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Abstract
Meshfree methods such as the Reproducing Kernel Particle Method and the Element Free Galerkin method have proven to
be excellent choices for problems involving complex geometry, evolving topology, and large deformation, owing to their
ability to model the problem domain without the constraints imposed on the Finite Element Method (FEM) meshes. However,
meshfree methods have an added computational cost over FEM that come from at least two sources: increased cost of shape
function evaluation and the determination of adjacency or connectivity. The focus of this paper is to formally address the types
of adjacency information that arises in various uses of meshfree methods; a discussion of available techniques for computing
the various adjacency graphs; propose a new search algorithm and data structure; and finally compare the memory and run
time performance of the methods.

Keywords Meshfree · Reproducing Kernel Particle Method · Acceleration data structure · Nearest neighbour · Adjacency ·
Connectivity

1 Introduction

For performing engineering analysis and the closely related
topic of geometric modeling, meshfree methods provide an
alternative to mesh-based approximation techniques. In con-
trast to the Finite Element Method (FEM), where a function
space is constructed on elements of a mesh, meshfree meth-
ods construct their function space on a set of particles, where
the shape functions associated with a particle are compactly
supported. Obviating the need for a disjoint polygonal or
polyhedral domain decomposition makes them well suited
for handling problems where generating and maintaining a
mesh is difficult. While meshfree methods offer some advan-
tages over FEM, they also possess several disadvantages,
including increased computational time and, depending on
implementation, memory overhead. This cost is attributed to
the increased complexity of both shape function evaluation
and determination of connectivity. There are three types of
connectivity information required in geometricmodeling and
analysis as listed in Table 1, and discussed in detail in Sect. 3.
The first type of connectivity arises in evaluating quadrature
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points and problems involving contact between bodies. The
second type comes about when one has quantities at field
points and wishes to project those values to the particle loca-
tions, e.g. stress or strain values. The third type is useful for
determining the sparsity pattern and entries in the stiffness
matrix of a Galerkin solution to a partial differential equation
(PDE). The various connectivities are a type of graph and can
be represented through an adjacency matrix [10].

In FEM, a common approach is to use the isoparamet-
ric concept where the shape functions are formulated in a
parent or natural coordinate system and then the geometric
domain values are computed by applying an affine transfor-
mation. The description of the mesh can be used as a graph
to provide the first two types of connectivity. Since Gauss
quadrature is an efficient method for integrating FEM shape
functions, they are normally defined in the parent domain,
eliminating the need to find the reverse transformation from
geometric to parent coordinates and evaluating Type 1 con-
nectivity directly. If one uses conforming shape functions,
Type 3 connectivity can also be quickly determined from the
mesh. In the case of stiffness matrix assembly using the ele-
ment viewpoint, explicit Type 3 information is not required.
Since the parent element is fixed, the parent shape functions
are fixed and simple to compute. In contrast, meshfree shape
functions are constructed for the current point of interest
based on the collection of surrounding particles that have
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Table 1 Adjacency types in geometric modeling and analysis

Type 1: Field point–particle, set of all the particles that contain a field point in their support

Type 2: Particle–field point, set of all the field points within the support of a given particle

Type 3: Particle–particle, set of all particles whose support overlap a given particle’s support

a non-zero contribution at the point. Since this collection of
contributing particles varies with the spatial position of the
point to be evaluated and there is no predefined adjacency
information, the construction of meshfree shape functions is
more involved.

In the Galerkin solution of the governing PDEs describing
physical problems, an integration over the domain is required
to form a global system of equations. A common challenge
with any integration scheme formeshfreemethods is control-
ling the integration errors. Meshfree shape functions are of
a non-polynomial rational form with overlapping supports,
requiring special techniques for conducting integration [13].
A commonly used approach to reduce the integration error
is to employ a higher order quadrature rule, consequently
requiring a larger number of shape function evaluations com-
pared to FEM.

While meshfree methods have received significant atten-
tion by researchers, the topic of efficient implementations
have received significantly less attention. To summarize, the
increased cost of meshfree analysis over FEM is due to:
increased shape function evaluation cost, increased number
of shape function evaluations in quadrature when using a
backgroundmesh, and dynamic or runtime evaluation of con-
nectivity. This paper will only focus on the last topic, and an
overview of prior contributions as they pertain to the present
work are reviewed in Sect. 5. This unorthodox placement
within the paper of a review of the state of the art is done
because the authors feel that it is best understood once the
background information in Sects. 4–4.2 have been presented.

This paper has three objectives and is organized as follows.
Following a brief review of the Reproducing Kernel Particle
Method (RKPM) in Sect. 2, the first objective is to provide
a thorough review of the adjacency information that is com-
monly required in geometric modeling and analysis when
employing a meshfree method, accomplished in Sect. 3. The
second objective is to describe the various approaches that
can be used for determining the adjacency information. Since
the reader may not be familiar with data structure concepts
from Computer Science, Sect. 4 is provided as background
and to set the stage for a new data structure for meshfree
searches in Sect. 4.2.2. The final objective is to demonstrate
the effectiveness of the various approaches under various
circumstances, in order to aid those using meshfree meth-
ods to select an appropriate search scheme for their problem,
presented in Sect. 6, followed by a conclusion in Sect. 7.
While this paper is focused on applications involving mesh-

free methods, the primary algorithm discussed is essentially
a nearest neighbour search and therefore the data structures
presented can be abstracted to any set of compact non-
disjoint or disjoint objects. The data structures are capable
of operations such as ray–object intersections, which occur
in computer graphics, but are also of interest for meshfree
methods when enforcing visibility conditions.

2 Preliminaries

Numerous meshfree methods have been developed, includ-
ing the well-known Reproducing Kernel Particle Method
(RKPM) [24], Element Free Galerkin (EFG) method [3],
Meshfree Local Petrov Galerkin (MLPG) [1], HP-Clouds
[14], and the Finite Point Method (FPM) [26]. A thorough
review of meshfree methods is given in [19,20,22]. The data
structures and algorithms discussed in this paper are applica-
ble to many of the meshfree methods, but for completeness
the RKPM formulation will be used.

2.1 RKPM shape functions

Following the general formulation, such as [19] and [25], we
review the RKPM approximation. The problem domain is
discretizedbya collectionof particles {xI : I∈{1, 2, . . . , N }},
each representing a certain volume and mass of material.

The RKPM approximation to a scalar function u(y) is
given as

uh (y) =
∫

Ω

Φρ (y − x) u (x) dx, (1)

where Φρ is the corrected kernel and is given as

Φρ (y − x) = C (y − x; y) φρ (y − x) , (2)

where C (y − x; y) is known as the correction and φρ is a
compactly supported function. The correction term is taken
as the polynomial

C (y − x, y) = cT (y)P (y − x) , (3)

where c is an unknown vector of coefficients andP is a vector
of monomials. Enforcing consistency yields the following
linear system:
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M (y) c (y) = P (0) , (4)

whereM is known as the moment matrix. Evaluation of Eq.
1 via nodal integration, is expressed as

M (y) =
∑

I

P (y − xI )PT (y − xI ) φρ (y − xI )ΔVI . (5)

Solving for the correction weights c in Eq. 4 and using Eqs.
2 and 3 the corrected kernel can be expressed as:

ΦI (y) = PT (y − xI )M−1 (y)P (0) φρ (y − xI ) . (6)

The meshfree approximation then has the following form

ûh (y) =
∑

I

ΨI (y) uI , (7)

where ΨI (y) are the RKPM approximation functions, and
uI are the nodal unknowns. The summation is taken over the
set of particles that have non-zero shape functions at y.

2.2 Computational efficiency

The form of the approximation in Eq. 7 appears identical
to the FEM function approximation, however the meshfree
approximation functions have several key differences. First,
the meshfree approximation functions in general do not pos-
sess the Kronecker-δ property [20].

ΨI (xJ ) �= δI J . (8)

The computation of the meshfree shape functions are sig-
nificantly more expensive, as a small linear system, Eq. 4,
must be solved for every point of interest. In addition, the
meshfree shape functions do not use a prescribed topologi-
cal map as in FEM, but instead determine this information
as part of the shape function calculation, augmenting the
computational cost. The meshfree shape functions are non-
polynomial rational functions,where those used in traditional
FEM are polynomial functions. Compared to the FEM shape
functions, which are predefined, the meshfree shape func-
tions require the computation of a correction term at each
point of interest in the domain. This correction term is a
function of position and requires the knowledge of all the
surrounding particles that have the given evaluation point in
their support domain, i.e. Type 1 adjacency. Given this adja-
cency information the computation of the meshfree shape
functions can be computed by Eq. 6, requiring the inver-
sion of the moment matrix. While the moment matrix is not
particularly large, the number of inversions required for a
practical problemmay be significant. To alleviate the compu-
tational cost of computing the inverse, a method to avoid the
direct computation is given in [4]. Research to reduce cost of

meshfree analysis by reducing the number of necessary shape
function evaluations by nodal integration has been published
in [11,12]. To further reduce the computational performance
gap between meshfree methods and FEM the computation of
the adjacency information must be addressed.

3 Adjacency information

This section will expand on the three types of adjacency
listed in Table 1. The finite set of particle locations dis-
cretizing the domain is denoted as X, which is assumed to
be indexed. The finite set of field points where shape func-
tions will be computed will be denoted as Y, which is also
assumed to be indexed. We use the term evaluation point to
refer to points inY, to distinguish them from the particle loca-
tions. Of course, one may want to evaluate shape functions
at particle locations, so the two sets are not necessarily dis-
joint. As mentioned in Sect. 1, given these two sets there are
three connectivities which commonly arise when employing
a meshfree method, which can be conveniently denoted as
sets. Any given type of connectivity is represented as a set
of sets, indexed by either particle index, or evaluation point
index. Each entry I in the connectivity is a set of indices of
objects adjacent to I defined by the type of adjacency. The
formal definitions that follow will make this clear.

Type 1: Given an evaluation point, yJ ∈ Y define the index
set, Θ J , containing the indices of those particles
that have a non-zero shape function at yJ , which
can be stated as

Θ J = {
I |xI ∈ X ∧ ΨI

(
yJ

) �= 0
}
. (9)

Evaluation point–particle adjacency, denoted Θ , is
defined to be the set whose elements are the Θ J .

Type 2: Given a particle, xI ∈ X, define the index set, ΛI ,
containing the indices of those evaluation points
that result in a non-zero shape function value with
respect to particle xI , or more formally

ΛI = {
J |yJ ∈ Y ∧ ΨI

(
yJ

) �= 0
}
. (10)

Particle–evaluation point adjacency, Λ, is the set
whose elements are theΛI . Figure 1 shows a graph-
ical depiction of Eq. 10. The circles and squares
represent points in Y. The particle of interest xI is
shown as a triangle with its corresponding domain
of influence represented by the circle. The index
set of evaluation points that result in a non-zero
shape function value with respect to particle xI are
denoted by the squares.
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x1

Fig. 1 Graphical depiction of ΛI , an element in Type 2, particle–
evaluation point adjacency

Type 3: Given a particle, xI , determine the index set of par-
ticles, Π I whose support domain overlaps with the
support of xI , specifically

Π I = {K |xK ∈ X ∧ supp (xI ) ∩ supp (xK ) �= ∅} .

(11)

The particle–particle adjacency is given as the set
Π whose elements are the Π I .

The prescription in Eq. 11 is applicable in a continuous set-
ting, however, in the solution of PDEs employing a numerical
integration technique the discretization will result in particle
to particle adjacencies that do not occur due to the discrete
nature of the integration. This situation can be seen in Fig.
2. Here the lightly shaded symbols represent the integra-
tion grid and the particles are denoted by dark triangles and
labeled x1, x2, and x3. According to Eq. 11 all three par-
ticles are neighbors, but since particles x1 and x2 do not
share an evaluation point their respective discrete adjacency
is broken. The lightly shaded rectangles and diamonds are
the evaluation points in the overlapping supports yielding
x1 and x3 as neighbors and x2 and x3 as neighbors, respec-
tively. Therefore, we can restate Eq. 11 to define the discrete
particle–particle adjacency as

Π I =
{

K |xK ∈ X ∧ ΛI ∩ ΛK �= ∅
}

. (12)

x1 x2

x3

Fig. 2 Graphical depiction of Type 3, particle–particle adjacency

3.1 Relation between Type 1 and Type 2 adjacency

The Type 1 and Type 2 adjacencies are not mutually inde-
pendent, they are duals of each other. Given the evaluation
point to particle adjacency information, Θ , the particle to
evaluation point information, ΛI , for particle I can be stated
as

ΛI =
{

J |yJ ∈ Y ∧ I ∈ Θ J
}

. (13)

Similarly, if the particle to evaluation point information, Λ,
is known the evaluation point to particle information, Θ J ,
for evaluation point J is

Θ J =
{

I |xI ∈ X ∧ J ∈ ΛI
}

. (14)

Note that since Eq. 12 does not contain any information on
evaluation points, it cannot be used, by itself, to construct
Type 1 or Type 2 adjacency, and hence is itself insufficient
for meshfree applications involving evaluation points. In a
formulation in which exact integration over analytic geo-
metric domains were used, this might not be the case, but
the authors are un-aware of any such formulations. Given
the insufficiency of Type 3 adjacency and its construction
through Eq. 12, it will not be further discussed in this paper.

The dual nature of Type 1 andType 2 adjacencymeans that
either adjacency can be used to fulfill any role in which either
type is required. However, some applications are more natu-
rally addressed by one type than the other. It should be noted
that it is possible to construct all three types of adjacency
simultaneously. However, in a multi-threaded computation,
this will lead to race conditions impeding efficient shared-
memory parallel (SMP) performance. Similarly, use of one
adjacencymay bemore convenient or efficient, again consid-
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ering SMP environments. This paper will focus on solutions
that both work naturally for their purpose and scale well in
multi-threaded implementations.

3.2 Example uses of adjacency

The application dictates which of these sets will be needed.
In a finite-dimensional Galerkin solution of PDEs the weak
form of the governing equations need to be integrated result-
ing in the formation of a system of algebraic equations,
commonly referred to as assembly. In the context of solid
mechanics the coefficient matrix is known as the stiff-
ness matrix whose entries depict the interaction between
the degrees of freedom. Generally speaking there are two
approaches that can be used to perform assembly, the evalu-
ation point-wise or the particle-wise approach.

In the evaluation point-wise method, all contributions to
the various matrix elements from the single evaluation point
are computed and accumulated. Successively considering
each evaluation point results in a complete stiffness matrix.
This approach requires Type 1 adjacency, which is the infor-
mation contained in Θ . The algorithm for the evaluation
point-wise assembly is given in Algorithm 1.

Algorithm 1: Evaluation point wise assembly of stiff-
ness matrix
Input: Y & X

Output: KG

1 Initialize KG ;
2 for yI ∈ Y do
3 Determine Θ I ;
4 Evaluate shape functions and derivatives at yI ;
5 for xJ ∈ Θ I do
6 for xK ∈ Θ I && K ≥ J do
7 KG

J K + = BT
J DBK

In this assembly procedure each evaluation point is going
to affect multiple degrees of freedom, which means multi-
ple entries in the global matrix will be affected by the same
evaluation point. This presents a race condition when par-
allelizing over the evaluation points as multiple evaluation
points will need to write to the same location in memory.

Alternatively, the assembly procedure can be done on
groups of evaluation points, as is often done in FEM. The
group of evaluation points used are those which affect the
same degrees of freedom. In finite elements this is simply
the Gauss points contained within an element with the nodes
being those of the element. Instead of adding the contribu-
tions of each evaluation point into the global matrix, a local
or elementmatrix is created, which is then added to the global
matrix. Note this approach also has a race condition on an
SMP.

The second assembly procedure is based on the particle
viewpoint. In this approach the particle to particle, Π , and
particle to evaluation point, Λ, adjacencies are needed. The
procedure is to iterate over the particles and for each particle,
xI , determine the particle to particle adjacency Π I . Then for
each particle in Π I determine the evaluation points that are
common between each particle pair and compute the entry in
the global matrix. The algorithm for the particle-wise assem-
bly is given in Algorithm 2.

Algorithm2:Particlewise assembly of stiffnessmatrix
Input: Y & X

Output: KG

1 Initialize KG ;
2 for xI ∈ X do
3 Determine ΛI ;
4 for yJ ∈ ΛI with corresponding Θ J do
5 for xK ∈ Θ J && K ≥ I do
6 KG

I K + = BT
I DBK ;

This approach allows for straightforward parallelization over
the particles. However, if the Type 1 connectivity information
is not computed a priori a large number of redundant calcu-
lations will occur, since the same evaluation point will be in
the domains associated with multiple particles. To avoid this
the evaluation point to particle adjacency information, Θ ,
can be pre-computed and stored along with shape function
values. Depending on the size of the problem this memory
overhead could result in a large payoff in run time since the
shape function values are needed not only during assembly,
but often during post-processing.

The matrix assembly example assumes that all of the
quadrature points and particles are known, and either Type
1 or Type 2 adjacency can easily be used. On the other
hand, one may have a problem in which either the evaluation
points or the particles are known only dynamically. Such
applications would be contact problems, where additional
quadrature points along boundaries in contact are determined
during the course of the simulation. Another example would
be dynamic refinement by particle insertion. Depending on
how adjacency is stored and constructed, one type may be
easier than the other.

A naive approach to determining the adjacency informa-
tion contained in Θ or Λ would involve checking all the
particles against all the evaluation points resulting in an
O (

Ne ∗ Np
)
algorithm and the particle to particle inter-

actions, Π , would require O
(

Np(Np+1)
2

)
. These naive

approaches are very inefficient as they have not exploited
the fact that particles are compactly supported. In order to
reduce this cost, a data structure that excludes most of the
objects from the search can be utilized. Data structures of
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this type are of fundamental importance in many fields of
computer science, such as computer graphics. The construc-
tion of this type of data structure requires either the space in
which the objects reside to be partitioned or the set of objects
themselves to be partitioned.

4 Data structures

A data structure is simply a method for organizing, storing,
and retrieving data. Beginning programmers learn about the
most fundamental data structure, an array, early in their stud-
ies. Copious other data structures have been developed by
computer scientists over the years and it is a subject in and
of itself. All data structures inherently balance a number of
attributes: memory overhead, search times, access, retrieval,
and dynamic size. Depending upon the application, one of
these attributes may take precedence over the others, and
data structures focused on optimizing that attribute can be
developed. In the context of meshfree methods, there are two
options for data to be stored to effect the three types of adja-
cency described in Sect. 3. One can store evaluation points,
or one can store particles. The former have zero extent, but
the latter carry volume information, in the form of the size of
their support, that needs to be taken into account. Regardless
of this choice, both Type 1 and Type 2 queries must account
for the support size of the particles. Note that particle extent
can be accounted for either in the construction of the data
structure, when storing particles, or during a search. There-
fore, three different viewpoints can be takenwhendeveloping
a data structure for conducting adjacency queries inmeshfree
methods (Table 2).

The key to efficient searching of a data structure is to
reduce the number of potentially expensive detailed evalua-
tions of the search condition. Inmeshfreemethods, the search
condition typically entails determining whether a given point
iswithin the support of a particle.Given that evaluation points
and particles are distributed in space, a natural approach to
reduce the number of detailed support checks is to organize
the data so that points and particles that are far from each
other are excluded from detailed checks. The following sec-
tions will describe two basic approaches to partitioning the
data, spatial partitioning and object partitioning. While the
focus of this paper is in applications tomeshfreemethods, the
data structures and associated algorithms will be presented
in an abstract manor. The purpose of this is not to obfus-
cate the implementation details, but to provide the reader
with a generic algorithm that could be applicable to prob-
lems outside the context of meshfree methods. In addition,
the spatial partitioning data structures can be used to deter-
mine both Type 1 and Type 2 adjacency with only minor
changes to the algorithm, so for brevity these subtleties have
been abstracted allowing for a single algorithm associated

with each data structure for both searching and construction.
The specifics of applying these algorithms for answering the
adjacency questions that arise in meshfree methods will be
given in Sect. 4.1.4.

4.1 Spatial partitioning

Spatial partitioning data structures decompose the space in
which the objects reside into disjoint regions and distribute
the objects into the resulting partitions. A drawback to this
type of structure arises for objects that have a non-zero spa-
tial extent, or size. Often this results in an object overlapping
multiple partitions, leading tomultiple references to the same
object. Pursuing the goal of using the data structure to reduce
the candidate sets of objects to be checked, one generally ends
up with a relatively fine subdivision, relative to the support
size of the particles, and thus many particles have multi-
ple references in nearby subdivisions. For a large collection
of objects these references may result in a sizable memory
footprint. In the context of meshfree methods, the particle
supports are required to overlap, thereby guaranteeing that
each spatial subdivision intersects multiple particle supports.
To circumvent the memory issue while still using a spatial
partitioning data structure two options exist. The first is to
construct the data structure on the particles, but not account
for their supports. The second is to construct the data structure
on the evaluation points, which have zero volume. Three spa-
tial partitioning structures will be discussed: grids, kd-trees,
and the well-known octree/quadtrees. Further discussion on
spatial partitioning data structures can be found in [7,31].

4.1.1 Regular grids

The grid spatial subdivision was proposed as an acceleration
method for generating images using ray tracing by Fujimoto
and Iwata [16]. The concept of a grid is to subdivide an axis
aligned space into equal sized rectilinear regions or cells.
Each cell stores references to the objects that overlap it or
are contained within it. While the grid data structure was
originally designed to accelerate ray–object intersections, it
can also be used during query operations occurring in mesh-
free methods, discussed in the following two sections.

4.1.1.1 Construction The algorithm for constructing a grid
is given in Algorithm 3. The construction routine operates
on the a set of geometric objects, Y, with bounding box B.
The result of the construction is an array of grid cells C,
where each cell contains a set of references to those objects
associated with the cell. The first task of the construction
routine, Line 1, is to determine the resolution of the grid. The
resolution of the grid can be a prescribed value by the user,
but determining an optimal setting for this value is non-trivial
and some choices can result in a subdivision that is either too
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Table 2 Data structure options
for accounting for particle
support

Case 1: Use particles for construction and search per evaluation point

Case 1a: Account for particle support size during data structure construction

Case 1b: Account for particle support size during search

Case 2: Use the evaluation points for construction and search per particle

coarse, causing poor performance, or an overly refined grid
that results in a large memory footprint. To address this issue
we use the approach to determine the resolution such that the
total number of cells in the grid is linearly proportional to the
number of objects in the grid and the cells are approximately
cuboidal in three-dimensions or square in two-dimensions
[29]. Using these conditions the resolution of the grid can be
computed as shown by Eq. 15.

ni =
⎡
⎢⎢⎢Δyi

(
γ Np∏d

j Δy j

) 1
d
⎤
⎥⎥⎥ i = 1, . . . , d (15)

Here ni is the number of cells along direction i ,Δyi is the i th
extent of the grid, Np is the total number of objects in the grid,
d is the spatial dimension, and γ is a proportionality constant
that linearly relates the number of objects to the total num-
ber of grid cells, i.e., Ncells = γ Np. Choosing an appropriate
value of γ requires experimentation and will vary from prob-
lem to problem. The authors have found values ranging from
one to ten to be a good choice for most problems. Choosing
a larger value will result in a more refined grid, which could
reduce the number of objects residing in a single cell. Given
the resolution, Line 2 allocates an array of empty cells cor-
responding to the resolution. Determining the indices of a
cell containing a specific coordinate is a linear interpolation
problem along each spatial dimension as shown in Eq. 16.

i j − imin
j

imax
j − imin

j

= y j − ymin
j

ymax
j − ymin

j

j = 1, . . . , d (16)

The upper and lower cell indices along the j th direction
are defined by imax

j and imin
j respectively. The upper and

lower limits of the grid are defined as ymax
j and ymin

j and
y j representing the j th component of the known coordinate.
Assuming a zero based indexing scheme for the cell num-
bering and solving for the unknown cell number i j leads to
the following expression,

i j =
⌊(

y j − ymin
j

Δy j

)
n j

⌋
j = 1, . . . , d (17)

Equation 17 does suffer from one pitfall in practical applica-
tions, which is the scenario where y j is greater than or equal
ymax

j . This will result in i j = n j , but the cells are numbered

such that i j ∈ [
0, n j − 1

]
. To handle this situation a simple

routine to clamp the values to the interval
[
0, n j − 1

]
is used.

With the ability to compute the indices of a cell associated
with a single coordinate the cell numbers pertaining to those
cells intersecting the geometric object can be determined by
considering an axis aligned bounding box (AABB) encom-
passing the domain of y, which provides two spatial locations
that define the range of cells the particle intersects. The cells
in this range are updated with a reference to y.

Algorithm 3: ConstructGrid(Y,B)
Input: Set Y of geometric objects and Bounding Box B
Output: Array of grid cells C

1 [nx , ny, nz] ← Determine grid resolution;
2 C ← Create nx x ny x nz array of grid cells;
3 for y ∈ Y do
4 I ← Compute indices into C of grid cells intersecting

supp(y);
5 for i ∈ I do
6 Insert y into C[i];
7 return C;

4.1.1.2 Searching The regular grid search algorithm, given in
Algorithm 4, seeks to determine those objects that intersect
the search domain, S, defined here by a location and radial
vector as shown in Fig. 3. The algorithm begins with an inter-
section test against the search domain and the bounding box
of the grid. If no intersection occurs the search is terminated.
Given an intersection does occur the cells that have a non-
zero intersection with the search domain are determined and
the objects residing in these cells are then queried to deter-
mine those that intersect the search domain.

Algorithm 4: SearchGrid(C,S)
Input: Array of grid cells C and search region S
Output: Set of objects Θ intersecting S

1 I ← Compute indices into C of grid cells intersecting S;
2 for i ∈ I do
3 for x ∈ C[i] do
4 if S ∩ x then
5 Insert x in Θ;

6 return Θ;
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dx

x

Fig. 3 Search domain

4.1.2 Kd-tree

Thekd-tree [5] is a popular variant of themore generalBinary
Space Partitioning (BSP) tree [15]. The kd-tree adaptively
decomposes a space into disjoint rectilinear partitions. This
differs from the uniform grid decomposition of the space
in that it adapts to irregularly distributed objects. A kd-tree
restricts the splitting plane to be orthogonal to one of the coor-
dinate axes. This restriction allows for efficient construction
with the sacrifice of how the space is divided.

4.1.2.1 ConstructionThegeneral procedure for constructing a
kd-tree for is given in Algorithm 5. The input to the construc-
tion routine is a set of geometric objects, Y, with associated
bounding box B. The output of the construction algorithm is
a kd-tree τ . The routine begins by checking if the termination
criteria has been met. Several options exist for the termina-
tion criteria. The first possibility uses a preset limit on the
number of objects that a single kd-tree node is allowed to
contain, commonly referred to as the bin size. Another pos-
sibility for the termination condition is restricting the height
of the tree. In addition, the volume of the half space that
a tree node represents could be restricted, this termination
condition is useful when the geometric objects the tree is
constructed upon are of a non-zero volume. Once the termi-
nation condition is satisfied the splitting of the tree node is
stopped anda single leaf node is constructed andupdatedwith
references to the objects that are contained within the node.
If the termination criteria is not met the algorithm proceeds
to Line 4 where a splitting plane, P , is determined. Several
options for determining a split plane are shown below.

– Median splittingThe splitting dimension is the dimension
with the greatest variation. The splitting location is taken
as the median of the coordinates along this dimension.

– Cyclic splitting Similar to the median splitting rules
except the splitting axis is chosen in a cyclic manner.
That is the root will start with the split axis being along
the x-axis, the next level of the tree will then use the y-
axis as the split directions and the next level using the
z-axis.

– Midpoint splitting Similar to the median splitting rule,
the split direction is determined by the greatest variation
in the bounding box of the tree node being split. The split
location is then taken as the mid-point of this side.

Given P , the left and right half spaces can be defined. Line
7 computes the intersection of Y with HL resulting in the
subset YL = {y j ∈ HL}. The Construct K DT ree function
is then called recursively at Line 8 with Y

L as the input,
resulting in the left kd-tree node τ L . A similar procedure is
conducted for the right half space. Line 11 creates a single
tree node andwith references to the left and right child nodes.

Algorithm 5: ConstructKDTree(Y,B)
Input: Set Y of geometric objects and Bounding Box B
Output: A kd-tree τ

1 if termination criteria is met then
2 τ ← K DNode(Y);

3 else
4 Choose splitting plane P;
5 HL ← left half space with upper bound P;
6 HR ← right half space with lower bound P;
7 Y

L ← Y ∩ HL �= ∅;
8 τ L ← ConstructKDTree(YL ,BL );
9 Y

R ← Y ∩ HR �= ∅;
10 τ R ← ConstructKDTree(YR,BR);
11 τ ← K DT ree(τ L , τ R);

12 return τ ;

4.1.2.2 Searching The kd-tree search algorithm is given in
Algorithm 6. The inputs to the search routine are the con-
structed kd-tree, τ , from Algorithm 5 that is rooted at tree
node r and a search domain. The result of Algorithm 6 is
the set of objects, Θ ∈ τ , that have a non-zero intersection
with the search domain S. The search begins by checking if
the root of the input kd-tree is a leaf node. If this condition
is true the algorithm queries each item associated with the
given leaf to determine those that intersect S appending them
to the set Θ . Provided the root of the input kd-tree is not a
leaf node the algorithm proceeds to Line 6, where the split
plane associated with the given node is retrieved. The split
plane,P is then used to define the left half space in Line 7. A
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intersection test between the search region, and the left half
space HL is performed. Since the search region is capable
of intersecting both left and right half spaces each must be
tested independently of the other. If either intersection occurs
the respective child node is used as the input to a recursive
call to Algorithm 6. The resulting sets from Lines 11 and 14
are combined as shown by the union operation at Line 15.

Algorithm 6: SearchKDTree(τ ,S)
Input: Kd-tree τ with root r and search region S
Output: Set of objects Θ intersecting S

1 if r is a leaf node then
2 for x ∈ r do
3 if S ∩ x then
4 Insert x in Θ;

5 else
6 P ← Retrieve split plane or r;
7 HL ← left half space with upper bound P;
8 HR ← right half space with lower bound P;
9 if S ∩ HL then

10 τ L ← left child of r;
11 ΘL ← SearchKDTree(τ L ,S);

12 if S ∩ HR then
13 τ R ← right child of r;
14 Θ R ← SearchKDTree(τ R ,S);

15 Θ ← ΘL ∪ Θ R ;

16 return Θ;

4.1.3 Octree

An octree is a three-dimensional space partitioning data
structure that uses three mutually orthogonal planes to recur-
sively decompose the space into eight axis-aligned boxes, or
octants, at each step. The quad-tree is the two-dimensional
analog to the octree, where instead of the eight axis-aligned
boxes used by the octree, the quad-tree recursively parti-
tions the space into four rectilinear regions or quadrants. An
octree differs from a kd-tree in several ways. The kd-tree
is a binary partitioning data structure in that at each level
the space is decomposed into two sub-regions, where as the
octree decomposes the space into eight sub-regions at each
level. In general, an expression for the size of a kd-tree node
is not possible due to the varying nature of the split location
and direction. The extents of an octree node can be expressed
as

Δxs
i = Δx0i

2s
i = 1, . . . , d. (18)

Here Δxs
i represents the extents of the octree node at level

s of the tree with Δx0 representing the bounds of the root

node. In Eq. 18 the depth value, s, is an identifier on the left
side of the equals sign, but is the power when appearing on
the right hand side.

4.1.3.1 Construction The general procedure for constructing
an octree is given in Algorithm 7. The inputs to the con-
struction routine are the set of geometric objects, Y, and
the bounding box, B, encompassing Y. The output of the
construction algorithm is an octree τ . The routine begins
by checking if the termination criteria has been met. Several
options exist for the termination criteria.Possible termination
conditions include:

– if the number of objects within a leaf falls below a pre-
scribed value

– if the number of subdivisions exceeds a prescribed value
– if the extents of the leaf reaches a minimum size, which
is another form of the max subdivision criteria as the size
of a tree node can be determined at each level of the tree
provided the root node’s extents using Eq. 18.

Once the termination condition is satisfied a leaf node is
constructed and updated with references to the objects that
intersect it. If the termination criteria is not met the algorithm
proceeds to Line 5 where three splitting planes, P1, P2, and
P3, which partition the current tree node into eight equal
sized octants. The partitioning is performed around the cur-
rent tree node’s centroid. The next step involves partitioning
the set of objects Y into eight subsets where the i th subset
contains those objects that intersect child i of the current
node. Following this partitioning the construction routine is
recursively called as shown in Line 9.Once the recursion rou-
tine returns the constructed sub-tree is added to the current
tree node.

Algorithm 7: ConstructOctree(Y,B)
Input: Set Y of geometric objects and bounding box B
Output: An Octree τ

1 if termination criteria is met then
2 Create octree with one leaf node τ ;
3 Store data from Y in τ ;

4 else
5 Compute planes P1,P2,P3 orthogonal to the coordinate

axes;
6 Decompose B into eight octants,{b0,b1, . . . ,b7}, using

splitting planes;
7 for i ← 0 to 7 do
8 Y

i ← Y ∩ bi �= ∅;
9 τ i ← ConstructOctree(Yi ,bi );

10 τ ← Add SubT ree(τ, τ i );

11 return τ ;
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4.1.3.2 Searching The octree search algorithm is given in
Algorithm 8. The inputs to the search routine are the con-
structed octree, τ , from Algorithm 7 that is rooted at tree
node r and the search region. The result of Algorithm 8 is
the set of objects in τ , that intersect the search domain. The
search begins by checking if the root of the input octree is
a leaf node. If this condition is true the algorithm queries
each object associated with the given leaf to determine those
objects that intersect S, appending those that intersect to the
set Θ . Provided the root of the input octree is not a leaf node
the algorithm proceeds to Line 6, where the child nodes that
the search region intersects are determined. This determina-
tion is based on the three planes used to partition the current
node r into octants. This child node is then retrieved and used
as the first argument to a recursive call to Algorithm 8.

Algorithm 8: SearchOctree(τ ,S)
Input: Octree τ with root r and search region S
Output: Set of objects Θ intersecting S

1 if r is a leaf node then
2 for x ∈ r do
3 if S ∩ x then
4 Insert x in Θ;

5 else
6 I ← determine indices of child nodes that intersect S;
7 for ı ∈ I do
8 Θ i ← SearchOctree(τ i ,S);
9 Θ ← Θ ∪ Θ i ;

10 return Θ;

4.1.4 Meshfree details

Here we will bring to attention the way in which the above
algorithms can be used to answer the adjacencies questions
arising in meshfree methods and which data structures are
most applicable. Each of the three data structures described
can be used to determine either Type 1 or Type 2 adjacencies.

Using a spatial partitioning data structure for determining
evaluation point to particle, Type 1, adjacency information
the Case 1a or Case 1b viewpoint is taken with the space
containing the particles being partitioned. For Case 1a the
space encompassing the particle locations and their supports
is used and only the particle locations for Case 1b is used.
The concept of an intersection between the particles and a cell
or node of the data structure is utilized in each construction
algorithm. For the Case 1a this intersection is between the
support of the particle, where as for Case 1b this intersection
only takes into account the spatial position of the particle.
Therefore the intersection used in the Case 1b construction
can result in only a single intersection, i.e., a particle can

associate with at most one cell or node. This differs from
Case 1a where a particle support can intersect multiple cells
or tree nodes.

The search is then conducted per evaluation point resulting
in those particles that contribute at the given evaluation point.
Each of the search algorithms requires a search domain. The
search region for the Case 1a is the evaluation point location
or a region with zero extent. The search method in Case 1b
requires a search domain be assigned to the evaluation point.
In general the particles are associated with a support size not
the evaluation point. So a method to choose a bounds for the
search must be applied. A solution that is guaranteed to work
is to choose the supremum of the particle supports. How-
ever, this approach could result in a large number of particles
needing to query the evaluation point if particle distribution
is graded.

When determining the particle to evaluation point, Type
2, adjacency information the spatial partitioning data struc-
tures decompose the space containing the evaluation points
and search per particle as described by Case 2. The only
aspects that differentiate this case from Case 1 are the input
arguments and the results. Here the construction is done on
the evaluation point locations instead of the particle loca-
tions. The search for Case 2 is done per particle with the
search region being the particle’s support domain.

4.2 Object partitioning

Object partitioning structures recursively subdivide the col-
lection of primitives into disjoint sets. Therefore, object
hierarchies do not suffer from the additionalmemory require-
ment associated with multiple references to the same object,
since the object is at most referenced once. Data structures
of this type have received little attention in the context of
meshfree methods. This could be due to the fact that query-
ing a single point is not a common operation; instead, all of
the points of interest are evaluated at once making the spatial
partitioning data structures constructed of evaluation points
feasible. However, a data structure of this type is not feasible
if all the evaluation points are not known apriori. This case
may arise, for example, in problems involving contact, where
the points of contact are part of the problem to be solved
[21]. Another disadvantage of determining adjacency infor-
mation on a per particle basis, is the race conditions that are
present, which requires special attention to allow for paral-
lelization. The race condition potentially arises when storing
the shape functions from multiple particles at the same eval-
uation point. A final disadvantage to using a Case 2 structure
for shape function computations occurs when one prefers to
compute shape functions on the fly, rather than pre-compute
and store them. In the former case, one would have to eval-
uate the set Θ J from Eq. 14. This would be very costly.
Alternatively a spatial partitioning data structure following
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the Case 1a or Case 1bmantra can be used as described in the
previous sections.While these structures do address the chal-
lenges associated with the Case 2 variants, they do present
their own challenges.

4.2.1 Bounding volume hierarchy

Awell-known object partitioning data structure is theBound-
ing Volume Hierarchy (BVH). As object partitioning data
structures are designed to partition objects with non-zero
volume they naturally address the adjacency query cor-
responding with Case 1a. Bounding Volume Hierarchies,
introduced in [27], partition the set of objects into a hierar-
chy of non-disjoint sets. References to the objects are stored
in the leaves and each node stores a bounding box of the
primitives in the nodes beneath it.

4.2.1.1 ConstructionThe construction of a BVH is performed
on the particles accounting for their support domains. The
BVH construction shown in Algorithm 9 resembles the con-
struction of the kd-tree in Algorithm 5. Comparison of the
two algorithms shows the only apparent difference, with
the exception of kd-tree being replaced by BVH, being the
computation of the bounding-box at Line 1 of Algorithm 9.
However, another significant difference exists that is masked
by the abstract intersection between the particles in X and
the half spaces. These intersections for the Case 1a kd-tree
were between the support of the particles and the half spaces,
but the intersections shown in Algorithm 9 are between the
coordinates of the particles and the half spaces. Since the clas-
sification is based on a spatial position i.e. not on a volume
there are no repeated references as in theCase 1a spatial parti-
tioning structures. Once the set of particles have been placed
in their respective tree node the newly created leaves must
recompute their bounding boxes accounting for the support
of the particle. In contrast to spatial partitioning data struc-
tures where the splitting plane defines one of the extents of
a tree node’s bounding box, the extents of the bounding box
for tree nodes can span across this plane overlapping one
another.

4.2.1.2 Searching As the BVH is constructed of particles,
the goal of the search algorithm is to query the BVH with an
evaluation point and determine Type 1 adjacency. The search
process shown inAlgorithm 10 begins with a point inside test
between the root’s bounding box and the evaluation point. If
the point is not inside the root’s bounds then the search is
terminated. Provided the evaluation point is inside the root’s
bounding box the search proceeds by determining if the root
is a leaf node. If the node is a leaf the algorithm iterates
through the particles associated with the node and performs
a containment query between the evaluation point and each
particle. If the root has children then each child node of r

Algorithm 9: ConstructBVH(X)
Input: Set of particles X
Output: A BVH τ

1 B ← ComputeBoundingBoxSupports(X);
2 if Termination criteria is met then
3 τ ← BV H(B,X);

4 else
5 Choose splitting plane P;
6 HL ← left half space with upper bound P;
7 HR ← right half space with lower bound P;
8 X

L ← X ∩ HL �= ∅;
9 τ L ← ConstructBVH(XL );

10 X
R ← X ∩ HR �= ∅;

11 τ R ← ConstructBVH(XR);
12 τ ← BV H(B, τ L , τ R);

13 return τ ;

is retrieved and a point inside test is used to determine if
the search should proceed with a recursive search using that
node. Once each child node has been processed the resulting
sets are combined and returned. While the BVH search rou-
tine, shown in Algorithm 10, follows a similar procedure to
that of the kd-tree search routine previously discussed sev-
eral key differences exist. The first is the determination of
whether a child node should be processed. This selection
was done using a splitting plane in the kd-tree. This differs
from the BVH which conducts a point inside bounding box
test. Another difference is the combining of results from each
subtree search. For the BVH these results are guaranteed to
be disjoint allowing for a simple structure to be used for
combining these results. However, the Case 1a kd-tree vari-
ant the results were not necessarily disjoint requiring a more
sophisticated data structure or algorithm for combining the
results.

4.2.1.3RemarksUnlike the spatial partitioningdata structures
the BVH partitions the set of particles treating them as indi-
vidual bounding boxes. Therefore, the BVH falls under the
Case 1a description and is best suited for determining Type
1 adjacency. If the BVH were to be constructed of objects
with no extents it would be identical to the kd-tree.

4.2.2 A new support tree structure

We now introduce a new data structure that can be classified
as an object partitioning structure with a tree-type hierarchy.
The proposed data structure will be composed of a root node,
collection of internal nodes, and leaf nodes. The root node
and internal nodes are identical in that they are composed
of three child nodes, split plane and bounding box. The leaf
nodes are similar, but instead of a split plane and child nodes
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Algorithm 10: SearchBVH(τ ,y)
Input: BVH τ rooted at r, Evaluation point y
Output: Set of particles Θ with y in their support

1 if r is a leaf node then
2 for x ∈ r do
3 if y ∈ supp(x) then
4 Insert x in Θ;

5 else
6 BL ← Retrieve left child’s bounding box;
7 BR ← Retrieve right child’s bounding box;
8 if y ∩ BL then
9 τ L ← left child of r;

10 ΘL ← SearchBVH(τ L ,y);

11 if y ∩ BR then
12 τ R ← right child of r;
13 Θ R ← SearchBVH(τ R ,y);

14 Θ ← ΘL ∪ Θ R ;

15 return Θ

they contain references to the data that is contained within
them.

4.2.2.1 Construction The construction uses a divide-and-
conquer algorithm, also referred to as top-down, that groups
the objects according to a splitting heuristic. The algorithm
begins with all the particles at the top level or root as illus-
trated in Fig. 4. The bounding box of the root node is taken
as the minimum box that contains the particles and their
supports. Construction proceeds with the determination of
the location and direction to be used for the splitting of the
objects. The current approach employs a mid-point splitting
heuristic, where the split direction is determined by comput-
ing the largest deviation along the current node’s bounding
box. The location is then taken to be the mid-point along this
direction. Considering the domain coverage in Fig. 5a and the
greatest deviation to be along the horizontal or x-direction,
with the split plane shown as the blue vertical line.

With the split plane determined, the particles are classified
as strictly left, intersecting the split plane, or strictly right.
This classification is done by determining whether the given
particle’s support bounding box overlaps the split plane. If
the bounding box does overlap, the particle is classified as
belonging to child one; if the bounding box does not overlap,
then the particle is classified as belonging to child zero or
two. This depends onwhich side of the split plane the support
bounding box lies, with child zero corresponding to the left
of the split plane and child two corresponding to the right.
In Fig. 5b the magenta boxes represent the supports of the
particles that belong to child one, those particles with dashed
lines that are left of the blue line belong to child zero with the
remaining particles belonging to child two. As the objects are
partitioned and distributed to the appropriate child nodes, the

Fig. 4 Domain coverage

bounding box for each new child node is updated to enclose
the particles and their supports. This procedure is repeated
for each child node until a termination criteria is met. The
termination criteria used in this paper occurs when all the
particles’ supports overlap the splitting plane. Pseudo code
for the construction is given in Algorithm 11.

Algorithm 11: ConstructSupportTree(X)
Input: Set of particles X
Output: A Support Tree τ

1 Choose splitting plane P;
2 HL ← left half space with upper bound P;
3 HR ← right half space with lower bound P;
4 for x ∈ X do
5 if supp(x) ∩ HL �= ∅ && supp(x) ∩ HR == ∅ then
6 Insert x into XL

7 else if supp(x) ∩ HL �= ∅ && supp(x) ∩ HR �= ∅ then
8 Insert x into XC

9 else
10 Insert x into XR

11 if Cardinali t y(XL ) == 0 && Cardinali t y(XR) == 0 then
12 Create Support Tree with center leaf node τ ;
13 Store data from X into τ ;

14 else
15 if Cardinali t y(XL ) �= 0 then
16 τ L ← ConstructSupportTree(XL );
17 τ ← Add SubT ree(τ L );

18 if Cardinali t y(XC ) �= 0 then
19 τC ← ConstructSupportTree(XC );
20 τ ← Add SubT ree(τC );

21 if Cardinali t y(XR) �= 0 then
22 τ R ← ConstructSupportTree(XR);
23 τ ← Add SubT ree(τ R);

24 return τ ;
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Fig. 5 Construction of support
data structure. a Splitting plane
location for root node, b
partitioning of root into child
leaves

(a) (b)

Fig. 6 Particle distribution for
example problems. a Scarlet
Macaw, b Stanford Bunny

4.2.2.2 SearchingGiven a spatial location, the objective of the
search algorithm is to determine the particles that contribute
at the given point. The search begins with a containment
check between the root’s bounding box and the provided
point. If the containment inquiry returns false then the search
is terminated. If the point is within the root’s bounding box,
then a check is done to determine if the root is a leaf node. If
the node is a leaf node the algorithm iterates through the par-
ticles associated with the node and performs a containment
query between the point of interest and each particle. If the
root has child nodes then the search point is checked against
the root’s split plane to determine the side it lies and the child
node corresponding to that side is tested for existence along
with child node one. Each of these nodes if they exist are
processed following the same procedure used on the root of
the tree.

4.2.2.3 Dynamic insertion In order for the data structure to
be applicable for analysis that employs refinement based on
insertion of new particles i.e. h-refinement, a dynamic inser-
tion algorithm is necessary. To add a particle to an existing
tree, the algorithm follows a similar procedure to that of the

construction algorithm. The particle must first traverse down
the tree using the particles support bounding box and the
current nodes’s split plane to determine which child node to
proceed to. For each interior node traversed, the bounding
box must be updated to enclose the support of the particle.
Upon reaching a leaf, a reference to the particle is added
to existing list of references and the bounding box for the
leaf is updated. The leaf is then processed to test whether
a split needs to occur following the procedure described in
the construction algorithm. To avoid splitting prematurely a
minimum split requirement can be enforced.

5 Related work

Most of the work related to improving the adjacency infor-
mation searches in meshfree methods can be classified as
one of the aforementioned cases coupled with the previously
discussed data structures. An early overview of various tech-
niques for fixed radius nearest neighbor searching are given
in [6].
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Fig. 7 Close-up view of the
particle distribution of Scarlet
Macaw skull

Algorithm 12: SearchSupportTree(τ ,y)
Input: SupportTree τ rooted at r, Evaluation point y
Output: Set of particles Θ with y in their support

1 if r is a leaf node then
2 for x ∈ r do
3 if y ∈ supp(x) then
4 Insert x in Θ;

5 else
6 BL ← Retrieve left child’s bounding box;
7 BC ← Retrieve center child’s bounding box;
8 BR ← Retrieve right child’s bounding box;
9 if y ∩ BL then

10 τ L ← left child of r;
11 ΘL ← SearchSupportTree(τ L ,y);

12 if y ∩ BC then
13 τC ← center child of r;
14 ΘC ← SearchSupportTree(τC ,y);

15 if y ∩ BR then
16 τ R ← right child of r;
17 Θ R ← SearchSupportTree(τ R ,y);

18 Θ ← ΘL ∪ ΘC ∪ Θ R ;

19 return Θ

In [22,23], a bucket algorithm is used to reduce the
computational cost associated with determining adjacency
information. The algorithm allows a maximum number of
particles to reside within each bucket. The allowable num-
ber, also known as the bin size, is defined according to the
size of the problem and the maximum number of particles
allowed in a support domain. If the number of particles in the
bucket exceeds the bin size the bucket is partitioned into two
sub-buckets. The subdivision is repeated recursively on each
sub-bucket until the number of particles in a bucket is less
than or equal to the bin size. Generally speaking, the bucket
algorithm is similar to the Case 1b kd-tree and octree.

The authors in [18] employ a strategy similar to the regular
grid Case 2. Here the authors use a rectangular grid with each
region containing a set of Gauss points, which is referred to
as aGauss region. Then given a particle the region containing
the spatial coordinates of the particle can easily be computed.
Once the Gauss region containing the particle is located the
neighboring Gauss regions that have non-zero intersection
with the particle’s domain of influence are determined and
the Gauss points within the regions are queried to determine
if they fall with the particle’s support domain.

An analysis of various techniques for increasing the effi-
ciency of the shape function computations in RKPM and
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Fig. 8 Memory requirements
corresponding to Case 1 data
structures. Memory versus
number of particles for a Scarlet
Macaw and b Stanford Bunny

(a)

(b)

20000 40000 60000 80000 100000 120000 140000 160000
0

2

4

6

8

10

12

14

Number of Particles

M
em

or
y 

(M
b)

quadtree
1a

grid
1a

kdtree
1a

bvh

support tree

quadtree
1b

grid
1b

kdtree
1b

0 1e+06 2e+06 3e+06 4e+06
0

100

200

300

400

500

600

Number of Particles

M
em

or
y 

(M
b)

octree
1a

grid
1a

kdtree
1a

bvh

support tree

octree
1b

grid
1b

kdtree
1b

MLS is discussed in [2]. The authors note the bottleneck
associated with determining adjacency information and sug-
gest the use of a kd-tree. The authors do not explicitly state if
the kd-tree is constructed on the particles, or the evaluation
points. In their description of the kd-tree it is clear that they
are using a variation that does not consider the volumes of
the particles in the construction.

An approach based on hash tables and regular grids is
discussed in [28]. The neighbour search problem as it per-
tains to SPH is addressed in [30]. Here the authors present
a search algorithm, based on the plane sweep algorithm to
efficiently answer the neighbour search problem. A block-

based searching technique is introduced in [9] for efficient
computation of partition of unity interpolants. The authors
in [17] address the challenge of locating the particles con-
tributing at an evaluation point using quadtrees and octrees
constructed of particles accounting for their supports. The
implementation of the search algorithms given in [17] for
parallel computing are given in [8].

6 Performance comparison

In this section, the performance of the previously discussed
data structures will be presented. A complete comparison

123



1476 Computational Mechanics (2018) 62:1461–1483

Fig. 9 Memory requirements
corresponding to Case 2 data
structures for Ex. 1 and 2.
Memory versus number of
evaluation points for a Scarlet
Macaw and b Stanford Bunny
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of all the methods under a wide range of the various user-
supplied parameters or algorithm choices is too voluminous
for a journal article. Rather, we take the approach of making
commensurate, as nearly as possible, choices for each of the
methods so that we can make a fair comparison. Then, we
show how the memory cost, search and construction times
scale with the number or particles or evaluation points. For
any given data set, any of the methods may be significantly
improved by optimizing the selection of parameters. We will
include a brief guide on our opinion in choosing a method.

Two meshfree domains are used to measure the construc-
tion time, search time, andmemory footprint for eachmethod
on both structured and unstructured arrangements of parti-
cles. All of the data structures were implemented in C++ and
run on an Intel Xeon CPU E5-2680 v2 @ 2.80 GHz with
64 GB of RAM. The unstructured data is two-dimensional
and comes from themicro-CT scan of a Scarlet Macaw skull,
shown in Fig. 6a, with discretizations ranging from 31,139

to 157,317 particles. Figure 7 shows a close up view of the
particles and their distribution. Clearly, this particle distribu-
tion is graded and shows large regions with no particles, and
small regions with varying particle density. It should provide
a good test for both spatial and object partitioning data struc-
tures and their ability to handle a wide variation in particle
distribution and spacing. The structured data example is a
particle distribution of the Stanford Bunny,1 with discretiza-
tions ranging from 196,017 to 3,793,349 particles as shown
in Fig. 6b. It is worth recapping that the approaches of Case
1a andCase 1b seek to solve the same problem, namely deter-
mining what particles have non-zero contribution at a given
evaluation point i.e., Type 1 connectivity. Case 2 is different,
in that it is best suited for determining what evaluation points
lie in the support of a given particle i.e., Type 2 connectivity.
Before discussing the performance heuristics, the factors that

1 Available at https://graphics.stanford.edu/data/3Dscanrep/.
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Fig. 10 Construction time
corresponding to Case 1 data
structures. Construction time
versus number of particles for a
Scarlet Macaw and b Stanford
Bunny
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impact these results for each of the data structures warrants a
discussion. Recall from the previous sections that discussed
the algorithms for constructing and searching the various data
structures being discussed in this paper that all the construc-
tion routines required some user defined parameters, which
can have significant impacts on the performance of the data
structures. In addition to these parameters, the actual imple-
mentation of these data structures can have drastic effects on
performance. In all of our implementations, an effort to pro-
gram the best version of eachmethodwasmade. The grid data
structure required a method to determine the grid resolution.
The numerical studies conducted in this paper determined

the resolution with Eq. 15. The build factor, γ , used to deter-
mine the grid resolution was set to one resulting in the total
number of grids being approximately equal to the number
of particles. While using a larger value for γ would result
in a more refined grid and potentially better search times,
this would also result in a larger memory footprint. Instead a
smaller value of γ could be used resulting in slower search
times, but the memory costs would also be reduced. The
kd-tree requires a splitting rule and termination criteria be
defined. The kd-trees in this study used a mid-point splitting
rule with the split axis corresponding to the dimension with
the greatest deviation of a tree node’s bounding box. The ter-
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Fig. 11 Construction time
corresponding to Case 2 data
structures. Construction time
versus number of evaluation
points for a Scarlet Macaw and
b Stanford Bunny
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mination criteria was satisfied when the number of objects
associated within a tree node fell below a user defined thresh-
old or if the volume of the node’s bounding box became less
than the volume of the largest support size. While it is true
that the first termination criteria will eventually be satisfied,
the Case 1a kd-tree requires objects that overlap the splitting
plane be associated with each child node requiring numer-
ous references to the same object resulting in a large memory
footprint as will be discussed in the next section. The Case
1b and Case 2 data structures do not suffer from this and a
bin size of one was used for both kd-tree variants. As with
the kd-tree, the BVH requires a splitting rule and termina-
tion criteria. The same splitting rule and similar termination
conditions used for the kd-tree were employed for the BVH
in this study. Differing from the Case 1a kd-tree, the BVH
partitions the objects and therefore does not require multiple
references to the same object and cannot create tree nodes
of a size that is significantly smaller than particles’ support
sizes reducing the potential growth in memory. Therefore

no restriction on the volume of a tree node was necessary.
Several bin sizes were tested and from these trials a bin size
of one was chosen as it provided the best performance in
regards to searching at a higher memory cost, but the mem-
ory cost were not considered substantial. Depending on the
splitting rule used the proposed data structure may not need
a termination criteria. By using a mid-point splitting rule the
termination criteria is defined once all the objects overlap
the splitting plane. This removes an element of user inter-
action and the potential for a poorly chosen value that could
result in an ill-performing data structure. However, the use of
a different splitting rule may require a different termination
criteria. The implementation used in this paper employed a
mid-point splitting rule and therefore did not require a user
defined termination criteria.

6.1 Memory cost

The memory usage for those data structures constructed
based on Case 2 are independent of the number of particles,
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Fig. 12 Search time versus
number of evaluation points for
Case 1 data structures for the
Scarlet Macaw (a) and Stanford
Bunny (b) discretized with
122,334 and 1,284,920 particles
respectively
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as they are constructed of evaluation points. The memory
usage for the tree based data structures is dependent on both
the termination criteria and for the BVH, Kd-tree, and Sup-
port tree the splitting method is also a factor. The memory
for the Case 1a and Case 1b data structures are plotted on
the same graph for each example in Fig. 8a, b, respectively.
From the figures, it is clear that among theCase 1a implemen-
tations, the grid, depicted by the magenta line, exhibits the
worst memory usage. However, for the Case 1b approaches,
the grid appears to have the lowest memory footprint, which
clearly is due to the fact that the particle support size is not
taken into account. Considering only the Case 1a data struc-

tures the proposed Support Tree data structure, shown here
by the green line, has the lowest memory impact for the sec-
ond example, Fig. 8b, and is nearly identical to the kd-tree
and octree for the first example with all three contending for
the lowest memory impact. The grid data structure has the
lowest memory footprint for Case 2 searches as shown in
Fig. 9a, b.

6.2 Construction cost

Here, the time required to construct the various data struc-
tures is analyzed. A direct comparison of the three cases
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Fig. 13 Search time versus
number of evaluation points for
Case 2 structures for the Scarlet
Macaw (a) and Stanford Bunny
(b) discretized with 122,334 and
1,284,920 particles respectively
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here is not feasible, as the data structures associated with
Case 1a and Case 1b are constructed on the set of particles,
where as those data structures associated with Case 2 are
constructed on the set of evaluation points. The construc-
tion times for Case 1b approaches are significantly lower
than Case 1a approaches, since accounting for particle sup-
port size is not necessary. For a mechanics problem using
a meshfree approximation method the construction routines
will generally occur once at the beginning of the simulation
and could be conducted as a pre-processing step obviating
the time from the main processing step entirely. However, if
a refinement method is being used or evolving topologies are
of interest the ability to quickly reconstruct the data struc-
tures could become important. The time required to construct
the data structures is represented graphically in Figs. 10 and
11.

6.3 Search cost

In this section,we report the time it takes to search the various
structures for computing the connectivities used in meshfree
methods. Note that construction costs are one-time costs for
a given problem, whereas the search times are accumulated
over many calls. In general, many searches will be performed
over the course of a computation. In some cases, for example
constructing a stiffness matrix, the number of searches is
known apriori, but in other cases, e.g. contact, the number
of searches is not. Figures 12, 13, 14 and 15 show the time
required to search the data structures for the given number of
particles and evaluation points. For both examples the most
efficient data structure is the regular grid constructed on the
particles accounting for their support size.
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Fig. 14 Search time versus
number of particles for Case 1
structures for both examples
using 140,625 evaluation points
for the Scarlet Macaw (a) and
8,000,000 evaluation points for
the Stanford Bunny (b)
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6.4 Guide to choosing a search structure

As previously mentioned, one can tune any of these meth-
ods to improve search times or reduce memory cost, so it
is not possible to recommend a single ‘best’ data structure.
However, after many experiments, we can say that, in gen-
eral, a grid structure or the support-tree structure will be a
good choice. The grid, in one of the Case 1 scenarios, will
substantially sacrifice memory for speed, or speed for mem-
ory. On the other hand, while it is not usually optimal in
either speed or memory, the Support Tree does perform well
in both regards in the two examples presented. If one needs

or desires a single structure to be a work horse, performing
well in most situations without user interaction, the support
tree may be the best choice. Further, the Support Tree scales
very well with number of particles stored, or in number of
evaluation points searched. On the other hand, if either speed
or memory footprint are paramount at the expense of all else,
a properly tuned grid will likely be the best choice.

7 Conclusion

The computational expense associated with determining
adjacency information presents a performance bottleneck
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Fig. 15 Search time versus
number of particles for Case 2
structures for both examples
using 140,625 evaluation points
for the Scarlet Macaw (a) and
8,000,000 evaluation points for
the Stanford Bunny (b)
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for meshfree methods. The present work defined the three
adjacency queries that commonly arise when employing a
meshfree method. An overview of several data structures and
the approaches to applying these within the context of mesh-
free methods were discussed. In addition to the discussion on
existing data structures, a new data structure was proposed
with the associated algorithms for construction, searching,
and dynamic insertion.

The numerical results show the grid data structure is the
best, both in memory and speed, for Case 2 searches, i.e.
finding evaluation points within a given particle’s support.
On the other hand, the newly proposed Support Tree showed
good performance simultaneously in bothmemory usage and
search speed and scaled very well with increasing problem
sizes.

As previously mentioned, several of the data structures
including the proposed data structure require the choice of a
splitting plane during construction. A simple choice that was

used for those structures presented in this paper is the mid-
point splitting along the axis with greatest extent. While this
does appear to provide good results and ease of implementa-
tion it may not result in an optimal partitioning, resulting in a
negative impact on search times. The study of other heuristics
was beyond the scoped of this paper, but the authors believe
could result in the tree-based data structures out performing
the grid in regards to query times. This belief is somewhat
motivated by the performance gains seen in computer graph-
ics where a cost function is employed to determine the best
split plane.

Within this study, little was discussed on dynamically
evolving domains such as those occurring in problems
involving fracture and fragmentation. Obviously those data
structures discussed within the context of Case 2 are not
affected by such problems, but those Case 1a and Case 1b
data structures are. The proposed work discussed a dynamic
insertion algorithm, but the impact dynamic insertions will
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have on the performance of the structure still warrants further
investigation.

Several remarks were made regarding parallel computing
throughout the paper, but they were in the context of the
shared memory paradigm. As modern infrastructures rely
on the distributed memory paradigm, further examination
of the applicability of the algorithms discussed should be
addressed.
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