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Abstract

In an article published online in July 2018 it was stated that the algorithm proposed in the article is “enabling practical imple-
mentation of the space—time FEM for engineering applications.” In fact, space—time computations in practical engineering
applications were already enabled in 1993. We summarize the computations that have taken place since then. These compu-
tations started with finite element discretization and are now also with isogeometric discretization. They were all in 3D space
and were all carried out on parallel computers. For quarter of a century, these computations brought solution to many classes
of complex problems ranging from Orion spacecraft parachutes to wind turbines, from patient-specific cerebral aneurysms to
heart valves, from thermo-fluid analysis of ground vehicles and tires to turbocharger turbines and exhaust manifolds.

Keywords Space-time computation - Fluid mechanics -
Isogeometric discretization

1 Introduction

In an article published online in July 2018 [1] it was stated
in the abstract that the algorithm proposed in the article is
“enabling practical implementation of the space-time FEM
for engineering applications.” There is a similar statement
in the introduction: their “efficient solution algorithm” is
“enabling practical application of [space—time FEM].” The
conclusions section also has a similar statement: “An efficient
iterative solution algorithm has been developed in this work
that enables the practical applications of [time-discontinuous
Galerkin]-based space—time FEM.”

In fact, space—time computations in practical engineering
applications were already enabled in 1993 [2]. They started
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with finite element discretization and are now also with iso-
geometric discretization. These computations were all in 3D
space and were all carried out on parallel computers. For
quarter of a century, they brought solution to many classes of
complex problems ranging from Orion spacecraft parachutes
to wind turbines, from patient-specific cerebral aneurysms to
heart valves, from thermo-fluid analysis of ground vehicles
and tires to turbocharger turbines and exhaust manifolds.
We summarize these computations in the next section. We
limit the summary to computations reported in journal arti-
cles indexed by the Web of Science.

2 Space-time computations in practical
engineering applications

The Deforming-Spatial-Domain/Stabilized Space-Time
(DSD/SST) method [3-5] was introduced for computation
of flows with moving boundaries and interfaces, including
fluid—structure interactions (FSI). The stabilization compo-
nents of the DSD/SST are the Streamline-Upwind/Petrov-
Galerkin (SUPG) [6] and Pressure-Stabilizing/Petrov-
Galerkin (PSPG) [3] stabilizations. Because of the SUPG
and PSPG components, the DSD/SST is now also called “ST-
SUPS.” The ST Variational Multiscale (ST-VMS) method
[7-9] is the VMS version of the DSD/SST. The VMS com-
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ponents of the ST-VMS are from the residual-based VMS
method [10-13]. The ST-SUPS and ST-VMS are quite often
used with special ST methods that increase the scope and
accuracy of the ST computations. These special ST meth-
ods include the ST Slip Interface (ST-SI) [14,15] and ST
Topology Change (ST-TC) [16,17] methods. The ST-SUPS
and ST-VMS computations started with finite element dis-
cretization, but with the ST Isogeometric Analysis (ST-IGA)
[7,18,19], they are now also with isogeometric discretization
in space and time. When we summarize the ST computations
in practical engineering applications, we will focus on the
application, rather than the precise nature of the ST compu-
tational framework. The framework might have the ST-SUPS
or ST-VMS as its core component, and might include special
ST methods such as ST-SI, ST-TC, ST-IGA, or the integration
of all these as “ST-SI-TC-IGA” [20].

2.1 Years 1993-2000

The first ST computations in practical engineering applica-
tions in 3D space were reported in 1993 [2]. The problems
solved in [2] included sloshing in a tank subjected to vertical
vibrations and Taylor—Couette flow at Reynolds number 150,
250 and 1,498. The sloshing computation was also reported
ina 1994 article [21]. A review article published in 1994 [22]
included the sloshing problem, the Taylor—Couette flow, flow
past a Los Angeles class submarine, and flow-induced vibra-
tions of a flexible pipe. The pipe problem was also reported in
a 1995 article [23], together with flapping-wing aerodynam-
ics. The wing problem had over 1,100,000 coupled nonlinear
equations solved every time step of the computation. We
note that while the largest 3D problem solved in [1] had
about 490,000 equations, unsteady computations with over
1,100,000 coupled equations were already enabled 23 years
ago, with the hardware technology of 23 years ago.

Fluid—particle interaction computations with spheres
falling in a liquid-filled tube were reported first for 2-5
spheres in 1996 [24], then for 100 spheres in 1997 [25], and
then for 1000 spheres in 1999 [26]. In the computations with
1000 spheres, approximately 5.5 million coupled nonlinear
equations were solved at every time step, with the hardware
technology of 20 years ago.

A review article published in 1996 [27] included flow
around two high-speed trains passing each other in a tun-
nel, longitudinal dynamics of a large ram-air parachute, flare
maneuver of a large ram-air parachute, flow past adam, fluid—
particle interactions with 3 and 5 spheres, and dynamics of a
paratrooper jumping from a cargo plane. The flare maneuver
was also reported, in detail, in 1997 [28]. Parafoil inflation
aerodynamics was reported in 1997 [29], and gas impinging
on a liquid surface was also reported in 1997 [30]. Free-
surface flow past a circular cylinder, with hydraulic jump,
was reported in 1999 [31], and flow past a propeller was
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also reported in 1999 [32]. Two review articles published in
1999 [33,34] included flow around two high-speed trains in
a tunnel, ram-air parachute flare maneuver, dynamics of a
paratrooper jumping from a cargo plane, fluid—particle inter-
actions of 1000 spheres falling in a liquid-filled tube, flow
past a dam, free-surface flow past a circular cylinder, and
aerodynamics of a parachute crossing the wake of an aircraft.
Parachute FSI for a T-10 parachute was reported in 2000 [35].

2.2 Years 2001-2010

Computations reported in 2001 included aerodynamics of a
helicopter [36], fluid—particle interactions in spatially peri-
odic domains [37], parachute FSI for a cross parachute [38],
aerodynamics and FSI of a parachute crossing the wake of
an aircraft [39,40], and FSI of a T-10 parachute with line
pull [41]. A review article published in [42] included ram-
air parachute flare maneuver, flow around two high-speed
trains in a tunnel, flow past a propeller, acrodynamics of a
helicopter, fluid—particle interactions of 1000 spheres falling
in a liquid-filled tube, fluid—particle interactions in spatially
periodic cells, free-surface flow past a circular cylinder, and
flow past a dam. Parachute FSI reported in 2003 included
aerodynamic interactions between two parachutes [43] and
parachutes with control-line inputs [44]. Soft landing of a
T-10 parachute was reported in 2005 [45].

The FSI computations reported in 2006 [46—51] included
T-10 parachute soft landing, flow past a flag, patient-specific
internal carotid arteries, patient-specific cerebral aneurysms
with normal and high blood pressure, and soft landing of
a G-12 parachute. Transonic flow past a sphere was also
reported in 2006 [52]. The FSI computations reported in
2007 [5,53-57] and 2008 [58-63] were for flow past a
flag, patient-specific models of a middle cerebral artery
with aneurysm and a birfucating middle cerebral artery
with aneurysm, carotid artery birfucation, abdominal aortic
aneurysms, parachutes with complex designs, a cloth piece
falling over a rigid rod, flow in a tube constrained with a
diaphragm, inflation of a balloon, flow through and around a
windsock, descent of a T-10 parachute with fabric porosity,
sails, Orion spacecraft parachutes, flow around two flexible
spheres colliding, and a flexible sphere sliding past a con-
striction in a channel.

The FSI computations reported in 2009 [64—66] and 2010
[67-73] were for detailed parachute and artery analysis.
The detailed studies were mainly on cerebral arteries with
aneurysm, Orion spacecraft parachutes, and reefed stages of
the Orion spacecraft parachutes.

2.3 Years 2011-2018

The computations reported in 2011 were for detailed
parachute FSI analysis [74-76], arterial FSI analysis [77-81],
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and wind-turbine aerodynamics [82-84]. The detailed stud-
ies included different trial canopy design configurations of
the Orion spacecraft parachutes, Orion spacecraft parachute
clusters with two and three parachutes, FSI-based dynami-
cal analysis of the Orion spacecraft parachutes and parachute
clusters, patient-specific cerebral arteries with aneurysm, and
full-scale wind-turbine rotors.

The computations reported in 2012 were for detailed
analysis of parachute FSI [85-88], arterial FSI [89,90],
flow in aneurysms blocked with stent [91], wind-turbine
aerodynamics [92], and bioinspired flapping-wing aerody-
namics [18,93,94]. The detailed parachute studies, all for the
Orion spacecraft parachutes, were for different designs of
the suspension lines and overinflation control line, reefed
parachute stages, different trial canopy design configura-
tions, different payload models, 2-parachute clusters, FSI-
based dynamical analysis of single parachutes and parachute
clusters, disreefing of single parachutes and parachute clus-
ters, parachutes with modified geometric porosity, and Stage
2 shape determination for the modified-geometric-porosity
parachute. The artery studies included comparative stud-
ies based on patient-specific cerebral arteries with ruptured
and unruptured aneurysms, FSI analysis of a number of
patient-specific cerebral arteries with aneurysm, and flow
analysis of patient-specific cerebral aneurysms blocked with
stent. The wind-turbine aerodynamic analyses were for full-
scale wind-turbine rotors. The bioinspired flapping-wing
aerodynamic analyses were for an actual locust and for
an MAV with the wing motion coming from an actual
locust.

More computations were reported in 2013 for detailed
analysis of spacecraft parachute FSI and spacecraft aerody-
namics [95-97], flow in patient-specific aneurysms blocked
with stent [98], flapping-wing aerodynamics of an actual
locust [99], and wind-turbine rotor and tower aerodynam-
ics at full scale [100]. The studies on spacecraft parachute
FSI and spacecraft aerodynamics included forward bay cover
parachute, cover separation, clusters of parachutes with mod-
ified geometric porosity, and FSI-based dynamic analysis of
those parachute clusters.

The computations reported in 2014 were for bioinspired
flapping-wing aerodynamics [101-103], patient-specific
aneurysms blocked with stent [104], spacecraft parachute
FSI [102,105], wind-turbine rotor aerodynamics and rotor
and tower aerodynamics [102,103,106], FSI of cerebral arter-
ies with aneurysm [102], and heart valve flow analysis [17].
The spacecraft parachute FSI analyses included clusters
of parachutes with the original design and with modified
geometry porosity, different designs of the suspension lines,
disreefing of a single parachute from Stage 1 to 2 to 3, disreef-
ing of a 2-parachute cluster from Stage 2 to 3, and a drogue
parachute at Stage 1, 2 and 3 under different flight condi-
tions. The bioinspired flapping-wing aerodynamics included

an actual locust and an MAV with the wing motion coming
from an actual locust.

The computations reported in 2015 and 2016 were for
spacecraft parachute FSI [107,108], flapping-wing aerody-
namics with wing clapping [109], thermo-fluid analysis of a
truck and its tires [9], aerodynamics of a vertical-axis wind
turbine [14], thermo-fluid analysis of a disk brake [15], aero-
dynamics of a tire with road contact and deformation [110],
and ram-air parachute aerodynamics [111]. The parachute
FSI computations included aerodynamic moment analysis of
asingle Orion spacecraft parachute, a 2-parachute cluster and
JAXA subscale parachute, and detailed analysis of the Orion
drogue parachute at Stage 1, 2 and 3, under different flight
conditions. The truck computation (reported in 2015) had
about 55 million coupled nonlinear equations solved every
time step. That is more than 100 times larger than the largest
3D problem solved (490,000 equations) in [1].

The computations reported in 2017 and 2018 (first half)
were for flow-driven string dynamics in turbomachinery
[112], turbocharger turbine flow analysis [19], turbocharger
turbine and exhaust manifold flow analysis [113,114], heart
valve flow analysis [20], spacecraft parachute compressible-
flow aerodynamics [115,116], and patient-specific aorta flow
analysis [117].

3 Concluding remarks

We summarized the 25-year history of ST computations in a
wide range of practical engineering applications, from Orion
spacecraft parachutes to wind turbines, from patient-specific
cerebral aneurysms to heart valves, from thermo-fluid analy-
sis of ground vehicles and tires to turbocharger turbines and
exhaust manifolds. These computations started with finite
element discretization and are now also with isogeometric
discretization. They were all in 3D space and were all car-
ried out on parallel computers. We limited the summary to
computations reported in journal articles indexed by the Web
of Science. While the largest 3D problem solved in [1] had
about half a million equations, the number of coupled nonlin-
ear equations solved every time step in the ST computations
we summarized exceeded one million as early as 23 years
ago. For some of the ST computations we summarized, the
number reached 55 million. We showed clearly that ST com-
putations in practical engineering applications were already
enabled 25 years ago.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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