable(s): In = I
4 evaluate reference (unperturbed) stress response: [I,S, r] = ConstModel(C, θ,In,p)

5 compute associated Cauchy stresses (required for ecor later on): σ = J−1 F · S · F t

6 for k = 1 . . . 3 do

7 for l = 1 . . . k do

8 initialise/reset Cpert = C

9 perturb [Cpert]kl = [Cpert]kl + 2

10 perturb [Cpert]lk = [Cpert]lk + 2

11 evaluate C-perturbed stress response: [I,S, r] = ConstModel(Cpert, θ,In,p)

12 for i = 1 . . . 3 do

13 for j = 1 . . . 3 do

14 store [dS/dC]ijkl = [Sij − Sij ]

15 store [dS/dC]ijlk = [Sij − Sij ]

16 end

17 end

18 end

19 end

20 determine material tangent: E = 2dS/dC

21 compute push-forward: e = ϕ∗(E) = [F ⊗ F ] : E : [F t ⊗F t]

22 compute eAbq (cf. Appendix A): eAbq = J−1 e + 1/2 [I ⊗ σ + I ⊗ σ + σ ⊗ I + σ ⊗ I]

23 store coefficients from eAbq properly in Voigt-type matrix DDSDDE ∈ R
6×6

Fig. 1 Perturbation-based numerical computation of the mechani-
cal tangent DDSDDE for a general constitutive routine—here named
ConstModel—that is formulated in terms of the right Cauchy-Green
deformation tensor C and the Piola–Kirchhoff stress tensor S. For the
gradient-regularised damage formulation proposed in this work, the

non-local damage field variable φ is used in place of the temperature
θ . The perturbed right Cauchy-Green deformation tensor entering the
constitutive routine is denoted as Cpert whereas the resulting, perturbed
constitutive output quantities are denoted as •̃. Note the symmetry pre-
serving perturbation scheme applied to the symmetric tensor C

subroutine. These algorithms enable the application of the
presented damage regularisation framework to any local con-
stitutive formulation without the need to analytically derive
and implement the corresponding non-trivial coupled UMAT
tangent operators.

The starting point for the automatic computation of
the UMAT tangent operators required for general thermo-
mechanically coupled problems, i.e. DDSDDE, DDSDDT,
DRPLDE, and DRPLDT, is a properly coded local consti-
tutive routine. We consider a material formulation, i.e. the
local constitutive routine is a function of the right Cauchy-
Green deformation tensor C and returns the associated
material Piola–Kirchhoff stresses S. In general, the constitu-
tive responsewill also depend on a set ofmaterial parameters,

say p, and a set of internal variables associated with time tn ,
say In . For a thermo-mechanically coupled formulation, the
local constitutive response moreover depends on the temper-
ature field variable θ . As return variables, besides the stress
measure S, the routine needs to provide the updated set of
internal variables corresponding to time tn+1, say In+1, and
the heat source, say rpl. If a local constitutive routine is coded
in terms of these input and return variables, then an automatic
computation of the coupled tangent operators can be realised
using proper numerical perturbation schemes. These pertur-
bation schemes generate valid tangent operators not only for
general thermo-mechanically coupled Abaqus user subrou-
tines, but also for the gradient-enhanced damage framework
presented in this work. The only difference is that the damage

123



858 Computational Mechanics (2019) 64:847–877

Input: F , θ,I,p – deformation gradient, temperature, set of SDVs, set of material parameters
Output: DDSDDT – sensitivity of spatial stresses w.r.t. temperature

1 define perturbation: e.g. = 10−8

2 compute right Cauchy-Green tensor: C = F t · F

3 backup internal state variable(s): In = I
4 evaluate reference (unperturbed) stress response: [I, S, r] = ConstModel(C, θ,In, p)

5 perturb θpert = θ +

6 evaluate θ-perturbed stress response: [I,S, r] = ConstModel(C, θpert,In, p)

7 set dS/dθ = [S − S]

8 compute push-forward: dτ/dθ = ϕ∗(dS/dθ) = F · [dS/dθ] · F t

9 store coefficients from dτ/dθ properly in Voigt-type vector DDSDDT ∈ R
6×1

Fig. 2 Perturbation-based numerical computation of the coupled tan-
gent contribution DDSDDT for a general constitutive routine—here
named ConstModel—that is formulated in terms of the right Cauchy-
Green deformation tensor C and the Piola–Kirchhoff stress tensor S.
For the gradient-regularised damage formulation proposed in this work,

the non-local damage field variable φ is used in place of the temper-
ature θ . The perturbed field variable entering the constitutive routine
is denoted as θpert whereas the resulting, perturbed constitutive output
quantities are denoted as •̃

field variable φ is passed in place of the temperature θ and
the returned damage source term rd takes the form elaborated
in Sect. 3.3. Note that in general more accurate schemes can
be introduced which make use of data at time tn−1 etc, but
require at least more storage. In summary, the proper input-
output structure of the local constitutive routine considered,
here named ConstModel, reads

thermomechanically coupled routine:

[In+1, S, rpl] = ConstModel(C, θ,In, p) , (55)

gradient-regularised damage routine:

[In+1, S, rd] = ConstModel(C, φ,In, p) . (56)

To automatically compute the required sensitivities as
defined in Table 1, the constitutive routine can now be called
with perturbed quantities Cpert and θpert—or rather φpert.
Based on the obtained, perturbed output quantities S̃ and r̃
and the unperturbed reference constitutive response, proper
tensor-valued sensitivities can be assembled.

The algorithm sketched in Fig. 1 enables the computation
of the mechanical tangent DDSDDE consistent with Abaqus’
Jaumann–Zaremba rate formulation based on the numerical
approximation of the fourth order material tangent dS/dC ,
cf.Miehe [30]. Here it is important to point out the symmetric
perturbation of C. Note that the perturbation of the diagonal
elements of C adds up to [Cpert]kk = [C]kk + ε, whereas the
off-diagonal elements are perturbed by ε/2 while preserving
symmetry, i.e. Cpert = [Cpert]t . As a result, six additional
calls to the ConstModel routine are sufficient to numeri-
cally approximate dS/dC .

Figure 2 provides the algorithm required for the numer-
ical computation of the sensitivity DDSDDT of the Piola–

Kirchhoff stress tensor S with respect to temperature θ , or
rather damage field variable φ. One additional call to the
ConstModel routine is sufficient to compute dS/dθ , or
rather dS/dφ. The resulting second-order material tangent is
then pushed forward to obtain the required form of DDSDDT
defined in Table 1.

Apart from the aforementioned stress sensitivities, the
source term sensitivities DRPLDE and DRPLDT, i.e. sen-
sitivity of the source term r with respect to deforma-
tion measure C and field variable θ , or rather φ, can
be evaluated numerically. For the numerical computation
of DRPLDE shown in Fig. 3, the perturbation of C fol-
lows the scheme described above for DDSDDE, where six
additional evaluations of the ConstModel routine are suf-
ficient for the numerical approximation of dr/dC . The
latter expression is then pushed forward and converted
to the proper Voigt-type vector. Finally, the numerical
computation of the scalar-valued thermal tangent contribu-
tion DRPLDT, i.e. dr/dθ , or rather dr/dφ, as shown in
Fig. 4, reflects a simple one-dimensional forward-differences
scheme.

For the sake of conceptual clarity, the perturbations with
respect to C , i.e. the computation of DDSDDE and DRPLDE,
are sketched as two separate algorithms in Figs. 1 and 3,
respectively. For highest numerical efficiency, the compu-
tation of both sensitivites can be embedded into a single
loop, so that six calls to the ConstModel routine are suffi-
cient to numerically approximate both dS/dC and dr/dC
at the same time. Analogously, another single call to the
ConstModel routine enables the simultaneous computa-
tion of both DDSDDT and DRPLDT.
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Input: F , θ,I,p – deformation gradient, temperature, set of SDVs, set of material parameters
Output: DRPLDE – sensitivity of the heat source term w.r.t. deformation

1 define perturbation: e.g. = 10−8

2 compute right Cauchy-Green tensor: C = F t · F

3 backup internal state variable(s): In = I
4 evaluate reference (unperturbed) heat source value: [I,S, r] = ConstModel(C, θ,In, p)

5 for i = 1 . . . 3 do

6 for j = 1 . . . i do

7 initialise/reset Cpert = C

8 perturb [Cpert]ij = [Cpert]ij + 2

9 perturb [Cpert]ji = [Cpert]ji + 2

10 evaluate C-perturbed heat source value: [I,S, r] = ConstModel(Cpert, θ,In,p)

11 store [dr/dC]ij = [r − r]

12 store [dr/dC]ji = [r − r]

13 end

14 end

15 compute push-forward: ϕ∗(dr/dC) = F · [dr/dC] · F t

16 store coefficients from ϕ∗(dr/dC) properly in Voigt-type vector DRPLDE ∈ R
6×1

Fig. 3 Perturbation-based numerical computation of the coupled tan-
gent contribution DRPLDE for a general constitutive routine—here
named ConstModel—that is formulated in terms of the right Cauchy-
Green deformation tensor C and the Piola–Kirchhoff stress tensor S.
For the gradient-regularised damage formulation proposed in this work,

the non-local damage field variable φ is used in place of the temperature
θ . The perturbed right Cauchy-Green deformation tensor entering the
constitutive routine is denoted as Cpert whereas the resulting, perturbed
constitutive output quantities are denoted as •̃. Note the symmetry pre-
serving perturbation scheme applied to the symmetric tensor C

Input: F , θ,I,p – deformation gradient, temperature, set of SDVs, set of material parameters
Output: DRPLDT – sensitivity of the heat source w.r.t. temperature

1 define perturbation: e.g. = 10−8

2 compute right Cauchy-Green tensor: C = F t · F

3 backup internal state variable(s): In = I
4 evaluate reference (unperturbed) heat source value: [I,S, r] = ConstModel(C, θ,In, p)

5 perturb θpert = θ +

6 evaluate θ-perturbed heat source value: [I,S, r] = ConstModel(C, θpert,In,p)

7 return DRPLDT = [r − r]

Fig. 4 Perturbation-based numerical computation of the thermal tan-
gent contribution DRPLDT for a general constitutive routine—here
named ConstModel—that is formulated in terms of the right Cauchy-
Green deformation tensor C and the Piola–Kirchhoff stress tensor S.
For the gradient-regularised damage formulation proposed in this work,

the non-local damage field variable φ is used in place of the temper-
ature θ . The perturbed field variable entering the constitutive routine
is denoted as θpert whereas the resulting, perturbed constitutive output
quantities are denoted as •̃

5 Specification of local energy contributions
and constitutive relations

In view of the examples provided later on, we will now intro-
duce an exemplary local constitutive behaviour in termsof the

local elastic potential ψloc in Sect. 5.1, followed by the spec-
ification of the damage function fd(κ) = 1 − d in Sect. 5.2.
The overall internal free energy potentialΨint of the material,
including local and non-local contributions, is then used to
compute the energy release rateq := − ∂Ψint/∂d in Sect. 5.3.
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Finally, the damage condition in terms of a damage loading
function Φd is defined in Sect. 5.4.

5.1 Local elastic potential—Neo–Hookean type
material undergoing damage

For conceptual clarity, we choose a simple isotropic elastic
material behaviour by introducing a local free energy func-
tion representing a compressible Neo–Hookean format,

ψH(tr(C), J ) = μe

2
[tr(C) − 3]

− μe ln(J ) + λe

2
[ln(J )]2 , (57)

where the subscript H refers to a standard Neo–Hookean
expression here and in the following. In (57), λe and μe are
Lamé’s first and second elastic constants, respectively.

Making use of the relations ∂ J/∂C = 1/2 J C−1 and
∂tr(C)/∂C = I , the undamaged—or rather effective—
stresses SH := 2 ∂ψH/∂C of the Neo–Hookean material in
terms of thematerial Piola–Kirchhoff stress tensor SH follow
as

SH := 2
∂ψH

∂C
= μe [I − C−1] + λe ln(J )C−1 . (58)

A weighted push-forward operation applied to (58) leads to
the spatial Cauchy stress tensor related to the Neo–Hookean
material,

σH = 1

J
F · SH · Ft = μe

J
[b − I] + λe

J
ln(J ) I , (59)

with b = F · Ft being the left Cauchy-Green deformation
tensor. Note that the final expression for the local elas-
tic potential includes the damage function to be defined in
Sect. 5.2, i.e.

ψloc ≡ fd(κ) ψH . (60)

5.2 Damage function—exponential format with
initiation threshold and saturation parameter

As damage function, we choose an exponential format,
enabling us to take into account a damage initiation thresh-
old and a damage saturation rate. Following Waffenschmidt
et al. [47], we specify

fd(κ) = 1 − d = exp(−ηd〈κ − κd〉) , (61)

where κ denotes the internal damage variable, κd > 0 rep-
resents the damage threshold parameter, ηd > 0 is the
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Fig. 5 Thedamage function fd(κ)defined in (61) is of exponential type,
formulated in terms of two parameters—a damage saturation parameter
ηd and a damage threshold parameter κd. (a) shows fd(κ) for a fixed
damage threshold κd = 0 while the damage saturation parameter ηd is
varied. (b) depicts fd(κ) for a fixed damage saturation value of ηd = 2
with varying damage threshold κd. A proper choice of both ηd and κd
allows the definition of the point of damage initiation as well as the rate
of degradation for the material under consideration

exponential damage saturation parameter, and where 〈•〉 :=
max{0, •} defines the Macaulay bracket function. As long as
the internal damage variable κ is smaller than the damage
initiation threshold, κ < κd, the Macaulay bracket term in
(61) vanishes and we find fd(κ)|κ<κd = 1, i.e. no damage is
induced. When the local damage variable exceeds the dam-
age threshold, i.e. κ > κd, we obtain fd(κ)|κ>κd < 1 and
therefore damage within the material. The rate of material
degradation is governed by the value chosen for the damage
saturation parameter ηd, see Fig. 5.
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5.3 Derivation of the energy release rate based on
the overall internal energy potential

We now derive the thermodynamical driving force for the
internal damage variable κ and the energy release rate of
the material, which are both functions of the overall internal
energy potentialΨint initially introduced in (1). The non-local
gradient and penalty contributions to Ψint, see (25) and (26),
respectively, were already defined in view of the specifica-
tion of the damage-related balance equation (32). With the
particularisation of the local elastic potential in (57) and (60),
the overall internal free energy potential of the material,

Ψint(F, φ,∇Xφ, κ) = fd(κ) ψH(tr(C), J )︸ ︷︷ ︸
ψloc(F, κ)

+ ψ
grad
nloc (∇Xφ; F) + ψ

plty
nloc(φ, κ)︸ ︷︷ ︸

ψnloc(F, φ,∇Xφ, κ)

,

(62)

is now fully defined. The thermodynamical driving force g
energetically conjugated to the internal damage variable κ

can now be computed from

g(F, φ,∇Xφ, κ) := − ∂Ψint(F, φ,∇Xφ, κ)

∂κ
. (63)

Alternatively, a driving force for the damage parameter d cor-
responding to the representation fd(κ) = 1−d is frequently
employed. This particular driving force—also referred to as
energy release rate—is denoted as q here. The energy release
rate is defined as

q(F, φ,∇Xφ, κ) := − ∂Ψint(F, φ,∇Xφ, κ)

∂d

= − ∂Ψint(F, φ,∇Xφ, κ)

∂κ

∂κ

∂d

= g(F, φ,∇Xφ, κ)
∂κ

∂d
, (64)

and thus represents the driving force g scaled with the sen-
sitivity ∂κ/∂d.

The additive composition ofΨint = ψloc+ψnloc, see (62),
reveals that the energy release rate q defined in (64) can be
expressed based on its local and non-local contributions qloc
and qnloc in terms of

q(F, φ,∇Xφ, κ) = qloc(F, κ)+qnloc(F, φ,∇Xφ, κ) , (65)

where, in the context of (62), we introduce the definitions

qloc(F, κ) := − ∂ψloc(F, κ)

∂d
and

qnloc(F, φ,∇Xφ, κ) := − ∂ψnloc(F, φ,∇Xφ, κ)

∂d
.

(66)

In view of the further specification of qloc based on the
potential ψloc we note that fd = 1 − d, so that we find
∂(•)/∂d = − ∂(•)/∂ fd as an alternative expression for the
partial derivative with respect to d. Hence, for the specific
model at hand, we obtain

qloc = ψH(tr(C), J ) and

qnloc = − ∂ψnloc

∂κ

∂κ

∂d
= βd [φ − κ] ∂κ

∂d
.

(67)

The derivative of κ with respect to d follows from the spec-
ification of the damage function fd given in (61). To obtain
the desired derivative ∂κ/∂d, we recall fd(κ) = 1 − d =
exp(−ηd〈κ − κd〉) and employ the implicit function theorem
to a residual-type function R fd (κ, d) defined as

R fd (κ, d) = 1 − d − exp(−ηd〈κ − κd〉) ≡ 0 , (68)

inducing

∂κ

∂d
= − ∂R fd (κ, d)/∂d

∂R fd(κ, d)/∂κ
= 1

ηd fd(κ)
> 0 (69)

in the case of a damage process taking place, i.e. in the case
κ > κd. With qloc, qnloc and ∂κ/∂d defined, the energy
release rate (65) associated with the damage process takes
the final form

q(F, φ,∇Xφ, κ) = ψH(tr(C), J ) + βd [φ − κ]
ηd fd(κ)

. (70)

This expression for the energy release rate q enters the dam-
age initiation criterion provided in Sect. 5.4.

5.4 Damage initiation and evolution

In line with the damage condition employed in Waffen-
schmidt et al. [47], we introduce a damage function Φd ≤ 0,
where Φd < 0 represents the purely elastic case and where
Φd = 0 may induce damage evolution. Using a formalism
analogous to classic plasticity theory, we assume an associ-
ated evolution law for the internal damage variable κ , which
directly follows from the postulate of maximum dissipation,
see, e.g., Simo and Hughes [41]. With the damage condition
Φd specified as

Φd(F, φ, κ) = q(F, φ,∇Xφ, κ) − κ ≤ 0 , (71)

the postulate of maximum dissipation leads to the standard
constrained optimisation problem

κ̇ = λ
∂Φd(F, φ, κ)

∂q
= λ , (72)

withλbeing aproperLagrangemultiplier that is subject to the
standard Karush–Kuhn–Tucker conditions λ ≥ 0, Φd ≤ 0,
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and λ Φd = 0. With the given specification of the damage
function (71) and the explicit representation of q given in
(70), the damage loading function takes the explicit form

Φd(F, φ, κ) = ψH(tr(C), J ) + βd [φ − κ]
ηd fd(κ)

− κ ≤ 0 . (73)

The algorithmic solution scheme of the exemplary local con-
stitutive formulation including the numerical computation of
the evolution of the internal damage variable κ from (72) sub-
ject to the constraint (71) is given in Sect. 5.5.

5.5 Algorithmic treatment of the local damage
evolution

With the evolution equation for the internal damage vari-
able and the damage initiation criterion defined in Sect. 5.4
we now turn to the algorithmic treatment of the local con-
stitutive formulation. We employ the unconditionally stable,
implicit backwardEuler scheme for the time-discretisation of
the ordinary differential equation (72). To this end, a discrete
time increment Δt = tn+1 − tn > 0 is considered, yielding
the backward Euler update rule

κn+1 = κn + Δt λn+1 =: κ(Δλn+1) , (74)

where we define Δλn+1 := Δt λn+1 ≥ 0 as the incremen-
tal Lagrange multiplier subject to the Karush–Kuhn–Tucker
conditions

Δλn+1 ≥ 0 ,

Φd|Δλn+1 ≤ 0 ,

Δλn+1 Φd|Δλn+1 = 0 . (75)

Here,

Φd|Δλn+1 := Φd(F, φ, κ(Δλn+1)) (76)

is the damage initiation criterion where the backward Euler
ansatz (74) for κ is inserted. With the explicit expression for
the damage initiation criterion given in (73) we thus solve

Φd|Δλn+1 = ψH(tr(C), J ) + βd [φ − κ(Δλn+1)]
ηd fd(κ(Δλn+1))

− κ(Δλn+1) = 0 (77)

for the sought incremental Lagrange multiplier Δλn+1.
For the solution of the non-linear equation (77) we resort

to a Newton–Raphson scheme, yielding

Δλk+1
n+1 = Δλkn+1 −

[
dΦd|Δλkn+1

dΔλkn+1

]−1

Φd|Δλkn+1
(78)

as an update rule for Δλkn+1 in the kth Newton–Raphson
iteration step, where the Jacobian required for the Newton–
Raphson update takes the explicit form

dΦd|Δλkn+1

dΔλkn+1

= βd

[
φ − κk

n+1

]
ηd − 1

ηd fd(κk
n+1)

− 1 (79)

with κk
n+1 := κ(Δλkn+1) from (74) being the kth numerical

approximation to the updated local damage variable κn+1

at time tn+1. The algorithm for the implicit backward Euler
update of the local damage variable κ is summarised in Fig. 6.

6 Numerical examples

This section discusses numerical examples both of the
local material response, see Sect. 6.1, and of the non-local
behaviour of the overall formulation in terms of representa-
tive finite element computations, see Sects. 6.2 and 6.3. Here,
Sect. 6.2 shows a finite element convergence study of the for-
mulation,whereas Sect. 6.3 highlights the direct applicability
of the gradient-enhanceddamage formulation in combination
with advanced element features such as contact.

6.1 Local material response

For the exemplary local constitutive responses presented
in the following, we consider a large maximum stretch of
λmax = 1.5, motivating the choice of soft rubber-type mate-
rial parameters, particularly a Young’s modulus of E =
42MPa and a Poisson’s ratio of ν = 0.45. The corresponding
first and second Lamé elastic constants, λe and μe entering
the elastic potential (57), then follow from

λe(E, ν) = E

2 [1 + ν] (80)

and

μe(E, ν) = E ν

[1 + ν][1 − 2 ν] . (81)

Weprescribe a uni-axial isochoric deformation of the form

F(λ) = λ e1 ⊗ e1 − λ−1/2 [e2 ⊗ e2 + e3 ⊗ e3] (82)

with respect to a fixed orthonormal reference frame {e1, e2,
e3}, whereλ ∈ [1, 1.5]denotes the longitudinal stretch, not to
be confused with the local Lagrange multiplier. The stress-
stretch responses provided in Fig. 7 show the influence of
the damage saturation parameter ηd and the damage thresh-
old parameter κd, respectively, where the undamaged, purely
elastic response is included for the purpose of comparison.
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Input: F , φ, κn – deformation gradient, non-local damage variable, local damage variable at time tn
Output: κn+1 – updated local damage variable at time tn+1

1 compute ψH(tr(C), J) from (57)

2 evaluate fd(κn) according to (61)

3 evaluate q(F , φ, κn) according to (70)

4 compute trial damage loading function R0 := Φd(F , φ, κn) from (73)

5 if R0 ≤ 0 then

6 elastic step: return κn+1 := κn

7 else

8 set Newton-Raphson iteration counter k = 0

9 set initial value for the Newton-Raphson scheme Δλ0
n+1 = 0

10 while |Φd(F , φ, κk
n+1)| < tol do

11 evaluate fd(κk
n+1) according to (61) with κk

n+1 = κn + Δλk
n+1

12 compute residuum Φd(F , φ, κk
n+1) from (73)

13 compute Jacobian for the local Newton scheme, dΦd|Δλk
n+1

/dΔλk
n+1, from (79)

14 update Δλk+1
n+1 using the Newton-Raphson step (78)

15 set κk+1
n+1 = κ(Δλk+1

n+1) = κn + Δλk+1
n+1 according to the backward Euler update rule (74)

16 increment k ← k + 1

17 end

18 return backward Euler update κn+1 := κk+1
n+1 after convergence

19 end

Fig. 6 Local Newton scheme used for the solution of the backward
Euler time-discretisation scheme applied to the evolution equation for
the local damage variable κ , see (72). The local damage variable is

updated from κn to κn+1, i.e. from time tn to tn+1 and then coupled to
the non-local damage field variable φ using a penalty scheme to achieve
the desired damage regularisation as presented in Sect. 2.5
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(a) Stress-stretch responses obtained for varying damage
saturation parameters with fixed
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Fig. 7 Local material response obtained for varying damage saturation parameters ηd (a) and varying damage threshold parameters κd (b). The
undamaged material response is included for the purpose of comparison

An increase of the damage saturation parameter ηd
induces a more pronounced material degradation as shown
in Fig. 7a, where the point of damage initiation—determined

by the damage threshold parameter κd—remains fixed. Fig-
ure 7b illustrates the delayed damage initiation caused by
an increase in the damage threshold parameter for a fixed
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Fig. 8 Evolution of the internal damage variable κ for varying damage saturation parameters ηd (a) and varying damage threshold parameters κd
(b). The corresponding stress-stretch responses are provided in Fig. 7a, b, respectively
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Fig. 9 Evolution of the material damage d = 1− fd(κ) for varying damage saturation parameters ηd (a) and varying damage threshold parameters
κd (b). The corresponding stress-stretch responses are provided in Fig. 7a, b, respectively

damage saturation parameter. The corresponding evolution
of the internal damage variable κ is shown in Fig. 8. The
associated material degradation in terms of the damage
d = 1 − fd(κ) is provided in Fig. 9, where again the
relation between an increasing damage saturation parame-
ter ηd and a higher rate of material degradation in terms
of d becomes apparent in Fig. 9a. Finally, Fig. 9b illus-
trates the stretch-dependent initiation and evolution of the
damage d resulting from different values of the threshold
parameter κd.

6.2 Asymmetrically notched steel plate

This section highlights the mesh-objectivity and consistency
of the results obtained for inhomogeneous boundary value
problems, where we consider an asymmetrically notched
steel plate with an initial geometry depicted in Fig. 10a
as a representative example. The plate has dimensions of
200mm × 100mm × 4mm (width×height×depth), and as
elastic material parameters we consider a Young’s modulus
of E = 210GPa and a Poisson’s ratio of ν = 0.3. The local
damage initiation parameter is set to κd = 0.1MPa and as a
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(a) Discretised geometry – coarse mesh (612 elements). (b) Load-deflection curve showing damage-induced softening.

Fig. 10 Asymmetrically notched plate with dimensions of 200mm ×
100mm × 4mm (width×height×depth) and a coarse mesh (a). The
specimen is clamped on the left-hand side and a displacement-driven
tensile load with maximum displacement of ux,max = 25mm is applied

to the right-hand side. The obtained load-deflection curve (b) shows pro-
nounced damage-induced softening behaviour that is independent of the
discretisation of the structure, i.e. the overall response ismesh-objective

local damage saturation valuewe chooseηd = 0.002MPa−1.
The remaining parameters, associated with the non-locality
of the overall formulation, are the penalty-type parameter βd,
enforcing equivalence between local and non-local damage
variables, and the regularisation parameter cd. For the exam-
ples provided in the following, we choose βd = 1000MPa−1

and cd = 1MPa−1mm2. The plate is fixed on one side and a
maximum tensile displacement of ux,max = 25mm is grad-
ually applied to the other side in a quasi-static simulation.

The discretisation of the initial geometry, shown in
Fig. 10a, uses 612 elements of type C3D20T, i.e. three-
dimensional continuum elements with 20 nodes per element,
full integration, and full thermo-mechanical coupling. The
results obtainedwith this rather coarse finite element discreti-
sation are compared to the results obtained for a finer mesh
using 2451 elements of the same type. The load-deflection
curve for both discretisations, see Fig. 10b, shows the mesh-
objectivity of the overall mechanical response. At a tensile
displacement of ux = 15mm the maximum mechanical
reaction force is observed, afterwhich, induced by the contin-
uing evolution of damage in the stress-bearing cross-section
of the specimen, the reaction force decreases even though
the applied tensile displacement further increases. The dis-
tribution of each the von Mises stress, local damage variable
κ , non-local damage variable φ and damage d is presented
in Figs. 11, 12, 13, and 14, respectively. The results under-
line the successful and consistent damage regularisation. The
von Mises stress in the stress-bearing cross-section of the
specimen decreases during loading from ux = 15mm to
ux = ux,max = 25mm in line with the decrease of the

mechanical reaction force shown in Fig. 10b. Moreover, the
coupling of local and non-local damage variable is success-
ful, as a comparison of both distributions, see Figs. 12 and
13, clearly underlines. Finally, we exemplarily highlight the
distribution of the von Mises stress and the material dam-
age d = 1 − fd(κ) for the finer discretisation in Fig. 15,
illustrating once more the mesh-objectivity of the presented
regularisation approach.

6.3 Contact problem

One advantage of the damage regularisation approach pro-
posed in this work is the ability to directly use different
element features in combination with regularised damage.
As an example, we consider a boundary value problem
that combines regularised damage and contact. The bound-
ary value problem is motivated by an indentation test,
where a rigid sphere penetrates a body undergoing regu-
larised damage. The penetrated workpiece is of dimension
200mm×15mm×100mm (width×height×depth), where
only a quarter of the symmetric setup is actually computed,
see Fig. 16a. The simulation uses 10,000 elements of type
C3D8T.3 The friction coefficient is set to zero and the rigid
sphere with a diameter of 15mm reaches a maximum inden-
tation depth of 3.3mm, see Fig. 16b.

3 ‘C3D8T’ denotes a three-dimensional thermo-mechanically coupled
continuum element with 8 nodes and trilinear displacement and tem-
perature interpolation.
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(a) Stress distribution at ux = 15mm, cf. Figure 10b.

(b) Stress distribution at ux = ux,max = 25mm, cf. Fig-
ure 10b.

Fig. 11 VonMises stress distribution obtained for tensile displacements
of ux = 15mm (a) and ux = ux,max = 25mm (b). Note the same
colour scale on both plots. As a result of the damage-induced softening
highlighted in Fig. 10b, the stress field decreases during loading from
ux = 15mm to ux = ux,max = 25mm

As material parameters, we choose the same steel-type
parameters used in Sect. 6.2 for the notched plate, i.e. a
Young’s modulus of E = 210GPa and a Poisson’s ratio of
ν = 0.3 with local damage parameters κd = 0.1MPa and
ηd = 0.002MPa−1. As before, the penalty-type parameter is
set to βd = 1000MPa−1 and the regularisation parameter is
chosen as cd = 1MPa−1mm2.

Figure 16 shows the symmetric setup of the boundary
value problem, including the Dirichlet boundary conditions,
and the indentation force obtained as a functionof indentation
depth. For the purpose of comparison, the indentation force
is also provided for a computation with deactivated evolution
of damage and for a computation using a smaller damage sat-
uration value in terms of ηd = 0.001MPa−1. The higher the
rate of material degradation—controlled by ηd—the slower
is the development of the indentation force.

The cut view of the final states provided in Figs. 17
and 18 shows the distribution of the von Mises equivalent
stress and of the damage measure d within the material for
a damage saturation parameter of ηd = 0.002MPa−1 and
ηd = 0.001MPa−1, respectively. The computation using

(a) Local damage variable κ at ux = 15mm, cf. Fig-
ure 10b.

(b) Local damage variable κ at ux = ux,max = 25mm, cf.
Figure 10b.

Fig. 12 Distribution of the local damage variable κ obtained for tensile
displacements of ux = 15mm (a) and ux = ux,max = 25mm (b).
Note the same colour scale on both plots. As the deformation increases
from ux = 15mm to ux = ux,max = 25mm, the local damage variable
continuously evolves towards higher values

the lower damage saturation parameter, see Fig. 18, induces
lower damage in the material, in turn leading to higher von
Mises equivalent stress values. For this particular boundary
value problem, we refrain from showing and discussing the
distributions of further variables such as local and non-local
damage variable for the sake of conciseness. For a more
detailed discussion giving insight into the interplay of the
associated model variables, the reader is instead referred
to the representative boundary value problem examined in
Sect. 6.2.

6.4 Hybrid element formulation—combination of
regularised damage and
(quasi-)incompressibility

A number of boundary value problems in engineering—
especially in the context of polymer materials—involve
the computation of quasi-incompressible or fully incom-
pressible material responses. In particular, rubbery materials
under finite deformations are usually considered as providing
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(a) Non-local damage field variable φ at ux = 15mm, cf.
Figure 10b.

(b) Non-local damage field variable φ at ux = ux,max =
25mm, cf. Figure 10b.

Fig. 13 Non-local damage field variable φ obtained for tensile dis-
placements of ux = 15mm (a) and ux = ux,max = 25mm (b). Note
the same colour scale on both plots. The obtained distribution of the
non-local damage field variable coincides with the distribution of the
local counterpart depicted in Fig. 12

(quasi-)incompressible behaviour. For incompressible mate-
rials, a unique stress response cannot be computed based on
the displacements alone, since a hydrostatic pressure contri-
bution can be superimposed to the solution without affecting
the displacement field. In the nearly incompressible case,
where the bulk modulus is much larger than the shear mod-
ulus, or, in other terms, Poisson’s ratio approaches ν = 0.5,
even a slight change in displacement induces very large
changes in pressure, rendering a purely displacement-based
solution too sensitive to be useful numerically.

A common method to overcome these problems is the
utilisation of hybrid finite element formulations. A hybrid
finite element introduces the pressure stress as an indepen-
dent degree of freedom, i.e. an additional scalar field variable
is introduced in addition to displacements and, in the case
of thermo-mechanically coupled finite element formulations,
temperature. Such hybrid element formulations also prevent
volumetric locking that usually occurs for Poisson’s ratios of
around ν = 0.49 and larger.

(a) Damage d at ux = 15mm, cf. Figure 10b.

(b) Damage d at ux = ux,max = 25mm, cf. Figure 10b.

Fig. 14 Distribution of damage d = 1 − fd(κ) obtained for tensile
displacements of ux = 15mm (a) and ux = ux,max = 25mm (b). Note
the same colour scale on both plots. As the deformation increases from
ux = 15mm to ux = ux,max = 25mm, the damage within the material
increases from 45% to 92.9%, giving rise to the macroscopic softening
observed in the load-deflection response provided in Fig. 10b

Abaqus provides different options for the simulation of
(quasi-)incompressible material behaviour using hybrid ele-
ment formulations in combination with the UMAT general
user material subroutine, cf. Suchocki [46]. The simplest
method—from a user’s perspective—is to have Abaqus
replace the hydrostatic Cauchy stress contribution computed
within the UMAT subroutine with the value of the hydrostatic
pressure field computed by the hybrid element formulation.
In that case, the bulk modulus—or, equivalently, Poisson’s
ratio—usedwithin the UMAT subroutine has to be set to a suf-
ficiently large value, so that incompressible behaviour can
be adequately approximated without inducing the numeri-
cal problems mentioned above. Abaqus then automatically
modifies the hydrostatic part of the stress response and
the associated algorithmic tangent modulus appropriately.
However, this method is not recommended to be used with
hyperelastic user material formulations at very large strains
as convergence issues might eventually occur, see Abaqus
2016 Documentation [1].

An alternative method for the combination of hybrid ele-
ment formulations with total-form, i.e. hyperelastic-type,
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(a) Stress distribution at maximum displacement obtained
with a fine mesh, see Figure 11b for the coarse mesh result.

(b) Distribution of damage d at maximum displacement
obtained with a fine mesh, see Figure 14b for the coarse
mesh result.

Fig. 15 Von Mises stress distribution (a) and damage d (b) obtained at
maximum tensile displacement, ux = ux,max = 25mm, using a finer
finite element discretisation of the boundary value problem. The results
obtained with a fine mesh of 2541 elements are equivalent to those
achieved with a coarse mesh of 612 elements

UMAT user material formulations makes use of a volumetric-
isochoric decomposition of the underlying total Helmholtz
free energy potential, Ψtotal = Ψvol + Ψich, and a modi-
fied Jacobian J̃ , where J̃ 
= J = det(F). The volumetric
free energy contribution Ψvol( J̃ ) needs to be evaluated in
terms of J̃ which is passed into the UMAT subroutine as the
STRESS(NTENS+1) entry. Besides the hydrostatic stress
contribution computed in terms of J̃ , the additional scalar
quantities κ̃ = J ∂2Ψvol/∂ J̃ 2 and ∂κ̃/∂ J̃ need to be returned,
the latter being stored as entries NTENS+1 and NTENS+2,
respectively, in the STRESS array.

The example provided in this section is motivated by a
(quasi-)incompressible rubber strip under tensile deforma-
tion. The geometry and applied boundary conditions are
depicted in Fig. 19a, where the strip has overall dimensions
of 80mm × 20mm × 10mm and a quasi-static Dirichlet-
controlled tensile displacement with ux,max = 20mm is
applied, corresponding to a maximum macroscopic stretch
of 25%. The material parameters controlling the damage
behaviour are chosen as cd = 1, βd = 1000, ηd = 0.02,
κd = 0. For the elastic properties, we consider a rubber-type
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(a) Boundary value problem.

(b) Obtained load-deflection curves.

Fig. 16 Indentation test: boundary value problem, including symmetry-
preserving Dirichlet boundary conditions (a), and obtained indentation
forces for different damage saturation parameters (b). The considered
quarter of the symmetric setup is modelled with 10,000 elements of
type C3D8T for the workpiece. The maximum indentation depth of the
rigid sphere is 3.3mm

Young’s modulus of E = 42MPa. Two simulations are car-
ried out, both identical except for the choice of Poisson’s
ratio and the element type.

We provide the results obtained for a computation using
a Poisson’s ratio of ν = 0.49999 within a hybrid C3D8HT4

finite element formulation, and for a computation using a
Poisson’s ratio of ν = 0.3 within a regular C3D8T finite
element formulation for the purpose of comparison. The
total volume change occurring during tensile deformation
is shown in Fig. 19b for both simulations. Both the mesh and
the number of elements, 1440, are identical in both cases.
At the state of maximum tensile deformation, ux = 20mm,

4 ‘C3D8HT’ denotes a three-dimensional thermo-mechanically cou-
pled hybrid continuum element with 8 nodes, trilinear displacement and
temperature interpolation and a constant pressure approximation.
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(a) Von Mises stress distribution.

(b) Distribution of damage d with dmax = 39.54%.

Fig. 17 Gradient-regularised damage and contact – distribution of von
Mises stress (a) and damage d (b) obtained using a damage saturation
parameter of ηd = 0.002MPa. The cut view shows the results obtained
for the final state of the indentation test, compare Fig. 16b. For the
purpose of comparison, the color scale used is the same as in Fig. 18

the regular C3D8T finite element type in combination with a
Poisson’s ratio of ν = 0.3 leads to an increase in total volume
of more than 7%. In contrast, the use of a hybrid C3D8HT
element in combinationwith aPoisson’s ratio of ν = 0.49999
facilitates the simulation of the rubber strip with a total vol-
ume change that is numerically zero. The percentage change
in total volume as provided in Fig. 19b is computed from
ΔVt = [∑e V

e
t ]/[∑e V

e
0 ]−1, i.e. a summation over all ele-

ments with V e
t and V e

0 denoting the current and reference
volume of each element e, respectively. The load-deflection
curves for both computations are provided in Fig. 20. Fig-
ure 21 depicts the von Mises stress distribution, the damage
field variable, and the pressure field variable, highlighting the
successful combination of regularised damage and a hybrid
finite element formulation.

(a) Von Mises stress distribution.

(b) Distribution of damage d with dmax = 16.37%.

Fig. 18 Gradient-regularised damage and contact – distribution of von
Mises stress (a) and damage d (b) obtained using a lower damage sat-
uration parameter of ηd = 0.001MPa. The cut view shows the results
obtained for the final state of the indentation test, compare Fig. 16b. For
the purpose of comparison, the color scale used is the same as in Fig. 17

7 Summary

This work introduces a comprehensive framework for the
user element-free implementationof gradient-enhanceddam-
age formulations in existing finite element codes with
an exemplary implementation in the finite element tool
Abaqus. The gradient-enhanced damage formulation out-
lined in Sect. 2 is a modern variational framework presented
by Dimitrijević and Hackl [8] and Waffenschmidt et al. [47],
and which is in line with the elaborate works by Forest [11]
and Miehe [31]. Until today, the numerical solution of such
formulations within commercial finite element codes has
included specifically formulated user element subroutines,
see also the works by Kiefer et al. [17], Polindara et al.
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(a) Geometry and Dirichlet boundary conditions.
The overall specimen size is 80mm × 20mm ×
10mm.
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(b) Volume change during tension.

Fig. 19 Combination of gradient-regularised damage and (quasi-)
incompressibility in a hybrid element formulation. The boundary value
problem (a) reflects a rubber strip under tensile deformation discretized
with 1440 elements and controlled by Dirichlet boundary conditions.
The volume change during tension of the elastic body undergoing regu-
larised damage is shown in (b). The results highlight that the framework
proposed is successfully combined with a hybrid element formulation,
see also Figs. 20 and 21

[36,37], and Waffenschmidt et al. [48]. The disadvantages
of such user element subroutines are mentioned in Sect. 1,
such as development and testing effort, difficultieswith result
visualisation, inability to directly use advanced element fea-
tures like contact, and others.

To overcome the drawbacks associated with the applica-
tion of user element subroutines, we provide a framework
that uses the heat equation solution capabilities present in
thermo-mechanically coupledfinite element formulations for
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Fig. 20 Comparison of the load-deflection curve for two values of
Poisson’s ratio, ν = 0.3 and ν = 0.49999, where the computation
considering the latter value is carried out using a C3D8HT hybrid finite
element formulation

the regularisation of damage. For this purpose, we use the
Abaqus UMATHT subroutine, enabling us to freely define
the constitutive properties of the general form of the heat
equation that is presented in Sect. 3.1. As a result, the frame-
work introduced in this work provides maximum flexibility
for the solution of an additional partial differential equa-
tion of proper parabolic (transient) or elliptic (steady state)
type in addition to the standardmechanical balance equation.
Using the UMATHT subroutine, we specify the constitutive
properties of the general heat equation in such manner that
the resulting mathematical structure formally coincides with
the damage-related balance equation derived in Sect. 2. The
examples provided in Sect. 5 underline the successful regu-
larisation capabilities of the framework provided, where both
damage-induced softening andmesh-objectivity for inhomo-
geneous boundary value problems are highlighted. We also
show a boundary value problem reflecting an indentation
test to emphasise that the framework allows us to directly
combine regularised damagewith advanced element features
such as contact.

In conclusion, the numerical solution framework pre-
sented in thiswork allows for the implementation of gradient-
enhanced damage formulations within commercial finite
element software without the need for user element subrou-
tines, thereby eliminating all of the disadvantages associated
with them. Considering the additionally provided algorithms
for the automatic numerical computation of the required
Abaqus UMAT tangent contributions for general thermo-
mechanically coupled user materials, this work allows for
a quick and efficient implementation of any local constitu-
tive model that undergoes regularised damage, at the same
time allowing for a direct combination with advanced ele-
ment features such as contact or incompressibility, or even
structural elements or remeshing schemes.
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(a) Von Mises stress distri-
bution.

(b) Distribution of damage
field variable φ.

(c) Pressure distribution
computed by the hybrid
element formulation.

Fig. 21 Combination of gradient-regularised damage and
(quasi-)incompressibility in a hybrid element formulation. The simula-
tion uses 1440 hybrid C3D8HT elements and a Poisson’s ratio of ν =

0.49999, thereby enforcing incompressibility, see also Fig. 19b. The
contour plots highlight the distributions of vonMises stress (a), damage
field variable φ (b), and pressure field variable p = −1/3 tr(σ ) (c)
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A On the consistent spatial tangent modulus
for Jaumann–Zaremba rate-constitutive
equations

In the subsequent steps, we derive the specific spatial tangent

modulus
�
e that relates the Jaumann–Zaremba rate

�
τ of the

Kirchhoff stress tensor τ to the rate of deformation tensor
d via

�
τ = �

e : d, with d the symmetric part of the spatial
velocity gradient. This is the specific tangent modulus that
needs to be computed—and returned as a proper Voigt-type

matrix of J−1 �
e, see Sect. 4—within Abaqus UMAT subrou-

tines. Explicit expressions for
�
e are found in the literature,

cf. e.g. Costabal et al. [5], Suchocki [45], andWaffenschmidt
et al. [47]. For convenience of the reader the specific structure

and derivation of
�
e is summarised in the following.

A.1 Jaumann–Zaremba rate of the Kirchhoff stress
tensor

The Jaumann–Zaremba rate
�
τ—sometimes just referred to as

Jaumann rate—of the Kirchhoff stress tensor τ is one of sev-
eral possible objective stress rates, cf. Marsden and Hughes
[29]. It can be shown that, unlike the material time derivative
τ̇ alone, the Jaumann–Zaremba rate of the Kirchhoff stresses
is indeed objective. It is defined as

�
τ := τ̇ − ω · τ + τ · ω , (83)

where ω denotes the spin tensor, i.e. the skew-symmetric
part of the spatial velocity gradient l = Ḟ · F−1. Relation
(83) represents the standard co-rotational rate of an objective
second-order tensor field, here applied to the Kirchhoff stress
tensor τ .

The decomposition of the spatial velocity gradient into
symmetric and skew-symmetric contributions, d and ω, will
be used in subsequent considerations. To this end, we note
that

l = lsym + lskw = d + ω (84)
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with d := 1/2 [l + l t] representing the rate of deformation
tensor andω := 1/2 [l− l t] the spin tensor introduced above.

A.2 Lie time derivative of the Kirchhoff stress tensor

It can be shown that every objective rate represents a spe-
cial case of the general Lie time derivative Lϕ(•), where •
represents, e.g., a spatial stress measure such as the Kirch-
hoff stress tensor τ or the Cauchy stress tensor σ = J−1 τ ,
see, e.g., Marsden and Hughes [29]. The Lie derivative of the
Kirchhoff stress tensor τ takes the form

Lϕ(τ ) = ϕ∗
(
d

dt

(
ϕ∗(τ )

))

= F ·
[
d

dt

(
F−1 · τ · F−t

)]
· Ft , (85)

with pull-back and push-forward operations ϕ∗(•) and ϕ∗(•),
respectively. Relation (85) can equivalently be represented
as5

Lϕ(τ ) = τ̇ − l · τ − τ · l t , (86)

which at the same time constitutes the commonly used form
of the Truesdell rate or Oldroyd rate of the Kirchhoff stress
tensor. When applied to the Kirchhoff stresses τ , Truesdell
rate and Oldroyd rate coincide, and, in that case, they also
coincide with the Lie derivative of τ . In this context, (86) is
a frequently used representation that will be utilised in the
following considerations.

A.3 Relation between the Lie time derivative and
Jaumann–Zaremba rate of Kirchhoff stresses

We now highlight that the Jaumann–Zaremba rate defined in
(83) is a special case of—or rather an approximative expres-
sion for—the Lie derivative of the Kirchhoff stress tensor. To
this end, we use the decomposition l = d + ω from (84) to
express (86) as

Lϕ(τ ) = τ̇ − [d + ω] · τ − τ · [d + ω]t . (87)

If we now assume a negligibly small rate of deformation
tensor, i.e. we introduce the approximation d = 0, then (87)
simplifies to

5 To show the identity (86), we first expand Lϕ(τ ) = F ·[ d
dt

(
F−1 · τ · F−t

)] ·Ft = F · [Ḟ−1 ·τ ·F−t+F−1 · τ̇ ·F−t+F−1 ·τ ·
Ḟ−t]·Ft = F · Ḟ−1 ·τ + τ̇ +τ · Ḟ−t ·Ft . Comparison of this expression
with the right-hand side of (86) makes apparent that we have to show
(i) F · Ḟ−1 = −l and (ii) Ḟ−t · Ft = −l t , where (ii) directly results
from a transposition of (i). To prove (i), we apply the time derivative
to the identity F−1 · F = I , yielding Ḟ−1 · F = −F−1 · Ḟ, inducing
Ḟ−1 = −F−1 · Ḟ · F−1 = −F−1 · l , from which (i) immediately
follows.

Lϕ(τ )|d=0 = τ̇ − ω · τ − τ · ωt

= τ̇ − ω · τ + τ · ω =: �
τ , (88)

where the skew-symmetric property ωt = −ω was used. As
a result, relation (88) reflects the definition of the Jaumann–
Zaremba rate of the Kirchhoff stresses as introduced in (83).

Considering identity (87) together with the definition of
the Jaumann–Zaremba rate, (83), allows us to deduce that
the Lie derivative of the Kirchhoff stresses is related to the
Jaumann–Zaremba rate of the Kirchhoff stresses via

Lϕ(τ ) = �
τ − d · τ − τ · d . (89)

This relation again makes apparent that the Jaumann–

Zaremba rate
�
τ of the Kirchhoff stresses is a special case

of the Lie derivative Lϕ(τ ), i.e. Jaumann–Zaremba rate and
Lie time derivative of the Kirchhoff stress tensor coincide for
the special case that the rate of deformation tensor is zero,
d = 0. Relation (89) is the starting point for the construction
of a fourth-order consistent tangent modulus for Jaumann–
Zaremba rate-constitutive equations in Sect.A.5.

A.4 Spatial rate-constitutive equation in terms of
L'(�) and d

One important observation is that the Lie derivativeLϕ(τ ) of
the Kirchhoff stresses τ is related to the rate of deformation
tensor d via the spatial elasticity tensor e, which itself is a
push-forward of the material elasticity tensor E, cf. Simo and
Hughes [41]. We briefly review this relation, starting with
the definition of the Piola–Kirchhoff stress tensor S and its
material time derivative Ṡ,

S = 2
∂ψ

∂C
, Ṡ = ∂

∂C

(
2

∂ψ

∂C

)
∂C
∂t

= E : 1
2
Ċ , (90)

where E := 4 ∂2ψ/[∂C ⊗ ∂C] constitutes the material elas-
ticity tensor. Recall Lϕ(τ ) = F · Ṡ · Ft from (85) by noting
that S = ϕ∗(τ ) = F−1 · τ · F−t and, from the definition of
C and d, we find6 Ċ = 2 Ft · d · F. The Lie time derivative
of τ then can be expressed as7

6 By definition, we have l := Ḟ · F−1 and d := 1/2 [l + l t] =
1/2 [Ḟ · F−1 + F−t · Ḟt]. Thus, 2 Ft · d · F = 2 Ft · [1/2 [Ḟ · F−1 +
F−t · Ḟt]] · F = Ft · [F−t · Ḟt + Ḟ · F−1] · F = Ḟt · F + Ft · Ḟ. This
expression coincides with the material time derivative of C = Ft · F,
i.e. Ċ = Ḟt · F + Ft · Ḟ.
7 [Lϕ(τ )]i j = FiK ṠK L F t

L j = FiK [EK LMN F t
Mo dop FpN ] FjL =

[FiK FjL FoM FpN EK LMN ] dop = ei jop dop .
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Lϕ(τ ) = F · Ṡ · Ft

= F · [E : [
Ft · d · F]] · Ft

= [[
F ⊗ F

] : E : [
Ft ⊗ Ft]] : d

= e : d . (91)

A.5 Construction of the sought Abaqus
rate-constitutive equation

We now combine the relation between Lie time deriva-
tive Lϕ(τ ) and Jaumann–Zaremba rate

�
τ of the Kirchhoff

stresses, (89), with the rate-constitutive equation in terms of
Lϕ(τ ) and d, (91), to obtain an expression for the Jaumann–
Zaremba rate of the Kirchhoff stresses that depends on the
spatial tangent modulus e (and two further terms directly
following from (89)),

�
τ = e : d + d · τ + τ · d . (92)

Note the difference between relations (91) and (92). The pres-
ence of the Jaumann–Zaremba rate of the Kirchhoff stress
tensor on the left-hand side of (92) requires an appropriate
modification of the spatial elasticity modulus e in order to

directly relate
�
τ to d. In this regard, it is important to note

that the right-hand side of (92) is linear in d, thus a linear

map
�
e with the sought property

�
τ = �

e : d (93)

exists. Here,
�
e is introduced as a an appropriate fourth order

tangent modulus tensor that relates the Jaumann–Zaremba

rate of the Kirchhoff stress tensor,
�
τ , to the rate of defor-

mation tensor d. The goal now is to construct an explicit

expression for
�
e that extends e in order to account for the

additional contribution d · τ + τ · d presented in (92).

The necessary structure of
�
e can be conveniently estab-

lished using indicial notation. Starting from (92), we find

�
τ i j = ei jkl dkl + dik τk j + τik dk j

= ei jkl dkl + δil dlk τk j + τik dkl δl j

= ei jkl dkl + [δil τ tjk] dlk + [τik δ jl ] dkl
= [ei jkl + δik τ tjl + τik δ jl ] dkl (94)

with [δil τ tjk] dlk = [δik τ tjl ] dkl representing [I ⊗ τ t] : d and
[τik δjl ] dkl translating to [τ ⊗ I] : d. In absolute notation,
(94) reads

�
τ = [

e + I ⊗ τ + τ ⊗ I
] : d , (95)

where the symmetry of the Kirchhoff stress tensor, τ t = τ ,
was considered. Comparison of (95) with (92) shows that the
term

�
e := e + ecor = e + I ⊗ τ + τ ⊗ I (96)

represents the sought after tangent modulus, with ecor =
I ⊗ τ+τ ⊗ I a fourth-order correction term that accounts for

the Jaumann–Zaremba corotational formulation. Note that
�
e

specified in (96) not necessarily possesses minor symmetry.

However, the definition of
�
e provided in (93) shows that

�
e maps between two symmetric tensors,

�
τ and d, where

the symmetry of
�
τ becomes immediately apparent from the

representation given in (92). As a result, a symmetrised ver-

sion of
�
e is frequently employed, see, e.g., Costabal et al.

[5], Suchocki [45], and Waffenschmidt et al. [47]. The sym-

metrised version
�
esym of

�
e takes the form8

�
esym = e + 1

2

[
I ⊗ τ + τ ⊗ I + I ⊗ τ + τ ⊗ I

]
. (97)

Note that the final mechanical Abaqus tangent that is to
be returned in terms of the Voigt-type matrix DDSDDE, see
Sect. 4, is scaled with the inverse of J = det(F), i.e. eAbq =
J−1 �

e, so that

eAbq = J−1 [e + ecor] = J−1 e + I ⊗ σ + σ ⊗ I , (98)

where σ = J−1 τ was used. The final expression, (98), or
rather its symmetrised version in line with (97), is consis-
tent with reports in the literature and shall provide quadratic
global convergence rates for Abaqus simulations involving
finite deformations.

8 To symmetrise
�
e := e + ecor = e + I ⊗ τ + τ ⊗ I , we focus on

the contribution ecor = I ⊗ τ + τ ⊗ I , i.e. ecori jkl = δik τ jl + τik δ jl ,
since the spatial elasticity tensor e already possesses major and minor
symmetry properties, i.e. ei jkl = ekli j = e j ikl = ei jlk , which also
holds true for the related algorithmic tangent operator in case of gen-
eralised standard continua in combination with associated evolution
equations. Symmetrisation of ecori jkl with respect to indices l and k yields
1/2 [ecori jkl + ecori jlk ] = 1/2 [δik τ jl + τik δ jl + δil τ jk + τil δ jk ]. Sym-
metrisation with respect to indices i and j leads to the same relation, as
does a symmetrisation with repect to the index pairs i j and kl. In other
words, the term 1/2 [δik τ jl + τik δ jl + δil τ jk + τil δ jk ], translating to
1/2 [I ⊗ τ + τ ⊗ I + I ⊗ τ + τ ⊗ I] in absolute notation, represents
the fully symmetrised version of the fourth-order correction term ecor

to be added to the spatial elasticity modulus.

123



874 Computational Mechanics (2019) 64:847–877

B Analytical derivation of the tangent
operators required for the exemplary local
constitutive formulation

Table 1 summarises the return variables and tangent contri-
butions that need to be specified within the UMAT subroutine
for thermo-mechanically coupled user material formula-
tions. The corresponding tangent expressions for the specific
model elaborated in this work are presented in Sect.B.1
(DDSDDE), Sect.B.2 (DDSDDT), Sect.B.3 (DRPLDE), and
Sect.B.4 (DRPLDE), respectively.

With the local constitutive relations defined in Sect. 5 at
hand, the derivatives required for the fully implicit thermo-
mechanically coupled Abaqus UMAT subroutine can be
evaluated, i.e. we specifiy

DDSDDE → J−1
[
ϕ∗

(
2
dS
dC

)
+ ecor

]
(99)

DDSDDT → ϕ∗
(
dS
dφ

)
(100)

DRPLDE → βd ϕ∗
(
dκ

dC

)
(101)

DRPLDT → drd
dφ

= βd

[
dκ

dφ
− 1

]
, (102)

as elaborated in Sect. 4.1. These return variables involve the
non-trivial expressions

∂S
∂C

,
∂S
∂φ

,
∂κ

∂C
,

∂κ

∂φ
, (103)

where the total derivatives coincide with the corresponding
partial derivatives for the hyperelastic constitutive relation
considered. Analytical representations of the expressions
listed in (103) are derived in the following subsections.

B.1 Analytical derivation of themechanical tangent
contribution

For the analytical derivation of the mechanical tangent con-
tribution DDSDDE, see (99), we first consider the undamaged
material tangent. With the underlying local elastic potential
representing a compressible Neo–Hookean elastic solid, see
Sect. 5.1, the corresponding undamagedmaterial tangent fol-
lows as

EH = 2
∂SH
∂C

= 4
∂2ψH

∂C ⊗ ∂C

= λC−1 ⊗ C−1 + 2 [μ − λ ln(J )] IC−1

sym , (104)

where ψH represents the Neo–Hookean type elastic poten-
tial specified in (57) and SH denotes the associated material
stresses in terms of the Piola–Kirchhoff stress tensor, cf. (58).

The fourth-order contribution IC
−1

sym appearing in (104) is
defined as

IC
−1

sym : = − ∂C−1

∂C

= 1

2
[C−1 ⊗C−1 + C−1 ⊗C−1] . (105)

Considering that the total Piola–Kirchhoff stress tensor is
S = fd(κ) SH, the related tangent results in

E = 2
dS
dC

= fd(κ) 2
∂SH
∂C

+ 2 SH ⊗ ∂ fd(κ)

∂κ

∂κ

∂C

= fd(κ) EH + 2 SH ⊗ ∂ fd(κ)

∂κ

∂κ

∂C
. (106)

With the damage function defined as fd(κ) = exp(−ηd〈κ −
κd〉), the partial derivative ∂ fd(κ)/∂κ appearing in (106) fol-
lows as

∂ fd(κ)

∂κ
= ∂

∂κ
(exp(−ηd 〈κ − κd〉))

= ∂

∂κ
(−ηd 〈κ − κd〉) exp(−ηd 〈κ − κd〉)︸ ︷︷ ︸

fd(κ)

= − ηd fd(κ)
∂

∂κ
(〈κ − κd〉)

= − ηd fd(κ) H(κ − κd) (107)

with the Heaviside function H(•) being the derivative of the
Macaulay bracket function, specifically

∂〈•〉
∂• = H(•) =

{
0 if • < 0

1 else
. (108)

For the determination of ∂κ/∂C in (106), we note
Φd(q, κ) = 0, facilitating the application of the implicit
function theorem, i.e.

∂κ

∂C
= − ∂Φd/∂C

∂Φd/∂κ
= −ϑd SH . (109)

In the above relation, the abbreviation

ϑd =
[
∂Φd(F, φ, κ)

∂κ

]−1

(110)

123



Computational Mechanics (2019) 64:847–877 875

is introduced,which,with the definition ofΦd(F, φ, κ)given
in (73), is evaluated by taking the (scalar) inverse of

∂Φd(F, φ, κ)

∂κ
= ∂

∂κ

(
ψe + βd [φ − κ]

ηd fd(κ)
− κ

)

= ∂

∂κ

(
βd [φ − κ]
ηd fd(κ)

)
− 1

= βd

ηd

[
∂

∂κ

(
φ − κ

fd(κ)

)]
− 1

= βd

ηd

[ [φ − κ] ηd H(κ − κd) − 1

fd(κ)

]
− 1 ,

(111)

where H(κ − κd) = 1 in case of damage being active, i.e. in
case of κ > κd.

B.2 Analytical derivation of the stress sensitivity
w.r.t. the damage field variable

For the analytical derivation of DDSDDT, see (100), we have
to compute the stress sensitivity with respect to the damage
field variable φ, i.e.

∂S
∂φ

= ∂S
∂ fd(κ)︸ ︷︷ ︸
SH

∂ fd(κ)

∂κ

∂κ

∂φ
, (112)

where ∂S/∂ fd(κ) = SH is identified and ∂ fd(κ)/∂κ was
specified in (107). For the computation of ∂κ/∂φ, we again
make use of the implicit function theorem in terms of

∂κ

∂φ
= −∂Φd/∂φ

∂Φd/∂κ
= −ϑd

βd

ηd fd
, (113)

inducing

∂S
∂φ

= βd ϑd SH (114)

as the sought after final representation of ∂S/∂φ entering
DDSDDT.

B.3 Analytical derivation of damage source term
sensitivity w.r.t. deformation

The analytical derivation of DRPLDE, see (101), requires the
derivation of the sensitivity of the internal damage variable
κ with respect to the right Cauchy-Green deformation tensor
C . During the evaluation of chain derivatives appearing in
the mechanical tangent contributions, see (106), we already
observed

∂κ

∂C
= −ϑd SH , (115)

cf. (109), with ϑd defined in (110).

B.4 Analytical derivation of damage source term
sensitivity w.r.t. damage field variable

For the analytical representation of DRPLDT, see (102), the
required sensitivity ∂κ/∂φ was already specified in the con-
text of the chain rule appearing in (112), cf. (113), in terms
of

∂κ

∂φ
= −ϑd

βd

ηd fd
. (116)

B.5 Abaqus Voigt-type storage format

The final arrays to be returned within the Abaqus subrou-
tines need to be of Voigt-type format, where the Voigt-type
representation Av ∈ R

6 of a symmetric second-order tensor
A takes the form

Av = [A11, A22, A33, A12, A13, A23] ∈ R
6 . (117)

Correspondingly, the Voigt-type representation Av ∈ R
6×6

of a fourth order tensor A, which possesses left and right
minor symmetry, reads

Av =

⎡
⎢⎢⎢⎢⎢⎢⎣

A1111 A1122 A1133 A1112 A1113 A1123

A2211 A2222 A2233 A2212 A2213 A2223

A3311 A3322 A3333 A3312 A3313 A3323

A1211 A1222 A1233 A1212 A1213 A1223

A1311 A1322 A1333 A1312 A1313 A1323

A2311 A2322 A2333 A2312 A2313 A2323

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ R
6×6 .

(118)

Following the Abaqus conventions, it is important to note
that no additional coefficients, like

√
2 or 2, as present in

Kelvin notation, must be introduced within both Voigt-type
arrays.
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