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Abstract
An efficient numerical method is developed for the simulation of dynamic response and the prediction of the wave propagation
in composite plate structures. The method is termed finite wavelet domain method and takes advantage of the outstanding
properties of compactly supported 2D Daubechies wavelet scaling functions for the spatial interpolation of displacements in
a finite domain of a plate structure. The development of the 2D wavelet element, based on the first order shear deformation
laminated plate theory is described and equivalent stiffness, mass matrices and force vectors are calculated and synthesized
in the wavelet domain. The transient response is predicted using the explicit central difference time integration scheme.
Numerical results for the simulation of wave propagation in isotropic, quasi-isotropic and cross-ply laminated plates are
presented and demonstrate the high spatial convergence and problem size reduction obtained by the present method.

Keywords Daubechies wavelets · Wavelet-based elements · Composite plates · Wave propagation · Guided waves

1 Introduction

The development of fast and accurate numerical methods for
analyzing the dynamic transient response and wave prop-
agation in structural components has attracted substantial
research interest. This is mainly driven by the design of
non destructive evaluation (NDE) methods and passive and
active structural health monitoring (SHM) systems based on
linear and nonlinear ultrasonic waves, which require quick
and robust simulations of wave propagation in pristine and
damaged structures. Ultrasonic waves entail very high fre-
quencies and wavenumbers, thus their numerical analysis
based on traditional finite element methods (FEM) [1] and
finite differencemethods (FDM) [2] requires very fine spatial
and temporal discretizations, which are usually computa-
tionally expensive and suffer from numerical shortcomings.
Therefore, there is an emerging need for development of new
modeling approaches and numerical tools which can provide
solutions of improved accuracy with substantially reduced
requirements for computer resources.
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Over the past decades, various numerical methods and
techniques have been reported and extensively used for the
simulation of transient dynamic phenomena in isotropic and
composite structures. Fully analytical [3,4] and semi analyt-
ical finite element (SAFE) methods [5–7] result in accurate
solutions, but they are applicable to limited types of structural
configurations (e.g. semi infinite strips andplates) andbound-
ary conditions. The time domain spectral element method
(SEM) employs high order polynomial shape functions and
Gauss–Lobatto–Legendre quadratures, which yield to fast
and accurate solutions with consistent diagonal mass matri-
ces [8,9]. However non uniform remeshing is required when
increasing the order of polynomial shape functions, which is
a time-consuming process.

The present paper presents a new numerical method,
which implements Wavelet Scaling Functions (WSFs) for
the spatial approximation of the displacement fields in 2D
structures and explores its potential for the solution of wave
propagation problems in isotropic and composite plates.

Numerous works have explored WSFs and wavelets as
basis functions for the solution of differential equations
and boundary value problems [10–12]. Patton and Marks
have demonstrated the potential of wavelet-based FEA ver-
sus traditional approaches using a rod element in static and
free vibration problems [13,14]. More recent works [15–
17] employ Daubechies scaling functions as interpolating

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-018-1558-9&domain=pdf


1188 Computational Mechanics (2018) 62:1187–1198

functions to form stiffness matrices and load vectors for
the static analyses of beams and thin plates. These works
also suggest a way to transform generalized variables such
as displacements and rotations from the wavelet to physi-
cal domain. The formulation of isotropic Eulerian beam and
Mindlin–Reissner plate elements is described for static prob-
lems and the non shear locking behavior of the proposed
method has been demonstrated [18]. In a different direc-
tion, wavelet spectral elements have been reported where
Daubechies WSFs have been used to temporally approxi-
mate transient problems and reduce the PDEs to decoupled
ODEs [19,20], which were solved with a spectral frequency
domain element method. Apart from Daubechies wavelets,
Deslauries-Dubuc interpolating wavelets, have been devel-
oped and used for the formulation of beam elements [21].
Although interpolets have higher vanishing moments than
Daubechies WSFs, orthogonality is not satisfied, which is a
crucial property for transient dynamic analysis as explained
below. B-spline wavelets have been used to develop elements
ranging from 1D first order shear (FOS) beam to higher order
plate theories, for the investigation of static and free vibration
problems [22–24]. Similarly to the interpolatingwavelets, B-
splinewavelet functions are nonorthogonal aswell.Recently,
the authors introduced the Daubechies finite wavelet domain
(FWD) method for the solution of transient dynamic prob-
lems in rods and strips [25,26]. Themethod incorporated first
order shear and higher order beam theories for the rapid and
efficient simulation of symmetric and anti-symmetric guided
waves in composite strips. To our best knowledge no wavelet
based methods have been reported for the analysis of wave
propagation in isotropic and laminated composite plate struc-
tures.

The present paper, extends the FWD method to com-
posite plates and expands the spatial approximation of the
displacements in the wavelet domain in two dimensions. The
first order shear deformation laminated plate theory (FSDT)
[27] is adopted for the approximation of the local laminate
response. Stiffness, consistent diagonal mass matrices and
load vectors, are derived by integrating the equation of virtual
displacements in the wavelet domain. The time response is
predicted by using an explicit central difference time integra-
tion scheme. The performance of the developed Daubechies
FWD method is assessed by predicting the propagation of
the fundamental anti-symmetric wave (A0) in aluminum,
[0/90/ ± 45]s and cross-ply [02/902]s carbon/epoxy lam-
inated plates. The high spatial convergence rate of various
wavelet scaling functions is investigated and compared with
25-node and 9-node Lagrangian time domain spectral finite
elements.

The present paper is organized as follows. Section 2 intro-
duces the basic concepts of wavelet theory and properties of
the Daubechies WSFs family. Section 3 describes the FWD
method, its basic features and the formulation of a first order

shear deformation laminatedwavelet plate element. Section 4
presents numerical examples and convergence evaluations.

2 Daubechies wavelet: theoretical
background

The selection of themost suitableWSF as interpolating func-
tion is an issue of much discussion [12]. Numerous wavelet
families exist, each one with special characteristics. The
Daubechies WSFs seems to be advantageous [28,29] for the
approximation of state variables and the solution of varia-
tional forms of equations of motion, because they exhibit
unique properties as functional bases, as summarized below.
The Daubechies family of compactly supported orthonormal
WSF φ(x), includes members of variable smoothness. As
shown in Fig. 1, each WSF is nested at the point x = 0
and spans over a range of grid points, termed as the sup-
port domain. By definition, every WSF vanishes beyond its
support domain. Several functional algorithms have been
described for the construction procedure of Daubechies
WSFs, wavelet functions and their respective derivatives
[28,30], which are the initial step, in order to move on to
wavelet analysis. After Daubechies WSFs were calculated
by using recursive algorithms, much effort has been focused
on the computation of wavelet integrals [31–33], which is
a more challenging task because of the highly oscillatory
nature especially of the higher order WSFs.

Scaling functions of the same order L can be defined
either by translating the parentWSF at other integer points j ,
thus creating new WSFs of the type φ(x − j); or by shrink-
ing/dilating the parent function to newWSFs φ(2 j x). WSFs

Fig. 1 Example ofDaubechies Scaling functionsφ(x). aDB6,bDB10,
c DB15
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possess additional properties which enhance their effective-
ness as interpolation functions.

Compact Support EachWSF is confinedwithin a bounded
interval, which spans over a finite range of adjacent grid
points, i.e φ(x) is defined ∀ x ∈ [0, 2L − 1]. The value
of the WSF beyond its compact support is zero by defini-
tion. Thus, the influence of a WSF as interpolation function
is localized within the interval of compact support. The size
of the interval of compact support depends on the order L of
the parent WSF.

Orthonormality The integer translates of the WSF are
orthonormal to each other, hence, the integer translates of
WSFs form an orthonormal basis in the functional space.

∞∫

−∞
φ(x − i) · φ(x − j)dx = δi j (1)

Vanishing Moments The number of vanishing moments
defines the quality of the approximation and indicates the
maximum degree of polynomial functions that can be exactly
approximatedby a specificWSF.ADaubechiesWSFof order
L has L−1 vanishingmoments, which are the highest regard-
ing 1st generation wavelets.

Dilation Property Provided by the dilation equation,

φ(x) = √
2 ·

2L−1∑
k=0

hk · φ(2x − k) (2)

where hk is the set of 2L filter coefficients. The property is
important, as it provides a relationship between the scaling
function of a coarse approximation scale with the WSF of a
finer approximation. The dilation property provides the basis
for the calculation of WSF values at dyadic points and the
WSF integrals.

3 The 2D finite wavelet domainmethod

In the present section the basic concepts of the FWDmethod
are presented for the solutionof transient dynamicwaveprob-
lems in laminated composite plates. The approximation of
displacements employing Daubechies WSFs as basis func-
tions is described and its advantages are enumerated.

3.1 Approximation of field variables

The discretization of a rectangular plate of dimensions Lx ,
Ly is demonstrated in Fig. 2a. Additional nodes are intro-
duced to the left and lower side of the physical domain,
to account for the expansion of WSF over multiple grid
points. The discretization shown corresponds to the case
of a low order DB3 WSF, for demonstration purposes. To

illustrate the approximation of displacement, we focus on an
area between 4 consecutive nodes with coordinates [xi , yi ],
[xi+1, yi ], [xi+1, yi+1] and [xi , yi+1]. The mentioned area
is catachrestically termed as element, because we use it to
facilitate the approximation of field variables and the calcu-
lation of domain integrals. The relation between the global
coordinate x and y to the local non-dimensional coordinate
ξ and η is provided by

ξ = x − xi
lx

, ξ ∈ [0, 1] (3)

η = y − yi
ly

, η ∈ [0, 1] (4)

Because of the compact support mentioned previously, the
displacement approximation in the physical domain 0 ≤ x ≤
lx , 0 ≤ y ≤ ly Fig. 2b, is calculated as

u(x, y, t) =
0∑

k,l=2−2L

ûkl(t) · φ(ξ − k) · φ(η − l) (5)

where lx and ly are the elemental lengths on the x and y axis
respectively. φ(ξ − k), φ(η − l) are the integer translates of
theWSF interpolation function; ûkl is a set of (N +2L−1)2

unknown wavelet coefficients to be determined which corre-
sponds to the nodes in the dash line area of Fig. 2b; k defines
the column, l the row of the node and N the representa-
tive number of elements. These are the degrees of freedom
(DOFs) in the wavelet space. Eq. (5) and Fig. 2b show that
the approximation of field variables in the physical element
requires a set of grid points in the corresponding support
domain (Fig. 2b) where the wavelet coefficients are defined;
this explains the selected terminology “finite wavelet domain
method”.

The introduced assembly reveals some advantages of
FWD versus FEM. The FWD approximation of a field vari-
able in an element requires DOFs from a range of nodes
beyond the physical element, while in traditional FEA the
approximation is local and strictly confined within each
element. In fact, FWD method exploits the overlap of the
influence domain for each element (Fig. 2a) and FWD ele-
ments use nodal DOFs involved in the field approximation
of previous elements as well. Illustratively Fig. 2b shows the
domain of influence for the shaded element. The amount of
nodal information utilized for the approximation of a field
variable within an element is larger than any traditional FE
of the same approximation order. The amount of nodal infor-
mation depends on the size of the influence domain, which in
turn depends on the order of the selected WSF. Apparently,
the obtained FWD approximation lies between a global Ritz
type approximation and the local FEMapproximation, hence,
it is expected to blend advantages of both.
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Fig. 2 Typical arrangement of grid points. a Grid points in the wavelet domain for the approximation of field variables in the physical plate area
(light gray area). b Support nodes (dash line area) required for the approximation in the plate area confined by 4 consecutive nodes (dark gray area)

The FWD can improve the quality of approximation using
either the h-method (keeping the order of WSF fixed and
decreasing the nodal distance h) or the p-method (keep-
ing the nodal distance fixed and increasing the order of the
WSF). Due to the vanishingmoment property of theWSF, an
increase in the order of a DB WSF in Eq. (5), is related to a
measurable improvement in the order of polynomial approx-
imation. Specifically an increment in the order L of theWSF
by 1, improves also the polynomial order of the approxi-
mation by 1. This increase in approximation order requires
only the addition of totally two rows or columns of nodes per
dimension in wavelet space (Fig. 2a) and no remeshing in the
physical domain. On the contrary, an increment of the poly-
nomial order of approximation in FEM requires the addition
of one new node along each direction per element and full
remeshing of the physical domain with new finite elements.

3.2 Wavelet-based element

The first order shear deformation laminated plate theory
(FSDT) [27] outlined in the Appendix, provides the basis
for the approximation of local laminate response. According
to Eqs. (36–39), the principle of virtual displacements can be
recast as

∫
Ω0

δεTL
∼

[KL ]εL
∼

dxdy − δW+
∫

Ω0

δuTL
∼

[ρL ]üL
∼

dxdy = 0

(6)

whereΩ0 denotes the undeformedmidplane,KL is themate-
rial stiffness matrix, δW is the virtual work and is outlined

in the Appendix (Eq. 38), ρL is the laminate density matrix,
uL
∼

are the generalized displacements.

The approximation of the generalized strains in an element
takes the form shown in Eq. (7),

εL
∼

=

⎡
⎢⎢⎢⎣

εx
εy
εxy
kx
ky
kxy
εyz
εxz

⎤
⎥⎥⎥⎦ =

0∑
k,l=2−2L

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R11 R12 R13 R14 R15

R21 R22 R23 R24 R25

R31 R32 R33 R34 R35

R41 R42 R43 R44 R45

R51 R52 R53 R54 R55

R61 R62 R63 R64 R65

R71 R72 R73 R74 R75

R81 R82 R83 R84 R85

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎣

û0kl
β̂x kl

v̂0kl

β̂y kl

ŵ0
kl

⎤
⎥⎥⎥⎦

(7)

where

R11 = R33 = R42 = R64 = R85

= φ,x (ξ − k) · φ(η − l) (8)

R23 = R31 = R54 = R62 = R75

= φ(ξ − k) · φ,y(η − l) (9)

R74 = R82 = φ(ξ − k) · φ(η − l) (10)

and indices k, l = 2− 2L, ..., 0 are symmetric. The remain-
ing elements of matrix [R] are zero. Combining Eqs. (5, 6)
equivalent expressions of virtual work and the correspond-
ing stiffness [K e] and mass [Me]matrices, as well as surface
traction vectors [Fτe] can be calculated for each FWD ele-

123



Computational Mechanics (2018) 62:1187–1198 1191

ment area as follows:

δÛ
T
e · [K e] · Ûe =

∫ lx

0

∫ ly

0

(∫ h/2

−h/2
δεT · σdz

)
dxdy (11)

δÛ
T
e · [Me] · ¨̂Ue

=
∫ lx

0

∫ ly

0

(∫ h/2

−h/2
δuT · ρ · üdz

)
dxdy (12)

δUT
e · [Fτe] =

∫ lx

0

∫ ly

0

[
δuT · τ̄

]h/2

−h/2
dxdy (13)

where h denotes the thickness of the plate and Ûe is the gener-
alized vector ofwavelet coefficients involved in the elemental
approximation of the displacements and rotations in Eq. (5)

3.2.1 Stiffness matrix

Incorporation of the approximated variables (Eqs. 37, 38,
39) into Eq. (36) yields the following symmetric elemental
stiffness and mass matrices, Eqs. (14–21)

[K klmn
e ] =

⎡
⎢⎢⎢⎢⎣

K klmn
e11 K klmn

e12 K klmn
e13 K klmn

e14 K klmn
e15

K klmn
e21 K klmn

e22 K klmn
e23 K klmn

e24 K klmn
e25

K klmn
e31 K klmn

e32 K klmn
e33 K klmn

e34 K klmn
e35

K klmn
e41 K klmn

e42 K klmn
e43 K klmn

e44 K klmn
e45

K klmn
e51 K klmn

e52 K klmn
e53 K klmn

e54 K klmn
e55

⎤
⎥⎥⎥⎥⎦ (14)

where

Kklmn
e11 = A11

ly
lx
011kl �

00
mn + A16�

10
kl �

01
mn + A16�

01
kl �

10
mn

+A66
lx
ly

�00
kl �

11
mn

Kklmn
e12 = B11

ly
lx

�11
kl �

00
mn + B16�

10
kl �

01
mn + B16�

01
kl �

10
mn

+B66
lx
ly

�00
kl �

11
mn

Kklmn
e13 = A16

ly
lx

�11
kl �

00
mn + A66�

10
kl �

01
mn + A12�

01
kl �

10
mn

+A26
lx
ly

�00
kl �

11
mn

Kklmn
e14 = B16

ly
lx

�11
kl �

00
mn + B66�

10
kl �

01
mn + B12�

01
kl �

10
mn

+B26
lx
ly

�00
kl �

11
mn

Kklmn
e15 = 0 (15)

Kklmn
e22 = A55 · lx ly · �00

kl �
00
mn + D11

ly
lx

�11
kl �

00
mn

+D16�
10
kl �

01
mn + D16�

01
kl �

10
mn + D66

lx
ly

�00
kl �

11
mn

Kklmn
e23 = B16

ly
lx

�11
kl �

00
mn + B66�

10
kl �

01
mn + A16�

01
kl �

10
mn

+A66
lx
ly

�00
kl �

11
mn

Kklmn
e24 = A45 · lx ly · �00

kl �
00
mn + D16

ly
lx

�11
kl �

00
mn

+D12�
01
kl �

10
mn + D66�

10
kl �

01
mn + D26

lx
ly

�00
kl �

11
mn

Kklmn
e25 = A45 · lx · �00

kl �
10
mn + A55 · ly · �10

kl �
00
mn (16)

Kklmn
e33 = A66

ly
lx

�11
kl �

00
mn + A26�

10
kl �

01
mn + A26�

01
kl �

10
mn

+A22
lx
ly

�00
kl �

11
mn

Kklmn
e34 = B66

ly
lx

�11
kl �

00
mn + B26�

10
kl �

01
mn + B26�

01
kl �

10
mn

+B22
lx
ly

�00
kl �

11
mn

Kklmn
e35 = 0 (17)

Kklmn
e44 = A44 · lx ly · �00

kl �
00
mn + D66

ly
lx

�11
kl �

00
mn

+D26�
10
kl �

01
mn + D26�

01
kl �

10
mn + D22

lx
ly

�00
kl �

11
mn

Kklmn
e45 = A44 · lx · �00

kl �
10
mn + A45 · ly · �10

kl �
00
mn (18)

Kklmn
e55 = A55 · ly

lx
· �00

kl �
11
mn + A45 · �01

kl �
10
mn

+ A45 · �10
kl �

01
mn + A44 · lx

ly
· �11

kl �
00
mn (19)

where �
i j
kl , 0 ≤ i, j ≤ 1 are the WSF quadratures in the ele-

ment area, known as connection coefficients and represented
as:

�
i j
kl =

∫ 1

0
φ(i)(ξ − k) · φ( j)(ξ − l)dξ (20)

The calculation of connection coefficients for Daubechies
wavelets is thoroughly discussed on [26,30].

3.2.2 Mass matrix

The representative mass matrix is

[Mklmn
e ] = [ρL ] · lx ly · �00

kl �
00
mn (21)

The total matrices can be assembled from all elemental con-
tributions in the context of Eqs. (11, 12, 13, 22) using typical
procedures, which finally provide the discrete equation of
motion expressed in the wavelet space.

[M] · ¨̂U(t) + [K ] · Û(t) = F(t) (22)

In the above equation, [M], [K ] are the total structural mass
and stiffness matrices respectively, F is the external load
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Table 1 Material properties and
geometric parameters

Symbol Aluminum Carbon/epoxy Units

Material properties E11 70 121.469 GPa

E22/E33 70 10.446 GPa

G13/G12 26.923 5.109 GPa

G23 26.923 3.942 GPa

ν13/ν12/ν23 0.3 0.32496 –

ρ 2700 1578 kg/m3

Plate Geometry Length (x-axis) 0.6 0.5 m

Width (y-axis) 0.6 0.5 m

Thickness 2 2 mm

vector and Û(t) is the vector containing all unknownwavelet
coefficients ûnk as referred in Eq. (5).

Additional advantages of the FWDmethod are realized in
the synthesis of the mass matrix

[
Mklmn

e

]
. The orthogonality

of WSFs combined with their compact support yield diag-
onal connection coefficients (�00

kl = δkl) and consequently
diagonal consistent mass matrix [M] in Eq. (21) for symmet-
ric laminates. Due to the compact support of the WSFs, the
stiffness matrices are symmetric, sparse and narrow-banded,
which enables fast and accurate solution of large-size static
anddynamicproblems.On theother hand, on static problems,
or in dynamic problems involving implicit time integration,
the efficiency of local FEM regarding stiffness matrix inver-
sion may be better. However, the consideration of the present
FWD approachmay present other benefits versus local FEM,
e.g. C1 approximation of displacement, improved calcula-
tion of strains, free shear locking behavior which are beyond
the motivation and scope of the present paper and should be
addressed in future works.

3.3 Explicit time integration

One of the main advantages of the FWD method is its capa-
bility to provide diagonal consistent mass matrices, due to
the orthogonality of Daubechies WSFs. This feature yields a
clear advantage in the implementation of central difference
explicit time integration scheme.

1

Δt2
[M] · U (t + Δt) = R (23)

R = F (t) −
(
[K] − 2

Δt2
[M]

)
· U(t)

− 1

Δt2
[M] · U (t − Δt) (24)

The solution of Eq. (23) requires inversion of the mass
matrix at every time step for the calculation of the general-
ized displacement vector at the next time stepU(t+Δt). The
availability of a diagonal consistent mass matrix eliminates
the need to employ lump-mass matrices or other numerical

Fig. 3 Applied excitation of transverse point load on the center of the
plates

techniques to achieve approximate mass matrix diagonal-
ization. Hence, the solution of Eqs. (23–24) is expected to
be much faster and accurate compared to traditional explicit
FEA.

4 Numerical results

The simulation of the fundamental anti-symmetric A0 wave
generation and propagation, which is crucial in many appli-
cations including the design of NDE and SHM methods
and impact loading response, is a very challenging task,
since it typically requires fine spatial discretization to cap-
ture the high wavenumbers, the dispersive characteristics,
the amplitude and the group velocity of the propagating
wave. Therefore the performance of the introduced FWD
method is assessed on the prediction of ultrasonic A0 wave
propagation. Three cases of plates are examined: (1) alu-
minum isotropic plates, (2) [0/90/ ± 45]s and (3) cross-ply
[02/902]s laminated carbon/epoxy plates. The properties and
the geometry of the investigated plates are shown on Table
1. The results of the FWD method are compared with 25-
node and 9-node Lagrangian Time Domain Spectral Finite
Elements (TDSFE) [34].

The three plate cases are considered to be fully clamped at
all four free edges (CCCC). Waves are excited by a concen-
trated transverse force, acting at the center (x = Lx

2 , y = Ly
2 )

of each plate (Fig. 3), in the form of a 5 cycle Hanning win-
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Fig. 4 Applied excitation using normalized amplitude

Fig. 5 Dispersion curves of the A0 wave mode along the x-axis for the
three plates

dowed narrowband pulse with central frequency of 100 kHz,
as shown in Fig. 4. FWDmodels with DB6, DB10 and DB15
WSFs are used to predict the wave propagation. Figure 5
shows the dispersion curves of the first anti-symmetric mode
for each laminate along the x-axis of a semi-infinite plate,
predicted by a semi-analytical method [35]. At the detected
central frequency of 100 kHz, the wave propagation in the
aluminum plate is more dispersive compared to the compos-
ite plates.

The convergence rate and accuracy are determined by
comparing the obtained solutions to a reference response,
predicted by a converged model of the 9 node TDSFE cor-
responding to meshes of 1965604 for isotropic and 850084
nodes for laminated plates. Each investigated model is con-
sidered to have converged, when the rootmean square (RMS)
error of a snapshot along the x-axis for the aluminum and
the [0/90/ ± 45]s case and along the y-axis for the cross-ply
case at t = 0.08ms and t = 0.1ms respectively, with respect
to the previous discretization was lower than 5%. The RMS
calculation is indicated in Eq. (25), where n is the number
of the compared interpolated points, ure f is the reference
solution and u p is the predicted solution from the FWD and
TDSFEmodels. As for the temporal discretization, the stable
time step Δt (Eq. 26) applied in each analysis, is calculated
by the respective maximum eigen-frequency fmax of each

Fig. 6 Transverse displacement snapshot of A0 wavemode propagation
on the aluminum square plate at t = 0.08ms

Fig. 7 Predicted A0 mode for the aluminum plate at t = 0.08ms and at

(x,
Ly
2 ) with x ∈ [ Lx

2 , Lx ] upon convergence of all FWD models and
TDSFEs

structure.

RMS =
√√√√

∑n
i=1(u

i
re f − uip)

2

∑n
i=1(u

i
re f )

2
(25)

Δt = 1

4 · fmax
(26)

This criterion ensures the wave propagation characteris-
tics, such as time of flight (ToF), frequency, amplitude and
group/phase velocity are correctly depicted.

4.1 Case 1: aluminum plate

The predicted response of the aluminum square plate by a
converged mesh of DB6 WSFs, is shown in Fig. 6 and illus-
trates a snapshot of thefirst anti-symmetricmodepropagation
at t = 0.08ms.
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Table 2 The required number
of nodes using different
Daubechies WSFs and the
resultant relative gains (in
parenthesis) versus TDSFE
elements for a converged A0
mode prediction

Required number of nodes
Element type Aluminum [0/90/ ± 45]s Cross ply

DB15 56,644 (11.5%) 43,264 (20.4%) 43,264 (12.0%)

DB10 61,504 (12.5%) 56,644 (26.7%) 56,644 (15.7%)

DB6 122,500 (24.9%) 84,100 (39.6%) 108,900 (30.1%)

25-node TDSFE 148,225 (30.2%) 72,361 (34%) 108,241 (30%)

9-node TDSFE 491,401 (100% ) 212,521 (100% ) 361,201 (100% )

Fig. 8 Convergence rate (RMS % error versus number of nodes) for
the prediction of A0 wave propagation on the aluminum plate using the
FWD method with various DB scaling functions

Figure 7 shows the converged transverse displacement
solutions along the x-axis at t = 0.08ms predicted by the
implementation of various WSFs and the TDSFE model.
Apart from illustrating the accuracy of the 2D Daubechies
FWDmethod, Fig. 7 also shows the high convergence rate of
the FWD method in comparison with the reference TDSFE.
Table 2 shows the number of nodes that each WSF requires
to converge to the reference solution and the respective rela-
tive gains, versus the number of the required nodes by the
TDSFEs. For the FWD models, the presented number of
nodes concern both the physical domain nodes plus the extra
wavelet domain nodes to have a fairer comparison with the
TDSFEs. Clearly, as the wavelet order increases, less nodes
are required to obtain a converged solution. In order to further
support the fast convergence rate and the very small number
of nodes that 2D Daubechies FWD elements require, a con-
vergence study is presented on Fig. 8. The study is conducted
until all four models have been converged with the criterion
of RMS≤ 5%. The RMS study (Fig. 8) clearly shows the
superiority of FWD elements against TDSFEs on the con-
vergence rate and thus on the matrix system minimization.
The curve of RMS % Error versus nodes for the 25-node
TDSFE seems to be bilinear and as the solution leads to con-
vergence the slope decreases. This fact also supports the high
convergence of the FWDmodels in more demanding disper-
sive cases.

Table 2, Figs. 7 and 8 clearly show that the usage of 2D
Daubechies elements offers a much smaller size of system

Fig. 9 Transverse displacement snapshot of A0 wavemode propagation
on [0/90/ ± 45]s square plate at t = 0.1ms

equations (Eq. 24) with diagonal mass matrix. About a quar-
ter of nodes are required for similar convergence of a low
order DB6 FWD element compared to a 9-node TDSFE.
As the order of Daubechies WSF increases, substantially
less nodes are needed to predict a converged solution, which
illustrates the highly improved numerical performance of the
FWD method in comparison with the TDSFEs or FEA and
supports that the FWD method is a beneficial numerical tool
for rapid and accurate numerical modeling of transient struc-
tural response.

4.2 Case 2: [0/90/ ± 45]s plate

The proposed FWD method is used to predict the first anti-
symmetric A0 mode in a [0/90/45/ − 45]s carbon/epoxy
laminated plate. Figure 9 depicts the converged prediction of
the first anti-symmetric mode A0 contour plot at t = 0.1ms,
calculated by DB6 WSFs and excited at 100kHz.

The convergence of Daubechies FWD method, as the
order of WSF increases, is shown in Figs. 10a, b and 11. Fig-
ure 10a shows a cross-section from the contour plot in (Fig.9)
along the x-axis, i.e at (x, Ly

2 )with x ∈ [ Lx
2 , Lx ]. Apart from

the converged predictions of all cases, which prove the cor-
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Fig. 10 A0 wavemode predictions for the [0/90/ ± 45]s carbon/epoxy

plate at t = 0.1ms and at (x,
Ly
2 ) with x ∈ [ Lx

2 , Lx ]. a Upon conver-
gence of all FWD models and TDSFEs; b using a grid of 43,264 nodes

rectness of the 2D FWD, Figs.10a, 11 and Table 2 also show
the high convergence rate of the FWD method versus the
TDSFE. The low order DB6 FWD element requires approxi-
mately one half of the nodes required by the 9-nodeTDSFE to
converge at same solution. Additionally, it is clearly depicted
that as the wavelet order increases, a smaller discretization
is required to obtain a converged solution, yielding smaller
size of system equations (Eq. 23). Figure 10b illustrates
the obtained results by the DB6, DB15 and TDSFE mod-
els when they use the discretization (43,264 nodes) of the
converged DB15 FWD model indicating substantial errors
in the prediction of time of flight (ToF), amplitude and spu-
rious dissipation of the investigated wave packet.

4.3 Case 3: cross-ply plate

The convergence rate and accuracy of the present FWD
method is finally evaluated on a cross-ply [02/902]s car-
bon/epoxy laminated plate. Figure 12 shows the prediction of
the propagating A0 waves on the cross-ply plate, calculated
by a converged mesh of DB6 WSFs. The FWD captures the
strong directionality in group velocity, wavelength and dis-
persive characteristics of the A0 wave packet.

Fig. 11 Resultant RMS % error versus number of nodes for the FWD
method using various DB scaling functions for the prediction of wave
propagation in [0/90/ ± 45]s plate

Fig. 12 Transverse displacement snapshot of A0 wave mode propaga-
tion on a cross-ply square plate at t = 0.1ms

Figure 13a, b shows the predicted propagation of the wave
from the middle of the plate along the y-axis and x-axis
respectively. As shown in Figs. 12 and 13 the wave charac-
teristics of the A0 wave depend on the propagating direction.
The wave propagation along 900 seems to be more disper-
sive than the propagation along 00, hence the former requires
higher number of nodes to obtain a converged solution. The
fast convergence of the 2D Daubechies FWD model, is fur-
ther quantified in the RMS study presented in Fig. 14 and
in Table 2. The FWD models provide substantial reductions
in the required number of nodes, thus lead to substantially
reduced model sizes for the simulation of structural transient
response.

In summary, the FWD method seems to perform almost
two times better in more demanding cases involving disper-
sive guided wave propagation, as presented in Sect. 4.1. In
all cases, a drastic reduction of nodes and as a result a reduc-
tion of the discrete system size is observed by the proposed
FWD models. DB6 is comparable on the more demanding
cases and inferior on simple cases such as the [0/90/ ± 45]s
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Fig. 13 Predicted A0 wave mode for the cross ply carbon/epoxy plate
at t = 0.1ms upon convergence of all FWD models and TDSFEs. a
Along y axis (width axis) ( Lx

2 , y) with y ∈ [ Ly
2 , Ly] b along x axis

(length axis) (x,
Ly
2 ) with x ∈ [ Lx

2 , Lx ]

Fig. 14 Resultant RMS % error versus number of nodes for the FWD
method using various DB scaling functions for the prediction of wave
propagation in [02/902]s plate

case. Taking into consideration that no remeshing is required
while increasing the approximation order, the FWD method
provides a more satisfying performance about the modeling
time and the ease of usage. On the other hand, no dramatic
improvements in node size reductionwere shown by compar-
ing DB10 and DB15 Daubechies wavelets. The reason is that
as the DB order increases, ill-conditioning is introduced into
the calculation of connection coefficient matrices and conse-
quently into the mass and stiffness matrices. Ill-conditioning

is attributed to the high order difference in the magnitude
of matrix values. Hence poor-conditioned matrices seem to
limit the potential of higher order WSFs, and until matrix
conditioning is improved, the best performance seems to be
attained in the range of DB6-DB10 wavelets.

5 Conclusions

Taking advantage of the appealing properties of Daubechies
wavelets/ scaling functions, a novel computational wavelet-
based structural dynamics method, termed as finite wavelet
domain method, has been developed for the prediction of
high-frequency transient dynamic responses and 2D wave
propagation in laminated composite plates. The formulation
of the FWD method in the context of the first order shear
deformation laminated plate theory is described.

Evaluation cases illustrated the ultra-high convergence
rate and great reduction in discrete system sizes that emanates
from the Daubechies FWD method in the simulation of
antisymmetric modes at ultrasonic frequencies. The supe-
riority of the FWD method compared to FEA in terms of
accuracy, convergence rate, refinement capabilities, and com-
putational efficiency is quantified. Three key advantages
were demonstrated: (1) the ability to increase the order of
approximation and decrease the problem size (p-method)
without remeshing; (2) the amenability of the FWD method
to explicit formulations because of the consistent diagonal
mass matrices; and (3) very fast spatial convergence rates.
All FWD elements have drastically outperformed the 9-node
time domain spectral finite elements. The higher order FWD
elements (DB15, DB10) are shown to perform better than the
lower order elements (DB6).

In closing, the developed FWD method has shown great
potential for applications involving demanding transient
dynamic simulations, such as the analysis of wave-based
SHM and NDE systems. Future work will focus on the
development of FWDmethods encompassing a higher order
layerwise laminate theory to capture symmetric wave modes
and on the inclusion of piezoelectric actuators and sensors in
the formulations.

Appendix

The displacement field through the thickness according to
the FSDT takes the form

u(x, y, z, t) = u0(x, y, t) + βx (x, y, t) · z (27)

v(x, y, z, t) = v0(x, y, t) + βy(x, y, t) · z (28)

w(x, y, z, t) = w0(x, y, t) (29)

123



Computational Mechanics (2018) 62:1187–1198 1197

where u0, v0, w0 are the axial and transverse displacements
at the mid-plane of the plate; βx , βy are the rotations of the
cross-section; and z is the local thickness coordinate. The
in-plane strains εx , εy , εxy and the out of plane shear strains
εyz , εxz are shown below

εx (x, z, t) = ε0x + kx · z (30)

εy(y, z, t) = ε0y + ky · z (31)

εxy(x, y, t) = ε0xy + kxy (32)

εyz(y, z, t) = ε0yz (33)

εxz(x, z, t) = ε0xz (34)

In the previous Eqs. (30–32), the generalized strains of the
laminated plate cross section are defined as

εL
∼

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε0x
ε0y
ε0xy
kx
ky
kxy
ε0yz
ε0xz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0,x
v0,y

u0,y + v0,x
βx,x

βy,y

βx,y + βy,x

w0
,y + βy

w0
,x + βx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(35)

where
ε0x , ε

0
y, ε

0
xy are implying membrane strains, kx , ky, kxy are

the curvatures and ε0yz, ε
0
xz are the out of plain strains. The

comma in the subscript indicates differentiation. A′s, B ′s and
D′s are the extensional, bending and bending-extensional
coupling stiffnesses. The principle of virtual work for a two-
dimensional solid defined in terms of axial and transverse
coordinates can be recast as

δV − δW + δT = 0 (36)

where δV , δW and δT are the virtual strain energy, the vir-
tual work induced by external applied forces and the virtual
kinetic energy respectively. Each of the term in Eq. (36) is
given by

δV =
∫

Ω0

{∫ h/2

−h/2

[
(δεx + zδkx ) σxx + (

δεy + zδky
)
σyy+

(
δεxy + zδkxy

)
σxy + δεxzσxz + δεyzσyz

]
dz

}
dxdy

=
∫

Ω0

δεTL
∼

[KL ]εL
∼

dxdy (37)

δW =
∫

Ω0

δw0 [(qb + qt )] dxdy +
∫

Γσ

∫ h/2

−h/2
[(δun+

zδβn) σ̂nn + (δus + zδβs) σ̂ns + δw0σ̂nz
]
dzds (38)

δT =
∫

Ω0

∫ h/2

−h/2
ρ

[
(δu0 + zδβx )

(
ü0 + zβ̈x

)

+ (
δv0 + zδβy

) (
v̈0 + zβ̈y

) + δw0ẅ0

]
dz dxdy

=
∫

Ω0

δuTL
∼

[ρL ]üL
∼

dxdy (39)

where Γσ denotes a portion of the boundary Γ and

[KL ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A22 A66 B16 B26 B66 0
B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66

0 A44 A45

A45 A55

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(40)

and

[
ρL

] =

⎡
⎢⎢⎢⎢⎣

ρA ρB 0
ρB ρD

ρA ρB

ρB ρD

0 ρA

⎤
⎥⎥⎥⎥⎦ (41)

where ρA, ρB , ρD are the areal mass, 1st order inertia and the
rotational inertia of the laminate respectively. For symmetric
laminates ρB = 0.
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