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Abstract
In this paper, a new finite element method, termed the generalized modal element method (GMEM), is proposed. In GMEM,
the element stiffness is derived by decomposing element deformation patterns into individual element generalized modes,
where different methods are used to construct the generalized modes. Specifically, three different modal construction meth-
ods, including analytical method, assumed displacement method and traditional finite element technique, are proposed for
developing the element generalized modes. The concept of modal local coordinate systems is also proposed to ensure the
element frame invariance when using polynomial displacement functions, which successfully enables one to use the analytical
solutions derived from governing differential equations to develop high accuracy element formulations. An asymmetric hexa-
hedral solid element and a symmetric hexahedral solid element are subsequently derived by using GMEM. The displacement
functions of the elemental 24 generalized modes are expressed in terms of Cartesian coordinates so that the element behavior
is independent of mesh distortions. Furthermore, the first 21 generalized modes are derived from analytical method making
the element capable of avoiding common locking phenomena. Several benchmark problems are performed to demonstrate
the accuracy and performance of the new element formulations in linear static and frequency analysis.

Keywords Generalized modal element method · Hexahedral element · Locking · Mesh distortion

1 Introduction

In the engineering field, most of physical and mechanical
problems are governed by differential equations with cer-
tain boundary conditions. Although the derivations of partial
differential equations (PDEs) to describe various physical
problems are usually straightforward, most of time it is dif-
ficult or even impossible to derive theoretical solutions for
PDEs with complicated boundary conditions. In this con-
text, the finite element method (FEM) was proposed and
has been one of the most successful numerical methods in
solving boundary value problems [1]. The key idea of FEM
is to transform the differential equations into a finite num-
ber of algebraic equations for each element by using either
Galerkin-weighted residual approach or variation principles.
However, the element interpolation functions of FEMusually
do not satisfy governing differential equations, which lead to

B Q. Sun
sunqin@nwpu.edu.cn

1 Northwestern Polytechnical University, Xi’an 710072, China

various spurious deformation modes and locking phenom-
ena [2, 3]. Indeed, there are numerous numerical methods
that can describe the element deformation modes more pre-
cisely. For example, the theoretical solution of most locking
deformation modes can be found by solving the governing
differential equations. If the theoretical displacement fields
can be used as the element displacement functions, the lock-
ing phenomenon can be automatically eliminated.

As different type of numerical methods has its own
advantages to deal with a specific class of locking prob-
lems and none of the existing methods can combine the
advantages of different numerical methods flexibly, a gen-
eralized modal element method is proposed in this paper to
tackle with this problem. Specifically, three modal construc-
tion methods, including the analytical method, the assumed
displacement method and traditional finite element tech-
nique, are presented for the derivation of element generalized
modes. Comparing with the existing mode superposition
methods, such as the assumed stress mode method [4], the
Cosserat point element [5–8] and ANS method [9–13], each
generalized mode defined in GMEM consists of a modal dis-
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placement vector and a corresponding modal force vector,
making the present method totally different from the existing
mode superposition methods. It should be noted that a nat-
ural mode finite element method introduced by Argyris [14,
15] is worked by separating the pure deformational modes
(also called naturalmodes) from the rigid bodymovements of
the element. The modes assumed in Argyris’ method are the
stain modes so that no complex transformations or numerical
integration are required in the construction of the elemen-
tal stiffness matrix, and the application of the natural mode
methodmainly focused on the triangular shell element. How-
ever, the generalizedmodal elementmethod developed in this
study directly constructs the elemental displacement modes
which is more flexible and convenient, and in addition we
have achieved the method using the solid elements and solid-
shell elements. Furthermore, modal local coordinate systems
are proposed to maintain the frame invariance of element
stiffness if the element generalized modes are derived from
the analyticalmethod and the assumed displacementmethod,
which makes the development of high accuracy low order
hexahedral solid element using the analytical displacement
functions possible.

In general, locking phenomena should be circumvented
carefully in the construction of hexahedral elements. Var-
ious methods, such as the reduced integration (RI) and
selective reduced integration (SRI) [16, 17], the incompat-
ible modes method [18, 19], the Enhanced Assumed Strain
method (EAS) [20–23] and theANSmethod,were developed
in the last decades and has been successfully reduced the
influence of locking phenomena. Furthermore, the incom-
patibility between tension and bending deformations for
irregularmesh is still one of the stumbling blocks in loworder
element design [24]. MacNeal [25] showed that the symmet-
ric element will either lock in in-plane bending or fail to
pass a C0 patch test when the element’s shape is an isosceles
trapezoid. To dealwith this incompatibility, a family of asym-
metrical elements, e.g. US-ATFQ4 [26], US-ATFH8 [27],
TQ4, TH8 [28], were proposed in recent years, in which two
types of shape functions were used to construct the element
stiffnessmatrix. The developed elements are quite insensitive
to variously severe mesh distortions and excellent perfor-
mances for linear static analysis were obtained. But due to
the asymmetrical element stiffness, these elements cannot be
extended to the frequency analysis.

In this paper, two different hexahedral elements, an asym-
metric hexahedral element US-MEM8S and a symmetric
hexahedral element S-MEM8S, are presented as illustrations
of GMEM. For the proposed low order solid element US-
MEM8S, the elemental 24 generalized modes are divided
into 21 basic deformation modes and 3 unphysical modes,
in which the basic deformation modes of the present ele-
ment, including tensile, shear, torsional and bending modes,
are directly derived from three basic sets of equations of

solid mechanics and the remaining 3 unphysical deformation
modes are constructed by the assumed displacement method.
Owing to the theoretical displacement functions used in basic
deformation modes, the proposed element is insensitive to
mesh distortions and can pass both the constant stress/strain
patch test and the second-order bending patch test. How-
ever, as US-MEM8S is not suitable for structural frequency
analysis, a symmetric hexahedral solid element named as S-
MEM8S is proposed subsequently based on the displacement
functions of US-MEM8S. A variety of popular numerical
benchmark examples is performed to investigate the perfor-
mance of the present elements.

2 Generalizedmodal element method

2.1 General formulation

2.1.1 Definition of generalized mode

In linear finite element method, the relationship between
nodal force vector f and nodal displacement vector u is
described by the element stiffness matrix

Ku � f (1)

For a finite element with r degrees of freedom, the defor-
mation space prescribed by the element stiffness matrix
includes r different deformation patterns, e.g. the rigid
motion modes, the tensile modes, the shear modes, the
bending modes and so on. In GMEM, the set of the nodal
displacement vector Ui and the corresponding nodal force
vector Fi of a specific deformation pattern is defined as a
generalized mode Mi � [

Fi , Ui
]
, in which Ui and Fi are

referred to as modal displacement vector and modal force
vector, respectively. Since the element deformation space
contains all possible deformations of the element, an arbi-
trary element displacement vector u can be expressed as a
linear combination of the r modal displacement vectors

u �
r∑

i�1

βiUi (2)

where βi is the component of the node displacement vector
u in the modal displacement vector Ui. As the modal force
vector corresponding to the modal displacement vector Ui is
defined as Fi, the nodal force vector f corresponding to the
nodal displacement vector u can be expressed as

f �
r∑

i�1

βiFi (3)
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For simplicity, “generalized mode” is briefly referred to
as “mode” in the following paper. For a given element, if
the element modal force vector Fi cannot approximates the
equivalent nodal force of the modal displacement vector
Ui properly, the element may demonstrates locking phe-
nomenon and reduces the element accuracy, such as the
bending deformation mode simulated by the iso-parametric
element. Therefore, the selection of element modes directly
determines the element accuracy and performance.

2.1.2 Formulation of element stiffness

Assuming that the element node number is n and nodal
degrees of freedom ism, then the number of element modes r
should be consistent with element’s total degrees of freedom,
i.e. r=mn. If the modal displacement function of i-th mode
in j-th direction is defined as Ri

j (X), then the displacement
of an arbitrary node Xa of mode i can be expressed as

Hi (Xa) �
[
Ri
1(Xa), R

i
2(Xa), . . . , R

i
m(Xa)

]
(4)

Substituting the coordinates of all nodes of the element
into Eq. (4), the i-th modal displacement vector Ui is given
by

Ui �
[
Hi (X1), Hi (X2), . . . , Hi (Xn)

]T
(5)

Similarly, the modal force vector Fi represents the equiv-
alent nodal force vector of i-th mode. Assuming Li

j is the
i-th modal equivalent force vector of node j, the modal force
vector of i-th mode can be written as

Fi �
[
Pi
1, Pi

2, . . . , Pi
n

]T
(6)

Equations (5) and (6) present the general formulations of
modal displacement vector and modal force vector. Detailed
modal construction procedures will be described in the fol-
lowing sections.

By constructing r linearly independent sets of element
modal displacement vectors and corresponding modal force
vectors, the element stiffness matrix K can be expressed as

K � FU−1 (7)

in which U � [U1, U2,…,Ur] is referred to as the modal
displacement matrix and F � [F1, F2,…,Fr] is defined as the
modal force matrix in GMEM.

From Eq. (7), it can be seen that the derivation of element
stiffness in GMEM is highly different from the mainstream
finite element techniques such as RI, EAS and ANS meth-
ods, in which the element stiffness is majorly computed by
an integration of the element strain energy. Indeed, the nodal

displacement vectors and nodal force vectors of element
modes should be firstly calculated in GMEM, which makes
the construction of the specified element mode completely
independent of the other modes so that the construction of
each mode can be very flexible. This difference will be more
apparent in the construction of the out-of-plane modes of
solid-shell element by using a plate bending element. Actu-
ally, GMEM is very similar to the ancient “displacement
method”. In the displacement method [29], the matrix U in
Eq. (7) is an identity matrix in which the element kij of stiff-
ness matrix is defined as the force at coordinate i due to unit
displacement in coordinate direction j, while the matrix U
in GMEM is composed by r linear independent modal dis-
placement vectors that represent special deformation modes.
Therefore, GMEM can be regarded as an extension of the
displacement method.

2.2 Modal constructionmethods

The GMEM can be constructed by applying different numer-
ical methods. Generally, the selected modal construction
method of a given deformation pattern should be able to
approximate the elementmechanical behavior efficiently. For
some simple deformation modes that having analytical solu-
tions, such as tensile, shear, torsion and bending deformation
modes, the relationship between modal displacement vector
andmodal force vector canbeobtaineddirectly by solving the
governingdifferential equations.However, for somecomplex
deformationmodes that don’t have the analytic solutions, this
relationship can be approximated by other numerical meth-
ods. In general, the selectedmodes shouldmeet the following
criteria as much as possible:

(1) The modes should be selected from the low order defor-
mation modes to the high order deformation modes.
Correspondingly, the element modal strain fields should
be selected from the zero order strain fields (rigid body
modes), constant strain fields (tensile modes, shear
modes) to first and high order strain fields (torsion
modes, bending modes and so on).

(2) The selected modes or the boundary conditions of the
element should reflect the elemental physical behavior
as much as possible. For example, the upper and lower
surfaces of thin-walled structures are rarely subjected
to shear loads, which making the deformation modes
of solid-shell element totally different from the defor-
mation modes of solid element. Therefore, the shear
stresses on the upper and lower surfaces of solid-shell
elements should be equal to zero. Reasonable selection
of element deformation modes can effectively improve
the numerical accuracy of the constructed element.
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(3) The selected modes should satisfy the invertibility of
the modal displacement matrix U so that the element
stiffness matrix in Eq. (7) can be obtained correctly.

(4) The element stiffness derived from the selected element
modes must have the proper rank, i.e. the number of
zero-frequencies modes should equal to the number of
element rigid body modes.

The performance of the element stiffness matrix directly
depends on the accuracy of the given modal displacement
vectors and themodal force vectors as showed in Eqs. (5) and
(6). In this section, we will present three common element
modal construction methods, including analytic method,
assumed displacement method and traditional finite element
method.

2.2.1 Analytical method

For some physical problems with simple boundary condi-
tions, the element displacement functions of thesemodes can
be derived by simply solving the governing differential equa-
tions. Considering a finite body�with isotropicmaterial, the
equilibrium equations for this finite body can be expressed
as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂σx

∂x
+

∂τyx

∂y
+

∂τzx

∂z
� 0

∂σy

∂y
+

∂τxy

∂x
+

∂τzy

∂z
� 0

∂σz

∂z
+

∂τxz

∂x
+

∂τyz

∂y
� 0

(8)

and the strain–displacement equations are

⎧
⎪⎪⎨

⎪⎪⎩

εx � ∂u

∂x
, εy � ∂v

∂y
, εz � ∂w

∂z

γxy � ∂u

∂y
+

∂v

∂x
, γyz � ∂v

∂z
+

∂w

∂y
, γxz � ∂u

∂z
+

∂w

∂x

(9)

The constitutive equations or the stress and strain relations
for linear elasticity are given as

σ � Dε (10)

where D is the elasticity matrix.
By solving the governing differential equations, the ana-

lytical displacement functions with a specified boundary
condition can be derived. Then the modal displacement vec-
tor, modal strain and stress distributions of this mode can be
determined uniquely. The resultingmodal force vector Fi can
be expressed as a surface integral of element surface traction,

Fi �
∫

Se
NT Ti dS (11)

where N is referred to as stress weight matrix and Ti is ele-
ment surface traction. In General, the stress weight matrix N
should be selected to ensure that the force and moment of
distributed force Ti on any side of element S∗ are equal to
these of their equivalent nodal forces,

M∑

i�1

Pi �
∫

S∗
Ti dS,

M∑

i�1

Pi × Ri �
∫

S∗
Ti dS × R (12)

whereM and Pi are the number of nodes and the correspond-
ing nodal force vector on side S∗, respectively, and Ri is the
position vector of node i.

Since modal displacement functions are expressed in
terms of Cartesian coordinates and satisfy governing differ-
ential equations, the elements derived from the analytical
method are insensitive to mesh distortions.

2.2.2 Assumed displacement method

For some complex modes, it is difficult to find feasible dis-
placement functions that satisfy the governing equations.
However, these modes are inevitable to construct an invert-
ible modal displacement matrix. In such cases, by defining
proper modal displacement functions and modal strain dis-
tributions, the modal force vectors can be written as

Fi �
∫

V e
BT Dεi dV (13)

where B�LN is referred to as differential stress weight
matrix and L is a differential operator matrix, ε� [εx εy εz
γ xy γ yz γ xz]T is the assumedmodal strain vector. Basically,B
in Eq. (13) should satisfies the force andmoment equilibrium
conditions of the element,

n∑

i�1

Pi � 0,
n∑

i�1

Pi × Ri � 0 (14)

The merit of the assumed displacement method is that its
internal displacement functions can be expressed in terms
of the Cartesian coordinate system, which can effectively
improve the element behavior for distorted meshes.

2.2.3 Traditional finite element technique

In some special cases, the former two procedures are diffi-
cult to produce a desirablemode for some specified boundary
conditions,whereas traditional finite element techniquesmay
exhibit excellent performance. For example, the upper and
lower surfaces of a solid-shell element are normally only
subjected to zero or uniform pressure and rarely subjected to
shear forces. In such a case, it is difficult or even impossible
to obtain the displacement functions of some special modes,
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such as the torsional mode, using analytical method. In such
cases, it is preferable for us to use shell element to approx-
imate these specified modes of solid-shell elements as most
shell elements havemuch better numerical accuracy and con-
vergence rate than the existing solid-shell elements. In this
context, GMEM enables to build up a connection between
different element formulations and makes the construction
of new elements more flexible.

When using traditional finite element technique, the refer-
enced element may have the same modal DOF with the new
developed element. Then the modal force vector of the new
element Fg can be written as

Fg � KrUg (15)

where Kr is the stiffness of the referenced element and Ug

is the modal displacement vector of the new element. Equa-
tion (15) indicates that the construction of element mode is
quite convenient when referenced element and new element
have the same geometry description. This method will also
be used in the following paper to derive the in-plane modes
of a symmetric solid-shell element.

The problem will be more complicated if different nodal
DOF are involved (for instance using a shell element to
describe the out-of-plane modes of a solid-shell element).
First, one has to use the nodal coordinates of the new devel-
oped element to ascertain the geometry description of the
referenced element. Then, the transformation between the
modal displacement vector of the new element and the ref-
erenced element should be established so that the modal
displacement vector of the new element can be obtained from
the modal displacement vector of the referenced element.
Subsequently, the modal force vector of the referenced ele-
ment can be derived from the modal displacement vector
and element stiffness of the referenced element. Finally, the
modal force vector of the new element can be computed from
the modal force vector of the referenced element. With the
computedmodal displacement vector andmodal force vector
of the new element, one can uniquely express the element
behavior of a specified deformation pattern. The detailed
procedure of traditional finite element technique will be dis-
cussed in the construction of eight-node solid-shell elements
in the following paper.

It is clear that the methods available for GMEM are far
more than the above mentioned three methods as a mass
of methods can describe or approximate the relationship
between structural displacements and forces. Benefited from
the diversity of modal construction method, high accuracy
finite element formulations can be obtained by GMEM since
it can make full use of the merits of different finite element
designmethods. It also should be noted that the element stiff-
ness derived from GMEM is generally asymmetric. But with

some special treatments, the element stiffness can also be
converted into a symmetric form.

2.2.4 Selection of stress weight function

In the mainstream finite element methods such as EAS and
ANSmethods, the element displacement functions cannot be
arbitrarily selected, e.g. the displacement fields of the solid-
shell elements in the literatures are still limited to x2 and y2,
while the items of x3 and y3 can be conveniently involved
in shell elements [30]. In this section, we will present three
relative theorems to demonstrate how to use an arbitrary dis-
placement functions (including analytical solutions) to derive
the corresponding modal force vectors in GMEM. These
theorems will also be employed in the following sections
to derive the modal force vector when using the analytical
method and the assumed displacement method.

Theorem 1 Suppose the distributed traction forces on an ele-
ment side S∗ are T, and the number of nodes on this side is
M. Then the resultant force and moment between traction
forces T and corresponding nodal forces are equivalent if
iso-parametric shape functions are executed as stress weight
functions,

M∑

i�1

P∗
i �

∫

S∗
TdS (16)

M∑

i�1

P∗
i × Ri �

∫

S∗
T × RdS (17)

Proof of Theorem 1 Using Eq. (11), the element nodal forces
of this side can be expressed as

P∗
i �

∫

S∗
NT
i TdS (18)

Then we have

M∑

i�1

P∗
i �

M∑

i�1

∫

S∗
NT
i TdS �

∫

S∗

M∑

i�1

NT
i TdS�

∫

S∗
TdS

(19)

M∑

i�1

P∗
i × Ri �

M∑

i�1

∫
NT
i (R)TdS × Ri

�
∫

S∗
T ×

M∑

i�1

NT
i (R)Ri dS �

∫

S∗
T × RdS

(20)

Theorem 2 Assume the displacement functions satisfy the
equilibrium equations, and the surface tractions and stresses
within the element are T and σ , respectively. If iso-
parametric shape functions are executed as stress weight
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functions, then surface integrals of T and volume integrals
of σ within the element are equivalent,
∫

Se
NT TdS �

∫

V e
BTσdV (21)

Proof of Theorem 2 For simplicity, the nodal forces in x-
direction are considered independently. By applying Gauss’s
theorem to the left component of Eq. (21), we have
∫

Se
NT
1 TxdS �

∫

Se
NT
1

(
lσx + mτxy + nτxz

)
dS

�
∫

Se
NT
1

{[
σx τxy τxz

] · dS
}

�
∫

V e

{
NT
1

(
∂σx

∂x
+

∂τxy

∂y
+

∂τxz

∂z

)

+∇NT
1

[
σx τxy τxz

]T }
dV (22)

where Tx is the x-direction component of T and N1 is the
first row of N. Since the displacement functions are assumed
to satisfy the equilibrium differential equations, we have

∂σx

∂x
+

∂τxy

∂y
+

∂τxz

∂z
� 0 (23)

Therefore, Eq. (22) is reduced to
∫

Se
NT
1 TxdS �

∫

V e
∇NT

1

[
σx τxy τxz

]T
dV (24)

The element nodal forces in other two directions follow
the same lines and can be written as
∫

Se
NT
2 TydS �

∫

V e
∇NT

2

[
τxy σy τyz

]T
dV (25)

∫

Se
NT
3 TzdS �

∫

V e
∇NT

3

[
τxz τyz σz

]T
dV (26)

Combination of Eqs. (24) (25) and (26) leads to
∫

Se
NT TdS �

∫

V e
BTσdV (27)

Theorem 3 If iso-parametric shape functions are performed
as stress weight matrix, then the element nodal forces derived
from volume integrals of stresses

P �
∫

V e
BTσdV (28)

satisfy the equilibrium of force and moment for arbitrary
stress distributions σ no matter σ satisfies the equilibrium
equations or not,

n∑

i�1

Pi � 0,

n∑

i�1

Pi × Ri � 0 (29)

Proof of Theorem 3 Similarly to the proof of Theorem 2, we
only investigate the resultant force and moment of nodal
forces in x-direction at first. The nodal force of node i in
x-direction in Eq. (28) can be expressed as

Pix �
∫

V e
∇Ni

[
σx τxy τxz

]T
dV (30)

The sum of all nodal forces in x-directions is

n∑

i�1

Pix �
n∑

i�1

∫

V e
∇Ni

[
σx τxy τxz

]T
dV

�
∫

V e
∇

n∑

i�1

Ni
[
σx τxy τxz

]T
dV

�
∫

V e
∇1

[
σx τxy τxz

]T
dV

� 0 (31)

Similar results can be obtained for the other two direc-
tions, thus we have

n∑

i�1

Pi � 0 (32)

For the moment equilibrium property,

n∑

i�1

([
Pix 0 0

] × Ri
)

�
n∑

i�1

[ ∫
V e ∇Ni

[
σx τxy τxz

]T
dV 0 0

]
× Ri

�
n∑

i�1

{
−Riz

∫

V e
∇Ni

[
σx τxy τxz

]T
dV

× Riy

∫

V e
∇Ni

[
σx τxy τxz

]T
dV

}

�
n∑

i�1

[
0 −

∫

V e
∇Ni Riz

[
σx τxy τxz

]T
dV

×
∫

V e
∇Ni Riy

[
σx τxy τxz

]T
dV

]

�
[
0 −

∫

V e
∇Rz

[
σx τxy τxz

]T
dV

×
∫

V e
∇Ry

[
σx τxy τxz

]T
dV

]

� [
0 − ∫

V e τxzdV
∫
V e τxydV

]
(33)
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where Ri � [
Rix Riy Riz

]
and R � [

Rx Ry Rz
]
. Simi-

larly,

n∑

i�1

([
0 Piy 0

] × Ri
) � [ ∫

V e τyzdV 0 − ∫
V e τxydV

]
(34)

n∑

i�1

([
0 0 Piz

] × Ri
) � [− ∫

V e τyzdV
∫
V e τxzdV 0

]
(35)

By summing up Eqs. (33), (34) and (35), we have

n∑

i�1

Pi × Ri � 0 (36)

By applying Theorem 2, Eq. (11) in the analytical method
can be rewritten as

Fi �
∫

V e
BTσi dV �

∫

V e
BT Dεi dV (37)

Considering the integration of Eq. (37) using Gaussian
numerical integration, it can be expressed as

Fi �
∫

V e
BTσi dV �

∫ 1

−1

∫ 1

−1

∫ 1

−1
BTσi |J|dξdηdζ (38)

where J is the Jacobi matrix, and B is

B �

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

N1,x 0 0 · · · Nn,x 0 0

0 N1,y 0 · · · 0 Nn,y 0

0 0 N1,z · · · 0 0 Nn,z

N1,y N1,x 0 · · · Nn,y Nn,x 0

0 N1,z N1,y · · · 0 Nn,z Nn,y

N1,z 0 N1,x · · · Nn,z 0 Nn,x

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

(39)

where Ni,x , Ni,y and Ni,z are the derivative of the iso-
parametric function in the Cartesian coordinate system and
satisfy

⎡

⎣
Ni,x

Ni,y

Ni,z

⎤

⎦ � J−1

⎡

⎣
Ni,ξ

Ni,η

Ni,ζ

⎤

⎦ � Ad j[J]
|J|

⎡

⎣
Ni,ξ

Ni,η

Ni,ζ

⎤

⎦ (40)

Substituting Eqs. (40) into (39), B can be rewritten as
B � B∗/|J|, then Eq. (38) becomes

Fi �
∫ 1

−1

∫ 1

−1

∫ 1

−1

B∗T

|J| σi |J|dξdηdζ

�
∫ 1

−1

∫ 1

−1

∫ 1

−1
B∗Tσi dξdηdζ (41)

Since the inverse of the Jacobian matrix is eliminated in
the Eq. (41), the resulting modal force vector can be pre-
cisely integrated by using theGaussian numerical integration
scheme, which makes the present element quite insensitive
to server mesh distortions.

Although the analytic method and the assumed displace-
mentmethod have the same expressions as shown inEqs. (13)
and (37), the mechanical mechanisms of these two meth-
ods are completely different. In the analytic method, the
modal displacement functions satisfy the governing differen-
tial equations and the element equivalent modal force vector
is obtained by an integration of the distribution force applied
on the element surface, while the assumed displacement
method is only an approximate mathematical method.

2.3 Modal local coordinate systems

In analytical method and assumed displacement method, the
modal displacement functions of each mode should be firstly
determined so that the corresponding modal displacement
vector and modal force vector can be computed. As the same
deformation pattern may have different directions, such as
the tensile deformations in x and y directions, it is conve-
nient to establish different modal local coordinate systems to
describe the same deformation pattern in different directions.
Furthermore, the frame invariance of element stiffness can
also be guaranteed by using unique modal local coordinate
system for different mode, which is essential to ensure the
element numerical stability and consistence.

Using modal local coordinate systems, four different cat-
egories of element modes are given as follows:

Strong complete mode If the displacement distribution
function satisfies the governing differential equations and the
exact structural deformation can be obtained for any selection
of modal local coordinate system, then the modal is defined
as a strong complete mode.

Weak complete mode If the displacement distribution func-
tion doesn’t satisfy the governing differential equations, but
the deformation specified by the displacement distribution
function can be obtained for any selection of modal local
coordinate system, then the modal is defined as a weak com-
plete mode.

Strong incomplete mode If the displacement distribution
function satisfies the governing differential equations and
the exact structural deformation can be obtained only for
the direction specified by the modal local coordinate system,
then the modal is defined as a strong incomplete mode.

Weak incomplete mode If the displacement distribution
function doesn’t satisfy the governing differential equations
and the exact structural deformation can be obtained only for

123



762 Computational Mechanics (2019) 63:755–781

the direction specified by the modal local coordinate system,
then the modal is defined as a weak incomplete mode.

From above definitions, we can see that whether a mode is
“strong” or “weak” depends on whether the modal displace-
ment functions satisfy the governing differential equations,
and whether a mode is “complete” or “weak” is determined
by whether unique element stiffness matrix can be obtained
when using different modal local coordinate systems. For
complete modes, different selection of modal local coordi-
nate systems does not change the element stiffness, so the
global coordinate system can be directly employed as the
modal local coordinate systems of these modes. For incom-
plete modes, it is necessary to establish a unique modal local
coordinate system for each mode to ensure the frame invari-
ance of element stiffness. With the aid of the modal local
coordinate, the analytic method and the assumed displace-
ment method can be efficiently applied in developing new
finite element formulations by using any desirable displace-
ment functions.

3 Modes of eight-node solid element

Based on the modal construction criterions described in
Sect. 2.2, the 24 modes of eight-node hexahedral element
selected from low order to high order can be classified as: 6
rigid body motion modes, 3 tensile modes, 3 shear modes, 3
torsional modes, 6 bending modes and 3 unphysical modes.
The detailed displacement functions of these modes will be
given in the following section. For simplicity, the first 21
modes are referred to as basic deformation modes since all of
them can be derived by solving basic governing differential
equations of solid mechanics. As it is yet to find a feasi-
ble solution of unphysical modes that satisfies the governing
equations, the assumed displacement method is adopted to
construct unphysical modes to ensure the invertibility of the
modal displacement matrix U.

3.1 Modal local coordinate systems

According to the modal completeness defined in Sect. 2.3,
it can be verified that the rigid body motion modes, tensile
modes and shear modes in the eight-node solid element are
complete modes, i.e. any selection of the modal local coor-
dinate systems for these modes doesn’t change the element
behavior. For the remaining incomplete modes (including
the torsional modes, bending modes and unphysical modes),
different selection of modal local coordinate systems will
produce different element stiffness. To tackle with this prob-
lem, unique modal local coordinate system is established for
each incomplete mode to ensure the frame invariance of the
developed hexahedral element.

1
2

3
4

7

6

5

8

C r1

n5678

n1432

n2376
n1265

n1584

n3487r2

r3

Fig. 1 Geometry of an eight node solid element

Considering an arbitrary eigh-node solid element illus-
trated in Fig. 1, the element centroid of the hexahedral
element is determined by the cartesian coordinates of the
element nodes:

XC � 1

8

8∑

i�1

Xi (42)

where XC are the cartesian coordinates of the element cen-
troid and Xi are the cartesian coordinates of node i. For the
present element, 10 modal local coordinate systems are uti-
lized for the construction of 24 modes. Specifically, the first
modal local coordinate systemC1 is utilized for the construc-
tion of the 6 rigid body motion modes, 3 tensile modes, and 3
shear modes. As these modes are complete modes, the global
coordinates can be selected as the local coordinates of these
modes:

C1 �

⎧
⎪⎨

⎪⎩

r � [
1 0 0

]

s � [
0 1 0

]

t � [
0 0 1

]
(43)

The second to the seventh modal local coordinate sys-
tems are used for the construction of 6 bending modes. For
simplicity, the vectors passing through the midpoint of the
opposite two surfaces are denoted as:

r1 � n2376 − n1584, r1 � r1/‖r1‖ (44)

r2 � n3487 − n1265, r2 � r2/‖r2‖ (45)

r3 � n5678 − n1432, r3 � r3/‖r3‖ (46)

where nabcd denotes for the midpoint of the surface Sabcd
as shown in Fig. 1. Then the modal local coordinates of 6
bending modes are selected as:
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C̄i j �
⎧
⎨

⎩

r � ri/‖ri‖
s � r × r j , s � s/‖s‖
t � r × s, t � t/‖t‖

i � 1, 2, 3, j �� i (47)

where C̄i j means that the bending mode is defined in the r-s
plane or ri–rj plane. For the eighth to the tenth modal local
coordinate systems:

C̃l �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

r � rl/‖rl‖
v1 � r × rm , v2 � v1 × r, v3 � v2/‖v2‖
v4 � r × rn , v5 � v4 × r, v6 � v5/‖v5‖
v7 � v1 + v4, v8 � v7/‖v7‖
v9 � r × (−v8), v10 � v9 + v8
s � v10/‖v10‖
t � r × s

l � 1, 2, 3,m �� l, n �� l,m

(48)

here C̃l is utilized for the construction of the torsional and
unphysicalmodes in the r or rl axis and v1 to v10 are auxiliary
vectors.

With the given modal local coordinate systems, the modal
displacement vector ug, strain tensor eg and stress tensor
σg in the global coordinate system can be expressed by the
modal displacement vector u, strain tensor e and stress tensor
σ in the local coordinate system as:

ug �

⎡

⎢⎢⎢
⎢⎢⎢
⎣

R · · · 0 0
...
. . .

...
...

0 · · · R 0

0 · · · 0 R

⎤

⎥⎥⎥
⎥⎥⎥
⎦

u (49)

eg � ReRT (50)

σg � RœRT (51)

whereR�[r | s | t ] is the rotationmatrix betweenmodal local
coordinates and global coordinates shown in Eqs. (43), (47)
and (48).

3.2 Modal displacement vectors

As mentioned above, the 21 basic deformation modes can be
derived by solving the basic governing differential equations.
Using Eqs. (8), (9) and (10) and applying suitable boundary
conditions, the displacement functions of 21 basic deforma-
tion modes can be expressed by the modal local coordinate
systems as:

(i) three rigid translational modes:

⎧
⎨

⎩

M1 : u � 1; v � 0;w � 0; (C1)

M2 : u � 0; v � 1;w � 0; (C1)

M3 : u � 0; v � 0;w � 1; (C1)

(52)

(ii) three rigid rotational modes:
⎧
⎨

⎩

M4 : u � 0; v � −z;w � y; (C1)

M5 : u � z; v � 0;w � −x ; (C1)

M6 : u � −y; v � x ;w � 0; (C1)

(53)

(iii) three tensile modes:
⎧
⎨

⎩

M7 : u � x ; v � −νy;w � −νz; (C1)

M8 : u � −νx ; v � y;w � −νz; (C1)

M9 : u � −νx ; v � −νy;w � z; (C1)

(54)

(iv) three shear modes:
⎧
⎨

⎩

M10 : u � y; v � 0;w � 0; (C1)

M11 : u � 0; v � z;w � 0; (C1)

M12 : u � 0; v � 0;w � x ; (C1)

(55)

(v) three torsional modes:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M13 : u � 0; v � xz;w � −xy
(
C̃1

)

M14 : u � 0; v � xz;w � −xy
(
C̃2

)

M15 : u � yz; v � xz;w � xy
(
C̃3

)
(56)

(vi) six bending modes:

M16−21 : u � −xy; v �
[
x2 − ν

(
z2 − y2

)]
/2;

w � νyz;
(
C̄i j , i � 1, 2, 3, j �� i

)

(57)

In Eqs. (52–57), Mi represents for the displacement func-
tions of the i-th mode in its modal local coordinate system.
The deformation shapes of 21 basic deformation modes are
illustrated in Figs. 2, 3, 4, 5, 6 and 7. It should be mentioned

that the torsionalmodesMt :u � 0; v � xz;w � −xy,
(
C̃3

)

is linearly dependent to M13 and M14. Therefore, the third
mode M15 in Eq. (56) is selected as a supplementary of
torsional modes to ensure the invertibility of the modal dis-
placement matrix.

As illustrated in Fig. 7, the present method enables to
describe the bending deformation of the element surfaces
accurately, while for traditional iso-parametric finite ele-
ments, such as EAS or ANS elements, the element surfaces
derived from iso-parametric shape functions remain straight
after bendingdeformation. Therefore, the presentmethod can
describe the element deformed geometry more precisely.

For the remaining three unphysical modes, since it is
difficult to find a feasible solution that satisfies the govern-
ing differential equations, the assumed displacement method
is adopted here. The assumed displacement functions of
unphysical modes are selected as

M22−24 : u � xyz; v � 0;w � 0;
(
C̃1−3

)
(58)
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Fig. 2 Rigid translational modes

Fig. 3 Rigid rotational modes

Fig. 4 Tensile modes

The deformation shapes of the unphysical modes are
shown in Fig. 8.

Substituting the coordinates of element nodes into
Eqs. (52–58) and using Eqs. (4), (5) and (49), we can get the

modal displacement vectors of 24 modes. Then the element
modal displacement matrix in the global coordinate system
can be expressed as
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Fig. 5 Shear modes

Fig. 6 Torsional modes

U �

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

U 1
1 U 2

1 U 3
1 · · · U 23

1 U 24
1

V 1
1 V 2

1 V 3
1 · · · V 23

1 V 24
1

W 1
1 W 2

1 W 3
1 · · · W 23

1 W 24
1

U 1
2 U 2

2 U 3
2 · · · U 23

2 U 24
2

...
...

...
. . .

...
...

U 1
8 U 2

8 U 3
8 · · · U 23

8 U 24
8

V 1
8 V 2

8 V 3
8 · · · V 23

8 V 24
8

W 1
8 W 2

8 W 3
8 · · · W 23

8 W 24
8

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

(59)

in which the subscript denotes the node number, and the
superscript denotes the mode number.

For anisotropicmaterials, thePoisson ratio inEqs. (52–58)
should be set to zero. In such cases, all of the 24 modes are
derived from the assumed displacement method since the
displacement functions of the basic deformation modes are
not theoretical solutions any more.

3.3 Modal force vectors

With the given modal displacement functions shown in
Eqs. (52–57), the modal strain vector of first 21 modes in
the global coordinates can be calculated using Eqs. (9) and
(50):

εi � [
e11 e22 e33 2e12 2e23 2e13

]T
(i � 1, . . . , 21) (60)

The corresponding modal stress vector of i-th mode can
be written as

σi � Dεi (61)

where D is the elasticity matrix. Then the corresponding
distributed surface tractions Ti at element surface can be
expressed as

Ti � [
T i
x T i

y T i
z

]T � nσ i (62)
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Fig. 7 Bending modes

Fig. 8 Unphysical modes

in which

n �
⎡

⎣
n1 0 0 0 n3 n2
0 n2 0 n3 0 n1
0 0 n3 n2 n1 0

⎤

⎦ (63)

where n1, n2 and n3 are the cosines of the angles between
the normal vector of the element surface and cartesian coor-
dinates. Then the modal force vectors can be derived from a
surface integral of the distributed surface tractions

Fi �
∫

Se
NT Ti ds (i � 1, . . . , 21) (64)
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It is clear that different selections of stress weight matrix
N leads to different modal force vectors. Basically, the
equivalent modal force vectors must balance the forces and
moments of the distributed surface tractions. Theorem 1 indi-
cates that iso-parametric shape functions comply with this
condition. Thus, the stress weight matrix of an eight node
hexahedral element can be written as

N � [
N1 I3 N2 I3 N3 I3 N4 I3 N5 I3 N6 I3 N7 I3 N8 I3

]

(65)

in which

Ni � 1

8
(1 + ξξi )(1 + ηηi )(1 + ζ ζi ) (66)

where ξ , η and ζ are the iso-parametric coordinates within
the element.

The product of NT Ti in Eq. (64), for a constant elastic
constitute matrix D, is a simple polynomial function of ξ , η
and ζ , with the maximum polynomial order of 2. Therefore,
it can be integrated exactly with a 2×2 point integration rule
on each face. Therefore, a total number of 2×2×6 Gaus-
sian integration points are required to accurately integrate
Eq. (64). Using Theorem 2, a more efficient expression of
Eq. (64) can be written as

Fi �
∫

V e
BT Dεi dV (i � 1, . . . , 21) (67)

in which only 2×2×2 Gaussian integration points are
required.We also tried one point integration schema to derive
Eq. (67) for the consideration of computational efficiency.
However, the numerical results are not so desirable.

For the unphysical modes in Eq. (58), the corresponding
stress distribution functions are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σx � yz(ν − 1)/
(
2ν2 + ν − 1

)

σy � −νyz/
(
2ν2 + ν − 1

)

σz � −νyz/
(
2ν2 + ν − 1

)

τxy � xz/(2ν + 2)
(
C̃1−3

)

τyz � 0

τxz � xy/(2ν + 2)

(68)

in which σx , σy , σz , τxy and τxz tends to infinite when
ν → 0.5, leading to the well know Poisson locking effect
under unphysical modes. In this paper, the assumed dis-
placement method is applied to avoid this volumetric locking
phenomenon, in which the assumed modal strain functions
are:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

εx � yz
εy � −νyz
εz � −νyz
γxy � 0
γyx � 0
γxz � 0

(69)

and the corresponding modal stress functions are

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σx � yz
σy � 0
σz � 0
τyx � 0
τyz � 0
τxz � 0

(70)

The volume locking can be naturally eliminated as the
corresponding stress distributions are only functions in terms
of y and z. Then the modal force vectors of unphysical modes
are given as

Fi �
∫

V e
BT Dεi dV �

∫

V e
BTσi dV (i � 22, 23, 24) (71)

Interestingly, these assumed modal strain functions also
consistent with the strain filed of Nastran’s HEXA element
for cubic shape element. Combining Eqs. (67) and (71), the
modal force matrix of the hexahedral element can be finally
expressed as

F �
[
F1, F2, . . . , F24

]
(72)

4 Element stiffness

Substituting Eqs. (59) and (72) into (7), the element stiffness
matrix in the global coordinates can be given as

K�FU−1 �
∫

V e
BT DEdVU−1 (73)

where E � [
ε1 ε2 · · · ε24

]
is referred to as the modal strain

matrix. Since the inverse of Jacobian matrix is eliminated
during the integration of Eq. (73), the element stiffness can
be precisely described by the element nodal displacement
and nodal force vectors for the first 21 modes shown in
Eqs. (52–57), i.e. the resulting elements are able to avoid
common locking effects for these modes.

In this paper, the element obtained from Eq. (73) is named
as US-MEM8S. For US-MEM8S, the element stiffness is an
asymmetric matrix if element shape is non-cubic. This also
implies that US-MEM8S can only be applied to structural
static analysis and cannot be extended to frequency analysis.
In view of this drawback, a symmetric eight-node element
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Table 1 List of element models for comparison

No. Name Description

1 HEXA Eight-node brick element in Nastran 2012 [31, 32]

2 EAS9 Eight-node hexahedral element using mixed assumed strain methods proposed by Simo,
Rifai [20]

3 NEWHEX Eight-node hexahedral element with assumed strain element proposed by Fredriksson
and Ottosen [37]

4 C3D8 Eight-node trilinear brick element in ABAQUS [38]

5 C3D8R Eight-node trilinear brick element with reduced integration and hourglass control in
ABAQUS [38]

6 C3D8I Eight-node incompatible brick element in ABAQUS [38]

7 HCiS18 Fully integrated 8-node hexahedron with 18 internal parameters [24]

8 HCiS12 Fully integrated 8-node hexahedron with 12 internal parameters [24]

9 HVCC8 Eight-node hexahedral element with hexahedral volume coordinate method [34]

10 Wilson_H8 Eight-node incompatible hexahedral element by Wilson’s method [18]

11 Caseiro13 Improved version of the RESS element [3]

12 HFS-HEX8 A hybrid FE formulation based on the fundamental solution [39]

13 US-ATFH8 an asymmetric 8-node hexahedral element using analytical trial function [27]

14 US-MEM8S Proposed eight-node asymmetric solid element using GMEM

15 S-MEM8S Proposed eight-node symmetric solid element using GMEM

S-MEM8S is developed based on the displacement functions
of US-MEM8S.

Using the same displacement functions of US-MEM8S
as described in Eqs. (52–58), the element stiffness matrix of
S-MEM8S is given as

K �
[
UT

]−1
∫

V e
ET DEdVU−1 (74)

where EU−1 is similar to the B matrix in traditional finite
element techniques and represents the relationship between
element strain and displacement. Though the formulations
of S-MEM8S and US-MEM8S are quite different, numeri-
cal results show that exactly the same element stiffness are
obtained for US-MEM8S, S-MEM8S, and Nastran’s HEXA
[31, 32] for cuboid shape elements. For non-cubic shape ele-
ments, as can be seen from the next section, the proposed
solid elements are more insensitive to mesh distortion and
obtain better performance in most cases. The major differ-
ence between HEXA and the proposed elements lies in the
behavior of non-cuboid shape meshes.

5 Numerical tests

In this section, the static linear behavior of the two developed
eight-node solid elements US-MEM8S and S-MEM8S and
the frequency response of symmetric eight-node solid ele-
ment S-MEM8S are investigated. All the elements possess
the proper rank. The benchmark problems considered here

are carefully selected to demonstrate some important features
of the proposed elements, especially for the sensitivity to
meshdistortion and locking effect. It also should be noted that
the thin-walled structure problems are not considered here
as the deformation patterns of solid and solid-shell element
are totally different. Indeed, the computational efficiency of
solid-shell elements is hundreds or even thousands of times
faster than solid element when simulating thin-walled struc-
tures. Most of the results presented in tables and figures are
normalized with respect to the reference solutions. A list of
referenced elements used for comparison with MEM8S is
outlined in Table 1.

5.1 Linear static analysis

5.1.1 Enginvalue and patch test

In this example, the eigenvalue analysis of a unit cubic solid
element is first performed to evaluate the element behavior
in the nearly incompressible limit. Because the element stiff-
ness matrixes of S-MEM8S and US-MEM8S are symmetric
and same for cubic shape element, both of these two ele-
ments are investigated in this test. The material properties of
the cubic are defined as E=1.0 and ν �0.499999. Exactly
the same eigenvalues, shown in Table 2, are obtained for
S-MEM8S, US-MEM8S, HEXA and H1/E21 [33]. These
results only include the eighteen non-zero eigenvalues, i.e.
the six rigid body modes are excluded. The spectrum shows
that only one eigenvalue tends to infinity as ν → 0.5. If

123



Computational Mechanics (2019) 63:755–781 769

Table 2 Eigenvalues for a nearly
incompressible eight-node
regular hexahedral element

Mode S-MEM8S US-MEM8S H1/E9 H1/E21 HEXA

1 5.5556E−02 5.5556E−02 5.5556E−02 5.5556E−02 5.5556E−02

2 5.5556E−02 5.5556E−02 5.5556E−02 5.5556E−02 5.5556E−02

3 5.5556E−02 5.5556E−02 1.1111E−01 5.5556E−02 5.5556E−02

4 5.5556E−02 5.5556E−02 1.1111E−01 5.5556E−02 5.5556E−02

5 5.5556E−02 5.5556E−02 1.1111E−01 5.5556E−02 5.5556E−02

6 1.1111E−01 1.1111E−01 2.2222E−01 1.1111E−01 1.1111E−01

7 1.1111E−01 1.1111E−01 3.3333E−01 1.1111E−01 1.1111E−01

8 1.1111E−01 1.1111E−01 3.3333E−01 1.1111E−01 1.1111E−01

9 2.2222E−01 2.2222E−01 3.3333E−01 2.2222E−01 2.2222E−01

10 3.3333E−01 3.3333E−01 3.3333E−01 3.3333E−01 3.3333E−01

11 3.3333E−01 3.3333E−01 3.3333E−01 3.3333E−01 3.3333E−01

12 3.3333E−01 3.3333E−01 3.3333E−01 3.3333E−01 3.3333E−01

13 3.3333E−01 3.3333E−01 3.3333E−01 3.3333E−01 3.3333E−01

14 3.3333E−01 3.3333E−01 3.3333E−01 3.3333E−01 3.3333E−01

15 3.3333E−01 3.3333E−01 ∞ 3.3333E−01 3.3333E−01

16 3.3333E−01 3.3333E−01 ∞ 3.3333E−01 3.3333E−01

17 3.3333E−01 3.3333E−01 ∞ 3.3333E−01 3.3333E−01

18 ∞ ∞ ∞ ∞ ∞

any additional modes tend toward infinity, the element will
exhibit volumetric locking.

Besides the cubic configuration, several different dis-
torted configurations are also investigated for S-MEM8S and
US-MEM8S. Complex eigenvalues are observed in severe
distorted configurations for US-MEM8S. Nevertheless, in all
of these tests, only one eigenvalue tends to infinity. There-
fore, it can be stated that the proposed solid elements are free
of volumetric locking [33].

Subsequently, the patch test for solids proposed by Mac-
Neal and Harder [32] is carried out in this example to test the
convergence of proposed element formulations. The geom-
etry of a unit cubic with a discretization of seven irregular
8-node hexahedral elements is illustrated in Fig. 9. Themate-
rial behavior is defined by Young’s modulus E �1×106 and
Poisson ratio ν =0.25. The displacements of the eight exte-
rior nodes (four on the bottom surface and four on the top
surface) are prescribed by the linear functions

u � 10−3(2x + y + z)/2

v � 10−3(x + 2y + z)/2

w � 10−3(x + y + 2z)/2

and the interior nodes are free of constraints, which results
in a constant strain and stress state. The theoretical strain and
stress solutions of this case is

e11 � e22 � e33 � e12 � e23 � e13 � 10−3

σ11 � σ22 � σ33 � σ12 � σ23 � σ13 � 400

1
2

3

6
5

8
4

7

x

y

z

x y z
1 0.249 0.342 0.192
2 0.826 0.288 0.288
3 0.850 0.649 0.263
4 0.273 0.750 0.230
5 0.320 0.186 0.643
6 0.677 0.305 0.683
7 0.788 0.693 0.644
8 0.165 0.745 0.702

Fig. 9 Patch test of a constant strain/stress problem

Since US-MEM8S is complete for constant strain modes
(three tensile strain modes and three shear strain modes) and
the stress weight functions are selected as iso-parametric
shape functions, US-MEM8S enables to pass the patch
test. Numerical results also verified this conclusion. For S-
MEM8S, its behavior is quite similar to that of the HVCC8
element, which also cannot pass the patch test [34]. It should
be noted that patch test is a sufficient condition but not a nec-
essary condition of element convergence. Numerical results
also show that the elements that cannot pass the patch test
still can be convergent. Up to now, the necessary condition
of element convergence still is an open question and needs
to be studied in the future. The following examples test the
accuracy and convergence of S-MEM8S further.
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Fig. 10 Cantilever beam configuration: a vertical distortion; b horizon-
tal distortion; c non-planar distortion

5.1.2 Element distortion

In order to evaluate the sensitivity of the proposed element
formulation to mesh distortion in bending deformation pat-
terns, the well-known cantilever beam test with two distorted

elements [35] is investigated. The beam is subjected to a con-
stant bending moment with F=10 at the free tip as shown in
Fig. 10. The length of the beam is 10, width and height are 2.
Three different mesh divisions with vertical, horizontal and
non-planar distortions are investigated. The parameter e is
utilized to denote themagnitude of element distortions.When
e=0, the elements are cubic and regular. As e increased, the
mesh will be more distorted. The Young’s modulus is E �
2.1×105 and the Poisson ratio is ν =0.0 and ν =0.4999. The
reference solution for the free tip deflection of the upper node
A is

w � 15M

E

The normalized results of the tip deflection for three mesh
distortions are given in Figs. 11, 12 and 13. US-MEM8S pos-
sesses the exact solutions for all distortions and shows totally
free of element distortions. For the symmetric solid elements,
S-MEM8SandHVCC8obtain near the sameperformance for
the vertical and horizon distortions, while S-MEM8S obtains
better performance than HVCC8 for the non-planar distor-
tion test. For other referenced element formulations, high
sensitivity to element distortions are observed.

5.1.3 MacNeal’s cantilever beam

The MacNeal’s straight cantilever beam test is another
standard benchmark problem for evaluating the element sen-
sitivity tomesh distortion. The cantilever beam is subjected to
two different load cases: a unit in-plane shear force F1 and
a unit out-of-plane shear force F2. Two different element
shapes with trapezoidal and parallelogram shape elements
are adoptedwith various skewangles θ , as depicted inFig. 14.
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Fig. 11 Sensitivity test to vertical distortion. a ν = 0.0; b ν = 0.4999
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Fig. 12 Sensitivity test to horizon distortion. a ν = 0.0; b ν = 0.4999
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Fig. 13 Sensitivity test to non-plane distortion

The length of the beam L=6.0, width w=0.2, depth d=0.1.
The elastic modulus is E=1×107 and Poisson ratio ν =0.3.
The theoretical solutions of the tip deflection in the loading
directions are 0.1081 for in-plane shear load and 0.4321 for
out-of-plane shear load [32]. In this test, the errors E of the
tip deflection u are defined with respect to the theoretical
solution u*:

E � |u − u∗|
u

Tables 3 and 4 report the errors of the tip deflection for
different skew angles. As different boundary conditions are
involved in the standard MacNeal’s cantilever beam test [32]
and Li’s test [34], the results obtained from Li’s HVCC8 are
not compared in this example. It can be seen that the accu-

F1 F2

θ

θθ
(a)

(b)

Fig. 14 MacNeal’s cantilever beam: a parallelogram shape elements; b
trapezoidal shape elements

racy of the referenced elements deteriorates severely as the
increase of skew angle, especially for the trapezoidal mesh
distortions. Compared with the other elements, US-MEM8S
and S-MEM8S obtain excellent numerical results for differ-
ent skew angles.

5.1.4 Curved beam test

In this example, a curved cantilever beam [32] is consid-
ered to test the element behavior for curved structures. The
inner radius of the beam is taken as Ri �4.12, the width is
h=0.2 and the thickness is t �0.1. The beam is subjected to
two load cases with a unit in-plane shear load F1 and a unit
out-of-plane shear load F2, as shown in Fig. 15. The mate-
rial behavior is defined as Young’s modulus E=1×107 and
Poisson ratio ν =0.25. Five different meshes with element
number varied from 2 up to 10 are considered. The analyt-
ical solutions of the tip deflection for these two load cases
are 0.08734 and 0.5022, respectively. The normalized dis-
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Table 3 Errors of MacNeal’s
beam with in-plane shear force Element Skew angle

0 10 20 30 45

Parallelogram shape

US-MEM8S 0.019 0.018 0.015 0.010 0.003

S-MEM8S 0.019 0.020 0.021 0.022 0.023

HEXA 0.019 0.185 0.565 1.128 2.690

C3D8 8.997 9.417 10.76 13.29 20.28

C3D8I 0.017 0.143 0.348 0.490 0.601

C3D8R 0.010 0.139 0.346 0.488 0.592

NEWHEX 0.019 0.144 0.346 0.479 0.570

HFS-HEX8 0.040 * * * 0.522

Trapezoidal shape

US-MEM8S 0.019 0.018 0.013 0.006 0.006

S-MEM8S 0.019 0.020 0.020 0.021 0.022

HEXA 0.019 1.353 4.464 9.309 22.26

C3D8 8.997 10.36 14.15 20.28 33.48

C3D8I 0.017 1.336 4.348 9.000 20.28

C3D8R 0.010 1.309 4.319 8.901 19.83

HFS-HEX8 0.040 * * * 2.559

*not available

Table 4 Errors of MacNeal’s
beam with out of plane shear
force

Element Skew angle

0 4 8 12 16

Parallelogram shape

US-MEM8S 0.019 0.010 0.019 0.079 0.187

S-MEM8S 0.019 0.021 0.025 0.028 0.032

HEXA 0.019 0.052 0.136 0.242 0.343

C3D8 37.46 38.06 38.68 39.48 40.67

C3D8I 0.024 0.058 0.144 0.251 0.358

C3D8R 0.019 0.050 0.132 0.233 0.331

Trapezoidal shape

US-MEM8S 0.019 0.006 0.035 0.109 0.223

S-MEM8S 0.019 0.020 0.023 0.027 0.031

HEXA 0.019 0.360 1.232 2.472 4.025

C3D8 37.46 38.37 39.48 41.37 44.05

C3D8I 0.024 0.370 1.252 2.501 4.365

C3D8R 0.019 0.359 1.230 2.459 4.008

placements with respect to theoretical solutions are plotted
in Fig. 16. For out-of-plane shear load, all elements cannot
converge to the reference solutions as themesh is only refined
in one direction. In comparing convergence of different for-
mulations, US-MEM8S and S-MEM8S generally appear to
be more effective in simulating curved beam than other for-
mulations.

5.1.5 Thick-walled cylinder

In this example, a thick-walled cylindrical tube as shown
in Fig. 17 is considered to assess the performance of the
proposed element formulation for a confined nearly incom-
pressible state. The cylinder is subjected to a uniform
pressure p at the inner radius. The top and bottom surfaces of
the cylinder are clamped in the thickness direction. Young’s
modulus is E �1000 and six different Poisson ratio with
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Fig. 15 Curved beam test

ν =0.0, ν =0.1, ν =0.2, ν =0.3, ν =0.4 and ν =0.49999 is
investigated. The analytical solution of the radial displace-
ment at the inner radius is given by [32]:

u � (1 + ν)pR2
1

E
(
R2
2 − R2

1

)
[
R2
1/r + (1 − 2ν)/r

]

where R1 and R2 is the inner and outer radius, respectively.
The normalized displacements with respect to theoretical
solutions are shown in Fig. 18. It should be pointed out that
the numerical solutions given by [32] are not consistent with
the analytical solution given by itself. In this paper, we use
the analytical solution to normalize our results. The numer-
ical results show that the normalized displacements of all
elements are decreased as ν varies from 0 to 0.5. Generally,
the present solid elements exhibit better convergence than
other elements when ν is little than 0.4, while for other mod-
els, the results are close to the theoretical solution when ν

approaches to 0.5.

(a) (b) 

2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Element number

N
or

m
al

iz
ed

 ti
p 

de
fle

ct
io

n US-MEM8S
S-MEM8S
US-ATFH8
HEXA
NEWHEX
Wilson-H8
C3D8
C3D8I
C3D8R

2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Element number

N
or

m
al

iz
ed

 ti
p 

de
fle

ct
io

n

US-MEM8S
S-MEM8S
HEXA
Wilson-H8
US-ATFH8
C3D8
C3D8I

Fig. 16 Normalized results of the curved beam. a In-plane shear load, b Out-of-plane shear load
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Fig. 17 Thick-walled cylinder
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Fig. 18 Normalized radial displacements of Thick-walled cylinder with
different Poisson ratio
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Fig. 19 Straight cantilever beam with two materials

5.1.6 Straight cantilever beam under gravity

To investigate the behavior of the present element for prob-
lems involving body forces, a straight cantilever beam
subjected to a uniform constant body force is considered in
this example. The length of the beam is L �4, height h�0.5,
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Fig. 21 Convergence for the straight cantilever beam

width w �0.5. The beam is composed of two materials with
E1 �2×108, E2 �4×108 as shown in Fig. 19. The inter-
face between the two materials is considered to be perfectly
bonded. A constant body force of 10 in the vertical direction
is applied to the beam. Four different distortedmeshes:Mesh
1 (4×1×1),Mesh 2 (10×2×2),Mesh 3 (20×4×4),Mesh
4 (40×8×8), as shown in Fig. 20, are performed to inves-
tigate the convergence of the present element. The reference
solution of the vertical displacement of the free tip obtained
by Nastran with a mesh of 80×20×20 elements is given
as 7.451×10−5. Figure 21 gives the normalized results for
different meshes obtained by the proposed solid elements as
well as the referenced formulations. It can be observed that
all the elements converge to the benchmark value with the
increasing of the mesh density. Compared with other ref-
erenced element formulations, the results again demonstrate

Fig. 20 Meshes of straight cantilever beam
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Fig. 22 Cook’s membrane test with an isotropic material
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Fig. 23 Convergence rate of Cook’s membrane with an isotropic mate-
rial

the excellent convergence characteristics of the proposed ele-
ment formulations.

5.1.7 Cook’s membrane test with an isotropic material

In this example, the famous Cook’s membrane problem is
considered. The tapered panel is clamped on its left edge and
subjected to a unit in-plane shear load on its right edge. The
thickness of the panel is 1 and the detailed geometry param-
eters are shown in Fig. 22. The elastic modulus is taken as
E �1 and Poisson ration ν �0.33. A finite element con-
verged solution of the vertical tip displacement is taken as
23.91 in [36]. However, the solution derived from a more
refined model with a total number of 154,141 HEXA ele-
ments is 24.48. A detailed convergence study for the vertical

displacement of the free tip versus number of elements per
side is plotted in Fig. 23. As can be seen, the responses
from US-MEM8S and S-MEM8S show excellent conver-
gence behavior even with a coarse mesh.

5.1.8 Cook’s test with an anisotropic material

The model in this example is like the model in the previous
example, except that the material of the plate is changed into
an anisotropic material. Furthermore, the meshes of this test
are divided by assigning the size of the element length, which
ismore frequently used in engineering. Five different element
sizes with L=12, L=8, L=4, L=2, L=1 are investigated, as
partly illustrated in Fig. 24. The anisotropicmaterial behavior
of this plate is defined as [31]:

D �

⎡

⎢
⎢⎢⎢⎢⎢
⎣

10.67 6.91 6.89 1.25 −0.09 0.86
6.91 19.03 6.90 1.27 −0.12 0.83
6.89 6.90 14.28 1.23 −0.15 0.82
1.25 1.27 1.23 5.27 0.21 −0.11

−0.09 −0.12 −0.15 0.21 4.63 0.52
0.86 0.83 0.82 −0.11 0.52 5.72

⎤

⎥
⎥⎥⎥⎥⎥
⎦

× 106

In this example, the shear load on the right edge of the
tapered panel equals to 1.0×106. The convergence rate of the
present element is reported in Fig. 25. Nearly the same con-
vergence rates are observed for US-MEM8S and S-MEM8S.
Comparing with the referenced elements, the present ele-
ments show excellent performance for the simulation of
anisotropic material as well as for the distorted meshes.

5.1.9 Hemispheric shell with 18° hole

In this example, the pinched hemispherical shell problem
with an 18° hole under the action of inward and outward
orthogonal concentrated loads F �1.0 is tested to assess the
element performance for inextensional bending and complex
membrane modes. The radius of the shell is R �10.0 and the
thickness is t �0.04. Due to the symmetry property, only
one quadrant is analyzed as shown in Fig. 26. The mate-
rial behavior is defined as Young’s modulus E �6.825×107

and Poisson ratio ν �0.3. The results reported in Table 5 for
the radial displacement of Node A under the load are nor-
malized with respect to the reference value 0.0941 derived
from a model with 810,000 HEXA elements. It can be con-
cluded that the new elements, especially for the asymmetric
S-MEM8S, demonstrate excellent convergence characteris-
tic and produce much better results than referenced element
formulations.
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(a) (b)

Fig. 24 Cook’s membrane test with an anisotropic material. a Element length L = 12, b element length L = 4
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Fig. 25 Convergence rate of Cook’s membrane with an anisotropic
material

5.1.10 Pinced cylinder test

In this example, a thin pinched cylinder as illustrated in
Fig. 27 is performed to investigate the element behavior
for single curved structures. The inner radius of the cylin-
der is R=298.5, thickness d=3.0, and length L �600.
The elastic modulus is taken as E �3.0×106 and Poisson
ration ν �0.3. Two end edges of the cylinder are con-
strained in such a way that they can move only in the axial
direction. One-eighth of the shell is modeled by an N×N
mesh defined in cylindrical coordinates. The cylinder model
is subjected to two diametrically opposite point loads of
magnitude F �1.0. The reference solution for the verti-

Fig. 26 Hemispherical shell with 18° hole showing 8×8 mesh

cal displacement is taken as 1.82488×10−5 in [32]. In this
paper, we use the value of 1.85427×10−5 that was obtained
from a fine finite element model with 960,000 HEXA ele-
ments for normalization of our results. As demonstrated
in Table 6, the proposed elements perform well for this
test.

5.2 Frequency analysis

In this section, we investigate the performance of S-MEM8S
for frequency analysis. All of the mass matrixes are selected
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Table 5 Normalized results of hemispherical shell with 18° hole

Element Number of elements per side

4 8 16 32

US-MEM8S 1.1886 0.8906 0.9908 0.9935

S-MEM8S 0.1227 0.8571 0.9899 0.9936

HEXA 0.0408 0.7415 0.9839 0.9933

C3D8 0.0006 0.0026 0.0104 0.0388

C3D8I 0.0105 0.1624 0.7456 0.9691

C3D8R 0.0002 0.0005 0.0033 0.0416

Fig. 27 Pinched cylinder with end diaphragms

Table 6 Normalized results of pinched cylinder

Element Number of elements per side

4 8 16 32

US-MEM8S 0.3116 0.7388 0.9220 0.9747

S-MEM8S 0.2532 0.7145 0.9197 0.9749

HEXA 0.1053 0.4903 0.8987 0.9739

C3D8 0.0350 0.0687 0.1497 0.3348

C3D8I 0.0800 0.4005 0.8251 0.9599

as lumped mass matrixes, which is the default setting in
NASTRAN and ABAQUS. The material density of all tested
problems is set to 1 for simplicity.

5.2.1 Straight cantilever beamwith vertical distortion

In this example, a straight cantilever beam is considered
to test the element performance in frequency analysis. The
length of the beam is L �20, width d �2, height w �2. The

e

Fig. 28 Straight cantilever beam

elastic modulus is taken as E �2.1×105 and Poisson ration
ν =0.3. In order to evaluate the sensitivity of the proposed ele-
ment formulation tomesh distortion, the finite elementmodel
as illustrated in Fig. 28 is investigated, in which parameter e
denotes the magnitude of element distortion.

Due to the structure symmetry, the first and second order
frequencies are same and equal to 0.3706. Figure 29 presents
the normalized first and second order frequencies of S-
MEM8S and referenced elements. It can be observed that
the error of the first and second order frequencies increased
significantly as e increased for the referenced elements. As a
comparison, S-MEM8S shows better numerical stability and
accuracy for distorted meshes.

5.2.2 Simply supported beam

In this example, a simply supported beam as illustrated in
Fig. 30 is considered. The length of the bean is L=12, width
d=1, height w=0.4. The material behavior is defined as
Young’s modulus E �1.74×107 and Poisson ratio ν �0.3.
The simply supported beam ismeshed by 16 eight-node solid
elements (two elements in the thickness direction), in which
parameter e denotes the magnitude of element distortions.

For this structure, the first and second order frequencies
equal to 5.2456 and 20.8795, respectively. The normalized
frequencies of S-MEM8S and other referenced elements are
illustrated in Fig. 31. The numerical results again show that
S-MEM8S is low susceptible to mesh distortion.

5.2.3 Curved beam test

In this example, the element performance with a curved can-
tilever beam problem is investigated. The model geometry
of this example is same as the model shown in Sect. 5.1.4.
Five meshes with the number of elements varies from 2 up
to 10 are considered. The reference solutions of first and sec-
ond order frequencies obtained from a fine mesh with 16,950
HEXAelements are taken as 1.2389 and2.4443, respectively.
Figure 32 compares the normalized frequencies between S-
MEM8S and referenced elements. For both tests, S-MEM8S
obtains better numerical accuracy and convergence speed.
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Fig. 29 Normalized first two order frequencies of straight cantilever beam. a First order, b second order

e

Fig. 30 Simply supported beam

5.2.4 Thick-sphere shell problem

In this example, the thick-sphere shell problem proposed by
Kasper and Taylor [33] is performed to investigate the ele-
ment behavior of S-MEM8S for double curved structures.
The inner radius of sphere shell is Ri �7.5, outer radius is

Re=10. The material behavior is defined as Young’s mod-
ulus E �250 and Poisson ratio ν �0.3. The geometry is
discretized by m ×m ×n elements as depicted in Fig. 33, in
whichm is the element number in radial direction and n is the
element number in thickness direction. The reference solu-
tion of the first order frequency obtained from 71,000 HEXA
elements is taken as 0.2250. Figure 34 compares the numer-
ical results of different element formulations for different
meshes. All the tested elements obtain excellent performance
for this problem. For S-MEM8S, a maximum error of 0.4%
is derived even using a coarse 4×4×1 mesh.
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Fig. 31 Normalized first two order frequencies of simply supported beam. a First order frequency, b second order frequency
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Fig. 32 Normalized first two order frequencies of curved beam. a First order frequency, b second order frequency

Fig. 33 Thick sphere shell
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Fig. 34 Normalized first order frequency of sphere shell
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Fig. 35 Normalized first order frequency of Pinced cylinder

5.2.5 Pinced cylinder test

In this example, the frequency response of the present sym-
metric solid element in thin curved geometry is considered.
The same structure given in Sect. 5.1.9 is investigated in
this test. The reference solutions of first order frequencies
obtained from a fine mesh with 60,000 HEXA elements is
0.1178. Figure 35 illustrates the normalized first order fre-
quency of the cylinder for different element formulations.
The numerical results show that S-MEM8S obtains better
convergence rate than the referenced solid elements used in
NASTRAN and ABAQUS.
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6 Conclusion

In this paper, a generalized finite element method named as
generalized modal element method (GMEM) is proposed to
develop newfinite element formulations using different finite
element design methods. Furthermore, an asymmetric hex-
ahedral element US-MEM8S and a symmetric hexahedral
element S-MEM8S based on the GMEM are introduced in
this paper. The highlights of this paper include the follows:

1. Three different element modal construction meth-
ods, including analytic method, assumed displacement
method and traditional finite element technique are pro-
posed in this paper. A more accurate finite element
formulation can be obtained by GMEM since it is a gen-
eralized finite element method and can make full use of
the merits of different finite element techniques, i.e. any
of the existing finite element technique can be adopted
in GEME to design new element formulations.

2. The concept of modal local coordinates systems is pro-
posed, which effectively ensures the frame invariance of
element stiffness and has been proved to be a useful tool
to link the analytical method and the finite element tech-
nique. As the analytical method can be regarded as the
most accurate method, the combination of modal local
coordinates systems and analytical method can signifi-
cantly improve the element behavior. Theoretically, this
method can also be extended to other engineering fields
such as heat transfer, fluid flow, electromagnetic radiation
and so on.

3. Two eight-node hexahedral solid elements are proposed
to demonstrate the use of analytical method and the
assumed displacement method in developing new finite
element formulations. The basic deformation modes of
these two elements, such as tension, shear, torsional
and bending deformation modes, are derived from basic
governing equations of solid mechanics. Therefore, the
proposed element formulations are insensitive to element
distortions, and in addition the element can also avoid
common locking phenomena, and obtain excellent per-
formance for both thick and thin structures.

Due to the compatibility and diversity of modal construc-
tion methods, the elements using GMEM are able to achieve
higher accuracy and has wider application fields than the
existing finite element methods. The GMEM seems to open
up exciting possibilities in designing new finite elements in
various application fields. But a deeper theoretical and math-
ematical explanations of GMEM still need further studies.
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