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Abstract
Phase-field crack approximation relies on the proper definition of the crack driving strain energy density to govern the crack
evolution and a realistic model for the modified stresses on the crack surface. A novel approach, the directional split, is
introduced, analyzed and compared to the two commonly used formulations, which are the spectral split and the volumetric–
deviatoric split. The directional split is based on the decomposition of the stress tensor with respect to the crack orientation,
specified by a local crack coordinate system, into crack driving and persistent components. Accordingly, a modified stress
strain relation is proposed to model fundamental crack characteristics properly, and a thermodynamically consistent crack
driving strain energy density is postulated. The split is applied to numerical examples of initially cracked specimens and
compared to results obtained by the two standard approaches.

Keywords Numerical crack approximation · Brittle fracture mechanics · Phase-field method · Dynamic fracture

1 Introduction

The occurrence of cracks is one of the most severe failure
mechanisms within any kind of structure due to the fact, that
the structural system undergoes fundamental changes involv-
ing dramatical reduction of the load bearing capacity and, at
the worst, even a total loss of stability. While a standard
structural design covers typical load cases, there are extraor-
dinary events, e.g. earthquakes or impacts, accompanied by
an inevitable excess of the ultimate loads, which have to be
considered additionally during the design phase. In case of
critical infrastructure or vital structures being affected, e.g.
power plants or passengers cells, respectively, the simula-
tion and investigation of catastrophic events may be the key
to topology optimization and meaningful reinforcement of
existing structures. Beside the identification of critical com-
ponents and the prediction of crack evolution itself, proper
tools andmethods to simulate the post fracture behaviour and
an according evaluation of the residual load bearing capacity
are the focus of this paper.

The continuous crack approximation by a phase-field
method is advantageous both from the theoretical as well as
the implementation point of view. In contrast to discrete crack
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representations, the emerging crack does not require mesh
manipulation, due to its introduction as an additional degree
of freedom for the same discretization and shape functions as
used for the displacement field (see e.g. [31]). On the other
hand, crack initiation and all kinds of crack evolution (prop-
agation, kinking, merging, branching, arrest) are governed
by the competition between fracture energy and potential
energy within a strongly coupled system of partial differen-
tial equations containing the balance of linear momentum
and the evolution equation of the phase-field. For the case of
brittle fracture, this relates directly to the postulates of Grif-
fith [15]. Complex post-processing evaluations, e.g. by use
of material forces as well as additional criteria, e.g. a branch-
ing threshold or velocity dependent fracture toughness, are
not necessary at all to obtain a crack path prediction close to
experimental evidence, see e.g. [6,31]. Extensions to ductile
fracture are published, see e.g. [1–3,8,24], aswell as cohesive
approaches, see e.g. [12,22,35,36]. Furthermore, anisotropic
fracture toughness is investigated e.g. in [11,20,29,33,34].

A basic feature of every phase-field model is the so-called
split of the strain energy density into crack driving and per-
sistent components. Up to date, two fundamental approaches
are available. The first is strongly related to damage mechan-
ics and has been introduced by Amor et al. in [5]. Essentially,
the strain tensor is split into volumetric and deviatoric com-
ponents and the crack is assumed to be driven by volumetric
expansion and deviatoric strains. Accordingly, volumetric
tensile and deviatoric stresses are degraded. This kind of split,
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subsequently denoted as the volumetric–deviatoric split, is
used e.g. in [4,18,30,39] among others. The second approach
was introduced by Miehe et al. in [26,27]. Here, the strain
tensor is decomposed into its principal components. Based
on the assumption, that only tensile components may drive
a crack, an according crack driving strain energy density is
postulated. This concept is more related to actual fracture
mechanics, as there are similar concepts evaluating principal
strains or stresses for the driving of crack evolution in analyt-
ical approaches. The split has been applied e.g. in [7,17,31]
and among others.

Both approaches are developed as an enhancement of
the phase-field model initially proposed by Francfort and
Marigo in [13]. In the original model, the crack is driven
by the whole strain energy density. Accordingly, the whole
stress tensor is degraded, which, on the one hand, results
in crack propagation due to compressive loading, while, on
the other hand, existing cracks exhibit interpenetration of the
crack surfaces under compressive loading. Although, both
the spectral and the volumetric–deviatoric split resolve the
unrealistic behaviour of crack evolution under compressive
loading, additional features are to be addressed in order to
accomplish a realistic model for crack approximation by
a phase-field approach. It is Strobl and Seelig in [32] to
note for the first time, that both splits violated basic crack
boundary conditions and the only way to remedy this, is to
include an information about the crack orientation into the
phase-field model. They proposed to retrieve this informa-
tion from an evaluation of the gradient of the phase-field
for existing cracks. While this is shown to work well for
an initially cracked specimen with a simple phase-field pro-
file, it leads to an unrealistic crack orientation both at the
crack tip and within fully degraded elements. Furthermore,
an according procedure to obtain crack evolution has not
been presented. In the paper at hand, an alternative approach,
the directional split, is introduced. The model is designed to
obtain a phase-field crack approximation, that fulfills basic
crack characteristics defined for ideal plane and friction-less
crack surfaces. Again, it is based on the additional informa-
tion of the crack orientation, which enables a decomposition
of strains and stresses with respect to a local crack coor-
dinate system into normal and shear components, that are
categorized into crack driving and persistent components.
Furthermore, an according procedure for crack evolution is
proposed.

In Sect. 2, the theoretical basis of the directional split is
presented. Section 3 is focused on the finite element imple-
mentation of the model and Sect. 4 shows its application to
numerical examples in order to contrast the results with those
obtained by the spectral and the volumetric–deviatoric split.
Finally, concluding remarks and comments close the paper.

Fig. 1 Regularized crack approximation Γl of the sharp crack Γ in
domain Ω and phase-field p across Γl

2 A directional phase-field approach to
dynamic fracture

2.1 Numerical approximation of the topology and
orientation of existing cracks within the
framework of the phase-field method

The numerical approximation of the topology of a crack in
the directional phase-field approach is based on the second
order crack density functional

γ = 1

2l

(
p2 + l2|∇ p|2

)
, (1)

with the regularization length l, the phase-field order param-
eter p and the gradient operator∇. Any sharp crack Γ inside
a domain Ω can be represented by the regularized and con-
tinuous approximation

Γ ≈ Γl =
∫

Ω

γ dV , (2)

that includes both a representation of the cracked parts of
the domain with p = 1 as well as a transition zone to intact
regions where p = 0. The width of the transition zone is
governed by the regularization length l, see Fig. 1. Accord-
ing to the theory of Γ -convergence, discussed in [10], the
sharp crack is approximated for the limiting case of l → 0.
Furthermore, there is an important link to the discretization
of the structure by a number of N finite elements. According
to [17], the most accurate approximation of the crack topol-
ogy in a 2D setup is achieved by l = 2 min(he|e ∈ N ) with
he being the characteristic element size of element e, i.e. the
smallest distance between two nodes within that element.
However, based on the discussion in [21] considering a one-
dimensional investigation of Γ -convergence in a numerical
setup with uniform mesh size h, the most accurate solution
is obtained for l = 32 h.

The continuous approximation of the topology of a crack
by Γl is beneficial because of the mesh-independent repre-
sentation of the crackwithin the finite elementmethod (FEM)
and the exploitation of Γl as a measurement for the surface
of the crack. On the other hand, this introduces difficulties
when it is necessary to track the path of a crack, e.g. obtaining
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Fig. 2 Crack orientation vector r and decomposition of a stress tensor
in the orthonormal crack reference coordinate system (CCS)

the position of the crack tip, the location of branching or the
angle of kinking, which is discussed and partially resolved
in [31]. A common strategy to visualize the crack surfaces
is their representation by isosurfaces at a predefined criti-
cal phase-field value pc, e.g. pc = 0.95, combined with the
blanking out of elements where p > pc.

In order to describe the orientation of a crack, a vector r
is defined such, that it is perpendicular to the crack surface.
Based on the crack orientation vector r and two additional
vectors s and t, the crack coordinate system, shown in Fig. 2,
is defined. The vectors r, s and t constitute an orthonormal
crack reference coordinate system (CCS). Within the CCS,
any strain or stress tensor can be decomposed into com-
ponents with respect to the crack orientation. In terms of
stresses, it is possible to define quantities on the crack sur-
face, i.e. the normal component σ rr and the pairwise shear
components σ rs , σ sr and σ r t , σ tr as well as quantities in the
plane of the crack, i.e. the normal components σ ss and σ t t

and the shear components σ st , σ ts .
Based on the CCS, a set of second order crack orientation

projection tensors (CPT) is defined as

Mrr = r ⊗ r, Mrs = r ⊗ s, Mrt = r ⊗ t,

Msr = s ⊗ r, Mss = s ⊗ s, Mst = s ⊗ t,

M tr = t ⊗ r, M ts = t ⊗ s and M tt = t ⊗ t. (3)

For brief notation, a projection tensor for shear compo-
nents (a �= b) is introduced as

Mab
sym = Mab + Mba. (4)

The contraction of the stress tensor with a CPT yields the
scalar magnitude of the correspondent stress component as

σ̂ rr = σ : Mrr, σ̂ rs = σ : Mrs, σ̂ r t = σ : Mrt,

σ̂ sr = σ : Msr, σ̂ ss = σ : Mss, σ̂ st = σ : Mst,

σ̂ tr = σ : M tr, σ̂ ts = σ : M ts and σ̂ t t = σ : M tt.

(5)

The orientation of a magnitude in space is defined also
by the correspondent CPT, which yields the tensors for the
stress components, shown in Fig. 2, by

(a) Tension

(b) Compression

(c) Shear

Fig. 3 Characteristics of an ideal planar and frictionless crack

σ rr = σ̂ rrMrr, σ rs = σ̂ rsMrs, σ r t = σ̂ r tMrt,

σ sr = σ̂ srMsr, σ ss = σ̂ ssMss, σ st = σ̂ stMst,

σ tr = σ̂ trM tr, σ ts = σ̂ tsM ts and σ t t = σ̂ t tM tt.

(6)

The original stress tensor is obtained as a summation of
all components by

σ =
∑

i=r ,s,t

∑
j=r ,s,t

σ i j . (7)

The same procedure is applicable to strain tensors.

2.2 Crack characteristics and categories of stress

Consider an idealized crack as a pair of two surfaces within a
domain, which are perfectly planar and friction-less. For the
closed crackwithout external loads, both surfaces have force-
free contact. Then, three fundamental crack characteristics
are identified and visualized in Fig. 3:

(a) force-free crack surface separation,
(b) transmission of compressive forces perpendicular to the

crack surface via contact and
(c) resistance-free sliding of the crack surfaces in the plane

of the crack.
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Considering both, the decomposition of the stress tensor
based on the CCS, and as well, the crack characteristics iden-
tified and illustrated in Fig. 3, amodified stress tensors within
the framework of the phase-field method is defined as

σ d = g(p) · σ+ + σ− (8)

with a degradation function g(p), where g(p = 0) = 1 and
g(p = 1) = 0, and the crack-driving stress tensor

σ+ = 〈σ̂ rr 〉+Mrr + σ rs + σ sr + σ r t + σ tr (9)

and the persistent stress tensor

σ− = 〈σ̂ rr 〉−Mrr + σ ss + σ t t + σ st + σ ts (10)

with the bracket operator 〈•〉± = 1
2 (• ± | • |). The crack-

driving stress tensor contains all components, that are directly
affected by a crack, i.e. degraded according to a degrada-
tion function depending on the phase-field value, while the
components of the persistent stress tensor are unaffected by
the crack. At this point, the separation into crack-driving
and persistent components is completely independent of the
constitutive relation between stresses and strains, i.e. the
behaviour of cracks can be applied to any material behaviour
described by an according constitutive relation between the
tensors of strains and stresses.

2.3 Evolution of cracks within a directional
phase-field method

In the following, the evolution for the directional phase-field
model is derived for the case of brittle fracture in a linear
elastic material considering transient effects. The deriva-
tion of the governing partial differential equations (PDE)
of a dynamic phase-field model for brittle fracture from an
according Hamiltonian principle can be found e.g. in [30].
The procedure results in the balance of linear momentum

ρ ü − div(σ d) = 0, (11)

with the density ρ, the vector of acceleration ü and the diver-
gence operator div(•), and an evolution equation for the
phase-field

Gc l ∇2 p − Gc

l
p − ∂ g(p)

∂ p
ψ+ = 0, (12)

with the crack driving part of the strain energy density ψ+.
Most of the phase-field approaches available are based on
either a volumetric–deviatoric or a spectral decomposition
of the strain tensor ε, that have been introduced by [5] and

[26], respectively. The volumetric–deviatoric decomposition
yields a crack driving part of the strain energy density of

ψ+
VD = K

2
(〈ε : 1〉+)2 + μ εD : εD, (13)

with the compression modulus K , the second order identity
tensor 1, the shear modulus μ and the deviatoric part of the
strain tensor εD = ε − ε : 1

3 1. The crack driving part of the
strain energy density based on a spectral decomposition reads

ψ+
S = λ

2
(〈ε : 1〉+)2 + μ ε+ : ε+, (14)

where

ε+ =
∑
i

〈ε̂i 〉+ ni ⊗ ni (15)

is the tensile part of the strain tensor ε, which has been
decomposed into its principal values ε̂i and according eigen-
vectors ni . Furthermore, λ is the first Lamé coefficient. Both
approaches are motivated by the observation, that the initial
assumption of Francfort and Marigo in [13], i.e.

ψ+ = ψ0 = λ

2
(ε : 1)2 + μ ε : ε, (16)

considering the whole strain energy density to drive the
phase-field evolution, resulted in cracks due to compressive
loading and subsequent interpenetration of the crack sur-
faces.

Based on the definition of a crack driving stress category
σ+, given in the previous section, a thermodynamically con-
sistent ansatz for an according crack driving part of the strain
energy density is

ψ+ = 1

2
σ+ : ε, (17)

establishing a relation between the stressesσ+ affected by the
crack and the energetic complement ψ+ to drive the crack’s
evolution.

Due to the continuous description of the crack in the phase-
field method, material points in the vicinity of a crack can
have phase-field values between 0 and 1. In contrast to dam-
age mechanics, where material is partially damaged and a
value of e.g. 0.6 is meaningful in a certain sense, this transi-
tion is of mere numerical meaning for the phase-field, i.e. in a
phase-field model, it is supposed to be either a crack (p = 1)
or sound material (p = 0) and the continuous change only
fulfills the function of a proper representation of the discrete
crack within a continuous approximation. Nevertheless, at
every point inside this transition zone, a crack orientation
vector r exists as a consequence of either the initialisation of
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the problem or the previous step of the simulation. A crack
driving strain energy density based on the existing crack ori-
entation employs Eq. (9), i.e. the orientation is assumed to
be constant and the evolution of the crack is driven by the
strain energy density related to the crack driving stress cat-
egory in this specific CCS. In such a way, an existing crack
may propagate further with the same orientation. Addition-
ally, the approach presented here also considers the change
of the crack orientation based on an assumption related to the
principal stress hypothesis known from fracture mechanics.
In contrast to the original idea of a limiting stress value, here,
only the direction of the largest principal stress is considered
in order to realign the crack’s orientation. It is assumed, that
a crack propagates in any direction on a plane, that is per-
pendicular to the direction of the largest principal stress and,
hence, this direction is identical to the crack orientation vec-
tor r at this point. In such a case, the crack driving stress
tensor reads

σ+ = 〈σ̂1〉+ n1 ⊗ n1, (18)

with the magnitude of the largest principal stress σ̂1 and its
eigenvector n1.

The choice, whether the original orientation is kept or the
crack needs to reorientate according to the direction of the
largest principal stress, is made based on the evaluation of
the magnitudes of crack driving strain energy densities. In a
first step, the state of load, i.e. loading or unloading, has to be
determined.To this end, it is checkedwhether both crackdriv-
ing strain energy densities, obtained by either Eqs. (9) or (18)
within Eq. (17), have a lower value than the largest, previ-
ously existing strain energy density at the point, that resulted
in the current phase-field. In such a case, the crack under-
goes a local unloading, i.e. the existing crack (orientation) is
decisive for the relation between stresses and strains and the
Eqs. (9) and (10) have to be employed within the constitu-
tive formulation Eq. (8) to calculate the final stress tensors.
Otherwise, the crack is in a loading state and the crack orien-
tation may be changing. Yet, this is only the case, when the
crack driving strain energy density obtained by Eq. (18) is
larger than the one obtained by Eq. (9). Such an assumption
is comparable to the well known principle of maximum plas-
tic dissipation stated by Von Mises in [38], i.e. the formation
of a crack is the result of a maximum dissipation of potential
energy.

2.4 Modified categories of stress according to a
stress-free separation of directional phase-field
cracks

According to the crack characteristics for tensile loading per-
pendicular to the crack surface illustrated in Fig. 3a), the
separation of the crack faces or opening of the crack results

Fig. 4 Elastic deformation of a specimen before (left) and after (right)
the formation of a crack, where the grey shaded region is occupied by
fully degraded elements within the phase-field method

in no reaction forces that act against this movement, i.e. there
is no resistance against the opening of a crack. Furthermore,
a discrete separation as shown in Fig. 3a) is not affecting the
lateral deformation of both bodies. Due to the continuous
description of a crack within the phase-field framework, the
open space between the crack surfaces is actually occupied
by fully degraded elements. On the one hand, an arbitrary
amount of crack opening given by a strain εrr for these ele-
ments should result in zero stresses σ rr in that direction. On
the other hand, the lateral deformation or necking of the elas-
ticmaterial, that is caused byPoisson’s effect, should release
completely until the separated bodies have neither strain nor
stresses in the plane of the crack. This feature of the crack
is illustrated in Fig. 4, where the initial linear elastic defor-
mation of a body under tensile loading on the left side of the
picture results in the two separated objects on the right hand
side of the figure, which have no constriction, once the crack
is present. Within the phase-field method, the grey shaded
region is occupied by fully degraded elements. As the crack
evolves, these elements have to release both their stresses
perpendicular to the crack surface σ rr as well as their strains
within the plane of the crack εss and εt t .

Assuming a finite amount of crack opening related to
εrr �= 0, a released state of strain is given by the magni-
tudes ε̂ss = ε̂t t = ε̂rs = ε̂r t = ε̂st = 0 with the symmetry
ε̂sr = ε̂rs , ε̂tr = ε̂r t and ε̂ts = ε̂st . Based on the assumption
of a linear elastic material behaviour, i.e.

σ = λ · (ε : 1) 1 + 2με, (19)

the corresponding non-zeromagnitudes of stress components
are

σ̂ rr = (λ + 2μ) εrr ,

σ̂ ss = λ εrr and

σ̂ t t = λ εrr .

(20)

Consequently, a specific magnitude of stress due to crack
opening is related to the corresponding magnitude of lateral
stresses by
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σ̂ ss = σ̂ t t = λ

λ + 2μ
σ̂ rr . (21)

According to Eq. (9), only tensile stresses perpendicular to
the crack surface are degraded, thus, the appearance of lateral
stresses due to the strain state of crack opening is neglected
and leads to an unrealistic behaviour of themodel. Therefore,
the category of crack driving stresses with a constant crack
orientation needs to be modified to read

σ+ = 〈σ̂ rr 〉+Mrr + σ rs + σ sr + σ r t + σ tr

+ λ

λ + 2μ
〈σ̂ rr 〉+

(
Mss + M tt) .

(22)

It should be noted, that the additional components depend
on the magnitude of the tensile stresses perpendicular to the
crack surface 〈σ̂ rr 〉+ modified by the scaling factor λ

λ+2μ
and act in the direction of the normal stresses in the plane
of the crack Mss and M tt. The additional components are
considered in a similar manner, but with different sign, for
the category of persistent stresses by

σ− = 〈σ̂ rr 〉−Mrr + σ ss + σ t t + σ st + σ ts

− λ

λ + 2μ
〈σ̂ rr 〉+

(
Mss + M tt) ,

(23)

which results in recovering the original linear-elastic
behaviour for p = 0.

In the case of a modified crack orientation, an according
modification yields the crack driving stress tensor

σ+ = 〈σ̂1〉+ n1 ⊗ n1

+ λ

λ + 2μ
〈σ̂1〉+ (n2 ⊗ n2 + n3 ⊗ n3)

(24)

and the persistent stress tensor

σ− = 〈σ̂1〉− n1 ⊗ n1 + σ̂2 n2 ⊗ n2 + σ̂3 n3 ⊗ n3

− λ

λ + 2μ
〈σ̂1〉+ (n2 ⊗ n2 + n3 ⊗ n3) .

(25)

3 Finite element implementation

3.1 Enhanced degradation function for the
directional phase-field method

The choice of the degradation function g(p) in Eq. (8) is a
crucial part of the crack approximation approach with the
phase-field method, as it establishes and defines the rela-
tion between the amount of elastic energy released during
the evolution of fracture and the counterpart of crack sur-
face energy. Basic requirements are the undegraded state for

sound material (g(p = 0) = 1) and the total degradation
for broken material (g(p = 1) = 0). Within the range of
0 ≤ p ≤ 1, the function needs to be continuous, differen-
tiable and monotonically decreasing. Furthermore, in order
to restrict the phase-field evolution to a maximum value of
p = 1, the first derivative of the degradation function with
respect to the phase-field has to be zero for this value, i.e.
∂p g(p)

∣∣
p=1 = 0. Common choice is the quadratic function

ga(p) = (1 − p)2, (26)

that is traced back to the pioneering work of Bourdin in [9].
Furthermore, the cubic function

gb(p) = (1 − p)2 · (2p + 1) (27)

and the quartic function

gc(p) = (1 − p)3 · (3p + 1) (28)

are discussed in [19].While both alternatives result in a more
brittle behaviour of the fracture process, they suffer the neces-
sity of a numerical perturbation of the phase-field, which is
needed in order to accomplish a transition from the uncracked
state at p = 0.Without such a perturbation, which is required
for the whole phase-field at every first step of the Newton
iteration of each load step, the phase-field is, regardless the
applied load, not evolving at all. This is caused by the fact,
that the according first derivative of the degradation function
with respect to the phase-field, ∂p g(p) = ∂ g(p)

∂ p , is zero for
the initial state of sound material at p = 0. Therefore, the
driving force of the phase-field evolution within the PDE for
the phase-field evolution, Eq. (12), is multiplied with 0 and
no evolution of p is possible.

Due to the sensitivity of the directional phase-field
approach to the value of p, a different type of degrada-
tion function is proposed. In addition to the aforementioned
requirements, the value of ∂p g(p) needs to be nonzero and
monotonically increasing. On the one hand, this ensures the
onset of fracture without any additional requirements of per-
turbation. On the other hand, a similar shift to a more brittle
behaviour can be achieved. The function proposed here is a
superposition of the linear function m · p + n and the expo-
nential function a · exp(b · p) by

gd,0(p; a, b,m, n) = m · p + n + a · exp(b · p). (29)

Based on the choice of b > 0, the other variables a, m and n
may be obtained by fullfilling the requirements ge(0, b) = 1,
ge(1, b) = 0 and ∂pge(p, b)|p=1 = 0, which results in

gd(p; b) = exp(b · p) − (b · (p − 1) + 1) · exp(b)
(b − 1) · exp(b) + 1

. (30)
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Fig. 5 Degradation function g(p)

Fig. 6 First derivative of the degradation function ∂p g(p)

The graph in Fig. 5 illustrates the shape of the degrada-
tion functions discussed. The first and second derivative with
respect to p are given in Figs. 6 and 7, respectively.

The degradation function, employed within Eq. (8),
defines the degradation of the crack driving component of
stresses σ+. The very basic requirements g(0) = 1 and
g(1) = 0 ensure an unchangedmaterial behaviour for unbro-
ken material at p = 0 and the total degradation of σ+
at p = 1, respectively. The continuous reduction of g(p)
for increasing p guarantees, that no unrealistic values of
g(p) > 1 or g(p) < 0 are obtained within the permissi-
ble range of 0 ≤ p ≤ 1. These requirements are fulfilled by
all functions mentioned above.

The first derivative of the degradation function ∂p g(p)
with respect to p is employed in Eq. (12) as a multiplier
to the crack driving strain energy density, where this prod-
uct is in fact the driving force of the phase-field evolution.
Here, the requirement ∂pgd(p; b)|p=1 = 0 becomes clear,
as this renders the driving force to be zero, as soon as p = 1.
Therefore, no further development of p is enforced. Another
interesting feature of the first derivative is its role to scale
the crack driving strain energy density. Within 0 < p < 1,

Fig. 7 Second derivative of the degradation function ∂2p g(p)

all degradation functions discussed have negative values for
its first derivate, which results in increasing p for increasing
ψ+. However, the value of multiplication or scaling factor
is changing with respect to p. While the quadratic degrada-
tion functions scales ψ+ by a maximum factor of −2 for the
unbroken material, the cubic and the quartic functions have
theirmaxima−1.5 at p = 0.5 and−1.778 at p = 0.333. The
linear-exponential approaches have a quite constant scaling
factor of ≈ −1 for small values of p. For larger values of
b, the value of the initially constant scaling factor decreases,
however, at p = 1 it is zero for every b, as required pre-
viously. It is shown in the simulations, that this fact leads
to a more brittle behaviour of the models with increasing b,
as the evolution of p is enforced or accelerated for higher
values of p. Furthermore, here again, the numerical prob-
lem with gb(p) and gc(p) becomes evident, as both of them
have ∂pgd(p; b)|p=0 = 0. Hence, the initial scaling factor
for the crack driving strain energy density in Eq. (12) is zero,
which results in zero driving forces for the phase-field evo-
lution, regardless the state of strain present. Although, this is
overcome by the introduction of a numerical perturbation of
the phase-field in every first step of the Newton iteration of
each load step, as discussed in [19], both approaches are not
implemented and analyzed further in this paper.

The second derivative of the degradation function ∂2p g(p)

= ∂2 g(p)
∂ p ∂ p with respect to p is employed in Eq. (49) for the

computation of a part of the stiffness for the phase-field
degree of freedom, that relates to the crack driving strain
energy density. The other two parts are related to the bulk
and the gradient term of the crack density functional in Eq.
(1). As already stated, the cubic and quartic degradation func-
tions are not discussed further, however, the change of sign
of ∂2p g(p) within 0 < p < 1 is in fact changing the impact
of the crack driving strain energy density on the tangent. As
they are not implemented and tested in this paper, it remains
unclear, how this affects the stability of the solution. For the
quadratic degradation function ga(p), the factor is constant
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for all p and, therefore, the stiffness always depends on the
value of the crack driving strain energy density present. The
linear-exponential functions have a constant factor of ≈ 0
for small values of p, which results in a constant stiffness
for the phase-field degree of freedom for this range of p and
an improvement of the numerical stability, as this results in
a linear equation for the phase-field degree of freedom.

3.2 Irreversibility

Within fracture of brittle material, a macroscopic crack is
considered to be irreversible in nature. Considering the evo-
lution equation for the phase-field, Eq. (12), the driving force
for the phase-fieldψ+ is directly connected to themechanical
loading, thus, a decrease in load yields a decrease in phase-
field values. Therefore, an irreversibility constraint needs to
be introduced.

Two basic approaches are available. There is a procedure
related to damage mechanics, introduced by Miehe et al. in
[26], where the driving force is replaced by a history variable.
This step ensures the local constraint ṗ > 0. Furthermore,
this approach is easy to implement. The other approach is
introduced by Bourdin et al. in [9]. They recommend to
impose additional boundary conditions on the phase-field,
once it reaches a critical value. Although, this results in a
local recovery of the phase-field for fully developed cracks
and the possibility of a full recovery, if the phase-field did
not exceed this value during the loading. Nevertheless, it has
been shown in [21], that the damage-like history variable
approach yields a significant error in the profile of a fully
evolved crack and overestimates the numerically obtained
amount of crack surface up to a factor of 2.

In this work, a combination of both approaches is applied,
in order to benefit from the elegant simplicity of a formulation
with a damage-like history while obtaining a proper profile
for fully evolved cracks. A critical value for the phase-field
pc is defined. Based on this value, a history variableH(t) is
introduced, that depends on the current solution time tn as
well as on a previous step of the simulation at time tn−1. The
history variable reads

H(tn) =
{

ψ+(tn) if p(tn) < pc
max

(H(tn−1), ψ
+(tn)

)
otherwise

(31)

and is used in the modified evolution equation for the phase-
field

Gc l ∇2 p − Gc

l
p − ∂p g(p) · H = 0. (32)

Based on the history variable, local loading and unloading
can be distinguished.

3.3 Pre-existing cracks

It is quite common to analyze new phase-field approaches by
their application to structures with initial cracks, e.g. Mode I,
Mode II andMode III fracture or generally prenotched struc-
tures like beams, shells or plates. In the past, most researches
focused on a discrete way to discretize initial cracks rather
than their representation by an initial phase-field. While this
is partially due to the shortcomings of the existing splits
for the phase-field models available, the paper at hand is
focused on the representation of initial cracks by the phase-
field approach. To this end, an initial crack within a structure
has to be represented by an initial phase-field profile.

The initial phase-field profile is obtained by solving the
evolution equation Eq. (32) subjected to Dirichlet bound-
ary conditions for the phase-field p = 1 at a set of given
nodal points within the discretization. During this solution,
the mechanical field is frozen and no mechanical loads are
involved, which results in a proper phase-field profile. How-
ever, for the directional split, an initial crack orientation
has to be specified in addition. Furthermore, this orientation
may change in the subsequent loading for the mechanical
field, while the decision, whether the orientation is chang-
ing, depends on the local value of the crack driving strain
energy density. As the phase-field profile results out of the
Dirichlet boundary conditions and no mechanical load has
been involved in obtaining the profile, also the local value
of the initial crack driving part of strain energy density has
to be set according to the existing phase-field profile. This is
achieved by a subsequent modification of the history variable
H(t0) according to the local value of p by

H(t0) = Gc

2l
· p

∂p g(p)
. (33)

3.4 Finite element setup

According to the standard procedure of the FEM, the domain
Ω is decomposed into finite elements Ωe with n nodes and
the global equation system

M · ü + K · u = R (34)

is assembled by nodewise contributions for the vectors of
acceleration and displacement,

ü =
⋃
n

ün and u =
⋃
n

un, (35)

respectively, and elementwise vectors of residuum andmatri-
ces of mass and stiffness,

R =
⋃
e

Re ,M =
⋃
e

Me and K =
⋃
e

Ke , (36)
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respectively. For the phase-field method, the nodal vector of
displacements un is generalized in order to contain further
the phase-field degree of freedom, thus

un = [unx , uny, unz , pn]T. (37)

8-node brick elements with linear shape functions within
the small strain assumption are applied in all subsequent
simulations. Accordingly, the displacement, the strain, the
phase-field and the spatial gradient of the phase-field are
approximated inside an element by

ui =
8∑

I=1

N I · û I
i , (38)

εi j =
8∑

I=1

1

2
·
(
û I
i · N I

, j + û I
j · N I

,i

)
, (39)

p =
8∑

I=1

N I · p̂ I and (40)

∇ pi =
8∑

I=1

N I
,i · p̂ I , (41)

respectively, where i = {1, 2, 3} denotes a coordinate direc-
tion x , y or z, I is the number of the node, N I is the node
specific shape function according to [40], û I

i and p̂ I are
the nodal values of the displacements and the phase-field,
respectively, and (•), j denotes the partial derivative of (•)
with respect to the j th coordinate direction. Furthermore,
the vector of the element residuum reads

Re =
[
Re 1, . . . , Re 8

]T
, (42)

where

Re I =
[
Re I
ux , . . . , Re I

uz , Re I
p

]T
(43)

is the vector of the nodal residuum,which can be split in three
mechanical and one phase-field related part. The residuum
for the i th mechanical degree of freedom reads

Re I
i = −

∫

Ωe
σ d
i j · N I

, j + ρ · üi · N I dV (44)

and the residuum for phase degree of freedom is given by

Re I
p = −

∫

Ωe

(
Gc

l
p + ∂p g(p) · H

)
· N I

+ Gc · l · p,i · N I
,i dV

, (45)

where the summation convention is applied at identical
indices. Furthermore, the element stiffness reads

Ke =
⎡
⎢⎣

Ke 11 . . . Ke 18

...
. . .

...

Ke 81 . . . Ke 88

⎤
⎥⎦ , (46)

where the specific stiffness matrix, related to nodes I and J ,
reads

Ke I J =

⎡
⎢⎢⎢⎢⎣

Ke I J
ux ux . . . Ke I J

uzuz Ke I J
ux p

...
. . .

...
...

Ke I J
uzux . . . Ke I J

uzuz Ke I J
uz p

Ke I J
pux . . . Ke I J

puz Ke I J
pp

⎤
⎥⎥⎥⎥⎦

. (47)

There, four components are specified, i.e.

Ke I J
ui u j

=
∫

Ωe

∂σ d
il

∂εkm
· ∂εkm

∂ û J
j

· N I
,l dV , (48)

Ke I J
pp =

∫

Ωe
N J ·

(
∂2p g(p) · H + Gc

l

)
· N I

+Gc · l · N I
,i · N J

,i dV , (49)

Ke I J
ui p =

∫

Ωe
N J · ∂p g(p) · σ+

il · N I
,l dV and (50)

Ke I J
pui = ∫

Ωe
N I · ∂p g(p) · ∂H

∂ε jk
· ∂ε jk

∂ û J
i
dV . (51)

The partial derivative of the modified stress tensor σ d with
respect to the strain tensor ε yields the fourth order material
tensor C, that may be split into crack driving and persistent
components by

C = g(p) · C+ + C−. (52)

Within a constant crack orientation, the crack driving mate-
rial tensor reads

C+ = 〈σ̂ rr〉′
+

(
Mrr + λ

(
Mss + M tt

)

λ + 2μ

)

⊗ (
λ1 + 2μ Mrr)

+ μ
(
Mrs

sym ⊗ Mrs
sym + Mrt

sym ⊗ Mrt
sym

)
(53)
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and the persistent material tensor is given by

C− =
(

〈σ̂ rr〉′
− Mrr − 〈σ̂ rr〉′

+
λ

(
Mss + M tt

)

λ + 2μ

)

⊗ (
λ · 1 + 2μ Mrr)

+ Mss ⊗ (
λ · 1 + 2μ Mss)

+ M tt ⊗ (
λ · 1 + 2μ M tt)

+ μ
(
Mst

sym ⊗ Mst
sym

)
.

(54)

Within the change of the crack orientation, the eigenvectors
of the strain tensor are involved. Therefore, the procedure
described in [23] has to be applied in order to obtain the par-
tial derivatives of the eigenvectors with respect to the strain
tensor. Here, the principal directions 1, 2 and 3 are replaced
by the directions r , s and t , respectively, yet, these direc-
tions still correspond to the accompanying eigenvectors and
eigenvalues. After some manipulations, one writes

C+ = 〈σ̂ rr〉′
+

(
Mrr + λ

(
Mss + M tt

)

λ + 2μ

)

⊗ (
λ1 + 2μ Mrr)

+ 〈σ̂ rr〉+
2

r ,s,t∑
a

r ,s,t∑
b\a

1

ε̂a − ε̂b
Mab ⊗ Mab

sym

(55)

and

C− =
(

〈σ̂ rr〉′
− Mrr − 〈σ̂ rr〉′

+
λ

(
Mss + M tt

)

λ + 2μ

)

⊗ (
λ1 + 2μ Mrr)

+ 〈σ̂ rr〉−
2

s,t∑
a

1

ε̂r − ε̂a
Mra

sym ⊗ Mra
sym

+ λ〈σ̂ rr〉+
2(λ + 2μ)

r ,t∑
a

1

ε̂s − ε̂a
Msa

sym ⊗ Msa
sym

+ λ〈σ̂ rr〉+
2(λ + 2μ)

r ,s∑
a

1

ε̂t − ε̂a
M ta

sym ⊗ M ta
sym

+ Mss ⊗ (
λ1 + 2μ Mss)

+ σ̂ ss

2

r ,t∑
a

1

ε̂s − ε̂a
Msa

sym ⊗ Msa
sym

+ M tt ⊗ (
λ1 + 2μ M tt)

+ σ̂ t t

2

r ,s∑
a

1

ε̂t − ε̂a
M ta

sym ⊗ M ta
sym.

(56)

In the case of two identical eigenvalues ε̂a and ε̂b or if
both values are zero, the expression 1

ε̂a−ε̂b
is replaced by

zero. Furthermore, the tensor, that results from the derivative

of the history variable H with respect to the strain tensor
ε, depends on the local determination between loading and
unloading, thus

∂H(tn)

∂εi j
=

{
1
2

(
Cmni jεmn + σ+

i j

)
if H(tn) = ψ+(tn)

0 otherwise
,(57)

which results in an unsymmetric element stiffness matrix for
local unloading cases.

The elemental mass matrix Me depends on components
Me I J related to nodes, similar to the definition of the stiffness
in Eq. (46). Yet, the only non-zero entries here are on the
diagonal for the mechanical degrees of freedom, i.e.

Me I J
ui ui =

∫

Ωe
N I · ρ · N JdV . (58)

Thus, a consistent mass matrix is used.

3.5 Solution of the equation system

The subsequent Sect. 4 contains numerical examples, both for
transient and static cases having initial cracks and no crack
propagation as well as those with initial cracks and subse-
quent crack propagation. Beside the prescription of values for
specific degrees of freedom of nodes by Dirichlet bound-
ary conditions, external nodal loads are given by Fext , that
are considered within Eq. (34). The response of the system
to given constraints and external loads is obtained by the
solution of the global equation system

S · Δu = ΔR, (59)

where the change in the field variables from time tn to tn+1 is
given by the solution vectorΔuwith the right hand sideΔR,
containing both internal contributions and external loads, and
the global tangent S. While the incremental right hand side
is given by

ΔR = R(tn+1) − R(tn), (60)

the global tangent consists of contributions from the stiffness
and the mass, i.e.

S = c1 · K + c3 · M. (61)

The above equation enables the decoupling of space and time
by exploitation of scalar multipliers c1 and c3, which only
depend on the choice of the time integration method. Based
on the discussions on proper time integration for transient
phase-field simulations in [7,31], the HHT time integration
method, described in [16], is used. This time integration
scheme basically damps out spurious frequency responses
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and is controlled by a single parameter α, which is set to
α = 0.667 in the following. Thus, we have

c1 = α (= 0.667) and

c3 = 4

(2 − α)2 Δt2

(
= 2.25113

Δt2

)
.

(62)

Furthermore, this scheme is universal to static and dynamic
problems, as the static problem description can be obtained
out of the transient setting by simply setting c1 = 1 and
ρ = 0 kg/m3 in the computation of the mass matrix. The
solution of the equation system (59) involves a number of
Newton iterations to resolve the non-linear problem and is
obtained on a HPC environment with the Bi-CGSTAB solver
[37] applied.

The degradation of parts of the stiffness results in numer-
ical problems during the solution of Eq. (59) in case of a
static simulation, which is a known issue for the phase-field
model and is discussed in detail in [14]. Two approaches
are available to overcome the challenge. The first approach
is using a staggered solution for the problem, i.e. there are
alternating steps solving for the increments of the displace-
ment field and the phase-field, while the respective other
field is fixed for that step. The staggered solution scheme
is a robust approach, that yields stable results for phase-field
crack evolution both in static and dynamic simulations. In
the contribution at hand, the scheme is specifically realised
such, that at the beginning of each load step, the mechan-
ical field is solved once, setting the tolerance values for
the subsequent staggered iterations. Then, within a loop, the
phase-field and the mechanical field are solved in an alter-
nated manner. The loop is finished, as soon as both fields are
not changing any more or a maximum number of 50 cycles
has been performed. The second approach is known as the
monolithic solution scheme, i.e. the increments for both field
quantites are computed simultaneously from the equation
system containing both the mechanical and the phase-field
related components as well as all the coupling terms. Con-
sidering static simulations, where only the stiffness matrix is
relevant, the degradation of specific parts of the stiffness leads
to the fact, that the equation system is no longer well-posed
and no convergence may be obtained. It should be noted,
that even for static cases, a monolithic solution is possible
as long as p is small. However, the second approach can be
applied in transient simulations. Here, although the stiffness
is totally degraded at a certain point, there is the constant
contribution of the mass in Eq. (61), rendering the simula-
tion stable and convergent even for the case of propagating
phase-field cracks and high values of p. However, in order
to obtain reasonable results, basic requirements of transient
simulations have to be fulfilled, e.g. proper mesh and size of
the time step.

Fig. 8 Setup of the precracked bar benchmark simulation

Fig. 9 Profile of initial phase-field crack

4 Numerical examples

4.1 Two-piece Bar

The first example is a benchmark simulation fabricated to
demonstrate the behaviour of the proposed model applied
to initial cracks. A static simulation is analyzed in order to
demonstrate the impact of lateral stresses on the opening of
a crack. Two transient simulations are investigated to point
out the differences between the directional, the volumetric-
/deviatoric and the spectral split for both, normal and shear
loading on the crack surface.

A cylindrical bar of length L = 0.25 m and diameter
D = 0.01 m with an initial crack at half of the length, as
depicted in Fig. 8, is considered. The load is applied at the
front edge of the specimen A. The material parameters are
λ = 8.9 GPa,μ = 13.3 GPa and ρ = 2300 kg/m3. The bar is
discretized by 8-node brick elements of uniform shape close
to cubes and the largest element dimension is h ≈ 1 mm,
therefore, the length scale is set to l = 2 mm.

The initial step in each simulation, both for the static and
the transient case, is a staggered phase-field solution step
in order to resolve the boundary conditions of p = 1 at
no mechanical loading. The boundary condition is applied
as a prescribed value to the phase-field degree of freedom
at all nodes with coordinates 0.125 m ≤ z ≤ 0.126 m in
order to obtain a slice of fully degraded elements. This step
results in the phase-field profile shown inFig. 9. Furthermore,
within this step, the initial crack orientation is set to be r =
[0, 0, 1]T.

In the static simulation, additional boundary conditions
are introduced. First of all, the longitudinal displacements
(in z-direction) are restrained at the rear end of the bar B.
Furthermore, the lateral displacements (x- and y-directions)
on both ends A and B are fixed, too. The displacement u(t)
increases linearly in order to apply tensile loading on the
crack and results in an opening of the crack. Without the
modifications concerning lateral stresses specified in Eqs.
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Fig. 10 Static simulation of the opening of a crack: a Necking due to
initial assumptions and b correct crack opening according to Eqs. (22)
and (23)

(22) and (23), i.e. making use of the initial assumptions given
in Eqs. (9) and (10), the opening of the crack is accompanied
by a lateral deformation of the elements, see Fig. 10a). Tak-
ing the modified equations into account, the necking can be
eliminated and a realistic behaviour of a crack under tension
is obtained, see Fig. 10b).

In the first transient simulation, the original bar with
the initial crack and no additional boundary conditions as
depicted in Fig. 8 is considered. Furthermore, the displace-
ment loading at edge A is replaced by a force loading in the
opposite direction in order to introduce and study the prop-
agation of a compressive wave in the longitudinal direction
of the bar. The time dependency of the load is half sinu-
soidal with an amplitude of 1 MPa and a period of 10 μs.
The magnitude of the stresses in longitudinal direction σzz is
recorded at positions C1 and C2 (see Fig. 8) and evaluated
for the application of the spectral, the volumetric/deviatoric
and the directional split.

Considering a load on a crack acting perpendicular to the
surface of the crack as given in this first transient example
and, as well, the crack characteristics specified in Sect. 2.2,
the result depends on the inner direction of the load itself.
For a compressive loading, the crack is able to transmit
forces via contact of its faces, whereas, for a tensile loading,
the faces separate and no force can be transmitted. Further-
more, stress waves are reflected at a free edge of a body,
inverting both their direction and the sign of the magnitude.
Therefore, the expected result of this benchmark is charac-
terized by 4 features. At first, the wave is propagating in
longitudinal direction approaching the crack. The initially
sinusoidally shaped compressivewave induces lateral expan-
sion that leads to an oscillation in that direction and creates a
number of smaller longitudinal waves following the original
pulse (F1). As the main wave is compressive, it passes the

Fig. 11 Stress signal in longitudinal direction σzz at points C1 and C2
for longitudinal load on the spectral split

Fig. 12 Stress signal in longitudinal direction σzz at points C1 and C2
for longitudinal load on the volumetric/deviatoric split

crack without significant interaction (F2). At the free end,
the wave is reflected and approaches the crack again, this
time as a tensile wave (F3). The tensile wave is reflected
at the crack in a similar manner as happened before at the
free edge, which leads to the wave being trapped in the rear
part of the cylinder bouncing back and forth as a tensile and
compressive wave, respectively (F4).

The results of the first transient simulation are shown in
Figs. 11, 12 and 13, for the spectral, the volumetric/deviatoric
and the directional split, respectively. The most important
aspect shown is the failure of the volumetric/deviatoric split,
when it comes to a correct transmission of the compressive
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Fig. 13 Stress signal in longitudinal direction σzz at points C1 and C2
for longitudinal load on the directional split

forces over the crack (F2). Instead of the correct behaviour
shown in Figs. 11 and 13, the compressive wave splits into a
reflected and a transmitted portion, as depicted in Fig. 12. In
the subsequent simulation, all three splits are able to model
the reflection of the tensile wave correctly (F4). It should
be noted, that the amplitude decay obtained in all the sim-
ulations is directly related to the lateral expansion of the
cylinder cross-section due to the longitudinal compression
by the wave passing by. In such a way, a considerable amount
of the energy introduced by the load is transferred to the fol-
lowing wave (F1). Nevertheless, the important observations
with respect to the characteristics of a crack under loading
perpendicular to its surface are possible.

In the second transient simulation, the original bar with
the initial crack and no additional boundary conditions as
depicted in Fig. 8 are considered. Furthermore, the displace-
ment loading perpendicular to the edge A is replaced by a
rotational displacement loading of this edge around the z-
axis in order to introduce and study the propagation of a
shear wave in the bar. The time dependency of the rotation
is linearly increasing for 30 μs up to a rotation of ≈ 11◦
and then held constant. The magnitude of the shear stresses
in circumferential direction σxz at positions C1 and C2 (see
Fig. 8) are recorded and evaluated for the application of the
spectral, the volumetric/deviatoric and the directional split.

Considering a shear load approaching a crack as given
in this second transient example and, as well, the crack
characteristics specified in Sect. 2.2, i.e. a perfect plane
and friction-less crack surface, no shear can be transmitted.
Therefore, the crack has to appear like a free surface to the
shear loading, i.e. it is reflected and reverted both in sign
and direction (F3). Therefore, the load is trapped inside the

Fig. 14 Stress signal in shear direction σzx at points C1 and C2 for
torsional load on the spectral split

Fig. 15 Stress signal in shear direction σzx at points C1 and C2 for
torsional load on the volumetric/deviatoric split

first part of the cylinder from the beginning of the simula-
tion and no stress signal should be measured at point C2. As
the reflected load reaches again the edge A, it is repeatedly
reflected. However, this time, it is not a reflection at a free
edge, as this edge is fixed in order to apply the rotational load.
Therefore, the sign of the shear loading after the reflection is
constant and only the direction is inverted (F5).

The results of the second transient simulation are shown in
Figs. 14, 15 and 16, for the spectral, the volumetric/deviatoric
and the directional split, respectively. The most important
aspect shown is the failure of the spectral split, when it comes
to a correct modelling of not transmitting shear load over the
crack (F3). Instead of the correct behaviour, shown inFigs. 15
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Fig. 16 Stress signal in shear direction σzx at points C1 and C2 for
torsional load on the directional split

and 16, a considerable amount of the shear passes the crack
and can be measured at point C2, see Fig. 14. With both,
the volumetric/deviatoric as well as the directional split, it is
possible to obtain a correct result in principle, i.e. a major
amount of the shear loading is reflected at the crack in a way
similar to the reflection at a free edge, see Figs. 15 and 16.
Nevertheless, minor numerical noise is recorded at position
C2 for both simulations and its explanation is not clear yet.
There may be a relation to the second aspect of the reflection
at the crack, which is a dramatical change in the profile of the
shear loading.Although, bothmodels showagood agreement
to the expectations in general, these two points require further
investigation.

Finally, it should be recapitulated, that with the proposed
directional split, it is possible to obtain the characteristics
of an ideal plane and friction-less crack considering loads
normal and tangential to the crack surface, while the spectral
and volumetric/deviatoric approaches fail on the one or other
aspect, respectively.

4.2 Realigned crack orientation vector

The second example is a study on the division of the strain
energy density for a given state of strain into persistent and
crack driving parts with respect to the orientation of a crack.
The study is restricted to two-dimensional states of strain,
because the involved complexity is reduced while the essen-
tial features are revealed more easily. Considering the crack
driving portion ψ+ of the total strain energy density ψ0 for
a linear elastic material, according to Eqs. (17) and (16),
respectively, the persistent counterpart ψ− may be obtained
by

Fig. 17 Stress categories in two dimensions with respect to the crack
orientation r

Fig. 18 Decomposition of the strain energy density according to the
crack orientation for uniaxial tension

ψ0 − ψ+ = ψ− = 1

2
σ− : ε. (63)

Furthermore, based on the assumption of linear elasticity and
the given state of strain, a similar decomposition into persis-
tent and crack driving categories is available for the stress
tensors σ+ and σ−. The decomposition for the stresses is
illustrated in Fig. 17, where the influence of the choice of the
crack orientation r is visualized. In a two-dimensional set-
ting, the crack orientation is thoroughly defined by the angle
0◦ ≤ φ < 180◦ spanned between the x-axis and the crack
orientation vector itself. In the subsequent study, the impact
of the choice of φ is demonstrated on a number of given
states of strain and the according split of the strain energy
density is discussed. As every possible two-dimensional state
of strain can be represented by a set of two principal strains,
εxy = εyx = 0 is assumed in the following.

Considering uniaxial tension, e.g. εxx = 0 and εyy = 0.02,
a decomposition of the strain energy density is shown in
Fig. 18. As expected, the largest amount of crack driving
energy density ψ+ is obtained for the crack orientation
coinciding with the direction of the uniaxial strain εyy, i.e.
φ = 90◦, confirming the quality of the assumption to align
the crack orientation with the largest principal tensile stress
in such a case.A deviation of r from that direction reduces the
crack driving energy density available until there is no crack
driving energy density at all for the direction perpendicular
to the direction of the uniaxial strain, i.e. φ = 0◦.
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Fig. 19 Decomposition of the strain energy density according to the
crack orientation for biaxial tension

Extension of the previously analyzed state of strain by
a second, smaller principal strain, i.e. εxx = 0.01 and
εyy = 0.02, results in the decomposition of the strain energy
density as shown in Fig. 19. Again, the crack orientation
aligned with the largest principal strain yields the largest
crack driving strain energy density. Nevertheless, for all pos-
sible crack orientations, there is always a finite amount of
crack driving strain energy density available. Allthough it is
trivial, it should be noted, that in the case of two equal tensile
principle strains, the amount of crack driving strain energy
density is constant for every crack orientation.

A similar observation holds for a state of volumetric com-
pression. However, in such a case, the constant value of the
crack driving strain energy density remains zero regardless of
the crack orientation. An interesting observation can bemade
for a biaxial compressive state of strain, e.g. εxx = − 0.01
and εyy = − 0.02, see Fig. 20. A natural assumption would
be that with two compressive principle strains, no crack evo-
lution should be possible at all. Nevertheless, the directional
split proposed considers shear to be crack driving. As the
crack orientation maximizes the shear components σrs and
σsr at φ = 45◦ and φ = 135◦, a finite amount of crack driv-
ing strain energy density is available. However, this finding is
not considered for a modified crack orientation, yet. Unless
the larger, shear related strain energy density is not obtained
due to a previously existing crack orientation, cracks will
always align along the direction of the largest principal stress.
Furthermore, beside the probably costly computation of the
energetically maximization of ψ+ in a three-dimensional
setup, another fundamental difficulty is the choice between
φ = 45◦ and φ = 135◦. As the energetic level consider-
ing crack evolution is identical for both directions, it seems
that the introduction of multiple crack orientations at a single
point is necessary. The development of such a split remains
an open issue for further research. Nevertheless, it is worth
considering these energetically identical directions φ = 45◦
and φ = 135◦ to be a first step of a novel approach to the

Fig. 20 Decomposition of the strain energy density according to the
crack orientation for biaxial compression

Fig. 21 Decomposition of the strain energy density according to the
crack orientation for a mixed strain state with dominant compression

phenomenom of crack branching based on energetical eval-
uations.

It has to be noted, that, due to the phenomenondiscussed in
the previous strain state, the proposed directional split under-
estimates the crack driving strain energy density dramatically
for quite a range of mixed strain states, e.g. εxx = 0.01 and
εyy = − 0.02. As visualized in Fig. 21, the crack driving
strain energy density for the crack orientation aligned with
the direction of the largest principal strain is only 12.5% of
ψ0, whereas the maximum crack driving strain energy den-
sity rises up to≈ 84.4% ofψ0 for crack orientations φ = 45◦
and φ = 135◦ respectively.

Another example is analyzed in order to demonstrate, that
indeed, the angle of branching may be energetically deter-
mined. Consider the strain state εxx = − 0.01 and εyy = 0.02
and its evaluation in Fig. 22. Here, an energeticallymotivated
angle of the crack orientation is either φ = 55◦ or φ = 125◦.

Furthermore, this example is used to show another
approach to the modification of the crack driving and per-
sistent stress components according to Eqs. (22) and (23),
respectively. Figure 23 shows the range of 50◦ < φ < 65◦
considering ψ+ according to Eqs. (9), (10), (22) and (23).
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Fig. 22 Decomposition of the strain energy density according to the
crack orientation for a mixed strain state with dominant tension

Fig. 23 Close up view on the extreme values of the original and modi-
fied decomposition of the strain energy density according to the crack
orientation for a mixed strain state with dominant tension

Without modification, a negative amount of persistent strain
energy density ψ− is obtained for the range of 55◦ < φ <

62◦, while the counterpart ψ+ exceeds the amount of total
strain energy density ψ0 available. While the sum of both
energies still yields the correct value of ψ0, it is physically
meaningless to split the strain energy density in such a way
and the corrections according to Eqs. (22) and (23) are abso-
lutely mandatory.

The alignement of the crack orientation with the direc-
tion of the largest principle stress value is a meaningful and
robust approach to obtain a modified crack orientation in a
large number of possible states of strain. However, there are
certain mixed mode states, where a different crack orien-
tation would lead to a larger amount of dissipated energy,
which should be preferred. It has been shown, that already
in a two-dimensional setup, there are two energetically iden-
tical crack orientations and, thus, the model would have to
be extended such, that multiple crack orientations are possi-
ble at a single point. As a first step, the investigation should
be extended to three-dimensional strain states. Furthermore,

(a) (b)

Fig. 24 Setup of the Mode I benchmark simulation

a study of the impact of Poisson’s ratio on the branching
angle and the maximum crack driving strain energy density
should be carried out. At this point, it would be interesting
to incorporate the approach presented in [39], i.e. to specify
different toughnesses for Mode I and Mode II fracture, as
this has been observed in concrete to be the case.

4.3 Mode I

In the third example, the application of the spectral, the
volumetric–deviatoric and the directional split on a Mode I
fracture test are investigated in a static simulation. The three
splits are contrasted with each other in order to illustrate
their characteristics. Furthermore, the enhanced degradation
function is evaluatedwith respect to the relation between load
and displacement as well as the enhanced convergence of the
solution. Finally, the crack orientation due toMode I fracture
is investigated and compared for static and dynamic simula-
tions. A subsequent simulation demonstrates the agreement
of the behaviour of the proposed directional split with the
crack characteristics specified in Sect. 2.2.

The geometry investigated is shown in Fig. 24a), where
H = 1m,W = 1m and T = 0.1m. Thematerial parameters
are λ = 7.15 GPa, μ = 12.71 GPa, ρ = 2600 kg/m3 and
Gc = 500 J/m2. The geometry is discretized by 100×100×
10 8-node brick elements and the length scale parameter is
set to l = 2 cm. The initial crack is modeled by a row of
fully degraded elements. The initial profile of the phase-field,
shown in Fig. 24b), is obtained by an initial simulation step
withoutmechanical loadingwith the boundary condition p =
1 at the nodes at 0.50 m ≤ y ≤ 1.00 m, each for x =
0.50 m and x = 0.51 m. The initial crack orientation is
r = [1, 0, 0]T.

The displacement boundary at the top and bottom edges
are actually a constraint in x- and y-direction in order to apply
additional compression and shear loading, after the Mode
I fracture evolved. For the static simulations, the pseudo
time t̄ is applied to manage the consecutive loading cases.
The displacements are defined by ux (t̄) = û · fx (t̄) and
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Fig. 25 Load specification function for the static Mode I fracture test

(a) (b)

Fig. 26 Crack propagation for the Mode I benchmark simulation: a
Typical widening of crack tip during propagation and b fully broken
state

uy(t̄) = û · fy(t̄), where û = 1 mm and fx (t̄) and fy(t̄)
according to Fig. 25. The specimen is subjected to tensile
loading according to Mode I fracture within 0 ≤ t̄ ≤ 1.0,
where the load is large enough to result in a crack open-
ing after full evolution of the phase-field crack. The crack is
closed and subsequently compressed within 1.0 ≤ t̄ ≤ 3.0.
After unloading until t̄ = 4.0, a shear load is applied until
the end of simulation at t̄ = 6.0.

The static simulation of the standard Mode I loading
(0 ≤ t̄ ≤ 1) results in a horizontal crack through the whole
specimen, which is identical for all three split applied, see
Fig. 26b). However, the intermediate steps of crack prop-
agation with the typical widened and round out profile,
see Fig. 26a), are obtained for different times with respect
to the split applied. It is due to the fact, that the differ-
ent splits have different times for the onset of fracture and
different values for the peak load and the accompanying dis-
placement as well. A relation between load and displacement
at the upper edge of the specimen (x = 1m) is shown in
Fig. 27, where the abbreviations S, VD, D0, D1 and D2
stand for spectral split, volumetric–deviatoric split, direc-
tional split with ga(p), directional split with gd(p; 10) and
directional splitwith gd(p; 100), respectively. The static sim-
ulation results are obtained by a combination of a monolithic
and a staggered solution in order to speed up the solution
of the equation system. At the beginning, monolithic steps
with large time increments of Δt̄ = 0.01 are performed,

Fig. 27 Load displacement relation at the upper edge (x = 1 m) of the
specimen

which are followed by monolithic steps with small time
increments of Δt̄ = 0.0001, which again are followed by
staggered solution steps with the small time increments of
Δt̄ = 0.0001. The spectral and the directional split results are
obtained for 20 monolithic steps with large time increments,
20 monolithic steps with small time increments and subse-
quent staggered steps until the end of the crack propagation.
For the volumetric–deviatoric split, the onset of fracture is
earlier and, therefore, only 19 monolithic steps with large
time increments have been performed. The spectral split,
the volumetric deviatoric split and the directional split with
the quadratic degradation function ga(p) exhibit approxi-
mately similar peak values 295.7 kN at t̄ = 0.2, 297.3 kN at
t̄ = 0.1951 and 298.1 kN at t̄ = 0.2017, respectively. The
directional split results with the linear-exponential degrada-
tion function, D1 and D2, exhibit a more brittle behaviour
compared to the previously discussed results, i.e. the devia-
tion from the linear-elastic slope is smaller due to a smaller
amount of softening before the peak load and a more abrupt
degradation of the system’s load bearing capacity is dis-
played.Moreover, the peak loads are significantly larger, that
is 329.6 kN at t̄ = 0.2032 and 346.9 kN at t̄ = 0.2085 for
D1 andD2, respectively. Furthermore, D2 reveals a saw tooth
behaviour, i.e. there is an initial, short crack propagation at
t̄ = 0.2085 that stabilizes at the very next step for a reac-
tion force of 341.8 kN, followed by another increase up to
345.2 kN at t̄ = 0.2113 and a subsequent instable crack
propagation to the point of the completely fractured state
(Fig. 26b)) with a totally degraded load bearing capacity.

It should be noted, that the totally degraded state, i.e.
p = 1, is not obtained for any model applied here for the
standard Mode I fracture loading (0 ≤ t̄ ≤ 1). Rather, a
value very close, e.g. p = 0.999, can be achieved for the
apparent total degradation, see Fig. 27, at ux > 0.25 mm. As
the displacement is increased up to a value of ux = 1 mm at
t̄ = 1, also the value of p is increasing, too, however, p < 1
holds for all simulations performed.
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(a) (b)

Fig. 28 Failure of the volumetric–deviatoric split at compression load-
ing at t̄ = 2.28, mesh, phase-field and scaled deformation (scale factor
500): a volumetric–deviatoric split and b directional split

(a) (b)

Fig. 29 Failure of the spectral split at shear loading at t̄ = 5.0, mesh,
phase-field and scaled deformation (scale factor 100): a spectral split
and b directional split

After the unloading for 1 < t̄ ≤ 2, the direction of the
displacement is inverted and the crack is compressed. Again,
a staggered solution scheme with large time increments of
Δt̄ = 0.01 is applied to obtain the solution. While the spec-
tral and the directional split resemble in the behaviour of
an uncracked linear elastic specimen, i.e. transmit the load
properly with a deformation state, the volumetric–deviatoric
split encouters diverged results at t̄ = 2.29. This is already
indicated by the results at time t̄ = 2.28, see Fig. 28a), where
the deformation is scaled by a factor of 500 in order visual-
ize the problem. Due to the total degradation of the stiffness
related to the deviatoric components of the stress tensor in this
model, the lateral expansion of the side edges is not confined
at all in the fully degraded elements. The proper behaviour,
similar to an uncracked linear elastic specimen, is obtained
both for the spectral and the directional split, see Fig. 28b).

For 4 < t̄ , shear loading is applied, both, in order to
demonstrate the ability of the directional split to show a plau-
sible behaviour in such situation, and to reveal a fundamental
problem of the spectral split in such cases. The deforma-
tion of the specimen at t̄ = 5 is shown in Fig. 29, scaled
by a factor of 100. The directional split is not transmitting
shear stresses of the crack, as they are part of the degraded
component σ+. Therefore, the fully degraded elements are
sheared without any resistance. It should be noted, that the
volumetric–deviatoric split exhibits a similary behaviour in
this loading case. However, within the spectral split, the
shear stress is decomposed into a tensile and a compres-
sive principle component, where only the tensile component

(a)

(b)

Fig. 30 Crack orientation vector r of the directional split at t̄ = 0.2030:
a phase-field p and b stress perpendicular to the crack surface σ xx

is degraded. Therefore, shearing induces a resistance in the
fully degraded elements resulting in tensile forces on the
upper left and the lower right corner. This leads to the initia-
tion of additional cracks at these locations, which propagate
along the bounded edges as shown in Fig. 29a).

An important aspect of the directional split is the crack
orientation, that is specified at each integration point of each
element by means of a history variable (e.g. Figs. 30, 31). As
a matter of easy visualization, the crack orientation is aver-
aged within one element and displayed as a vector with its
midpoint at the center of the elements face. With increasing
local ψ+, the crack orientation is aligned with the direction
of the largest principle strain at this point. Note, that within
the initial phase-field profile, the initially set local history
field of ψ+ according to Eq. (33) is decisive for that deci-
sion. Furthermore, the direction is only modified, when the
crack driving strain energy density with respect to the new
orientation is larger than the value of ψ+ within the old ori-
entation. However, due to the typical stress distribution in
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(b)

(a)

Fig. 31 Crack orientation vector r of the directional split at t̄ = 0.2067:
a phase-field p and b stress perpendicular to the crack surface σ xx

front of the crack tip at Mode I loading, see e.g. Fig. 30b),
a crack orientation according to Fig. 30a) is obtained. The
orientation is preserved up to the moment of a fully cracked
specimen, shown in Fig. 31a, b). It has been noted before,
that for the locally evolved phase-field values p < 1 holds,
i.e. there are no fully degraded elements and a small, finite
amount of stress perpendicular to the crack surface can still
be transmitted, see e.g. Fig. 32b). However, the value of these
stresses is several magnitudes below the stresses endured in
the sound material. Furthermore, due to the typical crack ori-
entation obtained, there are stress inclusions along the crack
surfaces (locally restricted areas of high stresses). As the ten-
sile load is increased, also the linear elastic reference energy
according to Eq. (17) is increasing and as the deformation for
the opening of the crack results in a uniaxial state of strain,
also the crack orientation is aligned uniformly in the direction
of the x-axis, see Fig. 32a). In consequence, the stress inclu-
sions are reduced. Furthermore, the phase-field values are
increased slightly, which results in a further degradation of
the transmitted stresses by another magnitude, see Fig. 32b).

(a)

(b)

Fig. 32 Crack orientation vector r of the directional split at t̄ = 1.0: a
phase-field p and b stress perpendicular to the crack surface σ xx

Fig. 33 Number of Newton iterations at each load step

The staggered part of the static solution is very expensive
during crack propagation. The diagram in Fig. 33 illustrates
the cost for the solution in terms of Newton iterations per
load step. It is clearly visible, that the directional split with
the quadratic degradation function is comparable to the spec-
tral, abbreviated by D0 and S, respectively. It is not possible
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Fig. 34 Load specification function for the transient Mode I fracture
test

to obtain a good convergence for the volumetric–deviatoric
split, abbreviated by VD, as the majority of the solutions
during crack evolution are a result of an aborted staggered
iteration due to excess of the given maximum number of 50
iteration for a staggered iteration. Nevertheless, the changes
in the field variables are small at that time and both the load
displacement relation and the crack path are reasonable. It
has not been investigated, if convergence can be obtained by
a larger maximum number of staggered iterations. Further-
more, the linear-exponential degradation function is clearly
superior, as the number of load steps with a large number of
Newton iterations is reduced clearly. The total number of
Newton iterations necessary to reach load step 160 is 17 114
for the directional split with the quadratic degradation func-
tion, which is reduced to 10 804 and 7 794 for the directional
split D1 and D2 with gd(p, 10) and gd(p, 100), respectively.

Another improvement of the number of Newton itera-
tions necessary per load step can be achieved by amonolithic
solution of the problem via a transient simulation during
the crack propagation. In contrast to the static simulations,
convergence is obtained in a maximum of 7 steps at each
loading step, when the crack is propagating, while linear
elastic behaviour without considerable phase-field evolution
requires only 2 iterations. Here, a physicallymeaningful time
t [s] has to be applied. Furthermore, the time step for the tran-
sient simulations depends on the material properties and the
element size, in order to resolve the wave propagation and
account for transient effects properly. For the material and
discretization given here, Δt = 3 μs holds. Another aspect
of the transient simulation is the realistic approximation of
crack propagation velocities and branching behaviour of the
crack, as discussed in [31]. The modified load specification
functions with respect to time t are shown in Fig. 34.

The transient simulation is carried out for the same geom-
etry, material and discretization as analyzed for the static
simulation. The inertia effects are considered for 1 000 steps
with Δt = 3 μs. After this, a subsequent static simulation is

(a)

(b)

Fig. 35 Crack orientation vector r of the directional split for the first
static step at t = 13 ms after the transient crack propagation: a phase-
field p and b stress perpendicular to the crack surface σ xx

performed, i.e. c3 = 0 and Δt = 10 ms, in order to test the
characteristics of the crack for tension. Given the slow load-
ing specified as f1(t) in Fig. 34, a straight crack, similar to the
one shown in Fig. 26b), is obtained. However, due to the tran-
sient propagation, the resultant crack orientation is slightly
different, see Fig. 35a). In the transient simulation, the typi-
cal stress concentration in front of the crack tip is obtain for
the tip of the initial crack at 0.50 m ≤ y ≤ 0.45 m, too,
which results in a crack orientation at these points. However,
the further the crack propagated, the more the crack orienta-
tion aligned perpendicular to the crack path. This results in a
comparably large stress inclusion at the position of the initial
crack tip, see Fig. 35b). Nevertheless, the magnitude of the
inclusion of≈ 380 Pa is small compared to magnitude of the
stress of ≈ 120 kPa, that is obtained for the onset of crack
propagation.

The application of the fast loading specified as f2(t)
in Fig. 34 results in the branched configuration shown in
Fig. 36a). As shown in Fig. 36b), the model is able to predict
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(a)

(b)

Fig. 36 Branched configuration of the directional split after fast Mode
I loading: a phase-field p and b phase-field p at a close up on the
branching point and crack orientation vector r

branching and yields a reasonable crack orientation in that
case. Nevertheless, the broadening of the phase-field pro-
file for the branching point and the subsequent propagation
are significant and remain an open issue to be investigated
and resolved. One probable reason may be the fact, that it is
almost impossible to obtain fully degraded elements in the
phase-field model, especially for the transient simulation,
where the crack opening is small. Furthermore, the propa-
gation of the crack at an angle to the regular meshing may

(a) (b) (c)

Fig. 37 Setup of theMode II benchmark simulation: a load and bound-
ary in x-y-plane, b plane strain boundary and c initial phase-field profile

cause additional problems known as the mesh bias discussed
in [28].

4.4 Mode II

In the fourth example, the application of the spectral, the
volumetric–deviatoric and the directional split on a Mode II
fracture test are investigated in a static simulation. The three
splits are contrasted with each other in order to illustrate
their characteristics. Furthermore, the enhanced degradation
function is evaluated with respect to the relation between
load and displacement. Finally, the crack orientation due to
Mode II fracture is investigated and compared for static and
dynamic simulations.

The geometry, boundary conditions and the initial phase-
field are shown in Fig. 37, where H = 1 m, W = 1 m and
T = 0.01 m. The material parameters are λ = 7.15 GPa,
μ = 12.71 GPa, ρ = 2600 kg/m3 and Gc = 500 J/m2. The
geometry is discretized by 100× 100× 10 8 node brick ele-
ments and the length scale parameter is set to l = 2 cm. The
initial crack is modeled by a row of fully degraded elements.
The initial profile of the phase-field, shown in Fig. 37c), is
obtained by an initial simulation step without mechanical
loading with the boundary condition p = 1 at the nodes at
0 m ≤ x ≤ 0.5 m, each for y = 0.5 m and y = 0.51 m. The
initial crack orientation is r = [1, 0, 0]T.

The displacement boundary at the top edge imposes a dis-
placement in y-direction in combination with a restricted
movement in x-direction in order to apply simple shear load-
ing according to aMode II test. For the static simulations, the
pseudo time t̄ is applied. The displacements are defined by
uy(t̄) = û · fx (t̄), where û = − 2 mm and fx (t̄) according to
Fig. 25, i.e. a shearing displacement in negative y-direction
is applied.

The static simulation of the simple shear loading accord-
ing toMode II fracture results in different phase-field profiles
for each split applied, see Fig. 39. The failure of the spectral
split is demonstrated by the unrealistic reaction forces shown
in Fig. 38 and the crack pattern obtained, shown in Fig. 39a).
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Fig. 38 Load displacement relation at the upper edge (x = 1 m) of the
specimen for the y-direction

(a) (b) (c)

Fig. 39 Final crack path at t̄ = 0.3: a spectral split, b volumetric–
deviatoric split and c directional split with quadratic degradation
function ga(p)

The explanation for this behaviour is similar to the reason dis-
cussed for the subsequent loading in the previous example,
i.e. a significant amount of the shear is transmitted over the
crack, which leads to an overestimation of the reaction force
and the crack evolution in the corner of the specimen. Note,
that the situation changes fundamentally, when the initial
crack is approximated in a discretemanner, i.e. separating the
elements along the edge of the initial crack. Then, the result
would be more like the result obtained for the volumetric–
deviatoric split, which shows a typical crack propagation
at an angle compared to the initial crack, see Fig. 39b).
Also, the directional split shows a fundamentally different
behaviour than the spectral and the volumetric–deviatoric
split. Instead of a kinking of the crack, a straight crack prop-
agation is obtained, which is naturally obtained based on
energetic consideration, i.e. a local comparison between the
energies dissipated by fracture according to shear compo-
nents in the initial crack orientation and fracture due to large
principal tensile strain in a modified crack orientation yields
the result, that the fracture due to the shear dissipates more
energy, as the resultant crack orientation vectors around the
initial crack tip region indicate, see Fig. 40. While this is
in perfect agreement with the findings in Sect. 4.2, it raises
the question, how to obtain the energetically defined crack
orientation, when neither the initial nor the crack orientation
according to tensile principal stress assumptions should be

(a)

Fig. 40 Crack orientation vector r of the directional split at t̄ = 0.3
with the quadratic degradation function ga(p)

used. This remains an open issue in this paper. The relation
between the shear displacement and the reaction force at the
upper edge of the specimen at x = 1m is plotted in Fig. 38.
Again, the failure of the spectral split is obvious and it is
interesting to note, that the more stiff response originates out
of the shear transmission behaviour of the initial crack with
this split. Furthermore, the directional split shows a very brit-
tle response compared to the volumetric–deviatoric results,
which resembles more to a damage-like softening and a later
abrupt failure at t̄ = 0.243. However, it has to be noted, that
for the Mode II loading, the quadratic degradation function
shows amore abrupt drop in the reaction force than the results
obtained with linear-exponential degradation function. Yet,
the results obtained with the linear-exponential degradation
functions remain closer to a linear elastic material, i.e. again
a more brittle behaviour is obtained with this kind of degra-
dation function (Fig. 38).

All simulations are obtained with a constant pseudo time
step of Δt̄ = 0.001 in a staggered simulation. It is worth
to note, that for this simulation, the quadratic degradation
function (D0) shows the better performance with respect to
the number of Newton iterations necessary to obtain the
solution, see Fig. 41. Here, the results of the spectral split are
not included, due to its failure to display a plausible Mode
II crack propagation result. The total number of Newton
iterations performed to reach the load step 300 are 32 557,
3 624, 4 832 and 4 904 for the volumetric–deviatoric split
(VD), the directional split with ga(p) (D0), ge(p, 10) (D1)
and ge(p, 100) (D2), respectively.

The transient simulations are obtained in a similar manner
as the transient simulations forMode I loading, i.e. a constant
time step of Δt = 3 μs is applied. Furthermore, the mag-
nitude of the displacement is increased to û = − 120 mm
in order to trigger crack evolution within a reasonable num-
ber of simulation steps. In addition, both shear in positive
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Fig. 41 Number of Newton iterations at each load step

(a)

(b)

Fig. 42 Result of the directional split for shear in negative y-direction
at t = 6ms: a phase-field p and b close up view on the crack orientation
vector r at the kinking point

and negative y-direction are considered by a change in the
sign of the magnitude. The results of the simulations are
shown in Figs. 42 and 43 for the shear in negative and pos-
itive y-direction, respectively. For the transient simulation

(a)

(b)

Fig. 43 Result of the directional split for shear in positive y-direction
at t = 6ms: a phase-field p and b close up view on the crack orientation
vector r at the kinking point

with the modified magnitude of the displacement, kinking
can be observed. Furthermore, for the shear in negative y-
direction, branching after 0.2m of straight crack propagation
is observed with a horizontal branch and a branch at the
typical angle for the shear failure, see Fig. 42. While the hor-
izontal branch is frustrated after a short distance, the kinked
branch propagates further. However, due to the increased dis-
sipation by the branching and widening, the kinked branch
is not propagating as far as the branch observed in shear in
positive y-direction, see Fig. 43. Furthermore, considering
the close up on the crack orientation vector r in Figs. 42b)
and 43b) for shear in negative and positive y-direction,
respectively, the crack seems to be reasonably aligned to
the kinked branch, but shows some obscure crack orienta-
tion vectors at the branching point. Although this is a result
of the principal strain evaluation during the crack evolution,
the dramatical change in the orientation between two neigh-
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(a) (b)

Fig. 44 Setup of the Mode III benchmark simulation: a geometry and
load and b initial phase-field profile with deformation according to
Mode III loading

boring elements may lead to strong inclusions of stress for
a subsequent loading of the crack. It may be necessary to
develop an approach to smooth and reorientate the cracks in
such regions, in order to obtain realistic behaviour. This is a
topic for future research on the directional split.

4.5 Mode III

The fifth example is a proof of concept for the directional
split in a Mode III loading situation. In contrast to the previ-
ous simulations, the mesh is very coarse in order to reduce
the computational cost of the simulation and have a better
visibility of the crack orientation vector results in the setup,
where the third dimension is significant to understand the
behaviour. The spectral split, the volumetric–deviatoric split
and the directional split are applied and the results of static
simulations are contrasted against each other. Furthermore,
the modified degradation function is evaluated with respect
to the relation between load and displacement as well as the
convergence of the solution.

The geometry and the loading are shown in Fig. 44a),
where T = 1 m, H = 1 m andW = 1 m. In order to obtain a
proper shearing of the initial crack, additional boundary con-
ditions are introduced. Each surface of the cube is restricted
in its displacement in x-direction. Furthermore, the surfaces
at x = 0 m, x = 1 m, y = 0 m, z = 0 m and z = 1 m are
constrained in their movement in the x-direction. Finally,
the movement in z-direction is bounded on the surface at
y = 1 m, where the load is applied on the half of the sur-
face with 0 m ≤ x ≤ 0.50 m. The material parameters are
λ = 7.15 GPa, μ = 12.71 GPa, Gc = 500 J/m2 and the
length scale parameter is set to l = 10 cm. The cube is dis-
cretized by 20 × 20 × 20 elements and the mesh, the initial
phase-field and aMode III deformation of 10μm scaled by a
factor of 104 are shown in Fig. 44b). The initial profile of the
phase-field is obtained by an initial simulation step without
mechanical loading with the boundary condition p = 1 at
the nodes at 0.5 m ≤ y ≤ 1.0 m, each for x = 0.5 m and
x = 0.51 m.

The displacement boundary at the edge y = 1 m imposes
a displacement in z-direction uz(t̄) in order to induce a shear
loading according to a Mode III fracture, see Fig. 44b). The
static simulations use the pseudo time t̄ and a constant time
step of Δt̄ = 0.01. The displacement values are defined
by uz(t̄) = û · fx (t̄), where û = 1 mm and fx (t̄) accord-
ing to Fig. 25. Fracture occurs within t̄ < 1.0 for all three
splits applied. The phase-field profiles obtained togetherwith
the scaled displacements (scale factor 100) at t̄ = 1.0 are
shown in Fig. 45 and the reaction forces are plotted in
Fig. 46. The phase-field profiles obtained for both the spectral
split and the volumetric–deviatoric split are not as expected.
While the failure along the support is at least reasonable
for the volumetric–deviatoric split, the wrong treatment of
shear loading in the spectral split results in an unplausible
behaviour both considering the phase-field evolution as well
as the reaction forces obtained.

The directional split models a straight crack propagation
along a constant crack orientation similar to the one speci-
fied for the initial crack, see Fig. 45c). The reaction forces
are typical for a brittle failure with an abrupt drop in reac-
tion force as soon as the crack evolves. It should be noted,
that the correct modeling of the transmission of shear forces
over the initial crack with the directional split results in
a softer behaviour than for the spectral split and a stiffer
response than for the volumetric–deviatoric split. Again, the
linear-exponential degradation function models a more brit-
tle behaviour, i.e. there is a shorter softening region, a higher
peak reaction force and a larger displacement to obtain a fully
cracked specimen. However, it is not possible to obtain con-
vergence for the simulation with ge(p, 100) after the onset
of the first crack propagation.

Again, there are minor stress inclusions around the loca-
tion of the initial crack tip, see Fig. 47. These inclusions are
directly related to the direction of the set of the crack ori-
entation vectors r around the crack tip, shown in Fig. 48,
that are artefacts of the strain state at the initial crack tip
at the beginning of the simulation. Moreover, they are sev-
eral magnitudes smaller than the stresses in the linear elastic
material response at the onset of crack propagation. It should
be noted, that the orientation is reasonable at fully cracked
elements with p = 1, which results in a realistic behaviour
of the fully cracked specimen from the global point of view.
Nevertheless, the inclusions itself are a mere numerical phe-
nomenon of the model and, although they may be small,
it cannot be assumed that they are negligible considering
numerical precision. The behaviour and interaction of these
inclusions should be studied further in more complex crack
propagation scenarios.

The results for the convergence of the simulations differs
from the ones observed in the previous simulation. The spec-
tral split results are ignored due to the total failure to model
realistic results in this case. The volumetric–deviatoric split,
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Fig. 45 Final phase-field profile at a deformation of uz = 1 mm (scale
factor 100): a spectral split, b volumetric–deviatoric split and c direc-
tional split

Fig. 46 Load displacement relation at the upper edge (x = 1 m) of the
specimen for the y-direction

(a) (b)

Fig. 47 Shear stress σ yz with the directional split: a before onset of
crack propagation t̄ = 0.45 and b for fully developed crack at t̄ = 1.00

(a)

Fig. 48 Stress perpendicular to the crack surface σ xx and crack orien-
tation vector r for the directional split with the quadratic degradation
function ga(p) at t̄ = 1.00
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Fig. 49 Number of Newton iterations at each load step

although the phase-field profile is not as expected, display a
very stable behaviour with a very small amount of steps nec-
essary to obtain the solution. As already stated, it has been
impossible to obtain convergence for the linear-exponential
degradation function ge(p, 100). Actually, for the Mode III
fracture example, the quadratic degradation function shows a
muchmore stable result than ge(p, 10) for obtaining a similar
final phase-field profile, see Fig. 49).

5 Conclusions

In this paper, an alternative split for the strain energy den-
sity is presented. Based on the definition of fundamental
crack characteristics and a phase-field crack approximation
including the orientation of the crack by a vector field, the
stress categorization into crack driving and persistent com-
ponents is outlined. Accordingly, the modified stress strain
relation with a degradation function and the computation of
the crack driving part of the strain energy density is pro-
posed and included into the framework of phase-field crack
approximation.An approach for themodification of the crack
orientation based on energetic considerations is presented.
Furthermore, a novel type of degradation function is intro-
duced, that leads to a more brittle behaviour of the model.
While convergence can be enhanced in some cases, examples
are found, where the convergence of the standard quadratic
degradation function is superior.

The directional split introduced here is tested and com-
pared to the spectral split and the volumetric–deviatoric
split for various examples. The first example considers the
transient transmission of forces over an initial crack of
the cross-section of a cylindrical specimen. It is shown,
that the directional split, in contrast to the spectral and the
volumetric–deviatoric split, models the characteristic trans-
mission of compressive stress waves and the reflection of
tensile and shear stress waves correctly.

In a two-dimensional setup, the relation between the crack
driving strain energy density and the orientation of the crack
orientation vector r is investigated. The alignment of the
crack orientation to the direction of the largest principle, ten-
sile strain is a reasonable approach in most of the cases.
However, there are strain states, where the maximum crack
driving strain energy density is related to a crack orientation,
where the shear on the crack surface is dominant. However,
in the proposed model, the crack orientation can only change
according to the principal strain criteria or remain in the direc-
tion specified by the previous step. In order to actually use
the largest crack driving strain energy density in all cases,
two aspects have to be considered. At first, the crack orien-
tation, where the crack driving strain energy density is at its
maximum, has to be found numerically. Furthermore, in a
two-dimensional setup, there are already two energetically
equivalent crack orientations available. The angle between
these orientations could be assumed as the energetically
determined branching angle at this point. However, it still
is an open task to develop a decomposition of the strain or
stress tensor consideringmore than a single crack orientation
vector. Furthermore, the expansion to a three-dimensional
problem may yield additional challenges.

The three fundamental modes of fracture (Mode I, II and
III) are investigated by using the directional split, the spectral
split and the volumetric–deviatoric split. The initial crack is
alwaysmodelled by an initial phase-field.Mode I fracture can
be simulated by all three approaches, resulting in reasonable
crack path prediction and realistic reaction forces. However,
a subsequent compression and shearing of the existing cracks
reveals the defect of the spectral split for shear loading and
the defect of the volumetric–deviatoric split in compressive
loading,while the directional splitmodels the behaviour real-
istically. Considering inertia in a transient simulation, a fast
Mode I loading results in a branched phase-field profile with
a reasonable crack orientation for the directional split. How-
ever, there is widening of the phase-field profile that may be
partially related to the mesh bias. The static Mode II fracture
simulation results in a straight phase-field crack, which is in
contradiction to the results obtained with the spectral split
and the volumetric–deviatoric split, when a discrete initial
crack is used. However, the straight path is motiviated and
explained by the increased energy dissipation by considering
shear on the crack surface to be crack driving in this case.
Furthermore, transient shearing of the initial crack results in
a kinked crack also for the directional split. Finally, Mode
III is investigated by a relatively coarse mesh to proof the
concept of the directional split. Again, it is possible to obtain
a straight crack and a brittle result for the reaction forces.
Nevertheless, there is no comparison to the other results pos-
sible, as both the spectral split and the volumetric–deviatoric
split fail totally for this example.
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Generally, the algorithm to determine the crack orientation
by either the previous crack orientation or the direction of
the largest principal, tensile strain is robust and based on
energetic considerations. Meaningful crack orientations are
always obtained for fully degraded elements, however, in the
transition zone, the crack orientations based on the principal
strain assumption lead to a finite amount of stress inclusions.
It remains an open question, how to resolve this problem.

The directional split proposed and analyzed in this paper
is an enhancement of the existing approaches of phase-field
crack approximation considering the realistic simulation of
normal and shear loads on ideal plane and friction-less crack
surfaces. The approach is incorporated into the framework of
the phase-fieldmethod in order to simulate crack propagation
and a realistic post fracture behaviour. Further work is neces-
sary in order to include friction effects on the crack surfaces
and the interlocking phenomenon for rough crack surfaces.
An incorporation of mode dependent fracture toughnesses,
as observed e.g. in concrete, is possible and straight forward
due to the identification of normal and shear stress compo-
nents in the local crack coordinate system.

The application of this approach to inelastic material
behaviour, including plasticity, viscoelasticity and large
strains in general, is a challenging task. A fundamental issue
is the impact of the geometry change due to large strains to the
definition of the crack orientation vector and the decomposi-
tion of the stresses by the crack orientation projection tensors.
Furthermore, while the additive decomposition is the key to
separate crack driving and persistent stress components here,
an analogous additive decomposition has to be applied to the
large strain framework, e.g. a logarithmic strain measure, see
[25]. Considering plasticity, additional considerations on the
definition of the crack orientation during crack evolution are
necessary, i.e. whether the alignment of the crack orientation
vector to the vector of the largest principal strain is still valid.
A different approach, e.g. a restriction of the spectral decom-
position to the elastic part of the strain tensor, would lead to
a much higher complexity of the consistent linearization and
implementation of the approach.
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