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Abstract
This paper presents the development and numerical implementation of a state variable based thermomechanical material
model, intended for use within a fully implicit finite element formulation. Plastic hardening, thermal recovery and multiple
cycles of recrystallisation can be tracked for single peak as well as multiple peak recrystallisation response. The numerical
implementation of the state variable model extends on a J2 isotropic hypo-elastoplastic modelling framework. The complete
numerical implementation is presented as anAbaqusUMATand linked subroutines. Implementation is discussedwith detailed
explanation of the derivation and use of various sensitivities, internal state variable management and multiple recrystallisation
cycle contributions. A flow chart explaining the proposed numerical implementation is provided as well as verification on the
convergence of the material subroutine. The material model is characterised using two high temperature data sets for cobalt
and copper. The results of finite element analyses using the material parameter values characterised on the copper data set are
also presented.

Keywords Recrystallisation · Constitutive behaviour · Mechanical threshold strength · Elasto-viscoplastic material · Abaqus
UMAT

1 Introduction

To capture the dominant strengthening and softening mech-
anisms associated with microstructural changes in high
temperature metal processing requires the implementation of
sophisticated material models. To model material behaviour
subject to recrystallisation, one option could be to link multi-
plemodel resolutions.Multi scale recrystallisationmodelling
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strategies could involve linking a finite element code with
Monte Carlo Potts [23,25], cellular automaton (CA) [21,43],
phase field (PF) models [10,39,53], vertex or front-tracking
[38,54] as well as level set methods [7,22]. In terms of recrys-
tallisation model developments linked to dislocation density
based mechanical response models, Lee and Im [36] cou-
pled a CA model to a Kocks Mecking (KM) [32,33] type
dislocation density based model formulation. Takaki et al.
[49] also recently linked a multi-PF dynamic recrystallisa-
tion model to macroscopic mechanical response using J2
flow theory. In their approach the meso-scale microstruc-
ture and large deformation elastoplastic finite element values
are linked assuming an average dislocation density for each
grain, evolving according to a KM model.

Our primary application of interest is to simulate indus-
trial metal forming processes such as hot rolling [28]. Of
specific interest is the ability to design a rolling schedule
i.e. how many roll passes are required, and what percentage
reduction is required per pass. Our material model choice
should therefore be able to be integrated into a finite element
environment, resulting in a simulation tool that can solve
numerous roll pass schedules efficiently using standard desk-
top computational resources. Industrial forming processes
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typically do not contain plastic instabilities or localisation,
therefore a material model with an embedded length scale
is not required to obtain mesh independent results. Further-
more, a process such as hot rolling does not proceed till
failure, therefore thematerial model does not require damage
or failure descriptions. Therefore an isotropic continuum or
mean field constitutive model is an attractive option for this
application, since it is computationally efficient. The mate-
rial modelmust however contain all the required deformation
mechanicsms that are typically active during hot forming.

The proposed model captures the dominant strengthen-
ing and softening physics associated with themicrostructural
changes of metallic materials. Some of the physical mecha-
nisms associated with these microstructural changes include
strain hardening, dynamic and thermal recovery as well as
static and dynamic recrystallisation. As foundation formodel
development, the KM formulation is a popular choice in dis-
location density basedmodels. This formulation incorporates
temperature and rate dependent deformation mechanisms.
The hardening behaviour of a material can be modelled
within this formulation via the average dislocation density
or some other internal state variable (ISV). Such hardening
models can even be done for alloys with multiple phases that
is hot worked [17] or linked to additional evolution equa-
tions to model recrystallisation kinetics [8,19,27,28,48]. A
continuum or mean field modelling approach to recrystalli-
sation could further have critical recrystallisation criteria that
depend explicitly on strain, strain rate or another critical value
of stored energy [3,42,45]. If high energy grain boundaries
are the dominant recrystallisation mechanism, it is also pos-
sible to base the model kinetics on the mobility of grain and
subgrain boundaries with the driving force provided by the
stored energy in the dislocation structure [11].

Using mean field models, macroscopic material response
can be modelled as an averaged result over a representa-
tive set of spherical grains subject to discontinuous dynamic
recrystallisation [6,40]. In these models, different evolution
equations for the dislocation density, stress–strain relation-
ship and grain size evolution are considered. Each grain has
a set of state variables to represent grain size and dislocation
density. A grain either grows or shrinks as a result of interac-
tion with the surrounding material, typically idealised using
mean field values. During recrystallisation, new grains are
nucleated using a phenomenological rate equation and hard-
ening follows the KM theory. Chaboche-type hardening can
also be used while new grains nucleate within existing mate-
rial once sufficiently high energy density allows it [44]. Grain
growth as a result of grain boundary energy and pinning as
a result of the precipitation and dissolution of particles are
also taken into account in the mean field approach of Riedel
and Svoboda [44].

On the other hand, continuum models using unified sets
of constitutive equations may be developed. Baron et al.

[5] for example use a continuum approach to model the
microstructure evolution with dynamic recrystallisation of a
high strength martensitic steel. The strong dependence of the
dynamic recrystallisation kinetics on the initial microstruc-
ture are taken into account during their model development.
Another KM based continuum material model by Lin et al.
[37] makes use of a normalised dislocation density variable
coupled with evolution equations on the average grain size
as well as recrystallised volume fraction. They use a set of
unified viscoplastic equations tomodel a two roll-pass reduc-
tion schedule. The same continuum model was also recently
used to model the microstructural evolution during hot cross
wedge rolling [29], illustrating the continued usefulness and
relevance of continuum based recrystallisation models in the
finite element simulation of material processing.

In the model for static and dynamic recrystallisation vali-
dated by Brown and Bammann [8], the KM work hardening
theory is again used as foundation to the constitutive formu-
lation. Statistically necessary dislocation density plays the
role of a primary stress-like ISV. The effect of geometrically
necessary dislocations are also included using a stage IV
stress-like work hardening variable [35]. Recrystallisation
through predominantly high energy grain boundary driven
kinetics is incorporated based on a continuum approximated
average grain boundary mobility and driving pressure [11].
The model has the ability to represent multiple cycles of
recrystallisation.

In this paper, much of the same recrystallisation theory
of Chen et al. [11] as used by Brown and Bammann [8] is
considered, but within a dislocation density ratio based mod-
elling framework built in turn on Estrin’s [15] constitutive
model and the kinetics of the Mechanical Threshold Stress
(MTS) [18] model. To the authors’ knowledge, these mod-
elling components have never been combined before in this
fashion and it effectively expands the range of temperatures
where the popularMTSmodel could be applied. In themodel
presented and implemented in this paper, the choice of inter-
nal state variables, evolution equations and kinetic equation
is therefore different from that of Brown and Bammann [8].

Specific focus is also given in this paper to incorporating
the model into a fully implicit finite element environ-
ment, which was not done by Brown and Bammann [8]. A
fully implicit formulation requires the stress derivative with
respect to the strain increment, and this paper is the first
to provide these non-trivial derivations and implementation.
The current implementation is limited to isothermal analy-
ses, since the derivative of the stress update with respect to
temperature is not yet implemented. The proposed model is
used in plane strain, axisymmetric and full three dimensional
finite element analyses. The finite element implementation
uses effective internal state variable management and an
incrementally objective Abaqus [1] user material (UMAT)
framework.
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The main structure of this paper is organised into five
sections. First the material model framework as seen from
a hypo-elastoplastic treatment of numerical plasticity is
discussed in Sect. 2. The theory and development of the con-
stitutive model, ignoring the effects of recrystallisation, are
then covered in Sect. 3. Section 4 is devoted to the recrys-
tallisationmodelling approach. Themodel is characterised to
experimental data in Sect. 5 and used in a finite element anal-
ysis of a compression test in Sect. 6. The appendices contain
a detailed numerical implementation into an Abaqus UMAT
framework and the associated Fortran subroutines. While
Abaqus is used in this paper, much of the subroutines may
be used “as-is” in other FEA packages where Fortran user
materials are possible. The detailed implementation, flow
charts and analytical sensitivities may also be used to expe-
dite implementation into a completely different format.

2 Numerical material model foundation

The paper derives and implements a model for static and
dynamic recrystallisation as in the work by Brown and Bam-
mann [8], but within a Mechanical Threshold Stress (MTS)
[18] type model framework. As in the MTS model, the foun-
dation of our constitutive model is also based on the KM
work hardening theory while the effect of geometrically
necessary dislocations is included using the stage IV work
hardening model of Kok et al. [35]. This introduces a second
internal state variable namely the average slip plane lattice
misorientation. The recrystallisation kinetics of the model is
consistent with that of Brown and Bammann [8], but instead
of considering stress like ISVs we base recrystallisation on
the dislocation density ratio and the average slip plane lattice
misorientation.

As in the incrementally objective implementation of the
MTS model by Mourad et al. [41], this material model is
coded into an elastic trial—radial return type algorithmic
implementation user material (UMAT) for J2 isotropic hypo-
elastoplasticity. The incrementally objective Abaqus UMAT
framework is attached in Appendix B. This framework is
described and successfully verified against the nativeAbaqus
implementation in Van Rensburg’s PhD thesis [26]. In the
user material framework a purely elastic region is assumed
to enclose the origin in stress space and the total velocity
gradient is additively decomposed into an elastic and plastic
component [46]. All the relevant tensors are corotated within
Abaqus resulting in an incrementally objective elastoplastic
implementation.

In general, the components of the total strain rate tensor
ε̇i j within the model framework are additively decomposed
into the elastic ε̇ei j and plastic ε̇

p
i j components

ε̇i j = ε̇ei j + ε̇
p
i j . (1)

The elastic part obeys Hooke’s law

ε̇ei j = C−1
i jkl σ̇kl , (2)

where

C−1
i jkl = 1

2μ

(
δikδ jl − ν

1 + ν
δi jδkl

)
. (3)

σ̇i j is the time derivative of the stress tensor, μ is the shear
modulus, ν is Poisson’s ratio and δi j represents Kronecker’s
delta. The temperature dependent shear modulus is deter-
mined using the model developed by Varshni [52],

μ(T ) = μr − Dr

exp (Tr/T ) − 1
, (4)

where μr , Dr and Tr are reference material constants while
T is the absolute temperature. Themodel in Eq. (4) has previ-
ously been used in conjunction with the KMwork hardening
theory [4,20,35].

The plastic part of the strain rate tensor takes the form of
the Lévy–von Mises equation

ε̇
p
i j = 3

2

α̇

σvM
si j , (5)

where si j are the components of the deviatoric stress, α̇ is the
equivalent plastic strain rate and σvM the von Mises equiva-
lent stress. Considering plastic isotropy of the material, the
effective von Mises plastic strain rate and stress are deter-
mined by

α̇ =
√
2

3
ε̇
p
i j ε̇

p
i j and σvM =

√
3

2
si j si j . (6)

The effective yield stress is

σy = σ̂a + Sε(α̇, T )σ̂ε, (7)

where σ̂ε represents the evolving thermal component of the
threshold stress representing the material state. σ̂a represents
the athermal stress component while Sε is a temperature and
equivalent strain rate dependent scaling function [18].

3 Constitutive model

We have yet to consider options for the scaling function Sε

and the evolving thermal component that define the consti-
tutive model within the presented framework. The scaling
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function Sε is based on the choice of kinetic equation or evo-
lution of plastic flow. Three typical scaling function choices
are the power law [31], the hyperbolic sine form [8] or a
scaling function based on that of the Mechanical Threshold
Stress (MTS) model [18]. In this study we consider the latter
which is given by

Sε(α̇, T ) = μ

μr

[
1 −

[
T

a0μ
ln

(
ε̇0

α̇

)]1/q]1/p

, (8)

with a0 a convenient constant introduced here to replace
g0b3/kB in the MTS formulation. Here, g0 is the normalised
activation energy, b is the length of the Burgers’ vector and
kB is the Boltzmann constant. ε̇0 is taken as a material con-
stant associated with the mobility of dislocations. Lastly, p
and q are statistical parameters that characterise the shape of
the obstacle profile [18]. p is usually chosen between 0 and
1, while q is between 1 and 2.

In the classic implementation of an MTS type model, the
evolving thermal stress component σ̂ε in Eq. (7) is used as an
internal state dependent variable. Evolution of this variable
as a result of plastic deformation is therefore required to
complete the constitutive formulation. Following the model
development by Estrin [15], this is achieved by introducing
a stress related constant σ0 at initial dislocation density ρ0.
We can now recast the formulation to a dislocation density
ratio � internal state variable. � is the dislocation density ρ

normalised by the initial dislocation density ρ0. The evolving
thermal component of the threshold stress σ̂ε is then related
to the dislocation density ratio ISV by

σ̂ε = σ0
√

�. (9)

The constitutive formulation may now be completed by
using the theory on dislocation density based modelling to
evolve the dislocation density ratio as a function of plastic
deformation. In the MTS model the dislocation density evo-
lution equation is transformed so that the threshold stress is
a function of itself. One such form reconcilable with the
Kocks–Mecking hardening theory is the popular Voce [34]
hardening law. In the dislocation density ratio based formu-
lation presented here, the dislocation density ratio is evolved
instead of the threshold stress.

3.1 Statistically stored dislocations

The generation and annihilation of statistically stored dis-
locations are included in the Kocks–Mecking evolution
equation [32]. In their equation, the first term corresponds to
generation rate, the rate at which dislocations become immo-
bilised. This term is assumed inversely proportional to the
mean free path a dislocation travels before being affected

by impenetrable obstacles. The second term corresponds to
thermally activated dynamic recovery. This term is assumed
proportional to the dislocation density itself.

The hybrid theory of Estrin and Mecking [16] expands on
theKMevolution equation by further assuming that themean
free path is influenced by interactions with other dislocations
and subgrain boundaries due to geometrically necessary dis-
locations.

Including an Arrhenius type static or thermal recovery
term similar to that used by Song and McDowell [47], the
evolution equation for statistically stored dislocation density
as used by Kok et al. [35] takes the rate form

ρ̇ = α̇

[
k0
Lg

+ k1
Ls

− k2 (α̇, T ) ρ

]
− k3 (T ) ρr3 . (10)

This evolution equation has material constants k0 and k1, a
dynamic recovery function k2(α̇, T ) and static recovery func-
tion k3(T ) with a dislocation density dependency captured
by the exponent r3. Lg is the geometric mean free path while
Ls ∝ 1/

√
ρ is the mean free path associated with dislocation

interactions.

3.2 Geometrically necessary dislocations

While the statistically determined mean free path relates
to the total dislocation density through Ls ∝ 1/

√
ρ, the

geometrically determined mean free path Lg relates to the
average slip plane lattice incompatibility λ [2,35]. The rela-
tionship between the geometrically determined mean free
path and average lattice incompatibility can be modelled in
the sameway as the statisticalmean free path by Lg ∝ 1/

√
λ.

Considering the net dislocations are arranged in a linear fash-
ion however, Acharya and Beaudoin [2] used the relationship
Lg ∝ 1/λ, leading more generally to the empirical statement
by Kok et al. [35]

Lg ∝
(
1

λ

)rg
, (11)

where 1/2 ≤ rg ≤ 1 is a parameter. Kok et al. [35] further
observed that the evolution of the average slip plane lattice
incompatibility is inversely proportional to the grain size dx.
Using the proportionality constant Cλ for a specific grain
size, an evolution equation for this parameter is simply

λ̇ = α̇Cλ. (12)

3.3 Two state variable model

The average slip plane lattice incompatibility λ is taken as
one of the two ISVs needed to complete the formulation.
Considering the dislocation density ratio � = ρ/ρ0 in Eq.
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(9) as the other ISV, an evolution equation for this variable is
needed.This is achievedby replacingρ inEq. (10) byρ0� and
taking Eq. (11) into account. The result of this substitution
and grouping of constants give

�̇ = α̇
(
C0λ

rg + C1
√

� − C2(α̇, T )�
) − C3(T )�r3 , (13)

where C0 = k0/ρ0 and C1 = k1/
√

ρ0 are now constants
associated with the storage terms. For the dynamic recovery
C2(α̇, T ) in Eq. (13), we consider the form proposed in the
MTS model [18]. An analogue of the temperature and rate
dependent form used in the MTSmodel, within a dislocation
density ratio formulation is

C2(α̇, T ) = C20 exp

[
− T

a02μ
ln

(
α̇

ε̇02

)]
, (14)

with material constants C20, ε̇02 and a02. As in Eq. (8), a02
is again a convenient replacement for g02b3/kB where g02
represents the normalised activation energy for dislocation
climb. Static thermal recovery is modelled by an expression
similar to the one used by Song and McDowell [47]. An
Arrhenius equation for C3(T ) is used implying

C3(T ) = C30 exp
(
−a03

T

)
, (15)

where C30 is a constant and a03 is associated with the acti-
vation energy for self diffusion. Apart from the direct effects
on the dislocation density ratio ISV and the evolution of the
average lattice slip plane incompatibility ISV, recrystallisa-
tion is also taken into account in Sect. 4.

4 Recrystallisation

From the work by Cahn and Hagel [9], the recrystallised
volume fraction growth rate is modelled using

ḟx = Axvx, (16)

where Ax is the interfacial area between recrystallised and
unrecrystallised regions. This is multiplied by the average
velocity of the interface sweeping through the unrecrys-
tallised region vx. The rate of interfacemigration is expressed
using the driving pressure P for boundaries with a specific
energy and mobility M [13]

vx = MP. (17)

As the material deforms, the average misorientation angle
θ̄ across the geometrically necessary subgrain boundaries

increase, which in turn increases the mobility of the bound-
aries. Chen et al. [11] used the empirical form

M̄ = M0 exp

(
−QM

RT

) [
1 − exp

(
−CM

(
θ̄

θm

)rM
)]

(18)

to express the average subgrain boundary mobility M̄ in
terms of the average misorientation angle θ̄ for high energy
boundaries (typically θ̄ ≥ θm = 15◦). In Eq. (18), M0,CM

and the exponent rM are constants. θm is the misorientation
angle associated with a high angle boundary while R is the
universal gas constant and QM the activation energy for grain
boundary mobility.

Brown and Bammann [8] replaced the misorientation
angle ratio with a stress like variable related to the mean
free path of geometrically necessary dislocations. This stress
like variable is used as internal state variable in their model to
capture geometric effects. In our implementation, the equiv-
alent ISV is the average slip plane lattice misorientation λ

introduced in Eq. (11).
Chen et al. [11] observed the relationship between the

effective subgrain diameter d̄x, misorientation θ̄ andBurger’s
vector length b to be

d̄xθ̄ ∝ b. (19)

The average distance between geometrically necessary dislo-
cations is assumed mainly as a result of subgrain boundaries.
Themean free path of geometrically necessary dislocations is
therefore proportional to the mean subgrain boundary diam-
eter Lg ∝ d̄x. Using Eq. (11), the relationship between the
average misorientation angle and the average slip plane lat-
tice misorientation is θ̄ ∝ λrg .Themisorientation angle ratio
in Eq. (18) is now replaced using this proportionality. The
average subgrain boundary mobility is therefore modelled
using

M̄ = M0 exp

(
−QM

RT

) [
1 − exp

(−CMθλ
rMθ

)]
. (20)

The constant CMθ and exponent rMθ values now differ from
the original formulation to accommodate the various propor-
tionalities.

The driving force for the motion of the geometrically
necessary boundaries is the stored energy in the dislocation
structure. According to Humphreys and Hatherley [24], the
pressure driving the subgrain boundary growth can in it’s
simplest form be expressed as P = μb2ρ/2. This assumes
that the effect of the boundary energy on the driving force is
negligible. This pressure due to the dislocation density ratio
ISV is given by
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P = 1

2
μb2ρ0�. (21)

Considering multiple recrystallisation cycles, a volume
fraction fxi represents the material volume fraction that has
undergone i cycles of recrystallisation. Similar to the model
of Brown and Bammann [8], fxi − fxi+1 represents the total
volume fraction of material that has been recrystallised i +1
times. The original unrecrystallised material has a volume
fraction fx0 = 1 (recrystallised i = 0 times).

Each volume fraction fxi − fxi+1 has it’s own set of internal
state variables �xi and λxi . The grain boundary interfacial
area between the volume fractions recrystallised i and i + 1
times is further determined by [8]

g( fxi , fxi+1) = fxi

(
fxi+1

fxi

)rRxa (
1 − fxi+1

fxi

)rRxb

× (
1 + CRxc

(
1 − fxi

))
, (22)

with Ax( fxi , fxi+1) ∝ g( fxi , fxi+1). rRxa and rRxb are expo-
nents used in the empirical relation of the interfacial grain
boundary area while CRxc is a constant.

Including all of the above mentioned into a single expres-
sion, the rate of recrystallisation in Eq. (16) is rewritten for
the volume fraction recrystallised i + 1 times

ḟxi+1 = �xi CRx0CRxT (T )CRxλ
(
λxi

)
g( fxi , fxi+1). (23)

The function is rewritten so thatCRx0 effectively contains all
the pre-exponential constants. CRxT (T ) similarly contains
the temperature dependence lumped in a single function

CRxT (T ) = μ (T ) exp
(
−a0Rx

T

)
, (24)

with a0Rx a grouping similar to the one in Eq. (15). The func-
tion CRxλ (λ) contains the geometric effects in the rewritten
function

CRxλ (λ) = 1 − exp
(−CRxλ0λ

rRxλ
)
, (25)

where CRxλ0 and rRxλ replaces the constant CMθ and expo-
nent rMθ in Eq. (20) for subscript consistency.

4.1 Internal state variable evolution

In the absence of recrystallisation, the ISVs evolve accord-
ing to Eqs. (12) and (13). Given a time increment δt , the first(
fx1

)
and second

(
fx2

)
volume fractions can both progress,

meaning region fx1 − fx2 will increase by δ fx1 and decrease
by δ fx2 . Assuming recrystallisation removes the dislocation
structure, the dislocation density ratio within a newly recrys-
tallised portion δ fx1 should be reinitialised. If the region
fx1(t) − fx2(t) − δ fx2 hardens or recovers in the absence

of recrystallisation, the dislocation density ratio at t + δt is
given by

{
�x1

}t+δt
fx1 (t)− fx2 (t)−δ fx2

≈ {
�x1

}t
fx1 (t)− fx2 (t)

+
(
α̇

(
C0λ

rg
x1+C1

√
�x1−C2(α̇, T ) �x1

)
− C3(T )�r3x1

)
δt .

(26)

Applying the rule of mixtures gives

{
�x1

}t+δt
fx1 (t+δt)− fx2 (t+δt)

= fx1(t) − fx2(t) − δ fx2
fx1(t) − fx2(t) + δ fx1 − δ fx2

{
�x1

}t+δt
fx1 (t)− fx2 (t)−δ fx2

.

(27)

Substituting Eq. (26) into Eq. (27), the general form of
the dislocation density ratio evolution can be rewritten by
taking the limit δt → 0 and substituting i = 1 in the same
way as done by Brown and Bammann [8]. In the event of
recrystallisation, the rate form of the dislocation density ratio
evolution equation in Eq. (13) is replaced by

�̇xi = α̇
(
C0λ

rg
xi + C1

√
�xi − C2(α̇, T ) �xi

)

−C3(T )�r3xi − ḟxi
fxi − fxi+1

�xi (28)

for the dislocation density ratio variable associated with the
total volume fraction fxi − fxi+1 . Similarly for the average
slip plane lattice incompatibility ISV, we have

λ̇xi = α̇Cλ − ḟxi
fxi − fxi+1

λxi . (29)

In the presence of recrystallisation, the equivalent threshold
stress of Eq. (9) is calculated from the average dislocation
density ratio

�̄ =
nx−1∑
i=0

�xi
(
fxi − fxi+1

)
, (30)

where nx is the total number of active recrystallisation cycles.
A detailed numerical implementation and Fortran subrou-

tines for use in Abaqus or other FEA software with similar
user material ability are given in the appendices. The model
is now characterised to experimental material response data.
In the following section the model is characterised to Cobalt
data and various aspects of the model are discussed using
the characterised model. The material is modelled using a
one dimensional material model that calls the isotropic hard-
ening subroutine in Appendix C. To test the gradients and
numerical implementation of the isotropic hardening model
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with recrystallisation, a single increment is also covered in
detail before using the model within an FEA environment in
Sect. 6.

5 Model calibration and verification

Themodel outlined and implemented into an isotropic UMAT
framework is now characterised to data where dynamic
recrystallisation is prevalent. This data set is digitised from
a paper on aspects of dynamic recrystallisation in Cobalt at
high temperatures by Kapoor et al. [30]. In their study they
used 5mmdiameter by 10mmcylindrical test specimens. The
wrought Cobalt rod these specimens were taken from had a
chemical composition of 0.05% Ni, 0.015% Fe, 0.005% Cu,
0.03%C and 99.95%Co in weight percentages. Thematerial
had an as-received average grain size of 10µm.The compres-
sion tests were done between 600 and 900 ◦C. They used a
time varying ram speed so that a constant true strain rate was
applied. Kapoor et al. [30] used Aluminium push rods and
hexagonal Boron Nitrate as lubricant while the test cham-
ber was flushed with Argon to prevent excessive oxidation at
higher temperatures.

From displacement and load cell data they determined
logarithmic true strain and true stress following a volume pre-
serving area assumption. The combined sample and machine
stiffness was used to remove the elastic strain component
from the total strain. For our purposes the data was obtained
by digitising values observed in their figures of true stress as
a function of true plastic strain.

The stress versus strain responses for Cobalt at 600, 700,
750, 800, 900 and 950 ◦C were extracted from the paper
for strain rates of 100 s−1, 10−1 s−1 and 10−2 s−1. The set
of preselected tunable material parameter values are deter-
mined using a penalised downhill simplex method. Initial
parameter estimates are extracted from literature values and
linear regression on transformed experimental data using
the Arrhenius exponential form of the various temperature
dependencies [26]. Thematerialmodel parameters of the two
ISV model are first determined ignoring the softening part
of the experimental data curves. These parameter values are
then fixed while tuning the material parameters associated
with recrystallisation.

The material parameter values that result in the fit dis-
played in Fig. 1 are as follow:

– The elastic properties using the shear model relationship
in Eq. (4) are μr = 81815MPa, Dr = 6519MPa, Tr =
200K and a Poisson’s ratio of ν = 0.31.

– The temperature and rate dependent scaling function in
Eq. (8) is modelled with a0ε = 1.924 K/MPa, pε =
2/3, qε = 3/2 and ε̇0ε = 107 s−1.

Fig. 1 Numerical model (solid line) calibrated to the true stress vs. true
plastic strain data for Co at different temperatures and strain rates of a
1 s−1, b 0.1 s−1 and c 0.001 s−1 from Kapoor et al. [30]. (Color figure
online)
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– The athermal yield stress component and reference stress
values using Eq. (7) are σ̂a = 0MPa and σ0 = 83.7MPa.

– The average slip plane lattice incompatibility is affected
by a constant that can be calibrated in both Eqs. (25)
and (28) where it plays a role and so the evolution of λ

according to Eq. (29) is simply modelled using Cλ = 1.
– The parameters associated with the evolution of the dis-
location density ratio in Eq. (28) are C0 = 584.64, rg =
1,C1 = 156.61,C20 = 7.566, a02 = 0.496K/MPa, ε̇02
= 1010 s−1,C30 = 12121.95 s−1, a03 = 39274.9K and
r3 = 7.346.

– The recrystallisation parameters are finally CRx0 =
1562.08 s−1 for the pre-exponential constant in Eq. (23),
a0Rx = 21049.20K in Eq. (24) with CRxλ0 = 8.442 and
rRxλ = 2.321 in Eq. (25).

– The equivalent interfacial subgrain boundary area func-
tion in Eq. (22) is modelled using rRxa = 0.0797, rRxb =
1.339 and CRxc = 19.415.

The recrystallised volume fractions and calculated equiv-
alent dislocation densities are presented in Fig. 2. Multiple
recrystallised volume fractions are visible in Fig. 2a as well
as a shift of ISVs on two occasions to savememory. As is evi-
dent these shifts are enforced once fx1 > 0.999, as discussed
in Sect. A.1.

The contribution of each recrystallised volume fraction
dislocation density ratio�xi to the equivalent dislocation den-
sity ratio �̄ according to Eq. (30) is demonstrated in Fig. 2b.
In this specific example, the equivalent dislocation density
ratio and therefore the equivalent stress has a multiple peak
response that approaches a steady state solution. This type of
response is also visible in some of the digitised experimental
data.

5.1 Code verification

Using the material properties determined on the Cobalt
experimental data, the code is verified by inspecting the
convergence of an increment where multiple volume frac-
tions are active. In this test, 20 increments of δε = 0.01
and δt = 0.1 s (α̇ = 0.1 s−1) are analysed at 850 ◦C. This
corresponds to a total strain of 0.2 in Fig. 2a with at least
three contributing volume fractions (original and two waves
of recrystallisation). The convergence and results obtained
during increment 20 is covered in detail in this subsection.

The values of the residual equation, analytical gradients
as well as the estimated equivalent plastic strain increment
are reported for each iteration. Components and sensitivities
for the various nested solution loops are also reported for the
final iteration. Forward finite difference estimates of various
sensitivities are also calculated within the one dimensional

Fig. 2 a Recrystallised volume fractions and b volume fraction
averaged dislocation density ratio using the recrystallisation model cal-
ibrated to the cobalt dynamic recrystallisation data when modelled at
850 ◦C and a strain rate of 0.1 s−1. (Color figure online)

test environment by perturbing the estimated plastic strains
or relevant values by 10−8.

The converged yield stress and internal state variable val-
ues at the end of the 19th and 20th increment are presented in
Table 1. At the end of the 19th increment, i.e. ε = 0.19, the
yield stress is 111.967 MPa as a result of a volume fraction
averaged dislocation density �̄ = 20.174. Three recrys-
tallised volume fractions are above the coded minimum of
interest (0.001) namely fx1 = 0.7176, fx2 = 0.08746 and
fx3 = 0.00195 and therefore actively contribute to the stress
response.

The recrystallised volume fractions grow to fx1 =
0.76977, fx2 = 0.11641 and fx3 = 0.00351 during the
increment. The internal state variable values at the end of
the increment are �x0 = 38.533 and λx0 = 0.19912 for the
unrecrystallised volume fraction while �x1 = 15.555 and
λx1 = 0.05884, �x2 = 7.4652 and λx2 = 0.03014 as well as
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Table 1 Converged values of the yield stress and internal state variables at the end of increment 19 and 20 used to verify the numerical implementation
of the material model

Increment Yield (MPa) ᾱ �̄ λ̄ Fraction αxi �xi λxi fxi+1

19 111.967 0.09326 20.1738 0.08955 0 0.18912 37.844 0.18912 0.71755

1 0.05905 14.127 0.05354 0.08746

2 0.03055 6.7714 0.02786 0.00195

3 0.01540 2.4810 0.01117 0.00010

20 111.168 0.09213 19.8876 0.08774 0 0.19912 38.533 0.19912 0.76977

1 0.06505 15.555 0.05884 0.11641

2 0.03296 7.4652 0.03014 0.00351

3 0.01857 3.1301 0.01453 0.00011

Table 2 Test on the convergence of the equivalent plastic strain increment using the FISOTROPIC subroutine in Appendix C to indicate the
sensitivity using Eq. (50)

Iteration Residual Approximate sensitivity Finite difference Plastic increment Variation from final

0 1379.36 2.638E8 1.844E8 1.000E−8 1.001E−2

1 1300.63 6929.35 6925.62 4.704E−4 9.535E−3

2 1223.36 885.011 891.755 9.623E−3 3.837E−4

3 48.9727 871.341 878.260 1.001E−2 1.79E−10

4 2.280E−5 871.341 878.260 1.001E−2 9.71E−15

5 1.239E−9 871.341 878.260 1.001E−2 1.73E−18

6 1.42E−13 871.341 878.260 1.001E−2 –

�x3 = 3.1301 and λx3 = 0.01453. The incremental update
results in a yield stress of 111.168MPa attributed to the vol-
ume fraction averaged dislocation density ratio �̄ = 19.8876.
This volume fraction averaged dislocation density ratio value
corresponds to the value of the red line at 0.2 strain in Fig. 2b.

The solution to the 20th increment is obtained to within a
tolerance of 10−8 in five iterations as illustrated in Table 2.
One additional iteration is performed resulting in a residual
value of 1.42× 10−13. There is a quadratic trend in the con-
vergence rate when iterations 4 and 5 are compared while the
residual value from1.239×10−9 in iteration 5 to 1.42×10−13

in iteration 6 indicates a deviation from the ideal quadratic
convergence. This is however still orders ofmagnitude below
the desired tolerance.

A reason for the deviation from ideal quadratic conver-
gence is illustrated by an approximate 0.7909% difference
between the sensitivity using Eq. (50) and the finite differ-
ence approximation according to Table 2. If the sensitivities
are determined and implemented correctly, this difference
could be partially attributed to the multiplicative accumula-
tion of variations as a result of the nested solution loops. The
important aspect illustrated in Table 2 is the satisfactory rate
of convergence of the current implementation.

Different aspects of the implemented code are investigated
to pinpoint the origin of the variation observed between the
finite difference and approximated sensitivity. Table 4 shows

a breakdown of individual components as well as the solu-
tion to the system of equations in Eq. (59). Equation (59)
is investigated here within each volume fraction loop in the
code by calls to the RGET subroutine, with the implication
that the finite difference component of d fxc/dδα can’t be
compared directly. Because of this reason Table 4 illustrates
the sensitivity comparisons for a case where d fxc/dδα = 0
removes the last term in Eq. (58). The tabulated values are
shown up to five decimal places since that is the first location
where there is an observable variation between the analytical
and finite difference sensitivities in this case.

The values tabulated include the solutions to dx1/dδα in
Eq. (63) and dx2/dδα in Eq. (64) aswell as the effective value
of d fxn/dδα in Eq. (54) for all the active volume fractions
considered at the end of the increment under the test condi-
tion d fxc/dδα = 0. Partial derivatives of the internal state
variables x1 and x2 with respect to the incremental plastic
strain using Eqs. (60) and (62) with Cλ = 1 are also com-
pared.

In Table 3 the finite differences are calculated from a call
to the FISOTROPIC subroutine so that for this scenario
the d fxc/dδα contribution is included. The finite difference
contributions to dx1/dδα and d fxn/dδα in Table 3 now dif-
fers from the values in Table 4 because of the inclusion of
these other sensitivities. The fx1 finite difference value of
dx1/dδα is now 243.246 instead of 254.675 when d fxc/dδα
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Table 3 Comparison between analytical (AN) approximation and finite difference (FD) sensitivity components of the equivalent dislocation density
sensitivity used in Eq. (53)

Volume fraction dx1/dδα d fxn/dδα Eq. (53)

AN FD AN FD AN FD % Difference

fx0 155.769 155.769 0.58624 0.58624 13.2725 13.2725 –

fx1 242.291 243.246 1.34777 1.35486 146.458 146.972 0.35034

fx2 151.061 167.606 0.10966 0.12127 26.2978 28.1319 6.73934

fx3 93.1513 121.896 4.896E−4 6.139E−4 0.65905 0.79292 18.4398

Total 186.688 189.169 1.32018

Table 4 Comparison between analytical (AN) approximation and finite difference (FD) sensitivity components and solution to the system of
equations in Eq. (59) with d fxc/dδα = 0

Volume fraction ∂δθx1/∂δα + ∂δθx1/∂α̇ × 1/δt ∂δθx2/∂δα dx1/dδα dx2/dδα d fxn/dδα

fx0 AN 179.24711 1.00000 155.76870 1.00000 0.58624

FD 179.24713 1.00000 155.76871 1.00000 0.58624

fx1 AN 284.99108 1.00000 254.67535 0.91628 1.45708

FD 284.99109 1.00000 254.67536 0.91628 1.45708

fx2 AN 269.34973 1.00000 223.02735 0.78806 0.14355

FD 269.34973 1.00000 223.02736 0.78804 0.14355

fx3 AN 211.70035 1.00000 170.61272 0.68506 6.675E−4

FD 211.70035 1.00000 170.61274 0.68506 6.675E−4

was ignoredwhile the fx0 values are the same in the two tables
since d fxc/dδα = 0 is true for this case with fxc ≡ fx0 = 1.
While the analytical and finite difference sensitivities for
the first and second volume fractions are closely similar, the
difference gets larger for each next volume fraction contri-
bution.

As illustrated in Table 3 the origin of the 0.7909% dif-
ference in Table 2 is found due to the 1.3202% difference
between the finite difference and approximated sensitivity of
the second term of Eq. (50). There is possibly an additional
sensitivity not taken into account for the volume fractions
further down the line or a small numerical error gets com-
pounded by each subsequent volume fraction contribution.
Fortuitously this variation has very little effect on the desired
convergence rate and a close to quadratic trend is observed
to within the desired tolerance.

In Table 5, the convergence of the solution to x1, x2 and
fxn using the RGET subroutine in Appendix D is also illus-
trated. This is done to find the solution of the internal state
variables associated with fx1 , i.e. x1 ≡ �x1, x2 ≡ λx1 and
fxn ≡ fx2 using the final strain increment value δα =
0.0100063.

Convergence of the first two recrystallised volume frac-
tions fx1 and fx2 are reported in Table 6. The iterations
indicate the convergence of fx1 using δα = 0.0100063 as
well as �x0 = 38.533 and λx0 = 0.19912 while fx2 is solved

using �x1 = 15.555 and λx1 = 0.05884. Comparison of the
finite difference and analytical sensitivities indicate that the
solution is implemented correctly following Eq. (41) with
clear quadratic convergence in both tables.

From the various convergence histories and sensitiv-
ity comparisons tabulated, the subroutines implemented in
Appendices C and D are considered sufficiently accurate.
Themodel is now also characterised on experimental data for
Copper and used in Abaqus to simulate compression exper-
iments.

6 Recrystallisation in copper

Tanner and McDowell [51] performed compression exper-
iments on 99.99% pure Copper for temperatures ranging
from 25 to 541 ◦C and constant true strain rates ranging from
quasi-static (0.0004s−1) to dynamic (6000 s−1). For strain
rates at or below 1s−1 the tests were conducted using closed
loop servo hydraulic test machines while high strain rate
tests were done on a split Hopkinson pressure bar. The low
strain rate compression specimens had a diameter to height
ratio of 1:1.5. Concentric grooves were cut into the ends of
the test specimens. These grooves were filled with differ-
ent lubricants depending on the rate and temperature of the
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Table 5 RGET residuals and convergence for internal state variables associated with fx1 using δα = 0.0100063

Iteration Residual Solution Sensitivity AN FD % Difference

1 fR1 1.58693 x1 14.1273 ∂ fR1/∂x1 1.12087 1.12155 0.06065

fR2 5.777E−3 x2 5.354E−2 ∂ fR1/∂x2 −4.33533 −4.33542 0.00208∥∥ f R
∥∥ 1.58694 fxn 0.10882 ∂ fR2/∂x1 9.417E−6 9.541E−6 1.30815

∂ fR2/∂x2 1.08475 1.08475 –

2 fR1 1.004E−2 x1 15.5628 ∂ fR1/∂x1 1.13266 1.13265 0.00088

fR2 1.022E−5 x2 5.885E−2 ∂ fR1/∂x2 −3.76881 −3.76787 0.02494∥∥ f R
∥∥ 1.004E−2 fxn 0.11644 ∂ fR2/∂x1 1.290E−5 1.301E−5 0.84909

∂ fR2/∂x2 1.08780 1.08780 –

3 fR1 2.974E−7 x1 15.5548 ∂ fR1/∂x1 1.13261 1.13243 0.01589

fR2 7.92E−11 x2 5.884E−2 ∂ fR1/∂x2 1.289E−5 1.301E−5 0.92664∥∥ f R
∥∥ 2.974E−7 fxn 0.11641 ∂ fR2/∂x1 −3.77138 −3.77187 0.01299

∂ fR2/∂x2 1.08779 1.08779 –

4 fR1 2.22E−16 x1 15.5548 ∂ fR1/∂x1 1.13261 1.13398 0.12089

fR2 4.34E−18 x2 5.884E−2 ∂ fR1/∂x2 −3.77138 −3.77165 0.00716∥∥ f R
∥∥ 2.22E−16 fxn 0.11641 ∂ fR2/∂x1 1.289E−5 1.301E−5 0.92664

∂ fR2/∂x2 1.08779 1.08779 –

Table 6 Convergence of the
recrystallised volume fractions
fx1 and fx2

Volume fraction Iteration Residual Fraction value Sensitivity

AN FD

fx1 1 6.828E−2 0.71755 1.31611 1.31611

2 4.426E−4 0.76943 1.29844 1.29844

3 2.193E−8 0.76977 1.29831 1.29831

4 2.78E−17 0.76977 1.29831 1.29831

fx2 1 2.999E−2 0.08745 1.03153 1.03153

2 1.276E−4 0.11654 1.03955 1.03955

3 1.559E−9 0.11641 1.03955 1.03955

experiment. The specimen sides were also coated to prevent
oxidation at higher temperatures.

As in the Cobalt case presented earlier, the stress as a
function of true strain was digitised from different figures
in Tanner’s thesis [50]. The model is now also calibrated
using the digitised data points for Tanner’s Copper experi-
ments. The material parameters are again determined using
initial values from literature and linear regression on Arrhe-
nius exponential relationships. The parameter values are then
again fine-tuned using a penalised downhill simplex algo-
rithm [26]. The material parameters resulting in the fit to the
Copper data in Fig. 3 are:

– μr = 43.8GPa, Dr = 4.7GPa, Tr = 252K and ν = 1/3
for the elastic properties using the shear model relation-
ship in Eq. (4).

– a0ε = 2.1037K/MPa, pε = 1, qε = 2 , and ε̇0ε =
106 s−1 for the temperature and rate dependent scaling
function in Eq. (8).

– The athermal yield stress component is σ̂a = 12.519
MPa and reference stress is σ0 = 17.295 MPa using Eq.
(8).

– Cλ = 1 is used for the evolution of λ̄ according to Eq.
(29).

– Cg = 6378.74, rg = 0.769, C1 = 278.87, C20 =
11.773, a02 = 0.904K/MPa, ε̇02 = 4.0112 × 1012 s−1,

C30 = 83.07 s−1, a03 = 6370.675K and r3 = 0.8079
for the dislocation density ratio evolution in Eq. (28).

– CRx0 = 9346.62 s−1 in Eq. (23), a0Rx = 17634 K in Eq.
(24) while CRxλ0 = 47.247 and rRxλ = 3.87 in Eq. (25).
rRxa = 0.1424, rRxb = 1.7677 and CRxc = 393.44 in
Eq. (22).

6.1 Finite elementmodelling

The appended subroutines are now used in an example mod-
elled using Abaqus 6.11 Standard [1]. The compression of
a cylindrical billet is modelled subject to rollover and bar-
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Fig. 3 Numerical model
(coloured lines) calibrated to
Tanner and McDowell’s OFHC
copper data [50,51] for different
strain rates at 25, 269 and
541 ◦C. (Color figure online)

Fig. 4 The axisymmetric boundary value problem setup to model a
cylindrical test specimen in compression. (Color figure online)

relling at 541 ◦C using the parameter values characterised to
give the point integration response in Fig. 3. Where Tanner’s
experiments were lubricated do avoid rollover, the simu-
lations in this subsection are subject to a friction contact
component between the modelled test specimen and die to
enforce it. Instead of replicating Tanner’s ideal experimen-
tal cases using FEA, this subsection serves as an example of
more complex deformation modelled using the recrystallisa-
tion model.

Compression of a billet with an initial height of 15mm
and diameter of 10mm is simulated in Abaqus using a 3D
and axisymmetric model. The axisymmetric problem setup

is given in Fig. 4 with a 5mm × 7.5mm quarter billet and
a 7mm long analytical rigid line to represent the die. The
first octant is modelled in the three dimensional case due
to problem symmetry, i.e half of a π/2 billet section in the
all-positive Cartesian coordinate system, with boundary con-
ditions ensuring no out of planemovement at each of the three
symmetry planes.

Contact between the die and billet top as well as the
outer billet surface is permitted with hard normal contact
and a friction coefficient of μfrict = 0.2. In the three dimen-
sional case an analytical rigid master surface is used to
represent the die while in the axisymmetric case a rigid
line is used. In Fig. 4 the rigid line is in contact with the
top billet surface at the start of the simulation and is dis-
placed so that the axisymmetric test specimen is reduced by
60%. The 0.6 true strain corresponds to a displacement of

L = 7.5 × [

exp (−0.6) − 1
] = −3.3839 mm. The same

axial displacement is applied to a reference point in the three
dimensional casewhile constraining any die rotation or radial
displacement.

In the three dimensional case, three simulations are
performed using full integration 20 noded brick elements
(C3D20). In each case the computational domain ismodelled
using a different average element size set through a maxi-
mum allowable edge length parameter. Using a maximum
allowable edge length of 0.8mm, the resulting mesh consists
of 315 elements. Similarly, setting it to 0.5mm results in
1440 elements while a 0.3mmmaximum edge length results
in 6825 elements. In the axisymmetric case, a maximum
allowable edge length of 0.3mm results in 425 eight noded
square elements (CAX8) and 850 six noded triangular ele-
ments (CAX6)while a slightly smaller allowable edge length
was chosen for the stiffer four noded square element resulting
in a mesh with 1176 CAX4 elements. Using each of the six
meshes and corresponding formulation, a 60% true reduction
with displacement applied linearly over 0.6 s at a tempera-
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Fig. 5 True stress–true strain curves as a result of the monotonic com-
pression at 541 ◦C up to 60% over 0.6 s. The boundary value problem is
modelled using different meshes and formulations to illustrate that the
same solution is obtained independent of element size and type. (Color
figure online)

ture of 541 ◦C is simulated for comparison. Automatic time
stepping is used with an initial and maximum allowable time
step size of 0.01 s.

Using the reaction force extracted over time and corre-
sponding displacement history, the true stress–true strain
values are determined from

εTrue = ln (L/L0) and σTrue = (F × L)/(A0 × L0), (31)

where L and F are the instantaneous length and force while
L0 and A0 are the original length and nominal area. The
true stress–true strain curves in all six cases are displayed in
Fig. 5. From this figure all six of the simulations resulted in
similar response curves.

A visual comparison on the internal material state as a
result of each simulation is presented in Fig. 6. The compar-
ison is made for the equivalent dislocation density ratio ISV
betweenvalues of 120and140.Considering the three 3Dsim-
ulations using (b) 315, (c) 1440 and (a, d) 6825 full integra-
tion 20 noded brick elements, the solution seems to converge
as a result of mesh refinement. Further also considering the
axisymmetric result using (e) 425×CAX8, (f) 850×CAX6
and (g) 1176×CAX4, the solution is seen largely unaffected
by choice of element type. Themain observable and localised
difference in ISV contour is seen closest to the rollover con-
tact area. Depending on the complexity of the problem,
element choice should still be carefully considered given the
potential pitfalls of volumetric locking inCAX4 for example.

The effect of discontinuous loading is now also illustrated
using the axisymmetric mesh consisting of 425 CAX8 ele-
ments. The same 60% reduction is applied over 0.6 s, broken

ρ̄ [ρ0]
(a)

(c)(b)

(e)(d)

(g)(f)

Fig. 6 Equivalent dislocation density (ρ̄) contours at 0.6 s, 541 ◦C, 60%
compression using different element types and sizes. Result using a
6825 × full integration 20 noded brick elements (C3D20) as well as
side views of the result using b 315 × C3D20, c 1440 × C3D20 and
againd 6825×C3D20 to illustrate convergencewithin the limit ofmesh
refinement. The result using axisymmetric element types are given in e
using 425 × CAX8, f 850 × CAX6 and g 1176 × CAX4. In all these
figures contours are scaled between ρ̄ = 120× ρ0 and 140× ρ0 where
ρ0 is the initial dislocation density, i.e. the �̄ = ρ̄/ρ0 ISV is scaled
between 120 and 140. Values below 120 are coloured blue while values
above 140 are coloured red. (Color figure online)

up into two 0.3 second reductions with a variable stress free
inter-compression time. The simulated die displacement up
to −1.6937mm is first applied in 0.3 s. The die is then dis-
placed so that there is no contact between it and the billet
for times of 1, 10 or 60s. The additional −1.6937mm is
applied in the 0.3s to follow. The von Mises stress con-
tours and processed true stress–true strain are plotted in
Fig. 7. The internal state variables related to the dislocation
density as well as the volume fraction of material recrys-
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(a)
σvM [MPa]

(b)
σvM [MPa]

(c)
σvM [MPa]

(d)

Fig. 7 Von Mises stress contours using 425 × full integration 8 noded
axisymmetric stress elements (CAX8) after a two stage compression
simulation at 541 ◦C. A total of 60% total reduction is applied over
0.6 s with a varying stress free inter-compression time at the 0.3 s mark.
The result using an inter-compression time of a 1s, b 10s and c 60s
illustrate the effect of static recrystallisation and history dependence
using the model. The true stress–true strain curves of the continuous
as well as interrupted compression simulations are given in (d). (Color
figure online)

tallised at least once ( fx1 = STATEV(7)) and at least twice
( fx2 = STATEV(11)) are also illustrated in Fig. 8.

7 Conclusions

Thematerial model developed and implemented in this paper
includesmechanisms for strain hardening, dynamic and ther-
mal recovery as well as recrystallisation. The material model
has the ability to simulate single andmultiple peak responses
due to recrystallisation and can represent a large range of tem-
perature and strain rate responses that can now be modelled
using finite element analysis in a mean field manner.

The complete numerical implementation was derived and
explained in detail. Comparison of the finite difference sensi-
tivities and those derived analytically illustrate a satisfactory
agreement and close to quadratic convergence for the test
increment used during this verification. Given the detailed
description and subroutines provided, it is the authors’ hope
that the material model implementation will be useful to oth-
ers for use in Abaqus [1] or another finite element package
that makes use of a similar material subroutine structure. To
the best of the authors’ knowledge the same material sub-
routines can for example be used in the open source finite
element solvers Calculix [12] and Code Aster [14].

As illustrated in this paper, the mean field recrystallisation
model implemented has the ability to model a wide range
of metal response undergoing isotropic plastic deformation.
This was illustrated using high temperature (fcc) Cobalt and
Copper data.

Using the model implemented, recrystallisation and inter-
nal material state can now be studied within an FEA
environment using the appended subroutines. If experi-
mentalists also examine cross sections at the end of the
experiment, the modelling may also be validated, improved
or characterised better.

Appendices

A Numerical implementation

The aim of the numerical subroutine is to compute the stress
given a strain increment. In our state variable formulation the
stress depends on the evolution of state variables as a func-
tion of temperature as well as incremental strain and time
step. The system of differential equations that describe the
evolution of the state variables need to be integrated numer-
ically. Here, we choose the numerically stable fully implicit
Backward Euler integration scheme.

Integration of the ISVs and associated stresses is imple-
mented into an Abaqus UMAT and linked subroutines. The
UMAT framework in Appendix B resolves the incremen-
tal plastic strain using calls to an FISOTROPIC subrou-
tine added as Appendix C. In the numerical implementa-
tion, the state variables per active volume fraction in the
FISOTROPIC subroutine is solved using calls to a resid-
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(c)(b)(a)

ρ̄ [ρ0 ¯] ρ [ρ0 ¯] ρ [ρ0]

(f)(e)(d)

fx1 fx1 fx1

(i)(h)(g)

fx2 fx2 fx2

Fig. 8 Contours using 425 × CAX8 elements after a two stage com-
pression simulation at 541◦C. A total of 60% total reduction is applied
over 0.6 s with a varying stress free inter-compression time at the 0.3 s
mark. Contours of the dislocation density ratio (as a function of the
original dislocation density ρ0) as a result of a 1s, b 10s and c 60s

inter-compression time is given. The volume fraction ofmaterial recrys-
tallised at least once ( fx1 ) and at least twice ( fx2 ) are also given for the
d, g 1s, e, g 10s and f, i 60s static recrystallisation cases modelled.
(Color figure online)

ual subroutine RGET added as Appendix D. A flow diagram
of the radial return type UMAT framework in Appendix B
is given in Fig. 9. This figure also illustrates the main vari-
ables of interest given as input and outputs of the subroutine.
Details on the FISOTROPIC and RGET subroutines are cov-
ered later.

The model integrates the various values incrementally
with previous converged ISV values stored in the STATEV
array. Candidate ISVvalues are stored internal to theUMAT in
a TEMPSTATEV array. The STATEV array is updated upon
convergence using the values of the temporary ISVarray.Val-
ues that are useful in an analysis apart from the ISVsneeded in
the recrystallisation and density ratio based evolution include
the accumulated volume fraction averaged equivalent plastic
strain. An ISV for the equivalent plastic strain is therefore
also assigned per recrystallisation volume fraction αxi . This
is done to keep track of the equivalent plastic strain that accu-
mulates and is reset by each wave of recrystallisation. If a
specific recrystallisation volume fraction fxi is active, the
plastic strain increment δα is added to the volume growth
compensated internal state variable

αxi

∣∣
t+δt = αxi

∣∣
t

fxi
∣∣
t

fxi
∣∣
t+δt

+ δα. (32)

The values of the volume fraction averaged plastic strain and
misorientation can be calculated following Eq. (30) to obtain

ᾱ =
nx−1∑
i=0

αxi

(
fxi − fxi+1

)
(33)

and

λ̄ =
nx−1∑
i=0

λxi
(
fxi − fxi+1

)
. (34)

The internal state variables at the end of each time
increment is the volume fraction averaged plastic strain ᾱ,
dislocation density ratio �̄ and average slip plane lattice mis-
orientation λ̄. These three averaged ISVs are followed by
four ISVs per volume fraction namely the fraction specific
equivalent plastic strain αxi , dislocation density �xi , misori-
entationλxi and next volume fraction value fxi+1 . All of these
ISV values have to be stored in the STATEV array.
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Fig. 9 Diagram illustrating some of the inputs and values returned as well as the flow of calculation in the radial return type UMAT framework in
Appendix B

The total length of the state variable array (NSTATV) is
set in an Abaqus input file with the *DEPVAR card. The vol-
ume fraction averaged equivalent plastic strain, dislocation
density ratio and average slip plane lattice misorientation
are stored in the first three entries of the state variable
array STATEV(1:3). Tracking the evolution of the equiv-
alent plastic strain, dislocation density ratio, average slip
plane lattice misorientation as well as volume fraction for
each recrystallisation cycle implies that four entries in the
STATEV array need to be allocated per volume fraction.
This means that given the maximum number of possible
recrystallising volume fractions (NRRX= nx), the total length
of the STATEV array (NSTATV) as given by the mate-
rial definition in the Abaqus input file should be at least
DEPVAR=4*NRRX+3 so that enough memory is allocated
to the problem. The previous converged values of the volume
fraction averaged quantities as well as the ISV values at the
end of the previous increment are stored in the state variable
array sent as input and then returned at the end of the current
increment as

STATEV(1 : 4 ∗ NRRX + 3)

= {ᾱ, �̄, λ̄, αx0 , �x0 , λx0 , f x1,

..., αxnx−1 , �xnx−1 , λxnx−1 , f xnx }. (35)

Following Brown and Bammann’s approach [8], it makes
no sense to evolve and update the ISV values for the original
volume fraction �x0 and λx0 once it has been fully recrys-
tallised. This happens when the first recrystallised volume
fraction in the state variable array defined above approaches

unity f x1 ≈ 1. If this is the case, the state variable val-
ues associated with the first recrystallised volume fraction is
shifted so that it is now associated with the new default vol-
ume fraction. If this is the case, the previous converged values
in the state variable array may alternatively be considered as

STATEV(7 : 4 ∗ NRRX + 3)

= { f x0 ≈ 1, αx0 , �x0 , λx0 , f x1,

. . ., αxnx−2 , �xnx−2 , λxnx−2 , f xnx−1}. (36)

To reduce the amount of allocated memory required, an ISV
shift applied to the STATEV array would result in a new state
variable array where

STATEV(4 : 4 ∗ NRRX + 3)

= {STATEV(8 : 4 ∗ NRRX + 3), 0, 0, 0, 0}. (37)

In this implementation, the potential state variable array
shift happens before calculating the stresses associated with
the current time increment and additional evolution of the
ISVs.

The maximum number of volume fractions to track is
set with nx = (NSTATV-3)/4. The value of NSTATV
is set using the *DEPVAR card in the Abaqus input file,
used to allocate the memory required. The volume frac-
tions are effectively fully recrystallised and ISVs shifted
once fx1 > 0.999. ISV updates also only cycle through each
of the following volume fractions as long as the conditions
fxi+1 > 0.001 and i + 1 ≤ nx are met to save on compu-
tational time. This is different from the implementation by
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Brown and Bammann [8] in that they evolve all volume frac-
tion state variables, even before it contributes to the overall
material response.

A.1 Plasticity and internal state evolution

Considering the current temperature, the shear modulus in
Eq. (4) and scale function in Eq. (8) are evaluated first. To
determine the yield stress from Eq. (7), the threshold stress
value and therefore average dislocation density ratio at the
end of the current increment are required as in Eq. (30). The
numerical implementation needs to cycle through each of the
recrystallised volume fractions, evolving the associated ISVs
and then adding the contribution to the average dislocation
density ratio. The aim within the FISOTROPIC subroutine
is therefore to cycle through each active volume fxi > 0.001
to find converged values of �xi , λxi and fxi+1 by resolving
calls to the RGET subroutine in Appendix D.

It is possible to solve the ISVs �xi , λxi and fxi+1 as a sys-
temof three equations or staggered. In the staggered approach
followed here, a system of two equations is solved for �xi and
λxi while fxi+1 is solved as a function of �xi , λxi and itself.

Given that the implementation cycles through the volume
fractions, a single variable is used for values of the volume
fractions, rates and ISVs needed within the specific cycle
evaluated in an RGET call. The values are stored to the tem-
porary state variable array before continuing to the next cycle.
In the next cycle, the samevariables noweffectively just point
to alternate entries of the state variable array. Here, we use
the subscripts xc and xn to represent the variables associated
with the current c = i and next n = i + 1 volume fractions.

To start the flow rule evaluation, the values associated
with the default volume fraction i = 0 are set from the
known conditions fx0 = 1 and ḟx0 = 0, meaning fxc = 1
and ḟxc = 0. The volume fraction averaged quantities are
also initialised with ᾱ = 0, �̄ = 0 and λ̄ = 0. A vector
x = {

�xi , λxi
}
t+δt represents an estimate of the ISV values

associated with the current volume fraction. The construc-
tion of the various residuals and solutions necessary to solve
the ISV evolution are described next.

Considering that from Eq. (18) the misorientation frac-
tional value θ̄/θm should be below unity, Eq. (25) is evaluated
with this constraint in mind which gives

CRxλ = 1 − exp
(−CRxλ0 min ([x2, 1])

rRxλ
)
. (38)

The recrystallised volume fraction growth associated with
the next volume fraction fxn is calculated by first setting
the estimated variable value equal to the previous converged
value fxn = {

fxi+1

}
t = STATEV(4∗i + 7). The minimum

value fxn ≥ 10−4 is introduced in the presented implemen-
tation in order to avoid a zero interface surface area when
evaluating Eq. (22). This assumes that nucleation has already

started. fxn is now the current estimate of
{
fxi+1

}
t+δt and

the validity of this estimate is determined by evaluating the
residual:

fRx = fxn − {
fxi+1

}
t − δt ḟxn = 0, (39)

where the rate of the next volume fraction is computed from
Eq. (23) to give

ḟxn = x1CRx0CRxT (T )CRxλ (x2) gx( fxc, fxn). (40)

The residual equation is solvedusing theNewton-Raphson
method following

{ fxn}k+1 = { fxn}k −
(
1 − x1CRx0CRxT (T )CRxλ (x2)

{
dgx
d fxn

}k)−1 {
fRx

}k
. (41)

Once the next volume fraction is solved at t+δt , the resid-
uals on the two ISV estimates can be determined using the
evolution rates of Eqs. (28) and (29). This gives the following
two residuals that depend on x1 and x2:

fR1 (x1, x2) = x1 − �xi

∣∣
t

− δα
(
C0x

rg
2 + C1

√
x1 − C2(α̇, T )x1

)

+ δtC3(T )xr31 + δt
ḟxc

fxc − fxn (x1, x2)
x1 = 0 (42)

and

fR2 (x1, x2) = x2 − λ|t − δαCλ

+ δt
ḟxc

fxc − fxn (x1, x2)
x2 = 0. (43)

The ISV updates are solved by using the initial guess x ={
�xi , λxi

}
t = {STATEV(4 ∗ i + 5,4 ∗ i + 6)}, sent in to

the RGET subroutine in Appendix D. The residual values and
sensitivities are returned to the FISOTROPIC subroutine.
The values are updated using the Newton-Raphson scheme

{x}k+1 = {x}k −
[{
F′
R

}k]−1 {fR}k (44)

where the Jacobian matrix F ′
R i j = ∂ fRi /∂x j contains the

partial derivatives of the residuals in Eqs. (42) and (43). Since
we have a 2× 2 system, we compute the inverse of F′

R using
the closed form expression

[
F′
R

]−1 = 1

det(F′
R)

[
F ′
R 2,2 −F ′

R 1,2
−F ′

R 2,1 F ′
R 1,1

]
(45)
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with det(F′
R) = F ′

R 1,1F
′
R 2,2 − F ′

R 1,2F
′
R 2,1. The compo-

nents of the Jacobian matrix are:

∂ fR1

∂x1
= 1 − δα

(
1

2
C1x

−1/2
1 − C2

)
+ δtr3C3x

r3−1
1

+ δt
ḟxc

fxc − fxn
+ δt x1

ḟxc
( fxc − fxn)2

d fxn
dx1

,

∂ fR1

∂x2
= −δαrgC0x

rg−1
2 + δt x1

ḟxc
( fxc − fxn)2

d fxn
dx2

,

∂ fR2

∂x1
= δt x2

ḟxc
( fxc − fxn)2

d fxn
dx1

,

∂ fR2

∂x2
= 1 + δt

ḟxc
fxc − fxn

+ δt x2
ḟxc

( fxc − fxn)2
d fxn
dx2

.

(46)

The derivatives of the next volume fraction with respect
to the current ISV estimates are determined from the residual
in Eq. (39) as:

d fxn
dx1

= δtCRx0CRxT (T )CRxλ (x2) gx( fxc, fxn)

×
(
1 − δt x1CRx0CRxT (T )CRxλ (x2)

dgx
d fxn

)−1

d fxn
dx2

= δt x1CRx0CRxT (T )( fxc, fxn)
dCRxλ

dx2

×
(
1 − δt x1CRx0CRxT (T )CRxλ (x2)

dgx
d fxn

)−1

(47)

and

dCRxλ

dx2
= rRxλCRxλ0x

rRxλ−1
2

[
1 − exp

(−CRxλ0x
rRxλ
2

)]
(48)

if x2 ≤ 1 or zero otherwise.

A.2 Flow rule sensitivity

Before possibly moving to the next volume fraction, the
current volume fraction contribution to the equivalent dis-
location density is needed. This is updated along with the
contribution to the yield stress sensitivity required to resolve
the flow rule residual and solve the equivalent plastic strain
increment. The contribution to the average dislocation den-
sity ratio is calculated as in Eq. (30) by updating the value of
the equivalent dislocation density ratio variable. The equiv-
alent dislocation density ratio variable is initialised �̄ = 0
at the start of the calculation. For each subsequent volume
fraction solved, the variable is updated following

�̄k+1 = �̄k + x1 ( fxc − fxn) (49)

so that �̄k now represents the summation of the first k volume
fraction contributions �̄k = ∑k

i=0 �xi
(
fxi − fxi+1

)
.

The sensitivity of the yield stress with respect to the equiv-
alent plastic strain increment in turn is given by

dσY

dδα
= σ0

√
�̄

δt

dSε

dα̇
+ Sεσ0

2
√

�̄

d�̄

dδα
, (50)

which requires dSε/dα̇ and d�̄/dδα. The definition of the
scaling factor in Eq. (8) leads to

dSε

dα̇
= T

α̇ pqa0μr

(
T

a0μ
ln

(
ε̇0

α̇

))1/q−1

×
[
1 −

(
T

a0μ
ln

(
ε̇0

α̇

))1/q
]1/p−1

. (51)

The equivalent dislocation density ratio sensitivity is com-
puted from Eq. (30) to give

d�̄

dδα
=

nx−1∑
i=0

[
d�xi

dδα

(
fxi − fxi+1

)

+ �xi

(
d fxi
dδα

− d fxi+1

dδα

)]
. (52)

From the first volume fraction condition with fx0 = 1, it
is evident that d fx0/dδα = 0. The incremental contribution
to the average dislocation density ratio sensitivity added at
each cycle means that given the initialised variable value
{d�̄/dδα}k=0 = 0, the sensitivity is updated as each cycle
evaluation is completed. Following Eq. (49), this gives

d�̄

dδα

k+1

= d�̄

dδα

k

+ dx1
dδα

( fxc − fxn)

+ x1

(
d fxc
dδα

− d fxn
dδα

)
, (53)

where d fxc/dδα = 0 for the first volume fraction. Given the
residual in Eq. (39) with ḟxn now a function of x according
to Eq. (40) and a known value for d fxc/dδα, the required
total derivative in Eq. (53) is given by

d fxn
dδα

= ∂ fxn
∂x1

dx1
dδα

+ ∂ fxn
∂x2

dx2
dδα

+ ∂ fxn
∂ fxc

d fxc
dδα

. (54)

In the first volume fraction solved the last term in Eq.
(54) is zero since d fxc/dδα = 0 for a constant fxc = 1. If
the next volume fraction is active ( fxn ≥ 0.001), the value
of d fxn/dδα as calculated in Eq. (54) is transferred to the
variable d fxc/dδα for use in the subsequent volume fraction
contribution.

The sensitivities of x1 and x2 with respect to the equivalent
plastic strain increment are approximated in the presented
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implementation by again using the residual equations for the
evolution of the ISVs in Eqs. (42) and (43).

The updated internal state variable associated with the
dislocation density ratio evolution in Eq. (42) is given by

x1 = �xi

∣∣
t + δθx1

∣∣
t+δt , (55)

where δθx1

∣∣
t+δt = δθ x1 (δα, δt, α̇, T , x1, x2, fxc) is solved

using the residual subroutine RGET. During a call to the
RGET subroutine, δθx1

∣∣
t+δt is mainly seen as a function of

the x1 and x2 values at the end of the increment since the
other values are assumed constant during a Newton loop.

Further sensitivities are however required so that the
equivalent plastic strain can be determined from within the
user material framework. The total derivative of x1 with
respect to the equivalent plastic strain using Eq. (55) is deter-
mined from the chain rule

dx1
dδα

= ∂δθx1

∂δα
+ ∂δθx1

∂α̇

dα̇

dδα
+ ∂δθx1

∂ fxc

d fxc
dδα

+∂δθx1

∂x1

dx1
dδα

+ ∂δθx1

∂x2

dx2
dδα

. (56)

The derivative of the equivalent strain rate with respect
to incremental plastic strain is dα̇/dδα = 1/δt . The value
of d fxc/dδα is equal to zero in the first volume fraction
due to fxc = fx0 = 1. If not in the first volume fraction
it is carried over from the preceding volume fraction cal-
culation. The equivalent plastic strain increment sensitivity
in this case is taken as the sensitivity of the next volume
fraction as determined in the previous solution loop, i.e.
d fxc/dδα| fxi+1

= d fxn/dδα| fxi .
Rearranging Eq. (56) and noting that ∂ fR1/∂x1

≡ (
1 − ∂δθx1/∂x1

)
and ∂ fR1/∂x2 ≡ −∂δθx1/∂x2 in

Eq. (46), this implies

∂ fR1

∂x1

dx1
dδα

+ ∂ fR1

∂x2

dx2
dδα

= Γx1 . (57)

Here Γx1 contains all of the sensitivity components in Eq.
(56) not associated with x1 and x2:

Γx1 = ∂δθx1

∂δα
+ ∂δθx1

∂α̇

dα̇

dδα
+ ∂δθx1

∂ fxc

d fxc
dδα

. (58)

Doing the same as in Eq. (57) for dx2/dδα leads more gen-
erally to the system of equations

∂ fRi
∂x1

dx1
dδα

+ ∂ fRi
∂x2

dx2
dδα

= Γxi . (59)

For the first residual equation (i = 1) the right hand side of
Eq. (59) is

Γx1 ≡ −∂ fR1

∂δα
− ∂ fR1

∂α̇

dα̇

dδα
− ∂ fR1

∂d fxc

d fxc
dδα

= C0x
rg
2 + C1

√
x1 − C2x1 − α̇

dC2

dα̇

+ x1

[
δt

ḟxc
( fxc − fxn)2

− 1

fxc − fxn

]
d fxc
dδα

,

(60)

with

d

dα̇
C2(α̇, T ) = − C20T

α̇a02μ
exp

[
− T

a02μ
ln

(
α̇

ε̇02

)]
, (61)

where Eq. (14) is used for C2 (α̇, T ).
The second residual has no equivalent plastic strain rate

dependency. The approximate derivative of this residual
equation with respect to plastic strain gives

Γx2 ≡ −∂ fR2

∂δα
− ∂ fR2

∂d fxc

d fxc
dδα

= Cλ + x2

[
δt

ḟxc
( fxc − fxn)2

− 1

fxc − fxn

]
d fxc
dδα

.

(62)

The values of ∂ fRi /∂x j in Eq. (59) are the same components
used to construct the matrix needed in Eq. (44). The relevant
derivatives of the current volume fraction ISVs with respect
to equivalent plastic strain are then given by

dx1
dδα

= 1

det(F′
R)

(
F ′
R 2,2Γx1 − F ′

R 1,2Γx2

)
(63)

and

dx2
dδα

= 1

det(F′
R)

(
F ′
R 1,1Γx2 − F ′

R 2,1Γx1

)
. (64)

The individual volume fraction sensitivities of the ISVs are
then used to compute the averaged contributions of the ISVs.

The current recrystallised volume fraction compensated
equivalent plastic strain using Eq. (32) is determined from
αxc|t+δt = αxc|t × fxc|t / fxc|t+δt + δα. The converged
value of the plastic strain for the previous increment is
αxc|t = STATEV(4 ∗ i + 4) while that for the current vol-
ume fraction is fxc|t = STATEV(4 ∗ i +7). Starting with
ᾱk=0 = 0 and λ̄k=0 = 0 , the volume averaged equivalent
plastic strain and average slip plane lattice misorientation are
updated in the sameway as the equivalent dislocation density
in Eq. (49):

ᾱk+1 = ᾱk + αxc ( fxc − fxn) ,

λ̄k+1 = λ̄k + x2 ( fxc − fxn) .
(65)
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Fig. 10 Flow chart sequence to solve a yield stress evaluation using the subroutines in Appendices C and D

Once all of the current volume fraction contributions are
accounted for, the current volume fraction values are stored
in the associated temporary state variable locations

TEMPSTATEV(4 ∗ i + 4) = αxc

TEMPSTATEV(4 ∗ i + 5) = x1

TEMPSTATEV(4 ∗ i + 6) = x2

TEMPSTATEV(4 ∗ i + 7) = fxn .

(66)

A check is performed to decidewhether additional volume
fractions need to be considered by evaluating i ≤ NRRX−1.
In the implementation here, different from the implementa-
tion by Brown and Bammann [8], the condition fxn ≥ 0.001
is also evaluated since it makes no sense to spend computa-
tional power to evaluate the next volume fraction if it does
not contribute to the global response. If both these conditions
are met, the variables are updated for the next volume frac-
tion evaluation with fxc = fxn, ḟxc = ḟxn, d fxc/dδα =
d fxn/dδα and i = i + 1. Setting the initial guess x =
{STATEV(4 ∗ i + 5,4 ∗ i + 6)} subject to x1 ≥ 1 and
x2 ≥ 10−4, the evaluation of the next volume fraction is
considered by again starting at Eq. (38).

A flow chart of the current subsection regarding the
evaluation of the ISV evolution, resulting yield stress and
sensitivity as implemented in Appendices C and D are dis-
played in Fig. 10.

B UMAT subroutine

subroutine umat(stress, statev, ddsdde, sse,
& spd, scd, rpl, ddsddt, drplde, drpldt, stran,
& dstran, time, dtime, temp, dtemp, predef,
& dpred, cmname, ndi, nshr, ntens, nstatv,
& props, nprops, coords, drot, pnewdt, celent,
& df0, df1, noel, npt, layer, kspt, kstep, kinc)

c
implicit real*8(a-h,o-z)
character*8 cmname

c
dimension stress(ntens), statev(nstatv),

& ddsdde(ntens, ntens),ddsddt(ntens),
& drplde(ntens), stran(ntens), dstran(ntens),
& predef(1), dpred(1), props(nprops), coords(3),
& drot(3, 3), df0(3, 3), df1(3, 3), flow(6),
& tempstatv(nstatv)

c
parameter(zero=0.d0, one=1.d0, two=2.d0,

& three=3.d0, six=6.d0, enumax=.4999d0,
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& newton=10, toler=1.0d-6)
c
c assign temporary state variables

do k1=1,nstatv
tempstatv(k1)=statev(k1)

enddo
c
c elastic properties:

emu0 = props(1)
ed0 = props(2)
et0 = props(3)
enu = props(4)

c temperature dependent shear model
if(temp.gt.et0)then
emu = emu0 - ed0/(dexp(et0/temp)-one)
else
emu = emu0
endif
eg2=two*emu
eg3=three*emu
emod = eg2*(one+enu)
ebulk3=emod/(one-two*enu)
elam=(ebulk3-eg2)/three

c
c elastic stiffness

do k1=1, ndi
do k2=1, ndi

ddsdde(k2, k1)=elam
end do
ddsdde(k1, k1)=eg2+elam

end do
do k1=ndi+1, ntens

ddsdde(k1, k1)=emu
end do

c
c calculate predictor stress and elastic strain

do k1=1, ntens
do k2=1, ntens

stress(k2)=stress(k2)+ddsdde(k2, k1)*
& dstran(k1)

end do
end do

c
c calculate equivalent von mises stress

smises=(stress(1)-stress(2))**2+(stress(2)-
& stress(3))**2+(stress(3)-stress(1))**2
do k1=ndi+1,ntens

smises=smises+six*stress(k1)**2
end do
smises=sqrt(smises/two)

c
call fisotropic(sy,dsy,zero,dtime,temp,

& statev,tempstatv,nstatv,props,nprops)
c
c determine if actively yielding

if (smises.gt.(one+toler)*sy) then
c
c actively yielding
c separate the hydrostatic from the deviatoric
c calculate the flow direction

shydro=(stress(1)+stress(2)+stress(3))/three
do k1=1,ndi

flow(k1)=(stress(k1)-shydro)/smises
end do
do k1=ndi+1, ntens

flow(k1)=stress(k1)/smises
end do

c
c solve for equivalent von mises stress

c and equivalent plastic strain increment using
c newton iteration

deqpl=zero
do kewton=1, newton

rhs=smises-eg3*deqpl-sy
deqpl=deqpl+rhs/(eg3+dsy)

call fisotropic(sy,dsy,deqpl,dtime,temp,
& statev,tempstatv,nstatv,props,nprops)

if(abs(rhs).lt.toler) goto 10
end do

c
c write warning message to .msg file

write(7,2) newton
2 format(//,30x,’***warning - plasticity ’,

& ’algorithm did not converge after ’,i3,
& ’ iterations’)

10 continue
c
c update stress, elastic and plastic strains and
c equivalent plastic strain

do k1=1,ndi
stress(k1)=flow(k1)*sy+shydro

end do
do k1=ndi+1,ntens

stress(k1)=flow(k1)*sy
end do

c
c formulate the jacobian (material tangent)
c first calculate effective moduli

effg=emu*sy/smises
effg2=two*effg
effg3=three/two*effg2
efflam=(ebulk3-effg2)/three
effhrd=eg3*dsy/(eg3+dsy)-effg3
do k1=1, ndi

do k2=1, ndi
ddsdde(k2, k1)=efflam

end do
ddsdde(k1, k1)=effg2+efflam

end do
do k1=ndi+1, ntens

ddsdde(k1, k1)=effg
end do
do k1=1, ntens

do k2=1, ntens
ddsdde(k2, k1)=ddsdde(k2, k1)+

& effhrd*flow(k2)*flow(k1)
end do

end do
endif

c
c update state variable array

do k1=1,nstatv
statev(k1)=tempstatv(k1)

enddo
c

return
end

c

C FISOTROPIC subroutine

subroutine fisotropic(sy,dsy,depl,dtime,temp,
& statev,tempstatev,nstatv,props,nprops)

c
implicit real*8(a-h,o-z)
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logical checkrx
dimension props(nprops),statev(nstatv),

& tempstatev(nstatv),xi(2),xj(2),r(2),drdx(2,2),
& fxinfo(3),reps(2),dxdr(2,2),fxnvec(5),xjupd(2)

parameter(zero=0.d0,half=0.5d0,one=1.d0,
& two=2.d0, toler=1.d-4,x10=one,x20=1.d-10,
& fxn0=1.d-4,ratelim=1.d-8)

c
c elastic properties:

emu0 = props(1)
ed0 = props(2)
et0 = props(3)
enu = props(4)

c reference stress values
siga = props(5)
sig0 = props(6)

c scaling function
a0e = props(7)
rate0 = props(8)
qe = props(9)
pe = props(10)

c
rate = depl/dtime
if(rate.lt.ratelim)then
rate = ratelim
endif

c
if(temp.gt.et0)then
emu = emu0 - ed0/(dexp(et0/temp)-one)
sfe0 = temp/(a0e*emu)
else
emu = emu0
sfe0 = one/a0e
endif
emusf = emu/emu0

c
sfel = dlog(rate0/rate)*sfe0
sfe = dabs(one-sfel**(one/qe))**(one/pe)

c isv shift
nrrx = (nstatv-3)/4
if(statev(7).gt.(0.999d0))then
ixvf=1
do while(ixvf.lt.nrrx)
lstskip = 4*(ixvf-1)+3
ixvf = ixvf+1
statev(lstskip+1)=statev(lstskip+5)
statev(lstskip+2)=statev(lstskip+6)
statev(lstskip+3)=statev(lstskip+7)
statev(lstskip+4)=statev(lstskip+8)
enddo
statev(lstskip+5)=zero
statev(lstskip+6)=zero
statev(lstskip+7)=zero
statev(lstskip+8)=zero
endif

c
fxc = one
fxcp = one
fxcr = zero
dfxcde = zero
x1eq = zero
x2eq = zero
dx1eqde = zero
plastic = zero

c
ixvf = 1
checkrx = .true.
do while((ixvf.lt.nrrx).and.(checkrx))

lstskip = 4*(ixvf-1)+3
xeplp = statev(lstskip+1)
x1p = max(statev(lstskip+2),x10)
x2p = max(statev(lstskip+3),x20)
fxnp = max(statev(lstskip+4),fxn0)
xi = (/x1p,x2p/)
xj = (/x1p,x2p/)
fxinfo = (/fxc,fxcr,fxnp/)
call rget(r,drdx,fxnvec,reps,xj,xi,fxinfo,

& depl,dtime,temp,props,nprops)
fx = dsqrt(r(1)*r(1) + r(2)*r(2))
fxd = drdx(1,1)*drdx(2,2)-drdx(2,1)*drdx(1,2)
icount = 0
newtmax=15
if(xi(1).eq.(one))then
newtmax = 50
endif
do while((icount.lt.newtmax).and.

& (dabs(fx).ge.toler))
icount = icount+1
if(dabs(fxd).gt.zero)then
dxdr = reshape((/drdx(2,2),-drdx(2,1),

& -drdx(1,2),drdx(1,1)/),(/2,2/))/fxd
xjupd = reshape(matmul(dxdr,reshape(r,(/2,

& 1/))),(/2/))
xj=xj-xjupd
xj = (/max(dabs(xj(1)),x10),max(dabs(xj(2)),

& x20)/)
fxinfo = (/fxc,fxcr,fxnp/)
call rget(r,drdx,fxnvec,reps,xj,xi,fxinfo,

& depl,dtime,temp,props,nprops)
fx = dsqrt(r(1)*r(1) + r(2)*r(2))
fxd = drdx(1,1)*drdx(2,2)-drdx(2,1)*drdx(1,2)
else
xj = (/x1p,x2p/)
fx = zero
endif
enddo
x1 = max(xj(1),x10)
x2 = max(xj(2),x20)
fxn = min(dabs(fxnvec(1)),one)

c
c add fxc contribution to Gamma

rx0 = one/(fxc-fxn)
dxdfxc0 = dfxcde*(dtime*fxcr*rx0*rx0-rx0)
dx1dfxc = dxdfxc0*x1
dx2dfxc = dxdfxc0*x2
reps=reps+(/dx1dfxc,dx2dfxc/)

c
if(fxn.le.(1.d-3))then
checkrx = .false.
endif
fxnr = fxnvec(2)
dfxndx1 = fxnvec(3)
dfxndx2 = fxnvec(4)
dfxndfxc = fxnvec(5)

xepl = xeplp*fxcp/fxc+depl
c

tempstatev(lstskip+1) = xepl
tempstatev(lstskip+2) = x1
tempstatev(lstskip+3) = x2
tempstatev(lstskip+4) = fxn

c
x1eq = x1eq + x1*(fxc-fxn)
x2eq = x2eq + x2*(fxc-fxn)
plastic = plastic + xepl*(fxc-fxn)

c
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if(dabs(fxd).gt.0)then
dx1de = dxdr(1,1)*reps(1)+dxdr(1,2)*reps(2)
dx2de = dxdr(2,1)*reps(1)+dxdr(2,2)*reps(2)
dfxnde = dfxndx1*dx1de+dfxndx2*dx2de+

& dfxndfxc*dfxcde

dx1eqde = dx1eqde + dx1de*(fxc-fxn) +
& x1*(dfxcde - dfxnde)
dfxcde = dfxnde
fxc = fxn
fxcp = fxnp
fxcr = fxnr
endif

c endif
ixvf = ixvf+1
end do

c
tempstatev(1) = plastic
tempstatev(2) = x1eq
tempstatev(3) = x2eq

c
sqx1 = dsqrt(x1eq)
sec = sig0*sqx1
sy = siga + emusf*sfe*sec

c partial derivatives
c d(sec)/d(epl)

dsecdepl = half*sig0*dx1eqde/sqx1
c d(sfe)/d(epl)

dsfedepl = (sfe0*(one-sfel**(one/qe)
& )**(one/pe-one)*sfel**(one/qe-one)/
& (pe*qe*rate))/dtime

c total
dsy = emusf*(sfe*dsecdepl+dsfedepl*sec)
return
end

D RGET subroutine

subroutine rget(r,drdxj,fxnvec,reps,xj,xi,
& fxinfo, depl,dtime,temp,props,nprops)

c
implicit real*8(a-h,o-z)
dimension props(nprops),r(2),drdxj(2,2),

& fxinfo(3),reps(2),xj(2),xi(2),fxnvec(5)
c

parameter(zero=0.d0,half=0.5d0,one=1.d0,
& two=2.d0,toler=1.d-10,ratelim=1.d-8)

c
c elastic properties:

emu0 = props(1)
ed0 = props(2)
et0 = props(3)
enu = props(4)

c reference stress values
siga = props(5)
sig0 = props(6)

c scaling function
a0e = props(7)
rate0 = props(8)

c evolution of misorient:
cld = props(11)

c stage 4
cg = props(12)
rg = props(13)

c storage
c1 = props(14)

c dynamic recovery:
c20 = props(15)
a02 = props(16)
rate02 = props(17)

c thermal recovery
c30 = props(18)
r3 = props(19)
a03 = props(20)

c recrystallisation
cx0 = props(21)
a0x = props(22)
cxl = props(23)
rxl = props(24)
rxa = props(25)
rxb = props(26)
cxc = props(27)

c
c get info from previous values:
c contained in fxinfo:

fxc = fxinfo(1)
fxcr = dabs(fxinfo(2))
fxnp = fxinfo(3)

c
rate = depl/dtime
if(rate.lt.ratelim)then
rate = ratelim
endif

c
if(temp.gt.et0)then
emu = emu0 - ed0/(dexp(et0/temp)-one)
r2m = -temp/(emu*a02)
r3c = c30*dexp(-a03/temp)*dtime
r5c0 = cx0*dexp(-a0x/temp)*emu*dtime
else

c use constants:
emu = emu0
r2m = -a02
r3c = c30*dtime
r5c0 = cx0*emu*dtime
endif

c isv’s at previous convergence and current guess:
x1p = max(xi(1),one)
x2p = max(xi(2),zero)
x1 = max(xj(1),one)
x2 = max(xj(2),zero)

c
c growth of next recrystallised volume:

cldbar = min(x2,one)
r5c1 = (one-dexp(-cxl*(cldbar)**rxl))
r5c = r5c0*r5c1*(x1)

c interfacial area
fxn = fxnp
rxg = fxc*((fxn/fxc)**rxa)*((one-fxn/fxc)**

& rxb)*(one+cxc*(one-fxc))
drxg = rxa*((fxn/fxc)**(rxa-one))*

& ((one-fxn/fxc)**rxb)*(one+cxc*(one-fxc)) -
& rxb*((fxn/fxc)**rxa)*((one-fxn/fxc)**(rxb-
& one))*(one+cxc*(one-fxc))
fxnr = dabs(r5c*rxg)
ffxn = fxn - fxnp - fxnr

c resolve residual
icount = 0
do while((icount.lt.15).and.(dabs(ffxn).gt.

& toler))
icount = icount+1
dffxn = one - half*r5c*drxg
if(dabs(dffxn).lt.toler)then
dffxn = toler
endif
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fxn = min(dabs(fxn - ffxn/dffxn),fxc-toler)
rxg = fxc*((fxn/fxc)**rxa)*((one-fxn/fxc)

& **rxb)*(one+cxc*(one-fxc))
drxg = rxa*((fxn/fxc)**(rxa-one))*

& ((one-fxn/fxc)**rxb)*(one+cxc*(one-fxc)) -
& rxb*((fxn/fxc)**rxa)*((one-fxn/fxc)**
& (rxb-one))*(one+cxc*(one-fxc))
fxnr = dabs(r5c*rxg)
ffxn = fxn - fxnp - fxnr
end do

c partial : change of fxn with respect to x1 and x2:
c partial gradients d(fxn)/d(x1)

ddfxdr = (one-r5c*drxg)
if(dabs(ddfxdr).lt.toler)then
ddfxdr = toler
endif
dfxndx1 = (r5c0*r5c1*rxg)/ddfxdr
dmdx2 = zero
if(x2.lt.one)then
dmdx2 = one
endif

dr5c1dm = rxl*cxl*dexp(-cxl*(cldbar)**rxl)*
& (cldbar)**(rxl-one)
dfxndm = (r5c0*dr5c1dm*x1*rxg)/ddfxdr

c partial gradients d(fxn)/d(x2)
dfxndx2 = dfxndm*dmdx2

c partial d(fxn)/d(fxc)
drxgdfxc = ((fxn/fxc)**rxa)*((one-fxn/fxc)**

& rxb)*(one+cxc*(one-fxc))
& - rxa*((fxn/fxc)**rxa)*((one-fxn/fxc)**rxb)*
& (one+cxc*(one-fxc))
& + rxb*((fxn/fxc)**(rxa+one))*((one-fxn/fxc)
& **(rxb-one))*(one+cxc*(one-fxc))
& - cxc*fxc*((fxn/fxc)**rxa)*((one-fxn/fxc)**
& rxb)
dfxndfxc = r5c*drxgdfxc

c residual equations on the isv values:
c2 = c20*(rate/rate02)**r2m
dc2de = c20*r2m*((rate/rate02)**(r2m-one))/

& (dtime*rate02)
sqx1p = dsqrt(x1p)
sqx1 = dsqrt(x1)
hx2 = cld
hx1temp = -r3c*(x1**r3+x1p**r3)
hx1 = (cg)*(x2)**rg+c1*sqx1-c2*x1
if(fxn.ge.fxc)then
rx0 = zero
else
rx0 = one/(fxc - fxn)
endif
rfxc = fxcr*rx0
drx = rfxc*rx0
r1 = x1-x1p-hx1*depl-hx1temp+x1*rfxc
r2 = x2-x2p-hx2*depl+x2*rfxc
r = (/ r1 , r2 /)

c partial :
c change in residual with respect to x1 and x2:

dhrdrtemp=-r3*r3c*x1**(r3-one)
dhrdr=half*c1/sqx1-c2

c partial gradients d(fr1)/d(x1)
dr1dr0=one-dhrdr*depl-dhrdrtemp+rfxc
dr1dx1=dr1dr0+x1*drx*dfxndx1

c partial gradients d(fr1)/d(x2)
dr1dx2=-depl*rg*(cg)*(x2)**(rg-one)+

& x1*drx*dfxndx2
c partial gradients d(f2)/d(x1)

dr2dx1 = x2*drx*dfxndx1
c partial gradients d(f2)/d(x2)

dr2dl0= one + rfxc
dr2dx2 = dr2dl0 + x2*drx*dfxndx2
drdxj=reshape((/dr1dx1,dr2dx1,dr1dx2,dr2dx2/)

& ,(/2,2/))
c

dr1de = hx1 - depl*dc2de*x1
dr2de = hx2
reps = (/dr1de,dr2de/)

c exchange new supplementary info using fxinfo:
fxnvec(1) = fxn
fxnvec(2) = fxnr
fxnvec(3) = dfxndx1
fxnvec(4) = dfxndx2
fxnvec(5) = dfxndfxc

c
return
end
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