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Abstract
A modified rigid-object formulation is developed, and employed as part of the fluid–object interaction modeling framework
from Akkerman et al. (J Appl Mech 79(1):010905, 2012. https://doi.org/10.1115/1.4005072) to simulate free vibration and
flutter of long-span bridges subjected to strong winds. To validate the numerical methodology, companion wind tunnel
experiments have been conducted. The results show that the computational framework captures very precisely the aeroelastic
behavior in terms of aerodynamic stiffness, damping andflutter characteristics. Considering its relative simplicity and accuracy,
we conclude from our study that the proposed free-vibration simulation technique is a valuable tool in engineering design of
long-span bridges.

Keywords Flutter · Numerical methods · Solid–fluid interaction · Rigid bodies · Wind

1 Introduction

The Finite Element Method (FEM) has in recent decades
seen significant development in accurate modeling in Com-
putational Fluid Dynamics (CFD) and Fluid–Structure Inter-
action (FSI), which are, with the increasing computer power,
gaining a growing foothold in engineering design [2]. An FSI
problem becomes a Fluid–Object Interaction (FOI) problem
when deformations of the structure can be neglected. The
solid part of the problem is then approximated by a rigid
object, and the equation system for the structural part reduces
to the balance of global linear and angular momenta with
respect to the center of mass, yielding a system of only three
equations in 2D and six equations in 3D. Earlier coupling
between CFD and rigid objects was reported in [3] for a
cylinder drifting in shear flow and in [4] for vortex-induced
vibrations of a cylinder. Other earlier FOI work was reported
in conjunction with the Mixed Interface-Tracking/Interface-
Capturing Technique (MITICT) in e.g., [5,6]. Recently FOI
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methods have been employed in several marine applications
in the study of free-surface flows [1,7–9]. In the context of
bridge engineering, FOI has been used to study the effect
of railings and spoilers on the Hardanger bridge [2] and to
simulate the flutter phenomenon for the Great Belt East sus-
pension bridge [10,11]. However, any direct time-domain
validation of free-vibration wind-tunnel experiments are, to
the authors’ knowledge, not reported in open literature.

In the present work, the aerodynamics part of the FOI
problem is solved using the Arbitrary Lagrangian–Eulerian
Variational Multiscale (ALE-VMS) formulation of the
Navier–Stokes equations for incompressible flows [2,12–
16] augmented with the weakly-enforced boundary condi-
tions [17–19]. Thismethod,which is amoving-meshmethod,
has proven very effective in a wide range of turbulent
flow problems, see e.g., [20–23], including bridge aerody-
namics [24–26]. In the category of moving-mesh methods,
the Space-Time VMS (ST-VMS) method [27,28] has also
proven effective in a wide range of problems, including flap-
ping wings [29,30], heart valve flow [31,32], disk brake
thermo-fluids [33], turbomachinery [34–36], and tire aero-
dynamics with road contact and tire deformation [37].

In engineering design of long-span bridges, aerodynamic
performance and stability is one of the major concerns. The
aerodynamic stability, which is governed by the self-excited
forces, is traditionally studied on small-scale models in the
wind tunnel, however, numerous studies [2,10,11,24,38–43]
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prove CFD and FSI to be a valuable supplement. Most
of these studies used the forced-vibration method with a
prescribed bridge-deckmotion, due to its repeatability, effec-
tiveness and simple identification procedures. For the same
reasons, this is also the preferred method in wind-tunnel
experiments [44,45]. However, the free-vibration method,
in which the bridge deck is suspended by springs and
allowed to vibrate freely, has the advantage of exhibiting the
response to wind action directly, rather than filtered through
a semi-empirical load theory applied in the forced-vibration
method [46]. Therefore, this method is commonly used to
validate the forced-vibration results. Another benefit of using
the free-vibration technique is that the general aerodynamic
performance can be determined directly, rather than from a
model that relies on the parameters obtained with the forced-
vibration approach.

In this work we use a coupled analysis of the ALE-VMS
formulationwithweakly-enforcedboundary conditions and a
modified rigid-object formulation to simulate free-vibration
wind tunnel tests of bridge sections. We take the rigid-body
dynamics formulation from [1] and augment it with external
stiffness and damping to represent the effect of the sus-
pension. Further, we propose a simplified time-integration
algorithm that assumes a linear relationship between the
time derivative of the Euler angles and rotation vector in
the linearization of the rigid-object angular-momentumequa-
tions. The formulation is tested on a 1:50 scale model of the
Hardanger bridge section at various wind speeds. Several
studies have been performed on the same section experimen-
tally [45,47] and numerically by the same authors using the
forced-vibration method [25,26].

To validate the numerical simulations we have also con-
ducted free-vibration wind tunnel experiments of the same
bridge section. The focus in this work has been to evaluate
how the formulation is capable of capturing the aerodynamic
contribution to the dynamic properties of the coupled system.
The aerodynamic damping, which is the driving mechanism
of flutter instability, is of particular interest.We consider four
wind speeds, including still-wind and the critical wind speed
at which flutter occurs.

The paper is organized as follows. The governing equa-
tions are presented in the continuous form in Sect. 2 and in
the discrete form in Sect. 3. Section 4 introduces the aero-
dynamic forces with emphasis on flutter analysis. The setup
for wind-tunnel experiments and numerical simulations is
presented in Sect. 5. The numerical results are presented in
Sect. 6 before conclusions are drawn in Sect. 7.

2 Governing equations

In this section we present the governing equations for the
aerodynamics rigid-object problems.

2.1 Aerodynamics

The Navier–Stokes equations of incompressible flows in an
ALE frame [48] govern the aerodynamics of the problem
and are stated as follows. Let Ω̂ ∈ R

nsd , nsd = 2, 3, repre-
sent the reference fluid mechanics domain with coordinates
x̂ and boundary Γ̂ , and let Ωt ∈ R

nsd , nsd = 2, 3, rep-
resent the time dependent fluid mechanics domain in the
current configuration with coordinates x and boundary Γt .
With these definitions, the continuous linear-momentum and
mass-balance equations on Ωt are given, respectively, as

ρ

(
∂u
∂t

∣∣∣∣
x̂

+ (u − û) · �u − f
)

− � · σ = 0, (1)

� · u = 0, (2)

where σ is the Cauchy stress tensor defined as

σ (u, p) = −pI + 2μ ε(u). (3)

In the above, u, p and ρ are the fluid velocity, pressure and
density, respectively. μ is the dynamic viscosity and ε(u) is
the symmetric gradient of u. In addition, û is the velocity of
the fluid domain and f is the body force per unit mass. The
subscript |x̂ on the partial derivative in Eq. (1) denotes that
the time derivative is taken with the referential coordinates x̂
fixed. The spatial derivatives in Eqs. (1)–(3) are taken with
respect to x.

2.2 Rigid object

Using the notation in Fig. 1, we let Ωb
0 denote the rigid-

object reference configuration with coordinatesX and center
of mass X0, and we let Ωb

t denote the rigid-object current
configuration with coordinates x and center of mass x0. All
rigid-object motions can be described by a translation and
rotation of its center of mass as

x = R (X − X0) + x0, (4)

Fig. 1 Rigid body, represented by a bridge cross section, in its reference
and current configuration
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where R is the rotation tensor. From Eq. (4) we obtain the
displacement field as

y = x − X = (R − I) (X − X0) + d, (5)

where d is the displacement of the center of mass.
We take the material time derivative in Eq. (5) to obtain

the velocity field

u = Ṙ (X − X0) + v, (6)

where v is the velocity of the center of mass. Using Eq. (4),
we can express the velocity field in Eq. (6) in terms of the
current coordinates as

u = Ω (x − x0) + v, (7)

where Ω is the skew-symmetric tensor of angular velocities:

Ω = ṘR−1 =
⎡
⎣ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤
⎦ . (8)

Further, we define ω, the axial vector of Ω , as

ω =
⎡
⎣ω1

ω2

ω3

⎤
⎦ . (9)

Eq. (7) can then be written as

u = ω × (x − x0) + v. (10)

Note that from Eq. (8) it follows that

Ṙ = ΩR, (11)

which is used as the generating equation for R.
The rigid-object motion is governed by the balance of

global linear and angular momenta, expressed, respectively,
as

d

dt
(mv) + Clinv + Klind = F, (12)

and

d

dt
(Jtω) + Cangω + Kangθ = M. (13)

In the above equations, v and d are the center-of-mass veloc-
ity and displacement, respectively, ω and θ are the axial vec-
tors of angular velocities and Euler angles, respectively, and

m and Jt are the object mass and current-configuration iner-
tia tensor, respectively. The latter quantity may be expressed
as

Jt = RJ0RT , (14)

where the reference-configuration inertia tensor, J0, is given
by

J0 =
∫

Ωb
0

ρ (X − X0) · (X − X0) IdΩ

−
∫

Ωb
0

ρ (X − X0) ⊗ (X − X0) dΩ. (15)

In Eq. (12), Clin and Klin are the linear damping and
stiffness matrices, while in Eq. (13) Cang and Kang are their
torsional counterparts.We note that the vector of Euler angles
θ may be obtained from the rotation matrix R.

Finally, vectors F andM represent the external forces and
moments acting on the rigid object and are given by

F = mg +
∫

Γ I
t

h dΓ , (16)

and

M =
∫

Γ I
t

(x − x0) × h dΓ , (17)

where g is the gravitational acceleration vector, and h is the
aerodynamic traction vector acting on the object surface Γ I

t .
Note that gravity does not contribute to Eq. (17) because it
creates zero moment around the center of mass.

3 Discrete formulation

The discrete formulation of the coupled FOI problem is
presented in what follows. We emphasize the rigid-object
formulation, and for a more thorough description of the aero-
dynamics and mesh motion parts of the problem the reader
is referred to [20] and references therein.

3.1 ALE-VMS formulation

At the discrete level, the fluid domain is partitioned into nel
finite element subdomains Ωe

t and its boundary into neb sur-
face elements Γ b

t . We then define finite-dimensional trial
functions for the fluid velocity u and pressure p, denoted
Sh
u and Sh

p , respectively, and their corresponding test func-
tions Vh

u and Vh
p . Superscript h indicate that its attribute is

finite-dimensional.

123



124 Computational Mechanics (2019) 63:121–136

The semi-discrete ALE-VMS formulation is then given as
follows. Find uh ∈ Sh

u and ph ∈ Sh
p , such that ∀wh ∈ Vh

u

and qh ∈ Vh
p :

∫
Ωt

wh · ρ

(
∂uh

∂t

∣∣∣∣
x̂

+
(
uh − ûh

)
· �uh

)
dΩ

+
∫

Ωt

ε(wh) : σ (uh, ph) dΩ +
∫

Ωt

qh� · uh dΩ

−
∫

Ωt

wh · ρ fh dΩ −
∫

(Γt )h

wh · hh dΓ

+
nel∑
e=1

∫
Ωe

t

τSUPS

((
uh − ûh

)
· �wh + �qh

ρ

)

· rM
(
uh, ph

)
dΩ

+
nel∑
e=1

∫
Ωe

t

ρνLSIC� · whrC (uh) dΩ

−
nel∑
e=1

∫
Ωe

t

τSUPSwh ·
(
rM

(
uh, ph

)
· �uh

)
dΩ

−
nel∑
e=1

∫
Ωe

t

�wh

ρ
:
(
τSUPSrM

(
uh, ph

))

⊗
(
τSUPSrM

(
uh, ph

))
dΩ = 0 (18)

In Eq. (18) rM and rC are residuals of the Navier–Stokes
linear-momentum balance and continuity, respectively, given
as

rM =ρ

(
∂uh

∂t

∣∣∣∣∣
x̂

+
(
uh − ûh

)
· �uh − fh

)
− � · σ

(
uh , ph

)
,

(19)

rC =� · uh . (20)

τSUPS and νLSIC are stabilization parameters which are
designed to render optimal stability and convergence through
extensive studies, see e.g., [49–58] and references therein,
and are adopted from the definitions given in [59].

The surface tractions hh are evaluated on the (Γt )h part
of Γt . The essential boundary conditions are specified on
the (Γt )g part of Γt , and are imposed weakly by adding the
following terms to the left-hand side of Eq. (18):

−
neb∑
b=1

∫
Γ b
t ∩(Γt )g

wh · σ
(
uh, ph

)
n dΓ

−
neb∑
b=1

∫
Γ b
t ∩(Γt )g

(
2με

(
wh

)
n + qhn

)
·
(
uh − gh

)
dΓ

−
neb∑
b=1

∫
Γ b
t ∩(Γt )

−
g

wh · ρ
((

uh − ûh
)

· n
) (

uh − gh
)
dΓ

+
neb∑
b=1

∫
Γ b
t ∩(Γt )g

τTAN

(
wh −

(
wh · n

)
n
)

·
((

uh − gh
) ((

uh − gh
)

· n
)
n
)
dΓ

+
neb∑
b=1

∫
Γ b
t ∩(Γt )g

τNOR

(
wh · n

) ((
uh − gh

)
· n

)
dΓ .

(21)

Here n is the unit outward normal vector, τTAN and τNOR
are the boundary penalty parameters in the tangential and
normal directions, respectively, as defined in [17], and (Γt )

−
g

is defined as the inflow part of (Γt )g:

(Γt )
−
g =

{
x|

(
uh − ûh

)
· n < 0,∀x ⊂ (Γt )g

}
. (22)

3.2 Mesh-moving technique

We make use of an interface-tracking technique [60], where
the computed displacement and velocity of the rigid object
define the kinematics of the fluid-rigid-object interface and
are prescribed as essential boundary conditions in the fluid
mesh-moving problem.

We assign the variable ŷ(t) to the fluid domain displace-
ment, such that dŷdt = û at the fluid-rigid-object interface, and
define its trial and test function respectively as Sh

y and Vh
y .

The displacements of the fluid domain interior can then be
found by solving the linear elastostatics problem in the weak
form: Find ŷh ∈ Sh

y such that wh
y ∈ Vh

y :

∫
Ωt̃

ε(wh
m) : Dh ε

(
ŷh(t) − ŷh(t̃)

)
dΩ = 0. (23)

Here Ωt̃ and ŷh(t̃) are the fluid mesh nearby configura-
tion and displacement at time t̃ < t , in practice taken at
the previous time step. The elastic tensor Dh is defined in
terms of mesh-dependent Lamé parameters μh and λh as
given in [1]. With this definition the element Young’s modu-
lus is proportional with the inverse of the Jacobian, making
smaller element stiffer and minimize the mesh distortion.
This method, introduced in [61–63], was named Jacobian-
based stiffening in [60].

3.3 Time integration of rigid-object equations

In what follows, we present the time integration algorithm
of the rigid-object equations given in Sect. 2.2. Follow-
ing [64], we employ the midpoint rule in order to preserve
the orthonormal properties of the rotation tensor.
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Starting with the balance of linear momentum in Eq. (12),
the midpoint approximation reads

m (vn+1 − vn)
Δt

+ Clin vn+1 + vn
2

+ Klin dn+1 + dn
2

= Fn+1/2. (24)

We define the discrete residual vector of linear-momentum
equation, Nlin , as

Nlin (vn+1) = m (vn+1 − vn)
Δt

+ Clin vn+1 + vn
2

+Klin dn+1 + dn
2

− Fn+1/2. (25)

The corresponding linearized equation system then reads

∂Nlin

∂vn+1
Δvn+1 = −Nlin (vn+1) , (26)

where the left-hand side matrix becomes

∂Nlin

∂vn+1
= m

Δt
I + 1

2
Clin + Δt

4
Klin . (27)

In the above equation we used the fact that relationship
between d and v is also approximated using a midpoint rule,
which gives

∂dn+1

∂vn+1
= Δt

2
I, (28)

and thus explains the factor Δt
4 in front of the Klin term in

Eq. (27).
We likewise form a discrete residual vector from the

angular-momentum Eq. (13) integrated using a midpoint
rule:

Nang(ωn+1) = Jn+1ωn+1 − Jnωn

Δt
+ Cang ωn+1 + ωn

2

+Kang θn+1 + θn

2
− Mn+1/2. (29)

The corresponding linearized equation system then reads

∂Nang

∂ωn+1
Δωn+1 = −Nang(ωn+1), (30)

with the approximate left-hand side matrix given by

∂Nang

∂ωn+1
≈ 1

Δt
Jn+1 + 1

2
Cang + 1

2
Kang ∂θn+1

∂ωn+1
, (31)

where the inertia tensor is assumed to not have a strong
dependence on the angular velocity. To obtain an explicit

expression for the left-had-side matrix, one needs to calcu-
late the derivative ∂θn+1

∂ωn+1
. In the case of planar motion, it can

be shown that

ω = θ̇ . (32)

Assuming midpoint integration of the above equation leads
to

∂θn+1

∂ωn+1
= 2

Δt
I, (33)

which, in turn, gives

∂Nang

∂ωn+1
≈ 1

Δt
Jn+1 + 1

2
Cang + Δt

4
Kang. (34)

The matrix-valued discrete residual for the equation gov-
erning the evolution of the rotation matrix (see Eq. (11)) may
be written as

Nrot (Rn+1) = Rn+1 − Rn

Δt
−

(
Ωn+1 + Ωn

2

)(
Rn+1 + Rn

2

)
.

(35)

The corresponding linearized equation takes on the form

DNrotΔRn+1 = −Nrot (Rn+1), (36)

where the left-hand-side matrix DNrot may be directly
inferred from Eq. (35) and takes on the form

DNrot ≈ 1

Δt
I − Ωn+1 + Ωn

4
, (37)

where the spin tensor is assumed to not have a strong depen-
dence on the rotation matrix.

Given all quantities at time level tn ; dn , vn , Rn , ωn and
θn , and the half-step values of the external forces Fn+1/2 and
Mn+1/2, we advance the rigid object to the time level tn+1 as
follows. The residuals of the rigid-object system,Nlin(un+1),
Nang(ωn+1), and Nrot (Rn+1), are driven to zero by solving
Eqs. (26), (30), and (36) in a sequential fashion, and repeat-
ing the sequence until convergence. Increment of the angular
velocity is employed to update the spin tensor for the solu-
tion of Eq. (37), while increment of the rotation matrix is
employed to update the inertia tensor in Eq. (30). Once con-
verged, the rigid-object solution is transferred to the interface
mesh and employed as essential boundary conditions for the
fluid-mechanics and mesh-motion problems.

To test the rigid-object algorithm, the convergence of
Eq. (30) is studied for a coupled FOI analysis of a coarsely
discretized rectangular cylinder. A low natural frequency
( fN = 0.1 Hz) is chosen such that the dynamic rigid-body
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forces become stiffness-dominated. Fig. 2, showing the con-
vergence rates of the l2-norm of Nang for various rotation
angles, reveals that the rigid-body formulation exhibits fast
convergence. Even for relatively large rotations, the residual
is converged to machine precision within a few iterations.
The cylinder displaced configuration at the same time levels
is shown in Fig. 3.

Remark 1 In the present work, the kinematic constraints
employed in all computations result in a planar motion of the
bridge deck, and the expression given by Eq. (33) remains
valid. In the case of small rotations, approximation of the

Fig. 2 Convergence in the l2-norm of the rigid-object angular-
momentum-balance residual sampled at various rotation angles

Fig. 3 Object current configurations where convergence of the rigid-
body angular-momentum balance is sampled

partial derivative given by Eq. (33) also holds true, and pos-
sibly presents a reasonable simplification when deriving the
left-hand-side matrix for the general case.

3.4 Time integration of the coupled system

The semi-discrete equations of fluid mechanics (Eq. (18))
and mesh motion (Eq. (23)) are integrated in time using
the Generalized-α technique [59,65–67]. A block-iterative
approach is employed, where, within a time step, increments
of the fluid mechanics, rigid-object, and mesh motion prob-
lems are computed sequentially. This approach is efficient
for the present application because the added mass effect is
not significant.

4 Simplified flutter analysis

In the following section we give a brief presentation of the
aeroelastic forces focusing on the application to flutter anal-
ysis. For a more detailed description the reader is referred
to [68] and references therein. According to strip theory
and the definitions and conventions in Fig. 4, the aerody-
namic forces acting on a bridge cross section with height
H and width B subjected to wind speed U are decom-
posed into drag, lift and pitching moment, which are denoted
D, L and M , respectively. Their corresponding degrees-of-
freedom (DOF) are p, h and θ , that match the DOFs in the
FOI formulation presented in Sect. 2.2.

Flutter analysis deals with the aerodynamic forces that
arise from structural motion, namely, the self-excited forces.
Disregarding the lateral component, which in our experi-
mental setup is fixed, the self-excited forces are defined in
accordance with [46,69] as

Lse = 1

2
ρU2B

(
K H∗

1
ḣ

U
+ K H∗

2
Bθ̇

U
+ K 2H∗

4
h

B
+ K 2H∗

3 θ

)
,

(38)

Mse = 1

2
ρU2B2

(
K A∗

1
ḣ

U
+ K A∗

2
Bθ̇

U
+ K 2A∗

4
h

B
+ K 2A∗

3θ

)
,

(39)

where ρ is the air density, K = Bω/U is the reduced
frequency of the structural motion, ω being the circular fre-
quency, and H∗

i and A∗
i , i ∈ {1, ..., 4} are the dimensionless

flutter derivatives. These are commonly given as functions
of the reduced velocity, Vred = K−1. Superscript se stands
for “self-excited”.

Using matrix notation, the self-excited forces can
expressed as

qse = Caeṙ + Kaer, (40)
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Fig. 4 Aeroelastic forces acting on a 1:50 scale model of the Hardanger
bridge

whereqse = [
Lse, Mse

]T and r = [h, θ ]T . ThematricesCae

andKae are commonly recognized as aerodynamic damping
and stiffness, respectively, and are given by

Cae = 1

2
ρUK

[
H∗
1 BH∗

2
BA∗

1 B2A∗
2

]
, (41)

and

Kae = 1

2
ρU 2K 2

[
H∗
4 BH∗

3
BA∗

4 B2A∗
3

]
. (42)

Given the still-wind mass, damping, and stiffness matrices,
M0, C0 and K0, respectively, dynamic equilibrium of the
aeroelastic system is then given by

M0Gr̈(ω) + (
C0 − Cae(U , ω)

)
Gṙ(ω)

+ (
K0 − Kae(U , ω)

)
Gr(ω) = Gq(ω). (43)

Here, Gr̈(ω), Gṙ(ω) and Gr(ω) are the Fourier transforms
(in time) of the acceleration, velocity, and displacement
response, respectively. Gq(ω) is the Fourier transform of
the remaining dynamic forces acting on the system, which
include buffeting forces as an important contribution.

The stability of the second-order system with N = 2 still-
air vibration modes in Eq. (43) is governed by the eigenvalue
problem

(
λ2nM0+ λn

(
C0 − Cae(U , ω)

)
+ (

K0 − Kae(U , ω)
))

Φn = 0, n = 1, 2, ...2N . (44)

The solution of Eq. (44) gives 2N eigenvalues λn = μn+iωn

and eigenvectors Φn , and takes the form

r(t) =
2N∑
n=1

Φn exp ((μn + iωn)t) . (45)

To ensure dynamic stability, the real parts μn of all eigenval-
ues should be negative, leading to a decaying response. On
the other hand, if any complex eigenvalues have a positive

real part, Eq. (45) exhibit exponential divergence, which is
recognized as flutter. The onset of flutter, or the critical wind
speed, Ucrit , occurs at the lowest wind speed for which the
real part of λn switches sign. Its corresponding eigenvector
then represents the flutter mode.

5 Experimental and computational setup

In what follows, we describe the experimental setup and
test strategy for the free-vibration wind tunnel experiments
performed in this work, and the analysis setup for the numer-
ical simulations. The considered bridge sectional model is a
1:50 scale model of the Hardanger bridge, which is repre-
sentative of many modern bridge sections. Its aerodynamic
performance has also been studied earlier in [2,26,47,68].
We follow the modus operandi for most such experiments
(see [70] and references therein), using coherent scaling of
the dimensions andmasses of the bridge section and constant
ratio between the first heaving and torsional mode.

Although the forced-vibration method is often preferred
to assess the aerodynamic performance due its repeatability
and simplified parameter identification procedures, the free-
vibration method is still commonly used as a verification
tool.

5.1 The free-vibration rig

A schematic 2D view of the free-vibration rig is shown in
Fig. 5. The sectional model is suspended vertically via rota-
tion arms with a leverage that gives the targeted frequency
ratio. In the horizontal direction the rig is pretensioned with
lightweight wires, which are sufficiently long to reduce the
geometrical stiffness contribution to a minimum. Additional
masses to the center bar and rotation arm are introduced to
achieve the proper mass scalings. Figure 6 shows the section
installed in the wind tunnel.

5.2 Instrumentation

Load cells (AEP Type TS 25 kg) measure the vertical spring
forces. From these, we estimate the displacements via rela-
tions determined from separate calibration tests of each
spring and static measurements of the installed section. From
the displacements in each of the springs we easily compute
the motions of the sectional model.

To monitor the pretensioning and drag component, load
cells are also installed at the upwind horizontal suspension
(AEP Type TCA 5 kg). For signal acquisition and analysis
we use HBM Quantum X and Catman software.
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Fig. 5 2D schematic of the
free-vibration test rig with the
two degrees-of-freedom labeled

5.3 Test strategy

In order to study the aerodynamic contributions, we need a
precise estimation of the system properties in still-wind. We
base the system identification on knownmasses and eigenfre-
quencies. Thuswe also include the geometrical stiffness from
the horizontal pretension. As the inertia cannot be calculated
without notable uncertainties, we use a system perturbation
technique that involves adding a known amount of inertia
to the rotation arm and measuring the change in frequency.
Damping is estimated by a logarithmic decrement.

The identified system properties, and the correspond-
ing full scale quantities, are summarized in Table 1. The
damping ratios vertically and torsionally are read from
single-frequency experiments at amplitudes of h = 15 mm
and θ = 3

◦
, respectively. The full-scale data are taken

from [68], and represents the modal quantities of the first
symmetrical heaving and torsional modes. The experimen-
tal setup renders mass and inertia scaling factors of 50.02

and 47.64, respectively, which plainly satisfy the geometric
scaling.

According to Eq. (44), the flutter wind speed is estimated
to be Ucrit = 8.16 and 7.48 m/s using the numerically and
experimentally determined aerodynamic derivatives reported
in [26] and [45], respectively.

In this work we consider the still-wind case, as well as
wind speeds of approximately 25, 50 100% of Ucrit .

5.4 Analysis setup

The computational domain is taken as a box that represents a
0.25 m-wide slice of the wind tunnel, spanning a distance of
3B upwind and 8B downwind from the bridge-deck centroid.
The height is set to 1.815 m, same as the wind-tunnel physi-
cal dimension. For the boundary conditions a uniform wind
speed U is prescribed on the inflow surface. The walls and

Fig. 6 Sectional model installed for free-vibration experiments. The
center bar extends through the circular hole so that most of the appa-
ratus is outside the wind-tunnel walls. Note the horizontal suspension
attached to the center bar

transverse boundaries are constrained with no-penetration,
and the outflow boundary is traction-free. The bridge deck
surface is constrained with weakly-enforced no-slip BC. For
the rigid-body, only the vertical-displacement and rotation
DOFs are kept active in all simulations.

The air density is set to ρ = 1.225 kg/m3 and the dynamic
viscosity is set toμ = 1.7894×10−5 kg/ms. The time step is
set to Δt = 0.001B/U , which keeps the maximum Courant
number at 2.5 or lower.

For discretization we use unstructured linear tetrahedra
and triangular prisms, with local refinement near the bridge
deck and in its wake region. To guarantee good mesh quality
near the bridge deck, we adopt the Solid-Extension Mesh
Moving Technique (SEMMT) [71,72]. In this approach,
structured layers of prismatic elements undergo the same
rigid-body motion as the bridge deck itself, which pre-
serves the original mesh quality near the bridge deck in the
moving-mesh simulations. Moreover, this approach signifi-

123



Computational Mechanics (2019) 63:121–136 129

Table 1 Still-air system
properties for the experimental
setup

Property Experiment Full scale

Mass m 5.120 12820 kg/m

Inertia Iθ 0.08295 426 000 kgm2/m

Vertical eigenfrequency ωh 5.0087 0.89 rad/s

Torsional eigenfrequency ωθ 12.6351 2.23 rad/s

Frequency ratio 2.52 2.51 –

Vertical structural damping ratio ζh 3.8 × 10−3 6.0 × 10−3 –

Torsional structural damping ratio ζθ 1.2 × 10−3 5.0 × 10−3 –

cantly reduces the cost of the mesh-motion problem. Fig. 7
shows an outline of the computational domain and a detailed
view of the bridge deck that shows the boundary-layer ele-
ments and indicates the general mesh density.

The total number of nodes in the model is 644,000, and
the computations are performed in a parallel environment
described in [73] using 256 compute cores.

Fig. 7 Problem mesh. a Full computational domain, b zoom on the
leading edge

6 Results and discussion

In this section we present the numerical results. Our main
goal is to test if FOI formulation is able to capture the
effect of the aerodynamic forces on the eigenfrequencies
and damping. Especially the latter is of particular interest
in the analysis of aerodynamic stability. The damping is rep-
resented by the logarithmic decrement, δ, whose relationship
to the damping ratio is given by δ = 2πζ/

√
1 − ζ 2. A selec-

tion of videos and visualizations from the experiments and
simulations are available at our Youtube channel ”Structural
Dynamics NTNU”.

6.1 Still-wind simulations

To test the formulation and assess the still-wind damping and
stiffness, free decay simulations are performed for the verti-
cal and torsional degrees-of-freedom. The system properties
determined from such experiments are commonly referred to
as structural properties, however, as the aerodynamic loads
are nonzero, also these have an aerodynamic contribution
which can be quantified by the simulations.

The systemmasses are taken from Table 1. To account for
the aerodynamic stiffness contribution (which would slow
down the structural motion according to Eq. (44)), the eigen-
frequencies are set to ωh = 5.072 and ωθ = 12.675 rad/s.
This small adjustment is based on the phase-lag from a one-
period test simulation. Similarly, the structural, or external
damping ratios are set to ζh = 5× 10−4 and ζθ = 7× 10−4.
For the initial condition the bridge section is ramped up to
h = 20 mm and θ = 3

◦
from its equilibrium position for

the two simulations, respectively. For stability reasons, the
inflow velocity is set to small value of U = 0.1m/s.

Fig. 8 shows the displacement time histories for the two
simulations together with the corresponding wind tunnel
experiments. To assess the aerodynamic contribution, the
oscillation envelopes of the mechanical damping are shown
in the same plot. A summary of the results also follows in
Table 2. The almost indistinguishable results prove that with
the proper choice of structural stiffnesses and damping the
formulation captures the still-wind behavior with excellent
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Fig. 8 Displacement of the bridge deck centroid for still-wind simulations with the vertical motion (top) and the torsional motion (bottom) actuated.
Wind-tunnel experimental data are aligned at t = 0

Table 2 A summary of the experimentally and numerically obtained eigenfrequencies and damping ratios for various wind speeds

Still-wind U = 1.75m/s U = 3.85m/s U = 8.16m/s

Exp. Sim. Exp. Sim. Exp. Sim. Exp. Sim.

Vertical eigenfrequency, ωh (rad/s) 5.009 4.984 5.086 5.118 5.161 5.258 9.795 9.084

Torsional eigenfrequency, ωθ (rad/s) 12.654 12.595 12.570 12.566 12.176 12.103 9.795 9.084

Vertical damping, ζh (%) 0.30 0.26 2.50 2.50 7.27 8.06 0.00

Torsional damping, ζθ (%) 0.09 0.11 0.24 0.33 0.69 1.02 0.00

Fig. 9 Logarithmic decrement with respect to the displacement ampli-
tude for the vertical (top) and torsional (bottom) motion in still wind

accuracy. We also observe that still-wind vertical damping is
dominated by the aerodynamic forces.

Figure 9 shows the logarithmic decrement with respect
to the displacement amplitude for the two simulations. First,
we notice that the damping is extremely low for the still-

wind condition. Further, it appears to vary linearly with the
vibration amplitude, a phenomenon which is also reported
in [47]. This behavior is very precisely captured in the
simulations. The amplitude-dependent damping arises from
correlation between the aerodynamic forces and structural
velocity. Because vertical motion induces more vorticity,
and, consequently, higher energy dissipation than the pitch-
ing motion, as can be seen from the snapshots in Fig. 10, it
is also subjected to more aerodynamic damping.

6.2 In-wind simulations

Using the same system properties we now perform free-
vibration simulations at wind speeds U = 1.75 and 3.85
m/s, where the aeroelastic forces are no longer negligible.
The same analysis setup is used as described in Sect. 5.4.

Figures 11 and 12 show displacement time histories for
U = 1.75 and U = 3.85 m/s, respectively, and their cor-
responding damping ratios are shown in Figs. 13 and 14.
Table 2 summarizes the results.

For the vertical displacement DOF, we capture its magni-
tude very well. Invariance of the aerodynamic damping with
respect to the displacement magnitude is also captured with
excellent accuracy. Good results are likewise obtained for the
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(a) (b) (c)

(d) (e) (f)

Fig. 10 Snapshots of vorticity contours and velocity vectors for the vertical (top) and pitching (bottom) motion in still wind. Here t0 represents the
time level at a lower peak displacement, and T = 2π/ω is the period
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Fig. 11 Displacement time series of the bridge deck subjected to a wind speed of U = 1.75 m/s and actuating the heaving (top) and pitching
(bottom) mode. Wind-tunnel experimental data are aligned at t = 0

torsional DOF, however, the simulation predicts higher aero-
dynamic damping. This observation corresponds with the
overestimation of the A∗

1 and A∗
2 aerodynamic derivatives

our earlier work [26]. It should be remarked that, already
at 25% of the flutter wind speed, the vertical-displacement
aerodynamic damping is one order of magnitude higher than
the still-wind damping.

The magnitude of the aerodynamic stiffness is slightly
overestimated in both DOFs, however, its evolution with the
wind speed agrees very well with the experiments.

From the time histories, most prominently for U = 3.85
m/s, we notice a difference in the mean displacements. This
indicates that the simulations produce different absolute val-
ues of the aerodynamic lift and pitching moments. However,
other sources of errors, e.g. inaccurate alignment of the sec-
tional model, are also present. Since the mean values are
removed in the analysis of motion-induced forces and flut-
ter, this issue is not further addressed in this work.

Remark 2 We want to emphasize that although the heaving
and pitching time series are hitherto drawn together, they are
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Fig. 12 Displacement time series of the bridge deck subjected to awind
speed of U = 3.85 m/s and actuating the heaving (top) and pitching
(bottom) mode. Wind-tunnel experimental data are aligned at t = 0

Fig. 13 Logarithmic decrementwith respect to the displacement ampli-
tude for the vertical (top) and torsional (bottom) motion for U = 1.75
m/s

computed sequentially. TheDOFwhich is not actuated is still
active, however, it undergoes vanishingly small excitation
due to the narrow-banded nature of the aerodynamic forces
which act in the region of the dominating motion.

Remark 3 It should be noted that the reported eigenfrequen-
cies are in fact the damped natural frequencies. The effect of
damping on the vibration frequency is, however, vanishingly
small compared to the contribution from the aerodynamic
stiffness.

Fig. 14 Logarithmic decrementwith respect to the displacement ampli-
tude for the vertical (top) and torsional (bottom) motion for U = 3.85
m/s

Fig. 15 Time histories of the vertical displacement and rotation angle

6.3 Flutter

Combining the system properties in Table 1 and the aerody-
namic derivatives from forced-vibration wind tunnel exper-
iments [45], solution of the eigenvalue problem Eq. (44)
gives Ucrit = 7.48 m/s and a critical vibration frequency of
ωcr = 10.11 rad/s. From the numerically obtained aerody-
namic derivatives reported in [26], the corresponding results
are Ucrit = 8.16 m/s and ωcr = 8.92 rad/s.

From the free-vibration experiments we obtain Ucrit =
8.16m/s andωcr = 9.80 rad/s. Using the samewind velocity
in the simulations we obtain a diverging response, which
indicates that we are above, but close toUcrit . Time histories
are shown in Fig. 15, and it is evident that the simulation
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Fig. 16 Snapshots of vorticity contours and velocity vectors for the flutter simulation. Here t0 represents the time level at a lower peak displacement,
and T = 2π/ω is the period

gives a very accurate representation of the flutter mode in
terms of the frequency (ωcr = 9.084) and mode shape. A
visualization of the flutter mode is given in Fig. 16, from
where we see that the bridge deck is undergoing a pitching
motion with a center of rotation very close to the leading
edge.

The good correspondence between the predicted flutter
characteristics obtained numerically by the forced-vibration
method in [26] and the experimentally obtained flutter
herein provides additional validation of the fluid mechan-
ics part of the computational framework employed in this
work.

7 Conclusions

This paper presents an FOI modeling approach with a cou-
pling between the ALE-VMS formulation for fluid dynamics
and equations of a rigid object. The rigid-object formula-
tion is augmentedwith external stiffness and damping, which
makes it suitable for many engineering applications, such as
vibration analysis of bridge decks.

For the rigid-body formulation we have proposed a modi-
fied time-integration algorithm, inwhich a linear relationship
between the Euler-angle time derivative and angular velocity
vector is assumed in the expression for the tangent matrix
employed in the rigid-object algorithm.

The resulting formulation was employed to simulate the
free-vibration wind-tunnel experiments of the 1:50 scale
model of the Hardanger bridge section. The latter were
also carried out as part of this work. The results show
that the FOI formulation reproduces the aeroelastic behav-
ior with excellent accuracy. Tests at different wind speeds
reveal the evolution of aerodynamic stiffness and damp-
ing, where especially the latter is heavily influenced by the
aerodynamic forces. Numerical simulation at the flutter sta-
bility limit also show that the FOI formulation captures
the critical wind speed and the corresponding vibration
mode.

In the context of bridge engineering, free-vibration wind-
tunnel experiments often serve to validate their correspond-
ing forced-vibration experiments. Analogously, this work
serves as a validation of the forced-vibration computational
framework presented by the same authors in [26], which
gave flutter characterization that is in very good agreement
well with the free-vibration results obtained herein. Besides
validation of forced vibrations, the authors believe that the
computational framework presented herein can be a valuable
tool to quickly assess the more general aeroelastic perfor-
mance of bridge sections, which is especially important for
the front-end engineering design.
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