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Abstract
This paper deals with elastic and elastic–plastic fretting problems. The wear gap is taken into account along with the initial
contact distance to obtain the Signorini conditions. Both the Signorini conditions and the Coulomb friction laws are written
in a compact form. Within the bipotential framework, an augmented Lagrangian method is applied to calculate the contact
forces. The Archard wear law is then used to calculate the wear gap at the contact surface. The local fretting problems are
solved via the Uzawa algorithm. Numerical examples are performed to show the efficiency and accuracy of the proposed
approach. The influence of plasticity has been discussed.
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1 Introduction

Fretting arises when two bodies in contact become subject to
reciprocating motion with small amplitudes. It is a common
phenomenon in many mechanical elements such as bolted
joints, clamping devices, rolling bearings, etc. Fretting may
cause the loss of contact surface of concerned bodies and
thus lead to fretting fatigue and fracture.

Extensive research has been conducted on fretting prob-
lems. Some experimental research is devoted to explore the
mechanism of fretting. This leads to wear models where
the wear coefficient is determined. Vingsbo and Söderberg
established the “fretting map” to describe the three fretting
regimes [1]. Zhou et al. [2] developed two kinds of “fret-
ting map” which distinguished running conditions and the
material response. Pearson and Shipway [3] proposed that
elastic deformation of system and threshold energy should
be considered when calculating the wear coefficient.

From the point of numerical simulation. Fretting problems
include contact, friction and wear. Not only the contact pres-
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sure influences the wear rate, but the wear process changes
the contact surface and influences the contact properties as
a consequence. This creates an additional coupled relation-
ship between contact and friction. The accuracy of contact
calculation is the base to simulate wear process [4].

Many scholars used commercial finite element codes, such
as ABAQUS and ANSYS, to obtain the contact pressure and
partial relative displacements, and then applied wear models
to compute the wear value accordingly. McColl et al. [5]
simulated wear procedure under elastic deformation. Garcin
et al. [6] studied the wear effect of crack nucleation. Hu
et al. and Tobi et al. [7,8] studied the interaction of plastic
deformation and wear procedure. Yue et al. and Arnaud et al.
[9,10] considered the effect of third body layer.

Others applied their own method to solve the couple
problem of contact, friction and wear. Johansson [11] stud-
ied the evolution of contact pressure in fretting, pioneering
numerical work in this field. Strömberg used the augmented
Lagrangian method to calculate contact forces and the New-
ton method to solve the nonlinear equilibrium equations.
Lengiewicz and Stupkiewicz [14] developed the so-called
“rigid-wear model” to deal with the pin-on-disc problem.
Rodríguez-Tembleque et al. [15] studied the influence of
anisotropy on 3D rolling wear problems. Carbonell et al.
[16] developed particle finite element method to deal with
wear problem of rock cutting tool.

In our paper, local contact and fretting problems are solved
via the Uzawa algorithm within the bipotential framework.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-018-1567-8&domain=pdf


1328 Computational Mechanics (2018) 62:1327–1341

M1

M2

n
t2

t1

Ω1

Ω2

Fig. 1 Contact kinematics

The bipotential theory which complies the contact boundary
conditions and the contact laws naturally, was promoted by
de Saxcé and Feng [17,18] to deal with the so-called implicit
standard materials (ISM). It has been successfully applied
to deal with contact problems involving anisotropy [19],
dynamics [20], etc. The present work extends the bi-potential
method to fretting problems by using the Archard wear law
[21] and by considering the normal wear gap of the contact
surface as an internal state variable [13], which can be taken
into account by the Archard wear law. For numerical formu-
lations and simulations, the post two popularwearmodels are
Archard wear law [21] and friction energy approaches [22].
As we only consider the constant friction coefficient, these
two approaches are equivalent [10]. So the Archard wear law
is chosen to calculate the normal wear gap. This is based on
the hypothesis that the wear debris of contact surfaces disap-
pears immediately insteadof existing as a third-bodybetween
the two contact bodies. For elastic wear problems, the wear
gap increment is calculated by means of the Archard wear
law in every increment step after convergence of the con-
tact state. But the wear gap increment is calculated in every
increment step after convergence of the plastic iteration. The
Uzawa algorithm is successfully applied to solve the three-
dimensional elastic frictional contact problems and displays
good performance both in simplicity and robustness [23].
Thus, it is suitable to extend the Uzawa algorithm to the fret-
ting problem. Numerical examples are conducted to show the
performance of this method of two different materials.

2 Contact kinematics and Archard wear law

Let us consider two deformable bodies Ω1 and Ω2 coming
into contact as in Fig. 1, where M1 and M2 are two cor-
responding contact points; t1, t2 and n denote respectively
the tangential, orthogonal and normal direction vectors. The
local relative position vector xα of each contact point α

(α = 1, 2, . . . , Nc) can be determined by the global vector
X:

xα = HαX (1)

Mα
1

gα
0

Mα
2

gα
w

Fig. 2 Initial normal gap

where Hα represents the transition matrix. Conversely, the
reverse rotation form of the contact force vector is:

Rα = HT
αr

α (2)

where Rα and rα are contact force vectors in global frame
and local frame respectively. The gap vector between two
contact points is derived from the incremental form of Eq.
(1):

xα
i+1 = HαΔXi + gα, gα = (

0 0 gα
)T (3)

where gα is the initial gap vector; gα = gα
0 + gα

w and it
stands for the initial normal gap consisting in the addition of
the initial motion gap gα

0 and the wear gap gα
w (see Fig. 2).

The wear gap is governed by the Archard wear law as
follows

ġα
w = kPα

n

√(
ẋα
t1

)2 + (
ẋα
t2

)2 (4)

where k stands for the wear coefficient, empirically deter-
mined, and Pα

n represents the normal contact pressure. The
superimposed dot notation indicates a time derivative. The
Archardwear law describes how thewear rate is proportional
to both the normal contact traction and the relative tangen-
tial velocity. For the quasi-static problem, the approximate
form (5) can be obtained by adopting a backward Euler time-
discretization of Eq. (4)

gα(k+1)
w = gα(k)

w + kPα(k+1)
n

√(
Δxα(k)

t1

)2 +
(
Δxα(k)

t2

)2
(5)

where Δxα(k)
t j = xα(k+1)

t j − xα(k)
t j , j = 1, 2 . Assembling all

the Nc equations of Eqs. (2) and (3) leads to the following
equations:
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⎧
⎨

⎩

x = HΔX + g

R =
Nc∑

α=1
Rα = HTr

(6)

with the following complementary notations:

H =
⎡

⎢
⎣

H1
...

HNc

⎤

⎥
⎦ , x =

⎡

⎢
⎣

x1
...

xNc

⎤

⎥
⎦ , r =

⎡

⎢
⎣

r1
...

rNc

⎤

⎥
⎦ , g =

⎡

⎢
⎣

g1
...

gNc

⎤

⎥
⎦

(7)

3 The complete contact law

For wear problems, and because of the wear gap gα
w (see

Fig. 2), the unilateral contact laws also known as Signorini
conditions become

{
xα
n = Δxα

n + gα
0 + gα

w = 0 if rα
n ≥ 0

xα
n = Δxα

n + gα
0 + gα

w > 0 if rα
n = 0

(8)

The positive contact distance xα
n ≥ 0 means that there is

no interpenetration between contact surfaces. The second
inequation means that there is no adhesion when the bod-
ies are separated. For quasi-static problems, the time interval
can be taken as being equal to the time unit interval. Coulomb
friction laws are regularly used for rate-independent dry-
friction problems and summarize in :

{∥∥rα
t

∥∥ ≤ μrα
n ∀ ∥∥xα

t

∥∥ = 0

rα
t = −μrα

n
xα
t‖ xα
t ‖ ∀ ∥∥xα

t

∥∥ �= 0
(9)

whereμ is the friction coefficient. TheCoulomb friction laws
in Eq. (9) can be rewritten in the form of a Coulomb cone
Kμ

Kμ =
{
rα ∈ R

3 | rα
n ≥ 0,

∥∥rα
t

∥∥ − μrαn ≤ 0
}

. (10)

The combination of Signorini conditions with Coulomb fric-
tion laws leads to the complete contact law :

Separating: xα
n > 0, r = 0

Sticking:
∥∥xα

t

∥∥ = 0, r ∈ int
(
Kμ

)

Sliding:
∥∥xα

t

∥∥ �= 0, r ∈ bd
(
Kμ

) | rα
t = −μrα

n
xα
t‖xα
t ‖

(11)

where ‘int’ and ‘bd’ represent the interior and the bound-
ary of the Coulomb cone, respectively. Note that there is no
explicit relationship between x and r because of the multi-
valued character in the separating and sticking contact states.
Therefore, a superpotential for the contact law does not exist.

The materials obeying these rules are called ISM (implicit
standardmaterials) and canbeperfectly handledwith through
extending the augmented Langrangain method to the bipo-
tential framework [17,18].

4 The implicit standardmaterials and the
bipotential method

The bipotential method is a good strategy proposed by De
Saxcé and Feng [17,18] to deal with the so-called ISM. The
derivation of this method is based on Fenchel’s inequalities :

ϕ(ξ) + χ(ζ ) ≥ ξ · ζ (12)

where ϕ and χ are superpotentials and the right hand side
of this equation stands for the dissipation energy. Only when
the dual variables ξ and ζ comply with the dissipative law,
can the equality be satisfied

ϕ(ξ ′) + χ(ζ ′) = ξ ′ · ζ ′ . (13)

By letting ζ ′ = ζ and by subtracting Eq. (13) from Eq. (12),
it can be deduced that

∀ζ , ϕ(ξ) − ϕ(ξ ′) ≥ ζ · (ξ − ξ ′) . (14)

The solution of ζ is called the subdifferential of ϕ at ξ ′.
Letting ξ ′ be equal to ξ and conducting a similar operation
as with ζ , the subnormally law can be written as

{
ξ ∈ ∂χ(ζ )

ζ ∈ ∂ϕ(ξ)
. (15)

The materials that conform to such subnormally laws are
called explicit standard materials (ESM). But De Saxcé and
Feng [18] have proven that there does not exist a superpoten-
tial for the contact law. Therefore, the concept of bipotential
is developed to deal with the implicit relationship between
dual variables such as

bc(ξ , ζ ) ≥ ξ · ζ (16)

where the bipotential function bc(ξ , ζ ) is convexwith respect
to the dual variables ξ and ζ . Only when the dual variables
satisfy the constitutive law, can inequation (16) satisfy the
equality. Then, the corresponding implicit subnormally laws
become
{

ξ ∈ ∂ζbc(ξ , ζ )

ζ ∈ ∂ξbc(ξ , ζ )
. (17)

Obviously, when taking the following form :

bc(ξ , ζ ) = ϕ(ξ) + χ(ζ ) (18)
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Fig. 3 Coulomb cone projection
and contact states
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the implicit inequation (16) becomes the same as the explicit
one (12). So the ESM could be seen as a special form of the
ISM.

5 The contact lawwithin the bipotential
framework

For any contact pointα (α ∈ 1, . . . , Nc), the bipotential func-
tion of the contact law is as follows :

bc(−xα, rα) =
⋃

R−
(−xα

n ) +
⋃

Kμ

(rα) + μrα
n ‖−xα

t ‖ (19)

where
⋃

R−(−xα
n ) and

⋃
Kμ

(rα) are indicator functions. The
restraining conditions R− and Kμ represent the negative
orthant and the admissible Coulomb cone respectively. The
indicator functions become null when the variables −xα

n and
rα comply with the restraining conditions; otherwise their
value is infinite. Replacing the potentials in inequality (14)
by bc(−xα, rα) leads to

bc(−xα, rα∗) − bc(−xα, rα) ≥ −xα · (rα∗ − rα) . (20)

Inequality (20) can be multiplied by any positive real coeffi-
cient ρ. Thus, for any rα∗, it can be deduced that

ρbc(−xα, rα∗) − ρbc(−xα, rα)

+[rα − (rα − ρxα)] · (rα∗ − rα) ≥ 0 (21)

which means that rα is the proximal point of the augmented
stress rα∗ :

rα∗ = rα − ρxα∗ | xα∗ = xα + μ‖−xα
t ‖n (22)

where rα∗ represents the trial contact forces in the predictor-
corrector step, and the corrector step is within the Coulomb
cone Kμ (see Fig. 3) :

rα = ProjKμ
(rα∗) (23)

where K∗
μ is the polar cone of Kμ. According to the three

different contact states in Eq. (11), noting that the projection
is normal to the boundary of the Coulomb cone when sliding,
the projection procedure becomes:

Separating: ProjKμ
(rα∗) = 0 if ‖μrα∗

t ‖ ≤ −rα∗
n

Sticking: ProjKμ
(rα∗) = rα∗ if ‖rα∗

t ‖ ≤ μrα∗
n

Sliding: ProjKμ
(rα∗) = rα∗ −

( ‖rα∗
t ‖−μrα∗

n
1+μ2

) (
rα∗
t

‖rα∗
t ‖ − μn

)
else

(24)
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where the explicit correcting procedure needs only one
step. This shows the good stability and accuracy during the
numerical calculation [18]. Thus, the contact forces can be
calculated via a trial-correct step in Eqs. (22–24).

6 The equilibrium equations and Uzawa
algorithm

For quasi-static fretting problems, considering the transform
of contact forces in Eq. (6), the Newton–Raphson iterative
form of the equilibrium equations can be written as

KTΔX = Fint + Fext + HTr (25)

whereFint stands for the internal forces vector andFext stands
for the external loads vector, both in the global configura-
tions.KT represents the tangent stiffness matrix of the whole
system. By combining Eq. (25) with Eq. (6) and by eliminat-
ing the global displacement increments vector ΔX, the total
relative position can be expressed in the local frame as :

x = HK−1
T (Fint + Fext) + g + HK−1

T HTr . (26)

By setting

{
W = HK−1

T HT

x̃ = HK−1
T (Fint + Fext) + g

(27)

the local equilibrium equation of contact and wear becomes

x = Wr + x̃ . (28)

Thus, the local fretting problem can be described by three
equations : the Archard wear law (5); the trial-correct contact
forces (23); and the local equilibriumequation (28) as follows

x = Wr + x̃

rα = ProjKα
μ
(rα∗)

gα(k+1)
w = gα(k)

w + kPα(k+1)
n

√(
Δxα(k+1)

t1

)2 +
(
Δxα(k+1)

t2

)2
.

(29)

For the fretting problem described within the bipotential
framework, the Uzawa algorithm is a suitable choice to solve
these local implicit equations, since many contact examples
showed the accuracy and stability of this algorithm [23]. The
Uzawa algorithm used to solve the elastic local wear prob-
lems is shown inAlgorithm1,whereΘ denotes themaximum
iteration number; Wαβ = HαK

−1
T HT

β represents the influ-
ence matrix of the relative position of contact point α due to
a contact point β; x̃α(k) denotes the relative local displace-
ment of contact point α at iteration step (k) caused by the

initial gap, wear gap, internal and external forces. So xαβ(k)

could be seen as result of the effects caused by x̃α(k) plus the
influence of contact forces of the remaining (Nc − 1) con-
tact points. The value of positive coefficient ρ will influence
the speed of convergence but not the results. The condition
of convergence in Eq. (34) is controlled by the total contact
forces r. Thewear gap of each node gα

w is assumed to be addi-
tional normal distance as illustrated in Fig. 2. It is considered
to be constant in the current load step (k). After convergence
of this step, the wear gap is calculated and updated by using
Eq. (35).

Algorithm1Uzawa algorithm to solve local fretting problem
Require: r = 0 and gα = (0 0 gα

0 + gα
w)T

for k = 1 to Θ do
for α = 1 to Nc do

xαβ(k) ←
Nc∑

β=1,β �=α

Wαβrβ(k) + x̃α(k) (30)

rα∗(k+1) ← rα(k) − ρ(k)(xαβ(k) + μ‖xαβ(k)
t ‖)n (31)

rα(k+1) ← ProjKμ
(rα∗(k+1)) (32)

xα(k+1) ← Wααrα(k+1) + xαβ(k) (33)

end for
if

‖r(k+1) − r(k)‖
‖r(k+1)‖ ≤ εg (34)

then

gα(k+1)
w ← gα(k)

w + kPα(k+1)
n

√
(Δxα(k+1)

t1 )2 + (Δxα(k+1)
t2 )2

(35)

Break
end if

end for

7 Plasticity

As many researches showed that the plastic deformation
will effect wear process [7,8]. We also use the elastic–
plastic materials to compare with the elastic materials For
elastic–plastic wear problem, each load step (k) needs
Newton-Raphson iterations. Uzawa iterations of the contact
solution are performed inside each Newton-Raphson itera-
tion. For one load step (k), the wear gap of each node gα

w is
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Fig. 4 Solution strategy of elastic–plastic contact and wear
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Fig. 5 Mesh and boundary conditions of the elastic block contact

assumed to be constant and is actualized after convergence
of the Newton-Raphson equilibrium loop. The iteration of
elastic–plastic contact and wear is shown in Fig. 4, where
δ1 and δ2 represent the convergence coefficient of the resid-
ual stress vector Fr and the total position increment vectorX.
Both numerical examples are shown in the following section.

8 Numerical examples

The bipotential method has been applied in many academic
and industrial examples regarding contact problems.

8.1 Example 1: elastic block wear and deformation

The first example is considered to show the performance of
the presented method in dealing with the elastic fretting wear

Table 1 Parameters of elastic block contact

Parameter Value

Young modulus E 210000 MPa

Poisson’s ratio ν 0.3

Frictional coefficient μ 0.4

Wear coefficient k 0.00001 MPa−1

Loading pressure q ± 10 MPa

Preload displacement u 0.0001 mm

problems. An elastic block comes into contact with a rigid
plate which is the same as that chosen by Strömberg [12]. 80
increments are applied during one loading cycle. Four-node
plane strain elements are used to build the mesh. The size
of the elastic block is 50 × 50 mm. It is fixed at its top with
a negative initial gap u at the bottom, and the right side is
subject to an alternating pressure q. The mesh and bound-
ary conditions are shown in Fig. 5 . The bottom of the block
will come into contact and have amicro reciprocatingmotion
with the rigid plate. Table 1 summarizes numerical parame-
ters. The evolution of the wear gap and the normal contact
pressure during the first cycle are shown in Fig. 6. Through
the first cycle, we could see that the distribution of the con-
tact pressure and the wear rate are obviously influenced by
the path of displacement. The evolution of the wear gap dur-
ing 9000 cycles and the normal contact pressure of loading
path q = 0 MPa (increment = 80) during 3000 cycles are
shown in Fig. 7. Over 3000 cycles, the normal contact pres-
sure becomes almost zero due to the fact that the negative
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Fig. 6 Wear gap and contact pressure during the first cycle for 4 different loading pressures; S represents Strömberg’s results
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Fig. 7 Wear gap and contact pressure during 9000 cycles at the 80th increment; S represents Strömberg’s results

initial gap u is almost worn away. As wear goes, the edges
of both sides are worn away and the normal contact pressure
becomes zero. The normal contact pressure of the contact
surface, where the wear gap is the smallest, increases grad-
ually because of stress concentration and then becomes zero
because the surface wears away. As the contact surface wears
away, the normal contact pressure caused by the preload u
decreases gradually. The wear rate is diminished according
to the Archard wear law (4) despite of the non-dominating
parameter which is the tangential velocity.

It is worthy noting that the evolution of the wear gap and
contact pressure in the first cycle and during 9000 loading
cycles are in good concordancewith that found by Strömberg
[12] as shown in Figs. 6 and 7.

Two points (see Fig. 5) are chosen to show the evolution
of wear state during different loading pathes in one cycle.
The evolution of wear state of point A is shown in Fig. 8.

If we focus on the figure of point A during the first cycle,
there are three different states : separating, sliding and stick-
ing. When separating, the normal gap xn > 0 and the contact

pressures Pn and Pt become zero; when sliding, the normal
gap xn = 0 and the relative tangential displacement incre-
ment Δxt �= 0, the relationship between contact pressures
is ‖Pt‖

Pn
= ‖rt/A‖

rn/A
= ‖rt‖

rn
= μ; when sticking, the normal

gap xn = 0 and the relative tangential displacement incre-
ment Δxt = 0, the relationship between contact pressures
is ‖Pt‖

Pn
= ‖rt/A‖

rn/A
= ‖rt‖

rn
< μ. The last state often takes

place when the loading direction q changes. According to
the Archard wear law, the wear gap increases only when the
sliding state takes place.Wenote that the contact pressure and
relative displacement suddenly change between two different
contact states,making it difficult to describe this intermediate
period. As wear increases, the contacting and sliding states
both become shorter, and the maximum values of normal and
tangential pressures decrease. The reason for this is that the
surface of the body wears away gradually. Point B wear state
evolution is shown in Fig. 9. This point displays no sticking
state because it constantly moves. As the description of the
right figure in Fig. 7, Point B is in the region where the con-
tact pressure suddenly increases and decreases at the 80th
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Fig. 8 Evolution of wear state
of Point A: st∗, sl∗ and se∗
represent sticking, sliding and
separating states respectively. a
Point A, first cycle, b Point A,
5000th cycle, c Point A,
10000th cycle
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Fig. 9 Evolution of wear states
of Point B: sl∗ and se∗ represent
sliding and separating states
respectively. a Point B, first
cycle, b Point B, 5000th cycle, c
Point B, 10000th cycle
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Fig. 10 Mesh and boundary conditions of cylinder-flat contact

Table 2 Parameters of cylinder-flat contact

Parameter Value

Young modulus E 115000MPa

Hardening modulus c 7230MPa

Yield stress σy 840MPa

Poisson’s ratio ν 0.342

Frictional coefficient μ 0.9

Wear coefficient k 8.5 × 10−9 MPa−1

increment of each cycle during the first 3000 cycles. After
3000 cycles, the maximum values of normal and tangen-
tial pressures decrease. These results of both points make a
good agreement with the complete contact law (11) and the
Archard wear law (5).

8.2 Example 2: two-dimensional cylinder-flat
contact

In this numerical example, the constitutive models of elastic
material and elastic–plasticmaterial are compared. The basic
cylinder-flat wear model is chosen in which it exits usually
plastic deformation in the contact zone. The geometrical size
and local mesh size of contact zone are the same as inMcColl
[5] which are shown in Fig. 10. The diameter of the cylinder
is 12 mm with a preload displacement u and a reciprocating
displacement δ at the top. The bottom of the flat is fixed. The
element size in the contact area is about 10 μm.

Table 2 summarizes numerical parameters defined accord-
ing to [8]. Only linear isotropic hardening is considered for
the elastic–plastic model.

preload u

reciprocate load δ

cycle 1 cycle 2

Fig. 11 Load history of cylinder-flat contact

The preload displacement u is applied in the first step.
Then the reciprocating displacement δ is applied in the sub-
sequent steps. The load history is shown in Fig. 11. When
only the preload displacement u = 0.008 mm is applied, the
total normal forces is about 199.24 N. The maximum contact
pressure and the half-width of contact area can be obtained
analytically [24]. The comparison of normal contact pressure
between Hertzian solution and our solution is shown in Fig.
12. The results demonstrates the accuracy of our method.
Additionally, the contact bodies do not enter the yield stage
in the preload step, as themaximumvalue ofVonMises stress
is about 272.7 MPa. So the normal contact pressure distribu-
tion of elastic and elastic–plastic material are the same in the
preload step. For the sake of description, all the following
normal contact pressure distribution is in the position of the
end of load cycle.
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Fig. 12 Comparison of normal contact pressure

8.2.1 Gross slip condition

For gross slip condition, the reciprocating displacement is
δ = 0.03 mm. Each cycle is divided into 80 increments. The
wear value and normal contact pressure distribution of two

materials in the first cycle are shown in Fig. 13. The nor-
mal contact pressure distribution of elastic material is almost
the same but moves a little to the left. But the maximum
value of normal contact pressure of elastic–plastic material
decreases to 747.4 MPa. The maximum wear gap of elastic–
plastic material is less than that of elastic material, while the
wear width reversely. In order to explore the reason of these
differences, the center point of the contact region is chosen
to show the evolution of wear state in the first cycle. The
evolution of wear state of the center point in the first cycle
is shown in Fig. 14. The initial relative tangential movement
of elastic material is a little ahead of elastic–plastic material.
The normal contact pressure is decreased, where major plas-
tic deformation happened, before initial relative tangential
movement. In these steps, the plastic deformation could be
seen as the resistance of initial relative tangential movement.
In the next steps, the relative tangential displacement of both
materials are almost the same. But the normal contact pres-
sure of elastic–plasticmaterial is still variedwhile the normal
contact pressure of elastic material changed a little. So the
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Fig. 13 Wear gap and normal contact pressure in the first cycle

Fig. 14 Evolution of wear state
of the center point in the first
cycle
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Fig. 15 Wear gap and normal contact pressure during 100 cycles
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Fig. 16 Wear gap and normal contact pressure of hypothetic wear coefficient during 100 cycles

finial wear value of elastic–plastic material is less than the
case of elastic material in the first cycle, mainly due to the
reduction of normal contact pressure. The evolution of wear
gap and normal contact pressure of two materials during 100
cycles are shown in Fig. 15. The comparison of maximum
wear gap and wear width of both materials during 100 cycles
is similar as that in the first cycle. The normal contact pres-
sure distribution of both materials decrease a little in the end
of 100 cycle compared with the first cycle because of the
small wear gap in the order of 10−5 mm. In order to inves-
tigate the influence of wear to both materials and speed up
the computation, the wear coefficient is assumed to enlarge
hundredfold becoming 8.5× 10−7 MPa−1. The evolution of
wear gap and normal contact pressure of twomaterials of new
hypothetic wear coefficient during 100 cycles are shown in
Fig. 16. The results of hypothetic wear coefficient will not be
very accurate, but exhibit the tendency of evolution of wear
gap and normal contact pressure distribution of more wear

cycles. 100wear cycle of the hypothetic wear coefficient case
is corresponding to 10000 cycles of the case of realwear coef-
ficient. We could see that after 10 cycles (corresponding to
1000 cycle of real wear coefficient), the maximum normal
contact pressure of both materials decreased obviously. The
peak value of normal contact pressure decreases, while the
contact width increases, along with the wear cycle increases.
Especially, in the end of 100 cycle, the normal contact pres-
sure distribution of both materials become similar. So when
the wear gap is minor, the influence of plasticity on contact
pressure distribution will not be ignored. And when the wear
gap becomes major, the influence of plasticity on contact
pressure distribution is not so important than the influence of
wear process.

In the literature [11,13,25], numerical investigations indi-
cate that increasing the wear depth increment using a
fictitious wear coefficient (i.e. 100 times bigger than the real
one) speedup the solution andwill lead to insignificant errors.
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Fig. 17 Wear gap and normal contact pressure in the first cycle

−0.2 −0.1 0 0.1 0.2

0

2

4

6

8
·10−6

Contact surface x (mm)

W
ea

r
ga

p
w

(m
m

)

el, c50
ep, c50
el, c100
ep, c100

−0.2 −0.1 0 0.1 0.2

0

200

400

600

800

Contact surface x (mm)

N
or

m
al

co
nt

ac
t

pr
es

su
re

P
n

(M
P
a)

el, c1
ep, c1
el, c100
ep, c100

Fig. 18 Wear gap and normal contact pressure during 100 cycles

They studied the influence of the wear depth-increment over
the CPU time and solution errors in fretting-wear problems
under gross slip and partial slip conditions.

8.2.2 Partial slip condition

For partial slip condition, the reciprocating displacement
δ = 0.01 mm is applied. Each cycle is divided into 64
increments. The wear value and normal contact pressure dis-
tribution of two materials in the first cycle are shown in Fig.
17. The normal contact pressure distribution of elastic mate-
rial is almost the same as the preload step. For elastic–plastic
material, the maximum value of normal contact pressure
decreases a little to 788.3 MPa with a minor increase in the
edge of contact region. The maximum wear gap of elastic–
plastic material is bigger than that of elastic material which
is different from gross slip condition. Because in partial slip
condition, thewear regionmoving close to the edge of contact

region and thenormal contact pressure is bigger in this region.
The evolution ofwear gap and normal contact pressure of two
materials during 100 cycles are shown in Fig. 18. The nor-
mal contact pressure distribution of elastic material remains
almost the same during 100 cycles. While for elastic–plastic
material, the normal contact pressure distribution decreases
a little in wear region and increases a little in other contact
region. The maximum wear gap of elastic–plastic material
becomes smaller gradually compare to elastic material dur-
ing 100 cycles. The wear coefficient is also assumed to
enlarge hundredfold becoming 4.5× 10−6 MPa−1 to see the
influence of wear to both materials in bigger wear depth.
The evolution of wear gap and normal contact pressure of
two materials of new hypothetic wear coefficient during 100
cycles in partial slip condition are shown in Fig. 19. With
the hypothetic wear coefficient, the normal contact pressure
distribution decreases continually of both materials around
the maximum wear depth region because of the increase of
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Fig. 19 Wear gap and normal contact pressure of hypothetic wear coefficient during 100 cycles

wear depth. But the normal contact pressure distribution in
sticking region increases along with the reduction of contact
area. Especially, the peak value of normal contact pressure
of elastic material will occur in the position between sticking
and sliding regions. The peak value of elastic–plasticmaterial
does not exist because of plastic deformation. The maximum
wear gap of elastic–plastic material will catch up and exceed
elastic material gradually during 100 cycles. So the influence
of plasticity in partial slip condition during wear process is
the main contribution to smooth normal contact pressure.

9 Conclusions

In the present work, the bipotential methodwith Uzawa algo-
rithm is extended to deal with elastic and elastic–plastic
fretting wear problems. A finite element program in C++
is specially developed to this issue. The numerical applica-
tion with the example of Strömberg [12] and the comparison
with Hertzian solution show the good accuracy and stabil-
ity of our method. The evolution of contact nodes during
one cycle in example 1 is in good agreement with the com-
plete contact law and the Archard wear law. It showed that
the contact state depends on the wear procedure; at the same
time, the wear rate depends on the contact state. The compar-
ison of the elastic–plastic material with the elastic material
showed the coupled influence of plasticity and wear gap on
the normal contact pressure distribution under an assumption
of constant friction coefficient. However inmany actual engi-
neering applications, the friction coefficient may depend on
contact pressure, etc. This issue will be addressed in future
works.
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