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Abstract
In this paper, the authors firstly propose a new basis reduction method of lower bound shakedown analysis for the perfectly-
plasticmaterial, based on the proper orthogonal decomposition. The proposedmethod contains the plastic incremental analysis
with some pre-chosen monotonic increasing loadings, the proper orthogonal decomposition and the elastic analysis with the
initial strain. The basis reduction method presented can be implemented, independently of the optimization solution process
of lower bound shakedown problem. Once the bases would be evaluated for given independent loadings, it could be used
for the shakedown analysis with different load angles and the number of reduced bases does not depend on the number of
integration points used for the finite element discretization. Secondly, expressing the back stress of lower bound shakedown
problem for the kinematic hardening material by the linear combination of fictitious elastic stress fields, the number of design
variables related to the back stress is reduced to the number of load vertices and the computational scale of shakedown
analysis of kinematic hardening material would be decreased significantly by the combination of the basis reduction method
of self-equilibrated stress field proposed in this paper. Numerical examples show that the proposed method is effective and
precise computationally.

Keywords Shakedown analysis · Proper orthogonal decomposition · Kinematic hardening · Basis reduction

1 Introduction

The shakedown analysis is one of the most reliable and con-
venient methods that could assess the safety of structure
under varying loadings. The mathematical problem for the
evaluation of shakedown load could be formulated by using
the Melan’s static theorem [1, 2] or the Koiter’s kinematic
theorem [3]. It should be noted that the authors would like
to consider mainly the numerical analysis of lower bound
shakedown based on theMelan’s static theorem in this paper.
The lower bound shakedown analysis may be led to the
solution of the convex optimization problem with the linear
objective function and the linear or non-linear constraints, in
general. The nonlinearity of constraints depends on the type
of yield function used. Since the von-Mises function is usu-
ally adopted as the yield function, the shakedown analysis
reduces to the nonlinear convex optimization problem.
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The nonlinear convex optimization problem for the shake-
down analysis is usually very large in computational scale
because it has many unknowns and constraints. In earlier
studies [4–7], the sequential quadratic programming (SQP)
has been combined with the methods for reducing the num-
ber of bases of self-equilibrated stress field stipulating the
number of unknowns for the numerical optimization of
the shakedown. But, these approaches should evaluate the
reduced bases newly at every step of optimization by using
the elastic analysis or the plastic incremental computation
based on the finite element method (FEM). Thus, the opti-
mization solution process should be accompanied by the
finite element computation and the basis reduction process
needs to be repeated with varying the load angle for the
given independent loadings. Although the boundary element
method and the element-free Galerkin method were com-
bined with the basis reduction method presented in Ref.
[4] for the shakedown analysis [8–10], the basis reduction
method itself has little advances till now.

Some studies extended the basis reduction method into
the kinematic hardening material. Although Stein et al. [4]
proposed the overlay model, being capable of preserving the
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general form of perfectly-plastic material for the shakedown
analysis of kinematic hardening material, its implementation
was limited to the 2D problem or the specific 3D problem.
Even though Heizer et al. [7] proposed a method, being
applicable to any 3D shakedown problem, by using the two-
surface method [11] in order to overcome this difficulty,
this method should solve the shakedown problem for the
perfectly-plastic material twice one after another and the
basis reduction process also has to be repeated twice. More
importantly, it can not be applied for the shakedown analysis
of unbounded kinematic hardening material.

Also, studies for developing the effective optimization
methods being capable of solving the shakedown problem
without reduction of computational scale were extensively
performed. Earlier studies were focused on the sequential
quadratic programming (SQP), considering that the von-
Mises yield function is expressed by the quadratic form of
design variables [12]. Thereafter, the augmented Lagrangian
type algorithm LANCELOT [13] as well as interior-point
algorithm IPDCA [14–16] and IPOPT [17, 18] was devel-
oped, respectively. Recently, Simon and Weichert proposed
a new interior-point algorithm IPSA [19, 20] for the von-
Mises material, which becomes a strongly problem-oriented
solution strategy, based on the IPDCA. The computational
effectiveness and accuracy of IPSA were verified in refs.
[21–25].

On the other hand, the residual stress decomposition
methods (RSDM) for the shakedown analysis that does not
depend on the mathematical programming has been pro-
posed [26–28]. The RSDM evaluates the plastic shakedown
of perfectly-plastic material by expanding the residual stress
field into the Fourier series, provided that the residual stress
field has periodicity under the specific loading. Coefficients
in the Fourier series expansion of residual stress field will
be updated iteratively by the elastic stress field previously
evaluated during one cycle and the elastic–plastic solution at
every iteration. Recently, the RSDMhas been extended to the
shakedown analysis of perfectly-plastic material with multi-
dimensional loading domain subjected to the simultaneous
action of several periodic loadings, and the effectiveness of
its implementation procedure has been improved [29].

In the meantime, there have been extensive studies for the
linear matching method (LMM), which evaluates the upper
bound of shakedown factor by solving iteratively the nearly
non-compressible elasticity problem with spatially-varying
Young’smodulus [30]. TheLMMwasfirstly proposed inRef.
[31, 32]. Recently, the authors presented an improvedmethod
which is capable of evaluating the upper and lower bound of
limit load simultaneously, keeping the original computation
framework of LMM as before [33].

In spite of extensive studies outlined above, the decrease
of computational scale in the shakedown analysis still
remains indispensable for the large-scale shakedown prob-

lem containing many integration points since the number of
integration points used for the finite element discretization is
the main factor controlling the computational scale of shake-
down analysis.

In this paper, the authors would like to extend the basis
reduction method of residual stress field based on the proper
orthogonal decomposition that was proposed in Ref. [34] for
the lower bound shakedown analysis of periodic composite
material with the perfectly-plastic material into the elastic—
plastic structure with the kinematic hardening.

Firstly, the authors propose a method for reducing the
bases of self-equilibrated stress field by using the elastic
finite element analysis of perfectly-plastic material sub-
jected to the initial strain as well as the proper orthogonal
decomposition of plastic strain field. The current method is
distinguished from the previous basis reduction methods in
that the optimization solution process could be performed,
independently of the basis reduction. In other words, it eval-
uates the reduced bases for the given structure only once and
does not need the elastic computation or the plastic incremen-
tal analysis for the basis estimation during the optimization
solution process, unlike the previous methods. Secondly, a
new solution strategy for the lower bound shakedown anal-
ysis of unbounded/bounded kinematic hardening material is
proposed, based on the shakedown analysis of bounded kine-
matic hardening material presented in Ref. [7]. The main
idea of current solution strategy lies in that the number of
design variables is reduced by expressing the back stress
field in terms of the linear combination of fictitious elastic
stress fields at the load vertices and the shakedown load of
unbounded/bounded kinematic hardening material is eval-
uated by solving the optimization problem only once but
not twice. It should be emphasized that the combination of
this solution strategy with the current basis reduction method
could be led to a new method that can decrease the computa-
tional scale of lower bound shakedown analysis of kinematic
hardening material significantly.

It should be noted that the basis reduction method of the
residual stress field based on the proper orthogonal decom-
position in the paper is essentially different from the RSDM
proposed in Ref. [26–29]. In the RSDM, the residual stress
field is expanded by the Fourier series under the specific
periodic loading while the current method extracts the most
important bases in the given loading domain among all the
sets of bases of the self-equilibrated stress field.

This paper is organized as follows: The basic formulation
of lower bound shakedown analysis for the perfectly-plastic
material is briefly introduced in Sect. 2. Section 3 describes
a new basis reduction method for the lower bound shake-
down analysis of the perfectly-plastic material. The solution
method of lower bound shakedown analysis for the bounded
and unbounded kinematic hardening material is discussed in
Sect. 4. The current method is validated through 4 numerical
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examples in Sect. 5, followed by a few concluding remarks
in Sect. 6.

2 Formulation of lower shakedown analysis
for perfectly-plastic material

Let us consider the volumeΩ with its boundary ∂Ω � ∂Ωp+
∂Ωu where the traction is given on ∂Ωp and the displacement
is specified on ∂Ωu . For the volume Ω , the lower bound
shakedown theorem could be formulated as follows [1, 4, 5].

Under any loading history P(t) varying within the given
load domain L, if there exists a safety factor α > 1 and
a time-independent self-equilibrated stress field ρ∗(x) such
that satisfies the yield condition at any point x ∈ Ω

F
(
ασE (x, t) + ρ∗(x)

)
≤ σ 2

y (x) (1)

then the structure will shake down elastically.
Here, F is the convex yield function,σy(x) the yield stress,

σE (x, t) the fictitious elastic stress field of a pure elastic
body subjected to P(t) and ρ∗(x) the time-independent self-
equilibrated stress field satisfying the following condition.

divρ∗(x) � 0, ∀x ∈ Ω

ρ∗(x) · n � 0, ∀x ∈ ∂Ωp

}
(2)

In this study, the load domain L is assumed to be the n-
dimensional convex polyhedron that could be generated by
the convex combination of NV load vertices P( j) where
NV � 2n and n is the number of independent variable loads.
Namely, we have following relation.

P(t) �
NV∑
j�1

λ j (t)P( j),
NV∑
j�1

λ j � 1 (3)

Also, the fictitious elastic stress field σE (x, t) corresponding
to P(t) could be expressed by the convex combination of
fictitious elastic stress fieldsσE (x, j) relevant to load vertices
P( j). Thus, one has below expression.

σE (x, t) �
NV∑
j�1

λ j (t)σE (x, j) (4)

On the other hand, the fictitious elastic stress field σE (x, j)
and the self-equilibrated stress fieldρ∗(x) could be expressed
in terms of discrete values at NG Gaussian points by using
the finite element interpolation, respectively. Applying the
principle of virtual work into Eq. (2) and using the finite ele-

ment interpolation, one can get NF simultaneous equations
for the self-equilibrated stress field as follows.

NG∑
i�1

Ci ρ
∗
i � [C]

{
ρ∗} � {0} (5)

Here, NF is the number of degree of freedom of finite ele-
ment discrete system and the matrix [C] could be uniquely
determined, given the displacement boundary condition and
the finite element discrete system. {ρ∗} denotes the vector
representation of global self-equilibrated stress by using the
finite element discretization. Using Eqs. (3) and (4) and con-
sidering the convexity of yield function F , the shakedown
analysis could be reduced into the following optimization
problem [1, 4, 5].

max
α,ρ∗ α

[C]
{
ρ∗} � {0} (6a)

F
(
ασE

i ( j) + ρ∗
i

)
≤ σ 2

y,i ∀i ∈ [1, NG], ∀ j ∈ [1, NV ] (6b)

Here, σE
i ( j) is the value of fictitious elastic stress at i-th

integration point and j-th load vertex. The number of equality
constraints is equal to the number of degree of freedom of
the finite element system NF while the number of inequality
constraints is NG × NV . The design variables consists of
the self-equilibrated stress components {ρ∗} at all integration
points and a shakedown load factor α, total number being
NG × NSK + 1, where NSK is the number of independent
stress tensor components.

Solving the linear simultaneous Eq. (6a), the self-
equilibrated stress {ρ∗} could be expressed in terms of the
free variable vector {y} and the basis matrix [b] as follows.

{
ρ∗} � [b]{y} (7)

The size of free variables vector {y}, denoting the number of
self-equilibrated stress fields, is N B � NG × NSK − NF .
Finally, the optimization problem for the shakedown analysis
could be led to

max
α,y

α

F
(
ασE

i ( j) + [bi ]{y}
)

≤ σ 2
y,i ,∀i ∈ [1, NG], ∀ j ∈ [1, NV ]

(8)

where total number of design variables is N B + 1 and [bi ]
represents the basis matrix related to the self-equilibrated
stress field ρ∗

i at the i-th integration point.
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3 Basis reductionmethod using proper
orthogonal decomposition

Some researchers applied the proper orthogonal decompo-
sition (so-called the Karhunen–Loeve decomposition) to the
non-uniform transformation field analysis (NTFA) of non-
linear composite materials [35–40]. They represented the
plastic strain field by the linear combination of previously
known bases called the plastic strainmodes and evaluated the
evolution of plastic strain by the linear combination coeffi-
cients of bases. Bases of plastic strain fieldwere computed by
the proper orthogonal decomposition of snapshots of plastic
strain field. In this study, we adopt the proper orthogonal
decomposition used in the NTFA of nonlinear composite
materials for the lower bound shakedown analysis of the
homogeneous material.

3.1 General consideration of elastic–plastic problem

One assumes that the plastic strain field εp(x, t) would be
expressed by the linear combination of M given bases μk(x)
as follows [35–37].

εp(x, t) �
M∑
k�1

ak(t)μk(x) (9)

Due to the incompressibility of plastic strain, basesμk should
be incompressible, too. Thus,

tr
(
μk(x)

) � 0 (10)

Given the plastic strain field εp(x, t), the elastic–plastic prob-
lem could be formulated as

divσ(x, t) � 0 ∀x ∈ Ω

σ(x, t) � L(x) : (ε(x, t)−εp(x, t)) ∀x ∈ Ω

σ(x, t) · n � P(t) ∀x ∈ Ωp

u � 0 ∀x ∈ Ωu

⎫⎪⎪⎬
⎪⎪⎭

(11)

where L(x) is the elastic tensor. In convenience, a time vari-
able will be omitted. Then, Eq. (11) may be decomposed as
two elastic problems as

divσE (x) � 0 ∀x ∈ Ω

σE (x) � L(x) : εE (x) ∀x ∈ Ω

σE (x) · n � P ∀x ∈ Ωp

uE � 0 ∀x ∈ Ωu

⎫⎪⎪⎬
⎪⎪⎭

(12a)

divσr (x) � 0 ∀x ∈ Ω

σr (x) � L(x) : (εr (x) − εp(x)) ∀x ∈ Ω

σr (x) · n � 0 ∀x ∈ Ωp

ur � 0 ∀x ∈ Ωu

⎫⎪⎪⎬
⎪⎪⎭

(12b)

where Eq. (12a) is the fictitious elastic problem and Eq. (12b)
is the elastic problem that the plastic strain acts as the initial
strain.

The solution of elastic–plastic problem (11) is the sum of
solutions of elastic problem (12a) and (12b). Namely,

σ(x) � σE (x) + σr (x), ε(x) � εE (x) + εr (x) (13)

Substituting Eq. (9) into Eq. (12b) and considering the linear
characteristics of problem, likewise the plastic strainfield, the
residual stress field σr (x) could be also expressed by the lin-
ear combination of residual stress fieldsDk(x) corresponding
to the bases μk(x) of plastic strain as follows.

σr (x) �
M∑
k�1

akDk(x) (14)

Here, Dk(x) is the residual stress field corresponding to
μk(x).

divDk(x) � 0 ∀x ∈ Ω

Dk(x) � L(x) :
(
Ek(x) − μk(x)

) ∀x ∈ Ω

Dk(x) · n � 0 ∀x ∈ Ωp

uk � 0 ∀x ∈ Ωu

⎫⎪⎪⎬
⎪⎪⎭

(15)

Ek(x) is the unknown residual strain field corresponding to
Dk(x).

In this study, we express the self-equilibrated stress field
by the linear combination of bases as in Eq. (14) using the
decomposition of plastic strain field (9).

3.2 Basis reduction by proper orthogonal
decomposition

In this study, decomposition (9) is used for the reduction of
bases of self-equilibrated stress field while it was adopted for
the evaluation of evolution of plastic strain field εp(x) by M
coefficients ak in the NTFA.

Firstly, snapshots of plastic strain along the chosen loading
path are calculated for all points x ∈ Ω . Choice of loading
path has no general rule, but it prefers to choose the mono-
tonic loading that would approximate to the actual loading
if possible [34–40]. For every monotonic increasing load,
solutions until the plastic strain is fully developed from the
beginning of plastic strain must be used to obtain snapshots
of plastic strain. Thus, the number of snapshots of plastic
strain can be taken as the number of increments used until
the plastic strain is fully developed from the beginning of
plastic strain. In Ref. [34], 40 snapshots of plastic strain were
used for the loading path in the case of periodic composite
materials. As will be seen in Sect. 5, 15–30 snapshots of
plastic strain were used for every loading path, leading to the
evaluation of sufficiently accurate results.
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Once N snapshots θl(x) of plastic strain are obtained for
chosen monotonic loadings, one can constitute the N × N
correlation matrix Klm between these snapshots as

Klm � 1

V

∫

Ω

θl(x) : θm(x)dV , l,m ∈ [1, N ] (16)

where V is the volume of domain Ω . The correlation matrix
Klm has N real eigenvalues and eigenvectors vl because it is
the weak positive symmetric matrix. The correlation matrix
Klm can be easily evaluated by the element integration in
case of using the finite discretization.

Using N eigenvectors vl of the correlation matrix Klm ,
one can evaluate N basesμk(x) of plastic strain field that are
orthogonal to each other as follows

μk(x) �
N∑
l�1

vlk θl(x), k ∈ [1, N ] (17)

where vlk is the l-th component of k-th eigenvector vk . Since
the obtained μk are orthogonal to each other and the snap-
shots of plastic strain itself used in the decomposition are
incompressible, bases are incompressible, too.

It is well known that information involved in N eigen-
vectors vl obtained by the proper orthogonal decomposition
takes effect on the size of eigenvalue. This fact enables to
restrict to the consideration of only few eiginvectors corre-
sponding to some eigenvalues of large size if the eigenvalues
are sorted in decreasing order, namely λl ≥ λl+1. Therefore,
one can choose M ≤ N eigenvectors satisfying following
condition

(
N∑

k�1

λk

)
≤ β

(
M∑
l�1

λl

)
(18)

where λl ≥ λl+1. β represents the share of the information
that the M eigenvectors have among the total information of
the eigenvectors. β � 1 means that all the information of N
eigenvectors should be used, that is, M � N . Commonly,
β is required to take a value close to 1, and it was taken as
a value of 0.9999 in Refs. [38, 39] to obtain the homoge-
nized constitutive relation of viscoplastic composite and of
viscoelastic composite, respectively. In this paper, we take
β of 0.9999. Once β is specified, the minimum number M
required to satisfy Eq. (18) is uniquely determined.

Finally, one has to solve the following equation similar to
Eq. (12b) for obtained bases μk of plastic strain.

divρ̃k(x) � 0 ∀x ∈ Ω

ρ̃k(x) � L(x) :
(
εrk(x) − μk(x)

) ∀x ∈ Ω

ρ̃k(x) · n � 0 ∀x ∈ ∂Ωp

⎫⎬
⎭ (19)

Here, εrk(x) is the unknown residual strain tensor. Equa-
tion (19) can be solved by reducing into the elasticity problem
having μk as the permanent strain [34].

The solutions ρ̃k of Eq. (19) are elements of a set of self-
equilibrated stress fields satisfying Eq. (2) and

ρ(x) �
M∑
k�1

ak ρ̃k(x) (20)

is a subset B of self-equilibrated stress fields. And ρ̃k has the
meaning of basis of ρ(x).

We adopt the solution æ̃k of Eq. (19) as the reduced basis
of self-equilibrated stress field. Thus, by using the reduced
bases, the shakedown problem (8) can be led to the following
equations.

max
α,al

α

F

(
ασE

i ( j) +
M∑
l�1

al ρ̃l,i

)
≤ σ 2

y,i ,∀i ∈ [1, NG], ∀ j ∈ [1, NV ]

(21)

The number of design variables for the reduced shakedown
problem (21) of perfectly plastic material is M + 1.

4 Lower bound shakedown problem
for kinematic hardeningmaterial

4.1 Common solution strategy

Extending the lower bound shakedown theorem for the
perfectly-plastic material into the bounded kinematic hard-
ening material, the discrete formulation of lower bound
shakedown problem may be written as [7]

max
α,ρ∗,π∗ α

[C]
{
ρ∗} � {0} (22a)

F
(
ασE

i ( j) + ρ∗
i − π∗

i

)
≤ σ 2

y,i (22b)

F
(
π∗
i

) ≤ (
σu,i − σy,i

)2
,∀i ∈ [1, NG], ∀ j ∈ [1, NV ]

(22c)

whereπ∗ is the back stress field andσu is the final yield stress.
Total number of design variables is 2NG × NSK − NF + 1
including the number of bases of self-equilibrated stress field
NG×NSK −NF , the number of components of back stress
at integration points NG×NSK and a shakedown load factor
α.
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Heitzer et al. [7] developed the well-known solution strat-
egy in order to solve the bounded kinematic hardening
problem (22). In convenience, let us outline this strategy
briefly.

If one would obtain the solution
(
αpp,ρpp

)
of shakedown

problem (6) for the perfectly-plastic material, the back stress
π∗
i could be taken as the constant value π̃ i . The constant

value π̃ i is expressed as

π̃ i � σu,i − σy,i

σy,i

(
αppσ

E
i

(
j∗

)
+ ρpp,i

)
(23)

where j∗ is the load vertex satisfying the equality constraint
(active vertex). Then, one can solve following problem again.

max
α,ρ∗ α

[C]
{
ρ∗} � {0} (24a)

F
(
ασE

i ( j) + ρ∗
i − π̃ i

)
≤ σ 2

y,i ∀i ∈ [1, NG], ∀ j ∈ [1, NV ]

(24b)

Formulation (24) is the shakedown problem for the perfectly-
plastic material having the dead load π̃ i .

Even though the solution strategy described above can
reduce the number of unknowns by taking the back stress,
unknown variable, as the deterministic constant value, it
should solve the shakedown problem for the perfectly-plastic
material twice one after another and furthermore, it can not
be applied for the shakedown analysis of unbounded kine-
matic hardening material where the back stress becomes the
free unknown variable.

In order to overcome this difficulty, we propose a new
solution strategy for the shakedown analysis of unbounded
and bounded kinematic hardening material by solving the
shakedown problem of perfectly-plastic material only once.

4.2 A new solution strategy for shakedown analysis
of kinematic hardeningmaterial

Let B denote thewhole set of all self-equilibrated stress fields
that satisfy Eq. (24a). ρ∗

i , an unknown variable of the opti-
mization problem (24), must be an element of B from the
requirement of problem itself, and ρ∗

i + b ρpp,i ∈ B for any
constant since ρpp,i , which is a solution of perfectly-plastic
shakedown analysis previously given is an element of B. This
means that a term related to previously given ρpp,i in ß̃i
of Eq. (24b) does not take effect on the optimization solu-
tion, involved in the design variable ρ∗

i , and that only the

meaningful term is
σu,i−σy,i

σy,i
αppσ

E
i ( j∗) related to the ficti-

tious elastic stress σE
i ( j∗) corresponding to the active load

vertex j∗. From this, without losing generality, ρ∗
i − π̃ i �

ρ∗
i − σu,i−σy,i

σy,i
ρpp,i − σu,i−σy,i

σy,i
αppσ

E
i ( j∗) in Eq. (24b) can

be replaced by ρ∗
i − π̃ i � ρ∗

i − σu,i−σy,i
σy,i

αppσ
E
i ( j∗). Thus,

Eq. (24) can be written as follows.

max
α,ρ∗ α

[C]
{
ρ∗} � {0} (25a)

F
(
ασE

i ( j) + ρ∗
i − π̃ i

)
≤ σ 2

y,i ,∀i ∈ [1, NG], ∀ j ∈ [1, NV ]

(25b)

π̃ i � σu,i − σy,i

σy,i
αppσ

E
i

(
j∗

)
(25c)

Equation (25c) implies that the back stress could be taken as
the several times of elastic stress at the active load vertex.
Nevertheless, since the active load vertex j∗ and a shake-
down load factor αpp can not be determined previously
without solving the shakedown problem for the perfectly-
plastic material, we approximate the back stress π∗

i by the
linear combination πi of fictitious elastic stresses σE

i ( j) at
load vertices. Namely,

πi �
NV∑
j�1

b j σ
E
i ( j) (26)

Therefore, the bounded kinematic hardening shakedown
problem (22) could be reduced as follows.

max
α,ρ∗

i ,b j

α

[C]
{
ρ∗} � {0} (27a)

F
(
ασE

i ( j) + ρ∗
i − πi

)
≤ σ 2

y,i (27b)

F(πi ) ≤ (
σu,i − σy,i

)2
,∀i ∈ [1, NG], ∀ j ∈ [1, NV ]

(27c)

πi �
NV∑
j�1

b j σ
E
i ( j) (27d)

Since the self-equilibrated stress field does not depend on
the hardening of material, the bounded kinematic hardening
shakedown problem (27) could be led to the following equa-
tion by applying the current basis reduction method for the
perfectly-plastic material.

max
α,al ,bm

α

F

(
ασE

i ( j) +
M∑
l�1

al ρ̃l,i −
NV∑
m�1

bmσE
i (m)

)
≤ σ 2

y,i (28a)
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Fig. 1 Flowchart for implementing the current method

F

(
NV∑
m�1

bm σE
i (m)

)
≤ (

σu,i − σy,i
)2

,∀i ∈ [1, NG], ∀ j ∈ [1, NV ]

(28b)

Furthermore, the unbounded kinematic hardening shake-
down problem could be obtained by ignoring the constraint
(28b) in Eq. (28). Namely,

max
α,al ,b j

α

F

(
ασE

i ( j) +
M∑
l�1

al ρ̃l,i −
NV∑
m�1

bm σE
i (m)

)
≤ σ 2

y,i (29)

Total number of design variables in Eqs. (28) and (29) is
M + NV , respectively. It should be noted that the implemen-
tation of Eqs. (28) and (29) for the bounded and unbounded
kinematic hardening material is similar to the one of Eq. (21)
for the perfectly-plastic material respectively since the rep-
resentation form of back stress is the same as the one of the
self-equilibrated stress field.

5 Numerical examples

Figure 1 shows the flowchart for implementing the current
method. Finite element package ABAQUS 6.14-1 is used in
order to compute the snapshots θl , (l � 1, · · · , N ) for the
evaluation of bases of plastic strain and the fictitious elas-
tic stress field σE (x). The bases μk of plastic strain can be
estimated by applying the proper orthogonal decomposition
described in Sect. 3 for the snapshots θl of plastic strain. For
each basis μk , Eq. (19) is solved in order to compute the
bases ρ̃k of self-equilibrated stress field.

Also, Eq. (19) for the computation of bases for the self-
equilibrated stress field ρ̃k is solved by using ABAQUS
user-subroutine UEXPAN and SDVINI. Details regarding
the solution of Eq. (19) can be found in Ref. [34]. Finally,

Fig. 2 Square plate with a hole in its center subjected to bi-axial tension

Table 1 Dimensions of plate

Length L (mm) 100

Diameter of a hole D (mm) 20

Thickness t (mm) 2

Table 2 Material properties of aluminum 2024-T6 [21]

Young’s modulus (Mpa) 7.24 × 104

Yield stress (Mpa) 345

Poisson ratio 0.33

a shakedown load factor α can be extracted by applying the
SQP based on NLPQL subroutine [42].

In this paper, all the computations were done by using a
personal computer with Intel(R) Core(TM) i5-4460CPU of
8192 MB RAM and 3.2 GHZ Clock.

5.1 Square plate with a hole in its center

Let us consider the case of perfectly-plastic material. As
shown from Fig. 2, two tensile stresses P1 and P2 that vary
independently each other are acted vertically on the sides of
plate, respectively. Table 1 lists the geometric dimensions of
plate.

The plate is assumed to be made by Aluminum 2024-T6
whose material properties can be found from Table 2. Due
to its symmetry, only a quarter of plate is considered. The
finite elementmodel usesABAQUS8-nodes element C3D8I.
The model consists of 400 elements and 882 nodes. There
exists only one element layer through the thickness. Figure 3
denotes the finite element model.

For the elastic computation, P1 � σy and P2 � σy are
used. The snapshots of plastic strain are estimated for 3
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Fig. 3 Finite element model of square plate

Table 3 Comparison of design variables

Without basis
reduction

With basis reduction
by current method

Number of bases 16,599 13

Table 4 Comparison of shakedown load factor for the square plate with
a hole in its center

P1 � P2 P2 � P1
/
2 P1 � 0

Simon et al. [21] 0.458 0.531 0.627

Current method 0.459 0.530 0.628

Relative error (%) 0.22 0.20 0.16

monotonic increasing loads, namely, P1 �� 0 ∧ P2 � 0,
P1 � 0 ∧ P2 �� 0 and P1 � P2 �� 0 while 15 snapshots
for every load, thus 45 snapshots are used for the proper
orthogonal decomposition, in total. For β � 0.9999, 13
bases of plastic strain were obtained. Time consumed for the
computation of plastic strain bases by the proper orthogonal
decomposition were accounted by about 1.5 s.

Table 3 lists the number of design variables for the cases
with the current basis reduction and without the basis reduc-
tion, respectively. It should be emphasized that the number of
bases entirely depends on the number of integration points
for the case without the basis reduction while it does not
depend on the number of integration points for the case with
the current basis reduction.

Table 4 lists the comparison of shakedown load factors
computed by the current method and by Simon et al. [21]
for 3 cases of P2 � P1, P2 � P1

/
2 and P1 � 0. Figure 4

compares the shakedown load domains of square plate with
a hole in its center subjected to the bi-axial tension computed
by the currentmethod, Simon et al. [21] andMouhtamid [41].
The computation time of optimization problem with reduced
bases were about 4 s for the loading angle of 30 degrees.

Form Table 4 and Fig. 4, one can confirm that the current
method has a good prediction capacity.

Fig. 4 Predictions of shakedown load domain of square plate

5.2 Symmetric continuous beam receiving
distributed load

Let us consider the symmetric continuous beam with unit
thickness subjected to 2 independent distributed loads as
shown in Fig. 5. This problem has been studied by several
researchers for the case of perfectly-plastic materials [29,
43, 44]. Table 5 lists the material properties of the symmet-
ric continuous beam. The finite element model consists of
589 C3D8I elements and 1342 nodes as shown in Fig. 6. 4
monotonic loads of P1 �� 0 ∧ P2 � 0, P1 � 0 ∧ P2 �� 0,
P1 � P2 �� 0 and P1 � 2P2 �� 0 are used to evaluate snap-
shots of plastic strain, and 15 snapshots for every load, thus
60 snapshots are adopted for proper orthogonal decomposi-
tion. 8 bases of plastic strain are obtained for the tolerance
of β � 0.9999. It took about 2.5 s to evaluate 8 bases of
plastic strain by the proper orthogonal decomposition of 60
snapshots.

Table 6 compares the numerical results of shakedown load
factor obtained by the current method with those by previous
studies in the load domain P1 ∈ [

1.2 Mpa, 2 Mpa
] ∧ P2 ∈[

0, 1 Mpa
]
. As seen fromTable 6, numerical results obtained

by the currentmethod are in good agreementwith those by the
previous studies. The computation time for the optimization
problem having 8 reduced bases was about 15 s.

5.3 Plate subjected to thermo-mechanical load

Let us consider the square plate subjected to independent
heating and uniformly-distributed load as in Fig. 7a. Fig-
ure 7b shows the boundary conditions and the quarter model
used for the finite element analysis. There are no constraints
in the thickness direction, and thickness does not affect the
shakedown analysis. 300 C3D8I elements and 484 nodal
points are used. Table 7 lists the material properties of the
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Fig. 5 Symmetric continuous beam subjected to distributed load

Table 5 Material properties of symmetric continuous beam

Young’s modulus (Mpa) 2.08 × 105

Poisson’s ratio 0.3

Yield stress (Mpa) 100

plate. Kinematic hardening is considered by σu � 1.5σy

where σu is the ultimate strength.
Three monotonic loads of 	T �� 0 ∧ P � 0, 	T � 0 ∧

P �� 0 and	TαT E � P �� 0 are used to evaluate snapshots
of plastic strain, and 30 snapshots for every load, thus 90
snapshots are adopted for proper orthogonal decomposition.
4 bases of plastic strain are obtained for the tolerance of β �
0.9999. It took about 1 s to evaluate 4 bases of plastic strain
by the proper orthogonal decomposition of 90 snapshots.

Since the bases having the zero value at all points x ∈ Ω

can be neglected, and the number of bases of back stress is 3
in this example, excluding zero-load vertices among 4 load
vertices. Figure 8 compares numerical results of the shake-
down load domain obtained by the current methodwith those
by Mouhtamid [41]. As shown in Fig. 8, the shakedown load
domains obtained by the current method are in good agree-
ment with those byMouhtamid [41] for the perfectly-plastic,
limited kinematic hardening as well as unlimited kinematic
hardening.

Table 6 Comparison of predicted shakedown factor of symmetric con-
tinuous beam

Authors Shakedown load factor

Garcea et al. [43] 3.244

Tran et al. [44] 3.377

Spiliopoulos et al. [29] 3.177

Current method 3.126

When solving the optimization problem having 4 reduced
bases of residual stress field for the loading angle of
30 degrees, it took about 3 s, 9 s, and 13 s for the
perfectly-plastic, unbounded and bounded kinematic hard-
ening, respectively.

5.4 Thin pipe subjected to thermo-mechanical
loading

In this example, the kinematic hardening material is consid-
ered. Let us consider the thin pipe subjected to the internal
pressure P and the thermal loading	T � T1−T0 that varies
independently each other, as shown from Fig. 9a. The thick-
ness versus outer diameter ratio h

/
R is equal to 0.1 and the

pipe is sufficiently long and its ends are opened. The pipe
material is X6CrNiNb18-10 Steel. The material properties
can be found from Table 8 and assumed to be independent

Fig. 6 FE mesh of symmetric
continuous beam
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Fig. 7 Square plate subjected to
heating and tensile load and its
FE models. a The geometry and
boundary conditions of the
plate, b FEM-model

Table 7 Material properties of plate

Young’s modulus (Mpa) 1.6 × 105

Poisson’s ratio 0.3

Yield stress (Mpa) 205

Coefficient of thermal expansion
(1/K)

2.0 × 10−5

of temperature. Moreover, we consider only the steady state,
ignoring the transient state due to the thermal shock effect.

Figure 9b shows the finite element model used in the
computation. Due to the symmetry, only a half model is con-
sidered. The finite element model uses ABAQUS 8-nodes
element C3D8I. The model consists of 600 elements and 984
nodes. There exist 5 element layers through the thickness.

The snapshots of plastic strain are estimated for 2 mono-
tonic increasing loads, namely, P �� 0 ∧ 	T � 0 and
P � 0 ∧ 	T �� 0 while 30 snapshots for every load, thus
60 snapshots are used for the proper orthogonal decomposi-
tion, in total. For β � 0.9999, 6 bases of plastic strain were
obtained. The time taken to determine 6 bases from 60 snap-
shots using the proper orthogonal decomposition was about
2 s.

For the elastic computation, analytical shakedown load
P0 � 23.671 MPa and 	T0 � 128.125 K for the perfectly-
plastic material are used [45]. Since the bases having the zero
value at all points x ∈ Ω can be neglected, the number of
back stress is 3 in this example, excluding zero-load vertices
among 4 load vertices.

Table 9 lists the number of design variables in the opti-
mization problem of perfectly-plastic and kinematic harden-

Fig. 8 Comparison of predicted
shakedown load domain of
square plate subjected to heating
and uniformly-distributed
tension
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Fig. 9 Geometry and FEM
model of thin pipe. a The
geometry of the thin pipe, b
FEM-model

Table 8 Thermo-mechanical properties of X6CrNiNb 18-10 steel [25]

Young’s modulus (Mpa) 2.0 × 105

Yield stress (Mpa) 205

Poisson ratio 0.3

Density (Kg
/
m3) 7.9 × 103

Thermal conductivity (W/m·K) 15

Specific heat (J/kg·K) 500

Coefficient of thermal expansion (1/K) 1.6 × 10−5

Table 9 Comparison of design variables

Without basis
reduction

With basis reduction
by current method

Perfectly-plastic material 28,237 7

Kinematic hardening
material

57,037 10

ingmaterial for the cases with the current basis reduction and
without the basis reduction, respectively.

Figure 10 compares the shakedown load domain predicted
by the current method andMoutamid [41] for the unbounded
kinematic hardening material. Figure 11 shows the shake-
down load domain predicted by the current method and
Simon [25] for the bounded kinematic hardening material
with σu � 1.2σy and the perfectly-plasticmaterial. Figure 12
shows the shakedown load domain predicted by the current
method andHeitzer et al. [7] for the bounded kinematic hard-
ening material with σu � 1.35σy .

As seen fromFigs. 10, 11, and 12, the currentmethod has a
good consistency with shakedown analysis results predicted
by previous studies for the perfectly-plastic material, the
bounded and the unbounded kinematic hardening material.
When solving the optimization problem having 4 reduced
bases of residual stress field for the loading angle of 30
degrees, it took about 5 s, 8 s, and 9 s for the perfectly-plastic,
unbounded and bounded kinematic hardening, respectively.

Fig. 10 Shakedown load domain predicted by the current method and
Moutamid [41] for the unbounded kinematic hardening material

Fig. 11 Shakedown load domain prediction for the bounded kinematic
hardening material with σu � 1.2σy and the perfectly-plastic material

6 Conclusions

In this study,weproposed a newmethodwhich can reduce the
number of bases of self-equilibrated stress field significantly
by using the decomposition of plastic strain field based on
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Fig. 12 Shakedown load domain prediction for the bounded kinematic
hardening material with σu � 1.35σy

the proper orthogonal decomposition. This approach adopts
the elastic–plastic finite element analysis under the given
monotonic increasing loading, the proper orthogonal decom-
position and the elastic finite element analysis with the initial
strain. The evaluation of reduced bases could be performed,
independently of the optimization solution process of lower
bound shakedown problem. The reduced bases obtained once
can be used for any load angles. This method can be used
efficiently for the engineering practice requiring many inte-
gration points since the number of reduced bases does not
depend on the number of integration points.

Furthermore, the authors presented a new solution strategy
for the shakedown analysis of kinematic hardening material.
In this strategy, the number of design variables related to
the back stress is reduced to the number of load vertices by
expressing the back stress with the linear combination of fic-
titious elastic stress fields corresponding to each load vertex
in the load space for the bounded and the unbounded kine-
matic hardening material. Only one optimization solution
process is needed for the shakedown analysis of the bounded
and the unbounded kinematic hardening material. More-
over, the total number of design variables for the shakedown
analysis of kinematic hardening material can be reduced sig-
nificantly by the combination of basis reduction method of
self-equilibrated stress field based on the proper orthogo-
nal decomposition, leading to the substantial decrease in the
computational size.
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