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Abstract
Shear transformation zone dynamics models of metallic glass deformation access experimentally-relevant time scales by
using the kinetic Monte Carlo method to simulate small, fast, often discrete events, while the finite element method calculates
macroscopic shape change and continuum-level interactions within samples. The most time-consuming portion of these
models is the finite element method calculation on each step. However, in cases where the finite element mesh geometry and
element elastic properties do not change from step to step, the finite element stiffness matrix (and its Cholesky factors) from
previous steps can be reused. This strategy improves the asymptotic complexity of these models and in practice accelerates
their execution by nearly 200×. This enables simulation of larger samples inmore reasonable time. A set of three-dimensional
shear transformation zone dynamics simulations, with larger length scales than any currently in the literature, illustrates the
utility of this approach.
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1 Introduction

Specialized techniques are available for modeling physical
phenomena at the extremes of the length and time scales.
At the small/fast end of the spectrum, phenomena involving
a few atoms and very fast time scales can often be repro-
duced using first principles techniques [1,2]. Ensembles of
many more atoms can routinely be simulated on time scales
below a millisecond using molecular dynamics [3–5]. At
the opposite end of the spectrum, continuum models treat
material as a continuous homogenized medium rather than
as a granular assembly of atoms [6]; this assumption cre-
ates a lower limit on continuum theories’ applicable length
and time scales, though that limit shifts relative to acceptable
error levels.Mesoscale,multiscale, and coupledmultiphysics
models have proliferated for studying phenomena between
or spanning these length and timescale extremes. Mesoscale
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examples include dislocation dynamics [7–10], phase field
models [11–13], and some kinetic Monte Carlo models [14–
17].

This paper concerns a particular class of mesoscale model
that uses kinetic Monte Carlo (kMC) to govern discrete,
small-scale, relatively fast deformation events, and the Finite
ElementMethod (FEM) to calculate the interactions between
the discrete events and their continuum-level cumulative
effect (i.e. a sample’s macroscopic shape change). These
models are cyclical: the FEM computes the sample’s stress
field and passes it to kMC; kMC uses that stress field to select
a localized “transformation” (e.g. a shear event or phase
transformation) which is passed back to the FEM; the FEM
then applies that transformation as an eigenstrain [18] and
calculates an updated stress field. Because they appeal to the
raw deformationmechanism kinetics, these methods are able
to capturemuchmore granular detail thanwould a continuum
constitutive law, while avoiding the many atomic vibrations
that molecular dynamics so exhaustively simulates. Con-
sequently, these methods have in common an exceptional
compromise between simulation fidelity and size (spatially
and especially temporally). Prototypical of this class of
models is Homer’s Shear transformation zone dynamics
(STZD) model [19] for deformation of bulk metallic glasses
(which will be outlined in the next subsection). Other closely
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related models (cyclically coupling kinetics and the FEM)
include a quantized crystal plasticity model for nanocrys-
talline materials [20–26] and a kMC model for martensitic
phase transformations in shapememory alloys [27]. TheDis-
crete Shear-Transformation-Zone Plasticity model [28,29]
also models metallic glass deformation by cycling between
kinetics and elasticity, but uses a hybrid of analytical and
FEM calculations in its elastic portion.

The computational scaling of coupled kMC–FEMmodels
is generally dominated by the continuum FEM calculation.
The memory consumption and computational time required
to evaluate an up-to-date stress field in each step has limited
most instantiations of this class ofmodels to two-dimensional
approximations, and the few three-dimensional examples in
literature (for example, [30,31]) invariably model very small
samples (at most 60nm in any direction).

To address this shortcoming of the above-described class
of models, this manuscript borrows the well-established con-
cept of stiffness matrix factor caching from closely related
modeling techniques. Two particularly relevant examples of
reuse of the stiffness matrix decomposition in mesoscale
modeling are in discrete dislocation dynamics [32] and cou-
pled atomistic/continuum multiscale models [33]. Despite
the historical success of stiffness matrix factor caching in
other mesoscale models, this strategy has never before been
applied to STZD or it sibling models cited above.

This paper’s Methods section describes stiffness matrix
factor caching and shows how it accelerates these models.
While these methods apply to the entire class of models
described above, the data presented in Sect. 3 focus on STZD
as a case study. In anticipation of this, the following subsec-
tion provides a brief review of the STZD model; the reader
is referred to [34] for a more in-depth presentation. This
paper concludes with a presentation of the largest-ever three-
dimensional STZD simulation, which was executed using
stiffness matrix factor caching, and which showed an accel-
eration of nearly 200 × over the original approach.

1.1 Introduction to the STZDmodel

The STZDmodel is based onArgon’s theory ofmetallic glass
deformation [35], which postulates shear transformations,
groups of atoms collectively shearing, as the fundamental
plastic event. This manuscript uses the kinetic model in [30]
to calculate the activation rates for various possible shear
transformation events; thismodel is in turn a simplification of
Argon’s treatment of shear transformations using Eshelby’s
solutions for ellipsoidal inclusions with stress-free strain
[36]. STZD models a sample with a finite element mesh,
where the mesh elements coarse-grain the sample’s atoms.
Clusters of elements (often sharing a common node) consti-
tute potential shear transformation zones (STZ). The physical
size of an STZ therefore bounds the maximum element size

of the STZD method’s FEM mesh; so the physical sample
size that can be simulated by STZD is closely connected to
the FEMmesh size that can be handled. That is, simply scal-
ing the FEM mesh size is not an option for reaching longer
length scales with STZD.

Each step of the STZD model begins with the sample’s
stress state, which is calculated by FEM, taking into account
the sample’s loading and preexisting eigenstrain. The activa-
tion rate for each STZ is then estimated using transition state
theory [37], which predicts an Arrhenius-like relation [38]:

ṡ = ν0 exp

(
− �F

kBT

) ∫
g∈G

exp

(
τ(σ, g)γ0�0

2kBT

)
dg (1)

where ν0 is the transition attempt frequency (on the order
of the material’s Debye frequency), �F is a fixed activation
energy barrier, G is the set of combinations of shear plane
and direction, τ is the shear stress resolved on g ∈ G, γ0 is
the characteristic STZ shear strain, and �0 is STZ volume.
The kMC algorithm then stochastically selects a single STZ
shear event as the next transition and computes a time step
(a “residence time” before the transition). The probability of
choosing any STZ shear event is weighted proportionally to
its particular rate. To close the cycle, the FEM applies the
appropriate eigenstrain (also called “thermal strain” or “ini-
tial strain” in FEM literature) to the FEM mesh elements
comprising the selected STZ, increments the sample’s load-
ing conditions, and computes the updated sample stress field.
The STZD cycle then repeats. Gradually the individual STZ
activation events cause eigenstrain to accumulate in the FE
mesh, resulting in macroscopic plastic deformation of the
sample.

The STZD model was originally implemented in two
dimensions [19] and then extended to three dimensions [39].
It has been successfully used to simulate shear samples [19],
tensile samples [39,40], and single and cyclic nanoindenta-
tion [39,41]. It has also been extended to include free volume
as an evolving state variable [42,43] and to study metallic
glassmatrix compositematerials [40]. The key papers report-
ing results from STZD simulations are shown in Table 1,
along with the dimensionality and the length scales of those
simulations. These papers have produced valuable insights
into shear band nucleation and structure [31] and metal-
lic glass deformation modes [30], among other phenomena,
while relying mostly on two-dimensional approximations.
The few three-dimensional samples in the literature never
exceeded 60 nm in any direction and typically took weeks on
multicore architectures to compute. Comparison to selected
micromechanical experiments (cited inTable 2; see also [44])
shows a gap between experimentally-relevant length scales
and simulation capabilitieswhich prevents side-by-side com-
parison for calibration, validation, and forward-modeling
purposes. This gap is of particular interest in view of the
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Table 1 Sizes of STZD
simulations in literature, with
length scales and brief
descriptions of the simulated
loading

References Description Dimensions (nm) Volume (nm3)

Two-dimensional STZ dynamics simulations

[19] Shear 27.6 × 45.8

[39] Shear 34.8 × 57.7

[41] Nanoindentation 100 × 35

[42] Shear 60 × 120

[43] Tensile (Not reported)

[40] Tensile 100 × 300

[50] Tensile 50 × 250

Three-dimensional STZ dynamics simulations

[30] Tensile creep 10 × 10 × 20 1.57 × 103

Nanoindentation 30 × 30 × 11 7.78 × 103

[31] Tensile 20 × 20 × 60 1.88 × 104

∗ Uniaxial 60 × 60 × 170 3.46 × 105

The largest simulations reported in this paper are denoted by an asterisk

Table 2 Selected
micromechanical experiments
on metallic glass from literature,
with length scales and brief
descriptions of loading

References Metallic glass micromechanical experiments

Description Dimensions (nm) Volume (nm3)

[46] Pillar compression 70 × 70 × 210 8.08 × 105

[45] Pillar compression 90 × 90 × 360 2.29 × 106

[47] Pillar bending 93 × 93 × 744 5.05 × 106

[48] Tensile 100 × 100 × 650 5.11 × 106

[49] Tensile 70 × 70 × 350 1.35 × 106

[51] Nanoindentation Depth 50–100

experimentally-observed transition in metallic glass plas-
ticity between 80 and 500 nm-diameter uniaxially loaded
samples [44–49]; the technique in this paper brings STZD
much closer to being able to study this transition in silico.

2 Method

The method to follow uses the FEM in its constituent pieces
rather than as a “black box.” The reader is referred to the
first two chapters of [52] for an in-depth introduction to the
FEM, but a high-level overview is provided here for con-
text. The FEM takes a discretized mesh of a sample and
constructs interpolation functions (“shape functions”) on the
mesh elements. Then, under the postulate that (in the case
of elasticity) the displacement field satisfying stress equilib-
rium can be approximated by a weighted sum of the shape
functions, the FEM constructs a linear system:

Kd = F (2)

where the unknown vector d consists of the shape function
weights best satisfying the underlying differential equation.
The symmetric positive definitematrixK is termed the “stiff-
ness matrix,” and is constructed from the elastic constants of
the sample and the mesh shape functions. The vector F is

termed the “force vector,” and contains (in addition to the
stiffness matrix’s ingredients) information on both Dirichlet
and Neumann boundary values, body forces, eigenstrains,
and eigenstresses. Equation (2) is often solved by Cholesky
decomposition [53–55] of the stiffness matrix K = LLT ,
followed by solution of LLTd = F by forward- and back-
substitution.

The STZD algorithm can be framed as a cycle with six
steps (as shown in Fig. 1a). After a brief setup phase, the
stiffness matrix K is constructed using the sample mesh
and elastic stiffness tensors, at a computational cost of O(n)
where n is the number of mesh nodes. Second, a sparse
Cholesky algorithm factors K = LLT ; this step is the most
computationally expensive, with theoretical O(n3) complex-
ity, empirically closer to O(n2) when sparse linear algebra
is leveraged. Third, the force vector F is constructed from
the sample loading, body force, and preexisting eigenstrain
fields, in O(n) time. Fourth, the systemKd = F is solved by
forward- and back-substituion, with theoretical O(n2) com-
plexity, empirically closer to O(n) with sparse computations.
Fifth, in O(n) time the displacement field is postprocessed
into stress and strain fields for the sample. Sixth and finally,
kMC selects the next transition, also in O(n) time. The
asymptotic complexities of these steps are listed in Table 3.
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(a)

Kinetics

Build K Factor K

Build F

Solve Kd = FPostprocess

Setup

(b)
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Fig. 1 a Kinetic-FEM cycle; b kinetic-FEM cycle with shortcut shown

Table 3 Complexity of pieces of the STZD method, assuming dense
numerical linear algebra, where n is the number of nodes in the mesh

Step Dense theoretical Sparse empirical

Setup O(n) O(n)

Build K O(n2) O(n)

Factor K → LLT O(n3) O(n2)

Build F O(n) O(n)

Solve LLT d = F O(n2) O(n)

Postprocess O(n) O(n)

Kinetics O(n) n/a

The transition selected by kMC takes the form of an eigen-
strain which is applied to a cluster of elements in the FEM
mesh. Under the original algorithm the cycle then repeats
itself, starting with construction of a new stiffness matrix.
However, note that the new stiffness matrix will be identi-
cal to the previous one; modifying the boundary values and
adding eigenstrain to the model changes neither the sample’s
elastic constants nor the shape functions. Therefore, con-
struction and factorizaton ofK is completely redundant after
the first step.

This suggests a simple innovation: to calculate the FEM
stiffness matrix and its factors once as a setup step, and
then to cache those stiffness matrix factors in memory. This
eliminates the necessity of calculating and factoring K in
each simulation cycle; each cycle simply calculates the new
force vector, solves the cached stiffnessmatrix factors against
the new force vector, and then postprocesses the newly cal-
culated displacement field to obtain strain and stress data
(see Fig. 1b). This strategy is termed “stiffness matrix factor
caching.” It produces precisely the same results as the origi-
nal approach; the physics are not altered, nor is the numerical

approximation. This is simply an adjustment to the code’s
logical flow to eliminate redundant calculations.

The potential value of this optimization is apparent from
the complexities of each part of the STZD algorithm in
Table 3; by eliminating the need to factor a stiffness matrix
with each step, the overall asymptotic complexity of each step
is reduced from O(n3) to O(n2), assuming dense numerical
linear algebra, and by a similar margin using sparse linear
algebra. Of course this approach, while novel in the context
of STZD modeling (and of the other closely related models
mentioned in the introduction), is a straightforward appli-
cation of well-established ideas within mesoscale modeling
[32,33]; also, commercial FEM packages routinely reuse
stiffness matrix factors in time-series calculations. More
broadly, reusing matrix factors or inverses is a standard prac-
tice in algorithms for fields as diverse as optimization and
image processing.

Since this approach consists only of modifying the logical
flow of the STZD algorithm in a way that neither alters the
physics nor the order of calculations, the results between the
old and improved STZD algorithms are identical (down to
and including floating-point error). The author has verified
that this is the case for the STZD codes about to be described.

2.1 Implementation details

For this study two STZD codes were constructed, one of
which follows the conventional algorithm in Fig. 1a and
one of which leverages stiffness matrix factor caching as in
Fig. 1b, but both ofwhich are otherwise as similar as possible.
Both codes are composed in C++11, and in lieu of a com-
mercial FEM solver both codes use a simple in-house FEM
library which takes advantage of the Eigen3 matrix library
[56] and the Cholmod sparse linear system solver [57]. Both
codes were compiled using the Intel compiler, linked against
a single-threaded version of Intel’s MKL library, and were
run in serial on an Intel Xeon processor clocked at 2.6 GHz in
a workstation with 128Gb of memory. Both codes are instru-
mented to report the timing breakdown between parts of the
STZDcycle to enablemore granular comparison between the
algorithms. The simulation input is in the form of an .ini file,
and the output uses the HDF5 file format [58]. The code that
does not use stiffness matrix caching performs similarly to
commercial linear FEM implementations in serial execution
mode.

3 Results

To examine the scaling of the STZD algorithm with respect
to mesh size, wall-clock times were averaged over 10 STZD
steps for meshes with between 1606 and 938,407 nodes; the
timings are plotted on a log-log axis in Fig. 2. It is evident
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Fig. 2 Time required to execute STZD code described in the text, as a
function of FEM mesh size
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Fig. 3 Fraction of time spent on each part of a step of the STZD algo-
rithm described in the text, as a function of FEM mesh size

that the STZD code using stiffness matrix factor caching is
empirically faster than the original approach, with a speedup
of 196 x for the largest meshes studied for this paper. The
observed deviation from dense matrix asymptotic behavior
is due to extensive use of sparse numerical linear algebra.

The effectiveness of caching stiffnessmatrix factors is fur-
ther illustrated by fractionally breaking the execution time of
an original STZD step into pieces in Fig. 3. The optimiza-
tion described in this paper eliminates the striped regions of
that plot (corresponding to building and factoring the FEM
stiffness matrix), cutting 98–99.5% of the computation per
STZD step.

To concretely illustrate the utility of this technique the next
subsection contains a series of simulated uniaxial tensile and
compression tests on the largest-ever STZD samples.
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Fig. 4 Legend to the STZD simulation Figs. 6, 7, 8 and 9. Part a shows
the dimensions of the uniaxial samples in terms of the parameter �, the
diameter of the gauge portion of the sample. Part b maps the norm of
STZ strain to color and dot size. The dot sizes shown here are scaled
much larger than those in the figures to follow, but are proportionally
correct relative to each other
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(a) (b) (c)

Fig. 5 Relative sizes of three-dimensional STZD simulations in lit-
erature and this paper. In the top-left corner are the three largest
three-dimensional STZD simulations from literature, with a and b from
[30], and c from [31]. Along the bottom are the various samples reported
in this paper with their respective gauge section diameters (�)
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Fig. 6 STZD compression test of � = 10 nm sample. Numbers along the top are KMC steps. This simulation took less than 5 min to run on the
machine described in the Sect. 2.1 of the text
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Fig. 7 STZD compression test of � = 30 nm sample. Numbers along the top are KMC steps. Execution time: 13 h

123



Computational Mechanics (2019) 63:511–520 517

0 4786 9572 14358 19144 23930 28716 33502 38288 43074 47860

si
de

fr
on

t
to
p

ax
on

om
et
ri
c

Fig. 8 STZD tension test of � = 40 nm sample. Numbers along the top are KMC steps. Execution time: 3 days. In the “front” view of steps 23,930
and 28,716, subtle wavelike variations in the density of shear transformations are evident near the plane of the nascent shear band

3.1 Uniaxial tensile and compression tests

This section describes uniaxial tests on nanoscale cylindrical
samples with gauge diameters from 10 to 50 nm and gauge
lengths from 30 to 150 nm; the geometry of these samples is
drawn in Fig. 4a. The relative sizes of this paper’s samples in
comparison to three-dimensional STZD samples in literature
are shown in Fig. 5. Each simulation was run for a number
of steps proportional to the volume of the sample, to ensure
roughly equal amounts of plastic deformation between the
simulations. These simulationswere run under the conditions
described in Sect. 2.1 above; in particular, they were run
in serial fashion. A selection of the simulations are plotted
in Figs. 6, 7, 8 and 9, and the remainder are included in
supplementary material to this article; in these plots, STZs
are plotted as small dots, with the size and color of the dot
corresponding to the norm of the cumulative STZ strain. The
colorbar for STZs is shown in Fig. 4b. The STZD parameters
for all the simulations are given in Table 4.

The most notable feature of the � = 10 nm compression
sample in Fig. 6 is its runtime of less than 5min. This is a dra-
matic improvement on the original approach, which would
have taken at least a day to run a comparable simulation on
multiple cores. This suggests that stiffness matrix caching

will enable simulation of large ensembles of small samples
for statistical analysis; this is of particular value because these
simulations are stochastic in nature, so analysis of any one
simulation might not be representative of the ensemble.

Of course, stiffness matrix factor caching could also
enable use of a finer FEMmesh on these small samples. This
has been shown to not be a particular issue in STZ Dynamics
(assuming that the mesh size is an appropriate fraction of the
material’s characteristic STZ volume, as is the case in these
simulations), but may be useful as kMC–FEM models are
extended to new materials systems in the future.

Moving up to the � = 30 nm tensile sample in Fig. 7,
which is already larger than any previously published STZD
sample, nucleation of orthogonal competing shear bands is
observed. The interaction between the shear bands appar-
ently obstructs both of them from crossing the full diameter
of the gauge section. This behavior has implications for
understanding shear band nucleation and growth, and can
only be observed in samples large enough to sustain multiple
instances of shear localization. This issue will be thoroughly
explored in future articles.

Looking closely at the� = 40 nm tensile sample in Fig. 8,
one can observe periodic “waves” in the STZ strain field per-
pendicular to and along the length of the main shear band.
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Fig. 9 STZD compression test of � = 50 nm sample. Numbers along the top are KMC steps. Execution time: 19 days

Interestingly, these appear very early in the shear band nucle-
ation process (they are visible as early as step 23930 of the
simulation). The wavelength of these oscillations (between
10 and 15 nm) is such that they would be impossible to
observe in the smaller STZD samples published to date.

The � = 50 nm compression sample in Fig. 9 shows
nucleation of four shear bands along orthogonal planes, but
one of the shear bands ultimately dominates the others and
propagates across the diameter of the sample (unlike Fig. 7).
It is, however, apparent from the axonometric view that the
dominant shear band is impeded by its orthogonal com-
petitors. Again, a smaller STZD sample would be unable
to sustain these multiple shear localization instances. This
sample and the � = 50 nm tension sample in the supple-
mentary material are the largest STZD simulations run to
date, exceeding the volume of the previous maximum by a
factor of eighteen; these simulations’ dimensions approach
the scale of physical nanomechanical experiments currently
in the literature (as in Table 2).

It is worth noting here that stiffness matrix factor caching
does not negate the necessity of remeshing when plastic
deformation to the sample invalidates the linear expansion
underpinning the FEM. The FEM stiffness matrix will need
to be reconstructed and factored after each remeshing. How-
ever, in the context of STZD, remeshing events should be

Table 4 Parameters to all of the STZD simulations appearing in this
paper

Parameter Value Units

ν0 6.814 × 1012 s−1

�F 2.5 × 10−19 J

�0 0.1 m/m

T 300 K

G 37 GPa

ν 0.352

ε̇zz ±1.0 m/(ms)

δtmax 0.001 s

spaced many STZD steps apart, so the speed gains described
above remain representative of expected performance even
with remeshing.

As mentioned in the implementation details above, the
results here are for a serial implementation of STZ Dynam-
ics. Stiffness matrix factor caching is moderately amenable
to parallel implementation; there are libraries available with
parallel sparse LDLT decomposition and solution from fac-
tors (e.g. [59]) but increasing inter-process communication
would be expected to cause diminishing returns as additional
processes are added.
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4 Conclusions

Simulation methods that iteratively link kinetics with local-
ized updates in the FEM, typified by the STZ Dynamics
method, have suffered from long run times due to superlin-
ear scaling of the FEM with mesh size. However, if these
methods do not require modifications to the mesh or the
elastic properties of the sample from step to step, as is
the case in STZD, then the FEM stiffness matrix is also
unchanged from step to step. This enables an acceleration
strategy: to calculate the FEM stiffness matrix, factor it, and
cache the factorization in an initialization step, and then to
use and reuse the factorization in each step. This is termed
“stiffness matrix factor caching.” While reuse of stiffness
matrix factors is a common practice in mesoscale modeling,
it has never before been applied to STZD and closely-related
methods. Stiffness matrix caching constitutes an asymptotic
improvement and empirically has produced a speedup of
nearly 200x over the original method. This speedup is use-
ful in two respects: it enables simulation of large numbers
of small samples to form an ensemble, and it enables simu-
lation of samples on experimentally-relevant length scales
in three dimensions. These simulations of larger samples
exhibit multiple (often competing) shear bands, sometimes
in apparently periodic arrangements. Future work looks to
directly compare real nanomechanical experiments to these
large STZD simulations for validation purposes, or to illumi-
nate avenues for improvement of the STZDmodel’s physics.
One such improvement might be inclusion of dilatative strain
in shear transformations (as in [42]); so long as the elastic
stiffness remains static fromstep to step, the speedup reported
here holds. The results in this paper are readily extensible to
STZD-like methods in both two and three dimensions; it is
hoped that stiffness matrix caching will make three dimen-
sional simulation the norm rather than the exception for
STZD and its sibling methods, and that studies comparing
these simulations to physical nanomechanical experiments
will be forthcoming.
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