
Computational Mechanics (2019) 64:33–45
https://doi.org/10.1007/s00466-018-1655-9

ORIG INAL PAPER

Data science for finite strain mechanical science of ductile materials

Modesar Shakoor1 ·Orion L. Kafka1 · Cheng Yu1 ·Wing Kam Liu1

Received: 17 September 2018 / Accepted: 29 October 2018 / Published online: 13 November 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
A mechanical science of materials, based on data science, is formulated to predict process–structure–property–performance
relationships. Sampling techniques are used to build a training database, which is then compressed using unsupervised learning
methods, and finally used to generate predictions by means of supervised learning methods or mechanistic equations. The
method presented in this paper relies on an a priori deterministic sampling of the solution space, a K-means clustering
method, and a mechanistic Lippmann–Schwinger equation solved using a self-consistent scheme. This method is formulated
in a finite strain setting in order to model the large plastic strains that develop during metal forming processes. An efficient
implementation of an inclusion fragmentation model is introduced in order to model this micromechanism in a clustered
discretization. With the addition of a fatigue strength prediction method also based on data science, process–structure–
property–performance relationships can be predicted in the case of cold-drawn NiTi tubes.

Keywords Data science · Micromechanics · Reduced order modeling · Large deformation

1 Introduction

Increasing research efforts in fine scale experiments and
numerical modeling in recent decades have progressively led
to a change in modeling approaches in mechanics and mate-
rials science. Empirical and phenomenological material laws
that were previously used to model the nonlinear mechanical
response of structures and materials are being replaced by
microstructure-based mechanistic material laws.

Under arbitrary loading conditions the number of micro-
structure observations and conditions to bemodeledmake the
effort required for such an endeavor untenable for practical
applications. The appeal of data science and in particular
machine learning is a drastic reduction in the number of
microstructure observations and simulations required to gen-
erate predictive material laws. There is hence a great interest
in a data science theory for mechanical science of materials
that could generate predictive material laws from a prede-
fined database of experimental and numerical results.

Multiple approaches have been proposed in the literature
to reach this goal, generally summarized by these three steps:
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1. Collect data using high-fidelity experiments and simula-
tions to build a training database.

2. Compress the trainingdatabase usingunsupervised learn-
ing methods for dimension reduction.

3. Generate predictions using supervised learning meth-
ods or mechanistic equations on the compressed training
database and optionally cross-validating those predic-
tions using a testing database with new high-fidelity
experiments and simulations.

The training database can be generated using, e.g., random
sampling [10], Gaussian processes [10], or Sobol sequences
[2]. Because those sampling methods may require a lot of
data points to cover the solution space sufficiently for accu-
rate predictions, deterministic sampling methods have been
considered by some authors [20,33]. For instance, instead of
considering a large number of arbitrary, random loading con-
ditions for the training database, only 6 orthogonal loading
conditions of small amplitude were proved to be sufficient
for small strain elastoplastic analysis in [20].

Compression of the training database can be achieved
using various unsupervised learning methods for dimension
reduction, such as proper orthogonal decomposition (POD)
[10,14,19,26,33], K-means clustering [13,20–22] and self-
organizing maps [31]. The choice of compression method
has a significant importance as it defines the discretization
of mechanistic equations that will be solved in the prediction
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stage. POD leads to shape functions of global support, while
clustering methods ensure a cluster-wise discretization.

As a result of data compression, the complexity of high-
fidelity experiments and simulations that were used to build
the training database is encapsulated in a few degrees of
freedom. In order to solve for those degrees of freedom and
predict mechanical response at arbitrary loading conditions,
mechanistic equations have to be reformulated in terms of the
reduced degrees of freedom. This new formulation of mech-
anistic equations is usually called a reduced order model,
although this denomination encompasses approaches such as
proper generalized decomposition [3,15] which do not rely
on data science.

Additionally, some approaches couple the data compres-
sion andmechanistic prediction steps to improve the reduced
order model during the simulation [14,26]. Some supervised
learning methods have been applied directly to the training
database with a built-in compression stage. This is the case
for instance for artificial neural networks, which have been
applied in the literature to predict mechanical properties of
materials as a function of theirmicrostructural characteristics
[11,16,34].

In this paper, we will revisit self-consistent clustering
analysis (SCA), a data-driven mechanistic material model-
ing theory that has been recently developed for small strain
elastoplastic materials [20]. SCA relies on data compres-
sion through clustering and mechanistic prediction through
micromechanics and homogenization theory.

Convergence of SCA was proved theoretically recently in
[31]. Other contributions have recently shown the capability
of SCA to account for complex behavior of the microstruc-
ture’s constituents by embedding crystal plasticity (CP)
material laws [13,22] or continuum damage models [21].

The method is herein revisited as a data science mecha-
nistic approach and extended to ductile materials. To reach
such an end, the mechanistic equations that SCA relies on to
make predictions are reformulated for finite strain elastoplas-
tic materials in Sect. 2. Numerical convergence of this new
method is verified in Sect. 3. This new formulation of SCA
enables the prediction of the nucleation of voids in ductile
materials by debonding and fragmentation of inclusions at
the scale of their microstructure, which is shown in Fig. 1.
This prediction is achievedwith a complexity reduced by sev-
eral orders. This advantage is exploited in Sect. 4 to predict
process–structure–property relations for cold drawn nickel-
titanium (NiTi) tubes.

2 Data science formulation

Microstructure-based material modeling requires the defini-
tion of an idealistic or statistically representative microstruc-
ture realization, called representative volume element (RVE).

Fig. 1 Ductile materials’ microstructures discretized using voxel
meshes with matrix shown in blue and inclusions in red: a two-
dimensional microstructure, b inside view of a three-dimensional
microstructure with a fragmented inclusion surrounded by a debonding
void shown in light gray. (Color figure online)

Homogenizedmaterial laws can be computed by analytically
or numerically solving a boundary value problem for the
response of that RVE. For arbitrary microstructure geome-
tries and complex behavior of microstructure constituents
(plasticity, fracture), numerical methods such as the finite
element (FE) method or fast Fourier transform (FFT)-based
numerical methods [25] are required.

The microstructures that will be studied in the present
paper correspond to ductile materials and feature one or mul-
tiple inclusions and voids embedded in a matrix, as shown in
Fig. 1. The complexity of the microstructure’s constituents’
behavior arises due to the hyperelastoplastic response of the
matrix, the hyperelastic-brittle behavior of the inclusions, and
debonding micromechanisms at the matrix/inclusions inter-
face.

The FEmethod can be usedwith any structured or unstruc-
tured FE mesh of the undeformed RVE domain �m

0 (the
superscript m means microscopic), while FFT-based meth-
ods require structured voxel meshes such as that shown in
Fig. 1. In the FE method discrete equations are written for
the displacement field um , which is approximated at mesh
nodes as

um(X) ≈
Nnodes∑

n=1

um,nNn(X), X ∈ �m
0 , (1)

where Nnodes is the number of nodes in the FE mesh, um,n is
the displacement vector at node n, and Nn is the FE shape
function at node n. In FFT-based numericalmethods, discrete
equations arewritten for the deformation gradient tensor field
Fm = I + ∇Xum , which is approximated voxel-wise as

Fm(X) ≈
Nvoxels∑

n=1

Fm,nχn(X), X ∈ �m
0 , (2)
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where Nvoxels is the number of voxels, Fm,n is the deforma-
tion gradient tensor in voxeln, andχn(X) is the characteristic
function which is equal to 1 if X is inside voxel n and zero
otherwise.

For a given microstructure, the displacement field um and
the deformation gradient field Fm depend on boundary con-
ditions applied to the RVE. In the present work, um will be
decomposed over the RVE domain�m

0 into a linear part and a
periodic part. As a result, Fm will be decomposed into a con-
stant part FM (the superscript M meansMacroscopic) and a
periodic part with zero average over �m

0 . These assumptions
correspond to first order homogenization theory [9,25].

Data science is used in themechanical science ofmaterials
to predict either um or Fm as a function of FM . As stated in
the introduction, the first step is to generate data through
simulations. Following [20], this will be done using a priori
sampling of loading conditions in Sects. 3 and 4.

Simulation results in the training database will have large
dimensions due to dependence of approximations in Eqs. (1)
and (2) on either the number of nodes or the number of voxels.
Data compression is necessary to obtain new approximations
with reduced dimensions.

2.1 Data compression

Dimension reduction can be achieved using various methods
among which POD and clustering are presented and com-
pared in the following.

The general formulation of data science approaches that
is developed herein is only relevant if the complexity of sim-
ulations that are to be conducted in the prediction stage is
at least one order superior to the complexity of simulations
required in the training and data compression stage. The rele-
vance of data science approaches also depends on the amount
of work that can be transferred out of the prediction stage.
This will be evidenced in the following in the case of POD
and clustering based data science approaches for mechanical
science of materials.

Data compression in the case of POD consists in replacing
the large number of local FE shape functions (Nn)n=1...Nnodes

by K � Nnodes global functions
(
W k

i

)
k=1...K ,i=1...3, called

principal components or modes. The latter can be computed
using various decomposition techniques such as principal
component analysis or singular value decomposition [18].
The resulting approximation replacing Eq. (1) is

umi (X) ≈
K∑

k=1

um,k
i W k

i (X), X ∈ �0, (3)

where the modes are discretized at mesh nodes as

W k
i (X) =

Nnodes∑

n=1

Wk,n
i Nn(X), X ∈ �0. (4)

Simulations in the prediction stage can then be conducted
using a standard FE weak form but replacing approximation
(1) by (3). It is interesting to see that once the modes are
computed in the data compression stage, Eq. (4) can be pre-
computed at integration points of the FE mesh in the same
way that FE shape functions are usually precomputed in FE
codes [14,26,33].

However, if the material is heterogeneous, or if it has a
nonlinear behavior that leads to heterogeneous deformations,
material integration still has to be solved at each integration
point [27]. Consequently, in the PODmethod, the complexity
of material integration is not reduced. Additionally, the stiff-
ness matrix associated to the FE weak form is dense because
of the form of Eq. (4), and hence its solution using direct or
iterative solvers has a cubic worst-case complexity instead of
quadratic. However, this complexity depends on K instead
of Nnodes, with K � Nnodes, and is therefore drastically
reduced by POD.

Data compression in the case of SCA follows a different
approach, where the initial numerical method is FFT-based.
The large number of voxels is to be replaced by K � Nvoxels

mutually-exclusive groups of voxels that are called clusters
and that span the entire RVE domain. Clusters can be con-
structed using various clustering techniques such asK-means
clustering [13,20–22], or self-organizing maps [31]. Exam-
ples of data that can be used for clustering are given in Sect. 3.
The resulting approximation replacing Eq. (2) is

Fm(X) ≈
K∑

k=1

Fm,kχk(X), X ∈ �m
0 , (5)

where Fm,k is the cluster-wise constant deformation gradient
tensor in cluster k, and χk(X) is the characteristic function
which is equal to 1 if X is inside any voxel of cluster k, and
zero otherwise. Because in the FFT-based numerical method
the degrees of freedom are directly the voxel-wise constant
deformation gradients [25], interpolation and integration are
carried out at the same points. Thus, clustering degrees of
freedomdirectly leads to a reduction of the number of degrees
of freedom and of material integration complexity. In fact, in
SCA, the complexity of all operations conducted in the pre-
diction stage only depends on the number of clusters K , with
the most expensive operation being, similarly to POD, the
solution of a dense linear system. The latter results from the
reformulation and discretization of the Cauchy equation into
the discrete Lippmann–Schwinger equation. These steps are
described in the following in the finite strain case following
recent work on finite strain FFT-based numerical methods
[12] and then integrating it into SCA [20].
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Fig. 2 Ductile materials’ microstructures: a two-dimensional
microstructure discretized using 8 clusters, b same two-dimensional
microstructure discretized using 65 clusters, c three-dimensional

microstructure discretized using 217 clusters showing two clusters in
the matrix phase (two shades of blue), one cluster in the inclusion phase
(red), and one cluster in the void phase (light gray). (Color figure online)

2.2 Continuous Lippmann–Schwinger equation

As mentioned previously, first order homogenization con-
sists in defining the deformation gradient tensor field in the
RVE Fm as the addition of the macroscopic (homogeneous)
deformation gradient FM and amicroscopic (heterogeneous)
fluctuation. Hill’s lemma can be used to define the macro-
scopic first Piola–Kirchhoff stress tensor PM as the average
of the microscopic one PM = 1

|�m
0 |

∫
�m
0
Pm(X)dX [9].

Hill’s lemma requires (Fm −FM ) to verify compatibility,
i.e., to derive from a periodic displacement field, and Fm

to verify equilibrium, i.e. to be the solution of the Cauchy
equation

∇X · Pm(Fm(X)) = 0, X ∈ �m
0 . (6)

It can be shown [12] that Eq. (6) is equivalent to the
Lippmann–Schwinger equation

Fm(X) = −
∫

�m
0

G
0(X, X ′) :

(
Pm(Fm(X ′))

−C
0 : Fm(X ′)

)
dX ′ + F0, X ∈ �m

0 . (7)

The fourth rank tensor C0 is the stiffness tensor associated
to an isotropic linear elastic reference material. It will be
determined in Sect. 2.3, as well as the far field deformation
gradient tensor F0 and the periodic Green’s operatorG0. The
latter maps any tensor field τm to a compatible one:

∃u ∈ (H1(�m
0 ))3,u periodic on �m

0 ,−G
0 ∗ τm = ∇Xu,

(8)

where H1(�m
0 ) is the Sobolev space of square-integrable

functions whose weak derivatives are also square-integrable.
The combination of Eqs. (7) and (8) yields a microscopic

deformation gradient tensor Fm that verifies compatibility

and a first Piola–Kirchhoff stress tensorPm that verifies equi-
librium.

2.3 Discrete Lippmann–Schwinger equation

SCAconsists of solving Eq. (7) cluster-wise instead of voxel-
wise. This choice is inspired from micromechanics and in
particular transformation field analysis [5]. Figure 2 shows
an example of clustering performed on the microstructures
in Fig. 1.

As a result of the training stage, the RVE domain �m
0 is

discretized into K subsets
(
�

m,k
0

)

k=1...K
. The degrees of

freedom in the FFT-based numerical method [25] are associ-
ated with the microscopic deformation gradient Fm . In SCA
[20], Fm is discretized by a cluster-wise constant approxima-
tion

(
Fm,k

)
k=1...K . As a consequence, the microscopic first

Piola–Kirchhoff stress tensor is also approximated cluster-
wise

(
Pm,k

)
k=1...K , and Eq. (7) can be discretized as

Fm,k = −
∑

k′=1...K

D
0,k,k′ :

(
Pm,k′ − C

0 : Fm,k′)

+F0, k = 1 . . . K (9)

where D0 is the interaction tensor defined by

D
0,k,k′ = 1

|�m,k
0 |

∫

�m
0

χk(X)

∫

�m
0

χk′
(X ′)G0(X, X ′)dX ′dX

= 1

|�m,k
0 |

∫

�
m,k
0

(
χk′ ∗ G

0
)

(X)dX . (10)

The characteristic functions χk and χk′
are equal to 1 in,

respectively, clusters k and k′, and 0 elsewhere. In the FFT-
based numerical method [25], the periodic Green’s operator
G

0 depends on C
0, and is known in closed form in Fourier

space. Because C
0 is related to an isotropic linear elastic

reference material, G0 can be expressed in Fourier space as
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a function of the reference Lamé parameters λ0 and μ0. It
is then obtained in real space by using the inverse FFT. In
particular, Eq. (10) can be written in the form

D
0,k,k′ = f 1(λ0, μ0)D1,k,k′ + f 2(λ0, μ0)D2,k,k′

,

D
i,k,k′ = 1

|�m,k
0 |

∫

�
m,k
0

FFT−1
{
FFT{χk′ }Ĝi

}
(X)dX, i =1, 2.

(11)

The detailed expressions of f 1, f 2, Ĝ1 and Ĝ
2 can be

found in [12,20,25] amongothers.Drastic computational cost
reduction is enabled by SCA thanks to a reduced number of
degrees of freedom by clustering, and by the fact thatD1 and
D
2 can be precomputed in the training stage. Therefore, nei-

ther FFTs nor inverse FFTs are computed in the prediction
stage, even if the reference material is changing.

In the present work, mixed boundary conditions are cou-
pled to Eq. (9). Some components Fm

i, j of the average
of the microscopic deformation gradient are set equal to
their macroscopic counterparts from FM

i, j , and some other
componentsPm

i, j of the averageof themicroscopicfirst Piola–
Kirchhoff stress tensor are set to zero. This can be done by
adding the following conditions to Eq. (9):

{ ∑
k=1...k |�m,k

0 |Fm,k
i, j = |�m

0 |FM
i, j , (i, j) ∈ F

∑
k=1...k |�m,k

0 |Pm,k
i, j = 0, (i, j) ∈ {1, 2, 3}2\F

(12)

where F ⊂ {1, 2, 3}2 is the set of components for which
kinematic conditions are imposed.

As noted in [20], solutions of Eq. (9) depend on the choice
of reference material. An optimal choice can be computed in
the prediction stage by making the reference material consis-
tent with the homogenized material. This means that the far
field deformation gradient tensorF0 is an additional unknown
that must be solved for in SCA [20], as opposed to the
FFT-based numericalmethodwhereF0 ≡ FM [12]. The self-
consistent method consists in using a fixed-point iterative
method where, at each step, the reference Lamé parameters
λ0 and μ0 are changed so that ||PM − C

0 : (
F0 − I

) ||2
is minimized. This is presented in algorithm form in the
“Appendix”.

2.4 Summary

To summarize, SCA is based on a voxel-wise discretization of
the RVE domain, which is inherited from FFT-based numer-
ical methods. The originality of SCA comes from the use
of a K-means clustering algorithm in the training stage to
cluster voxels based on amechanistic a priori clustering crite-
rion computed using a simple sampling of the loading space.
This training stage also includes computing all voxel-wise

and computationally expensive operations such as FFTs and
inverse FFTs.

In the prediction stage, a self-consistent iterative algo-
rithm is used to search for the optimal choice of reference
Lamé parameters. At each iteration of this self-consistent
loop, matrix assembly operations are accelerated because all
voxel-wise operations have been precomputed in the train-
ing stage and already reduced to cluster-wise contributions.
A Newton-Raphson iterative algorithm must be embedded
within each self-consistent iteration as we are considering
nonlinear materials, thus the discrete Lippmann–Schwinger
equation is linearized.

The outputs from SCA are the microscopic variables’
cluster-wise approximations, including the microscopic first
Piola–Kirchhoff stress tensor. The latter can be used to pre-
dict void nucleation micromechanisms through stress-based
fracture criteria as will be described in Sect. 4.

Themain advantageofSCAoverPOD techniques is that in
the prediction stage all operations are conducted cluster-wise
in SCA instead of voxel-wise, including material integration
and even fragmentation modeling.

3 Numerical validation

Before considering a specific application as proposed in
Sect. 4, general ductile materials microstructure are modeled
in this section both using a finite strain FFT-based numeri-
cal method and finite strain SCA. The goal is to validate
the numerical convergence of SCA towards the reference
result, and its capability to compute accurate predictionswith
a reduced complexity, as was shown for the small strain case
in [20].

In the present large strain case, hyperelastic behavior is
modeled both in the matrix and in the inclusions. A multi-
plicative vonMises plasticitymodel [30]with linear isotropic
hardening is added to model the nonlinear response of the
matrix. Inclusions are assumed to be brittle, which is a com-
mon assumption for hard phases in ductile materials. Their
failure will be considered in Sect. 4. The model ductile
material microstructure is shown in Fig. 3a, and material
properties are given in Table 1 for the matrix and the inclu-
sions. Themicrostructure is discretized using 100×100×100
voxels, which is sufficient to accurately predict the response
with the FFT numerical method based on our preliminary
calculations (not reported herein).

The reference result is computed on the voxel mesh using
the finite strain FFT based numerical method under unidi-
rectional tension up to 25% applied logarithmic strain with
strain increments of size 0.001.The trainingdatabaseused for
K-means clustering simply consists of the voxel-wise defor-
mation gradient tensor extracted from the first increment of
this reference simulation, which corresponds to a linear elas-
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Fig. 3 a Ductile composite with particle volume fraction of 20%; b
SCA converges fast to the FFT reference for the overall mechanical
response of the RVE under unidirectional tension along the x direc-
tion; c a closer look at the dashed rectangle area in b shows accurate

prediction of SCA with only 16 clusters; d a CPU time saving of a
factor of more than 103 is achieved with SCA for the relatively well-
converged number of clusters, compared with the FFT reference with a
100 × 100 × 100 voxel mesh

Table 1 Material parameters for the model ductile material

Parameter Matrix Inclusion Void Units

Young’s modulus 70.0 400.0 70.0e−3 GPa

Poisson’s ratio 0.33 0.2 0.0 –

Yield strength 400 – – MPa

Hardening modulus 1333 – – MPa

tic analysis. In other words, the simulation used for training
is identical in all aspects (mesh, geometry, material prop-
erties) to the one conducted in the prediction stage, except
for loading conditions because only one strain increment is
applied during training. This database can hence be con-
structed with a negligible computational cost. The K-means
algorithm requires a predefined number of clusters, which is

varied from k1 = 1, 4, 16, 64, 256 in the matrix phase, and
k2 = 1, 1, 4, 13, 26 in the inclusion phase.

The comparisonbetween the referencemacroscopic stress/
strain curve and those predicted by finite strain SCA is pre-
sented in Fig. 3b, c. For 16 clusters in the matrix and more,
a very accurate prediction is obtained with finite strain SCA.
This extends the validation conducted in [20] to large strains.

To show the influence of clustering on computational com-
plexity, a comparison of computation times is presented in
Fig. 3c. The computation time is shown to be reduced by
four orders using SCA compared to the FFT based numer-
ical method. This shows that SCA drastically reduces the
complexity of microstructure calculations, based on a mech-
anistic clustering of voxels.

This interesting advantage of SCA is demonstrated in a
second set of simulations where the inclusions in Fig. 3a are
replaced by voids. Material properties for this porous ductile
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Fig. 4 a SCA is fairly close to the FFT reference for the overallmechan-
ical response of the porous RVE under uniaxial tension along the x
direction; b a closer look at dashed rectangle area in a shows the rel-
atively slow convergence; c a CPU time saving of a factor of more

than 103 is achieved with SCA for relatively well-converged numbers
of clusters, compared with the FFT reference with a 100 × 100 × 100
voxel mesh

material are the same as those in Table 1, except that the
stiffness of the voids is assumed to be 1% of that of the
matrix. Loading is set to uniaxial tension to ensure that the
stress state remains constant during the analysis.

The comparisonbetween the referencemacroscopic stress/
strain curve and those predicted by finite strain SCA is pre-
sented in Fig. 4a, b. It can be seen that convergence is much
slower for this example with voids, which features larger
plastic strains than in the inclusions case. However, predic-
tions are very close to the reference result.

The main advantage of SCA in terms of computation time
is preserved, as shown in Fig. 4b. As all SCA predictions
are very close, one could use a very small number of clus-
ters and obtain a good approximation of the reference result,
resulting once again in a drastic reduction of computational
complexity.

These first simulations with the proposed finite strain
SCA formulation are promising as predictions are close to

the reference results for a drastically reduced computational
complexity. However, this comparison is purely global: only
averaged results are being assessed. At large plastic strain
or for more complex loading conditions, very heterogeneous
and localized strain fields may develop and would require
improvements to the method. For instance, adaptive cluster-
ing techniques could be considered to update the clustering
when plastic localization phenomena occur within the RVE.

4 Application to fatigue strength prediction
of cold drawn NiTi tubes

In the continuation of Sect. 3, the objective of this section is to
demonstrate the utility of a mechanical science of materials
based on data science to predict process–structure–property–
performance relationships. The chosen application is the
prediction of the fatigue strength of cold drawn NiTi tubes as

123



40 Computational Mechanics (2019) 64:33–45

a function of drawing ratio and initial inclusion Aspect Ratio
(AR).

NiTi tubes are formed using a series of hot and cold metal
forming processes coupled to heat treatments [8,17,28,32].
They are used in the making of e.g. arterial stents and heart
valve frames that undergo a large number of cyclic loads due
to heart beats [1,4,6,24]. A critical measure of a tube’s per-
formance is hence the fatigue strength of its material, which
is itself a function of the material’s fatigue life under differ-
ent applied cyclic strain amplitudes. This fatigue life can be
predicted using micromechanical simulations, which depend
on the microstructural constitution of NiTi tubes. The latter
is a consequence of forming processes, and in particular of
the cold drawing step, which is the focus of the following
study.

We propose simulating cold drawing at the microscale
by applying biaxial compression to an initially debonded
inclusion embedded within a NiTi matrix. In order to predict
the evolution of this microstructure during cold drawing, the
finite strain SCA theory introduced in Sect. 2 is completed
with a fragmentation model in Sect. 4.1. The microstructure
is extracted at different stages of this drawing model and
used as input to a data-driven fatigue life prediction model
developed in previous studies [13,22] and described briefly
in Sect. 4.2. The transfer of the microstructure morphology
from the drawing model to the fatigue life prediction model
requires a displacement reconstruction and microstructure
interpolation step that is described in Sect. 4.3. Process–
structure–property–performance predictions obtained using
this data science approach are presented in 4.4.

4.1 Cold drawingmodel

Using the self-consistent scheme presented in Sect. 2.3, the
discrete Lippmann–Schwinger equation (9) can be solved
with mixed boundary conditions (12) and appropriate con-
stitutive models for the microstructure’s constituents. Con-
stitutive models and material parameters are kept identical
to those used in Sect. 3 and reported in Table 1, but they are
completed by an inclusion fragmentation model. In addition,
inclusions are assumed to be initially debonded as a result of
high shear stresses developing early at the inclusion/matrix
interface during cold drawing, similarly to the cold extrusion
process [23].

Inclusions fragmentation is modeled using a Tresca yield
criterion averaged inclusion-wise, following a regularization
technique used in a previous work [29] and coupled to a size-
effect criterion. The Tresca criterion defines the shear stress
σTresca as

σTresca = 1

2
max |σ1 − σ2|, |σ2 − σ3|, |σ3 − σ1| (13)

where σ1, σ2, σ3 are the cluster-wise constant principal
stresses computed within each cluster of the inclusion phase.
The shear stress σTresca is then averaged inclusion-wise, or
inclusion fragment-wise if the inclusion has already broken-
up, and that averaged value σ Tresca is compared to the
inclusion shear strength σ c

T resca . The equivalent radius of this
inclusionor inclusion fragment r is also compared to a critical
size parameter rc. If the shear strength has been reached and
r ≥ rc, the inclusion cluster containing the σTresca-weighted
barycenter of that inclusion or inclusion fragment is turned
into void, as illustrated in Fig. 5. In practice, this consists in
reducing its Young modulus to a 1000th of its initial value
over several load increments. This procedure is carried out at
the end of each load increment of the finite strain SCA sim-
ulation, once Eqs. (9) and (12) have been solved using the
self-consistent scheme. As revealed in Fig. 5, the orienta-
tion of the fragmentation crack is predefined and is initially
orthogonal to the drawing direction. The fracture criterion
parameters are given in Table 2.

4.2 Fatigue life predictionmodel

High-cycle fatigue life can be estimated based on local
plastic deformation predicted under cyclic loading, where
these deformations are computed using the SCA outlined
above. Since cyclic strain amplitudes are low, typically below
1% reversed strain, a small strain formulation can be used.
An appropriate micro-scale material law—crystal plastic-
ity (CP)—is solved cluster-wise to obtain the cyclic change
in plastic shear strain (�γp) and stress normal (σn) to that
strain in the matrix material. The peak value of these vari-
ables reach cyclic steady-state rapidly, typically within 3 or 4
loading cycles. From these, a scalar value called the Fatigue
Indicating Parameter (FIP) can be defined, which quantifies
the fatigue driving force at any location. Here, we adopt the
Fatemi–Socie FIP, defined by

FIP = �γp

2

(
1 + κ

σn

σy

)
(14)

Originally developed by Fatemi and Socie [7], this FIP is a
critical plane approach based upon the plane of maximum
normal stress, σn , normalized by the material yield stress
(σy) and a material dependent parameter κ , which controls
the influence of normal stress (here κ will be taken as 0.55).
When used with SCA and a CP law, the FIP in each clus-
ter is computed cluster-wise from plastic strain and stress
across time increments using a simple search to maximize
the plastic strain, and thus identify the critical plane. The
maximum, saturated FIP (NFIPmax ) can be correlated to the
number of fatigue incubation cycles (Ninc) a microstructure
can withstand using a Coffin-Manson parameterization. By
computing Ninc for a number of different strain amplitudes
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Fig. 5 Clusters (shades of red)
within the debonded inclusion: a
before fragmentation, b after
fragmentation with the missing
cluster turned into void.
Drawing direction is horizontal.
(Color figure online)

Table 2 Fracture criterion parameters for the cold drawing model

Parameter Value Units

Shear strength 3000 MPa

Critical inclusion size 0.17 1/RVE size

to generate a strain-life curve, the fatigue strength (strain
amplitude at which a given number of cycles can be reached)
can be computed through interpolation or fitting.

The CP material law from [24], calibrated to capture the
hardening response of the B2 phase of NiTi, is used. Post-
yield hardening is computed with a backstress term that
accounts for direct and dynamic hardening. Consistent with
the worst-case or nearly worst-case approximation for the
material phase, and the lack of crystallographic information
from the cold drawing model, the matrix is assumed to be
composed of a single grain oriented such that its Schmid
factor is maximized. The hard inclusion phase (represent-
ing oxides or carbides) is taken to be linear-elastic with an
elastic modulus 10 times that of the matrix material. This
process follows the CPSCA formulation outlined in [22],
which integrates the CP material law within SCA, and the
fatigue prediction method shown for synthetic microstruc-
tures in [13]. Indeed, the same model parameters are used
for CP, FIP and Coffin-Manson as are shown in [13].

4.3 Transfer of microstructure from cold drawing
model to fatigue life predictionmodel

The fatigue life predictionmodel relies on CPSCA and hence
on an underlying voxel mesh. In order to use this model, the
deformed and fragmented microstructures from the drawing
simulation results need to be transferred to a new voxelmesh.

The first step is to reconstruct the microscopic displace-
ment vector field, since both FFT-based numerical methods

and SCA only solve for the microscopic deformation gradi-
ent tensor. This is done using a simple Taylor expansion,
or forward finite difference formula, which computes the
displacements at all nodes of the voxel mesh from the
microscopic deformation gradients inside voxels. This com-
putation starts at some arbitrary corner of the RVE domain
where the displacement is fixed to zero, which is in agree-
ment with FE-based linear homogenization implementations
[9].

Once the displacement vector field has been reconstructed,
the mesh can be deformed by adding these displacements
to node coordinates, as shown in Fig. 6a, b. Finally, the
phase tags (matrix, inclusion, void) are transferred from this
deformed mesh to a new voxel mesh of the deformed RVE
domain using a simple voxel-wise constant interpolation. As
a result, the new voxel mesh is compatible with FFT-based
numerical methods and SCA, but embeds phase tags that
correspond to a cold drawn microstructure. Fatigue life pre-
dictions can be computed on this new voxel mesh using the
CPSCA method, as shown in Fig. 6c.

4.4 Fatigue strength predictions

Three different initial conditions for the drawing model were
considered, representing possible variability in the quality
and degree of processing in the feed stock used for cold draw-
ing. Each condition includes a single, ellipsoidal, debonded
inclusion centered in the matrix with a different AR in the
load direction. The cross-sectional area (i.e. theminor axis of
the ellipsoid) of the initial configuration is kept constant, and
the length (in the drawing direction) changed. By doing this,
we study the influence of AR (mean curvature) on drawing,
fragmentation and subsequent fatigue life. These three differ-
ent cases are deformed to up to 60% section height reduction
by applying biaxial compression with a stress-free third axis.
For each case, at every 5% height reduction the procedure
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Fig. 6 Cold drawing and FIP computation results showing the particle
fragments in red, the voids in light gray, and: a the equivalent plastic
strain in the matrix in undeformed configuration, b the equivalent plas-
tic strain in the matrix in deformed configuration after displacement

reconstruction, c the FIP in the matrix on a new voxel mesh of the
deformed configuration after mesh transfer. Note that the three figures
are not in the same spatial scale, as section height in b, c is reduced by
45% compared to (a). (Color figure online)

outline in Sect. 4.3 is performed and the fatigue strength is
computed. In order to compute the fatigue strength, fatigue
lives at strain amplitudes ranging between 0.36 and 0.54% in
increments of 0.06% were computed, and the strain ampli-
tude required to reach 107 cycles was estimated using a
power-law fit to that data. Triangle waveforms with load-
ing rate 0.1/s were used throughout to apply fully reversed
tension-compression (strain ratio, R = −1) fatigue loading.

The results from this parametric study are shown in Fig. 7.
In the center of the figure, fatigue strength—the maximum
strain amplitude at which a specified number of cycles can
be obtained—is plotted versus the section reduction resulting
from drawing. At each point in section reduction and for each
AR the fatigue strength at 107 cycles is computed using the
procedure outlined above. Cross-sections of the volume are
given at six different points in order to visualize and analyze
the process bywhich the fatigue strength changeswith reduc-
tion percent. The drawingmodel captures the overall trend of
an increase in fatigue life with increasing height reduction,
particularly for the highest AR.A large increase in the fatigue
life is noted when the AR 3 particle fragments, between 40

and 45% reduction. The pre-fragmentation configuration is
shown in the upper right-hand subset to Fig. 7, and the post-
fragmentation configurationwas shownpreviously in Fig. 6c.
The distribution of FIP changes noticeably between these two
states, with the field much more concentrated at the inter-
faces before fragmentation and more distributed throughout
the volume after fragmentation. Up to 60% height reduction
neither AR 1 nor 2 fragment, and no substantial decrease
in life is noted. This is consistent with experimental experi-
ence, where relatively large reductions are often required to
achieve large gains in fatigue performance. Higher reduction
percents or different material properties would be required
to fragment these cases.

Conclusions

A general formulation of data science approaches for
mechanical science of materials has been presented in this
paper. This general formulation consists in reducing the
complexity of process–structure–property–performance pre-
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Fig. 7 Fatigue strength at 107 cycles as a function of cold drawing section reduction for 1:1:1, 2:1:1, and 3:1:1 initial AR (x:y:z). Fragmentation
occurs between 40 and 45% reduction for AR 3, resulting in a jump in fatigue strength

diction methods using unsupervised learning methods on a
training database of high-fidelity simulations. This is evi-
denced in the case of a training database composed of RVE
simulations results computed under various loading condi-
tions using the FE method or FFT-based numerical methods.
Dimension reduction leads to a compressed RVE model
where nodes and voxels are replaced by either modes or clus-
ters depending on the supervised learning method used for
data compression.

In the prediction stage, supervised learning methods or
mechanistic equations are solved using the compressed RVE.
For instance, POD can be used to solve the Cauchy equation
using a compressed FE discretization where the complexity
depends on the number of modes instead of the number of
nodes. Similarly, K-means clustering can be used to solve the
Lippmann–Schwinger equation with a complexity depend-
ing on the number of clusters instead of the number of voxels.
The interesting advantage of this later approach over the for-
mer is that it reduces both the complexity of mechanistic
equations solution and material integration.

The solution of the Lippmann–Schwinger equation using
a clustered discretization requires a self-consistent scheme
that has been extended to finite strain elastoplastic materials
and coupled to micromechanical void nucleation models in
this paper. As a result, microstructure evolutions due to large
plastic strains have been captured during the cold drawing
of NiTi tubes. These microstructure evolutions have been
related to the fatigue life and then the fatigue strength of
NiTi tubes using a second data science based approach devel-

oped in a previous work. Therefore, it has been demonstrated
that the proposed data science formulation for mechanical
science of materials can predict process–structure–property–
performance with a reduced complexity.
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Appendix

The finite strain SCA algorithm is given in Algorithm 1.
The fracture criteria introduced in Sect. 4 are considered
only once a converged solution has been computed using
this algorithm. The convergence criterion is a tolerance on
the variation on Fm between two self-consistent scheme iter-
ations.
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Algorithm 1 Finite strain SCA algorithm

1: procedure SCA(Inputs: K , D1, D2,
(
|�m,k

0 |
)

k=1...K
, |�m

0 |, F , and FM )

2: Initialize (λ0, μ0)

3: repeat
4: D

0,k,k′ ← f 1(λ0, μ0)D1,k,k′ + f 2(λ0, μ0)D2,k,k′
, k, k′ = 1 . . . K

5: Solve for Fm and F0 using a Newton-Raphson scheme:
⎧
⎪⎪⎨

⎪⎪⎩

Fm,k+∑
k′=1...K D

0,k,k′ :
(
P(Fm,k′

)−C
0 : Fm,k′)−F0 = 0, k=1 . . . K

∑
k=1...k |�m,k

0 |Fm,k
i, j = |�m

0 |FM
i, j , (i, j)∈F

∑
k=1...k |�m,k

0 |Pm,k
i, j = 0, (i, j)∈{1, 2, 3}2\F

6: PM ← 1
|�m

0 |
∑

k=1...k |�m,k
0 |Pm,k

7: (λ0, μ0) ← argmin(λ∗,μ∗) ||PM − C
0(λ∗, μ∗) : (

F0 − I
) ||2

8: until converged
9: end procedure
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