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Abstract
In this paper the cell-based smoothed finite element method (CS-FEM) is introduced into twomainstream aspects of computa-
tional fluid dynamics: incompressible flows and fluid–structure interaction (FSI). The emphasis is placed on the fluid gradient
smoothing which simply requires equal numbers of Gaussian points and smoothing cells in each four-node quadrilateral
element. The second-order, smoothed characteristic-based split scheme in conjunction with a pressure stabilization is then
presented to settle the incompressible Navier–Stokes equations. As for FSI, CS-FEM is applied to the geometrically nonlin-
ear solid as usual. Following an efficient mesh deformation strategy, block-Gauss–Seidel procedure is adopted to couple all
individual fields under the arbitrary Lagriangian–Eulerian description. The proposed solvers are carefully validated against
the previously published data for several benchmarks, revealing visible improvements in computed results.

Keywords Smoothed finite element method · CFD · Incompressible flows · Fluid–structure interaction · Characteristic-based
split · ALE

1 Introduction

Computational fluid dynamics (CFD) is a modern discipline
concerned with mathematical modeling, numerical meth-
ods and software tools of fluid dynamics. The principle
of the majority of CFD problems relies on the Navier–
Stokes (NS) equations which describe how different variants
(e.g. the velocity, pressure, temperature and density) of a
moving fluid are related and predict what is the flow state
physically. As a matter of fact, the numerical resolution
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of these balance equations (with moving and deformable
boundaries) has drawn a substantial amount of endeavors
from both scientific and engineering communities. Under the
umbrella of this major branch, finite element method (FEM)
is widely utilized for analysis and design of a variety of spe-
cializations like incompressible flows past bluff/streamlined
bodies [63,78] and fluid–structure interaction (FSI) [4,58].
Normally, the standard Galerkin finite element procedure
for incompressible flows is confronted with two sources
of numerical instabilities [63]. One source is due to the
presence of the convective acceleration in the NS equa-
tions, mainly causing spurious oscillations in the velocity
field. The other source rests with the inappropriate usage
of a pair of interpolation functions for velocity and pres-
sure fields, which primarily poses the pressure oscillations.
In the past decades, a number of stabilized FEMs have
been successfully devised to prevent these potential instabili-
ties. Popular approaches contain streamline upwind/Petrov–
Galerkin (SUPG) formulation [8], Taylor–Galerkin method
[18], Galerkin/least-squares (GLS) technique [35], pressure-
stabilized Petrov–Galerkin (PSPG) formulation [66], space–
time FEM [57,59,60,64,65], characteristic-based split (CBS)
scheme [53,77], etc. Nowadays FEM has become one of sta-
ble and robust numerical methodologies for solving CFD
related problems and delivering deep insights into fluid
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physics. For example, the complex three-dimensional tur-
bocharger flow is handled by the space-time variational
multiscale FEM incorporating isogeometric analysis [60].

Typical finite element solution results in a system of
algebraic equations, which approximates the original partial
differential equations (PDEs) based upon a finite element
discretization. During the process, we probably observe the
overly-stiff phenomenon owing to the fully compatible strain
field [49]. In examining meshless and finite element meth-
ods, Liu and his colleagues [48] found gradient smoothing
[9,71] an elegant remedy to the afore-mentioned overly-stiff
issue, as well as a valuable alliance of these two methods.
In the seminal publication [48], the smoothed finite ele-
ment method (SFEM) is proposed by incorporating gradient
smoothing operation with the traditional FEM. The essen-
tial idea behind SFEM lies in modification of the compatible
strainfieldwhereby aGalerkinmodelmaydeliver some supe-
rior properties. This method is saliently featured with the
softened stiffness matrix that yields more accurate solution
to discrete PDEs than the standard FEM. After a decade of
development, a group of SFEM models has been fostered
with versatile applications in solid mechanics, heat transfer
and acoustics whose governing equations perfectly suit the
technique after introducing divergence theorem. The reader
is referred to the monograph [49] and the review article [72]
for the state of the art of SFEM.

In recent years, SFEM has seemingly been applied into
a range of FSI problems as follows. The immersed SFEM
is developed in [70,73–75] where SFEM is responsible for
nonlinear solids. Wang et al. [68] integrated SFEM in solid
mechanics with a strong-form fluid solver under the arbitrary
Lagrangian–Eulerian (ALE) description [34]. Similarly, the
authors adopted SFEM to quantify the structural finite defor-
mation triggered by fluidic excitation in a partitionedmanner
[24,27,28,30]. However, these scenarios do not provide any
settlements tailored for the NS equations, but rather replicate
SFEM’s early success in solid mechanics.

The major dilemma that SFEM faces in CFD stems from
interpolating the mixed product of a quantity and its gradient
in the NS equations, such as the convective acceleration. For
this reason, the underlying investments may be discouraged
from CFD. Most recently, we have witnessed a joyful break-
through that makes the cell-based smoothed FEM (CS-FEM)
accessible to incompressible NS equations in terms of three
schemes to interpolate nodal quantities involving the mixed
product [38].

This work is motivated by the need for a broadening uti-
lization of SFEM for CFD. A natural preference is given to
the simplest CS-FEM that is initiated on the basis of bilinear
four-node quadrilateral (Q4) element. The easy smoothing
treatment is proposed for the fluid equations to bypass the
strenuous operations. For this purpose, we set up the equal
amounts of Gaussian points (GPs) and smoothing cells (SCs)

in each element to compute fluid fluxes. That is to say, the
contribution from all SCs is accumulated in the loop circu-
lating the Gaussian integration. As a result of this collective
effort, a second-order smoothed CBS (S-CBS) scheme with
the stabilized pressure gradient projection (SPGP) technique
[1,6,12,54] is utilized to decouple the fluid velocity and pres-
sure. As to FSI, the nonlinear block-Gauss–Seidel procedure
[25,26] is preferred to interconnect individual fields owing to
its attractive simplicity with good convergence. In short, the
marriage of SFEM and fractional-step method may soothe
the pressure fluctuation on (dynamic) boundaries. This is
potentially important to both incompressible flows and FSI
simulations.

The remainder of this paper is organized as follows. The
theory of CS-FEM is briefly recalled in Sect. 2. The ALE
form of fluid governing equations is given in Sect. 3 while the
structural dynamics is depicted in Sect. 4. The mesh updat-
ing method is described in Sect. 5. Subsequently, Sect. 6
explains the partitioned coupling algorithm in detail. Several
benchmark examples are investigated in Sect. 7. Concluding
remarks are drawn in the final section.

2 Fundamental basis of CS-FEM

We discretize a two-dimensional computational domain Ω

into ne Q4 elements such that Ω = Ω1 ∪Ω2 ∪· · ·∪Ωne and
Ωi ∩Ω j = ∅ (i �= j). A Q4 element is subdivided into a set
of complementary SCs, i.e.Ωi = ˜Ω1

i ∪ ˜Ω2
i ∪· · ·∪ ˜Ω

nc
i where

nc is the number of SCs in the i th element. As illustrated in
Fig. 1, the smoothed gradient of a field variable b at a point
xc in an SC is approximated by

˜∇b(xc) =
∫

˜Ω

∇b(x)W (x − xc)dΩ, (1)

Fig. 1 Illustration of a generic smoothing cell for an arbitrary point
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where ∇ means the gradient operator and ˜∇ is its smoothed
counterpart, ˜Ω designates the SC and W is the Heaviside-
type kernel that possesses the following properties [71]

W (x − xc) � 0 and
∫

˜Ω

W (x − xc)dΩ = 1. (2)

ApplyingGauss theorem into the right-hand side ofEq. (1)
yields

˜∇b(xc) =
∫

˜Γ
b(x)n(x)W (x − xc)dΓ −

∫

˜Ω
b(x)∇W (x − xc)dΩ,

(3)

where ˜Γ is the boundary of ˜Ω and n is the unit outward nor-
mal of ˜Γ . A piecewise constant kernel W is now formulated
in form of

W (x − xc) =
⎧

⎨

⎩

1

Ac
x ∈ ˜Ω,

0 x /∈ ˜Ω,

(4)

where Ac = ∫

˜Ω
dΩ is the area of the SC. Substituting Eq. (4)

into Eq. (3), we have

˜∇b(xc) =
∫

˜Γ
b(x)n(x)W (x − xc)dΓ = 1

Ac

∫

˜Γ
b(x)n(x)dΓ ,

(5)

where the gradient of a constant vanishes automatically.
The Galerkin procedure leads to the following approxi-

mation of b

b = NI b̄I , (6)

where NI is the shape function at node I , the bar indicates a
nodal quantity andEinstein summation convention is applied.
With the aid of Eq. (6), Eq. (5) is rewritten as

˜∇b(xc) = (

˜∇NI (xc)
)

b̄I =
(

1

Ac

∫

˜Γ

NI (x)n(x)dΓ
)

b̄I .

(7)

Since one-point Gaussian quadrature is sufficiently accurate
for two-node line integral, the item enclosed within external
brackets on the right-hand side of Eq. (7) can be transformed
to its algebraic form

˜∇NI (xc) = 1

Ac

4
∑

i=1

NI (x
gp
i )n(xgpi )li , (8)

where 4 indicates the number of segments per quadrilateral
SC, xgpi is the GP on the i th segment ˜Γi and li is the length
of ˜Γi .

Fig. 2 Construction of SCs and shape functions in a Q4 element

By now, no coordinate transformation is involved in
the gradient smoothing process such that a heavily dis-
tortedmesh is possibly accommodated [48]. Furthermore, the
imported smoothing concept may pass on to wet boundaries
the improved traction or pressure. The construction of shape
functions for CS-FEM is shown in Fig. 2. A Q4 element is
partitioned into four quadrilateral SCs in consideration of the
stability condition [48]. Of total nine nodes, extra five nodes
are generated to compute the smoothed shape functions by
simply averaging those values at four corners [14,48].

3 Incompressible fluid flow

3.1 Governing equations

Without loss of generality, the NS equations governing an
isothermal incompressible viscous fluid flow on a time-
dependent domain Ω f ⊂ R

2 in a time interval (0, T ) are
written in their ALE formulation of

∇ · u = 0 on Ω f × (0, T ), (9)

ρf
(

∂u
∂t

+ c · ∇u − f f
)

− ∇ · σ f = 0 on Ω f × (0, T ),

(10)

where u is the fluid velocity, ρf is the fluid density, c = u−w
is the convective velocity, w is the mesh velocity, f f is the
fluid body force and σ f is the fluid stress tensor. For the
Eulerian flows, we have w = 0 such that c degenerates into
u.

The constitutive equation for Newtonian fluid reads as

σ f = −pI + 2με and ε = 1

2

(

∇u + (∇u)T
)

on Ω f × (0, T ), (11)
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where p is the pressure, I denotes the identity tensor,μ is the
dynamic viscosity, ε indicates the rate-of-strain tensor and
superscript T means transpose.

It is assumed that proper boundary conditions (abbreviated
to BCs) are imposed at different segments of the domain
boundary Γ f below

u = gf on Γ f
d , σ f · nf = hf on Γ f

n , (12)

where Γ f
d and Γ f

n designate the Dirichlet and Neumann sub-
boundaries, respectively, and nf is the unit outward normal
of Γ f

n . The fluid problem is initiated by prescribing initial
conditions as follows

u(x, t = 0) = u0, p(x, t = 0) = p0 on Ω f
0, (13)

where x and t , of course, represent the spatial and tem-
poral coordinates, respectively. The coupling conditions on
fluid–structure interface Σ will be presented in a separate
subsection.

In view of the characteristic length L and the free-stream
velocity U , we define the dimensionless scales

x̂ = x
L

, t̂ = tU

L
, û = u

U
, ĉ = c

U
, p̂ = p

ρfU 2 , f̂ f = f fL
U 2

to develop the dimensionless ALE–NS equations

∇ · u = 0, (14)
∂u
∂t

+ c · ∇u − ∇ · σ f − f f = 0, (15)

along with the constitutive relation

σ f = −pI + 1

Re

(

∇u + (∇u)T
)

, (16)

where Re = ρfUL/μ is the Reynolds number and all hats
are dropped. The nondimensionalized BCs and initial condi-
tions share the same form as Eqs. (12) and (13).

3.2 Solution procedure

The CBS scheme [53,77] combines the characteristic
Galerkin method [50] with the fractional-step method [10,
62]. The former process suppresses spurious oscillations
via higher-order time stepping in the convection-dominated
flows whereas the latter procedure stabilizes the pressure
field. The second-order pressure splitting error can be guar-
anteed by inclusion of the pressure gradient, but the increased
accuracy inevitably imperils the stabilizing properties of the
original first-order scheme [12,54]. Inwhat follows, the addi-
tional SPGP stabilization [12] is introduced to overcome this
penalty.

An auxiliary equation in regard to the variable q

q − ∇ p = 0, (17)

is defined, whereby the continuity equation (14) is modified
as

∇ · u + φ∇ · q − φ∇2 p = 0, (18)

with φ denoting the stabilization parameter. We will numer-
ically discuss φ later as it is yet unclear how to exactly
determine the parameter in theory [12].

The temporal discrete version of Eqs. (18), (15) and (17)
may be written as

∇ · un+1 + φ∇ · qn − φ∇2 pn+1 = 0, (19)

un+1 − un

Δt
= −cn · ∇un − ∇ pn+1 + ∇ pn − ∇ pn

+ 1

Re
∇2un + (f f)n, (20)

qn+1 − ∇ pn+1 = 0, (21)

where superscript n denotes the nth time slice and Δt =
tn+1−tn is the time step. The auxiliary variableq is explicitly
treated in Eq. (19) while the pressue of Eq. (20) is temporally
discretized in the semi-implicit manner.

Following the CBS procedure, Eq. (20) admits the decom-
position below

u∗ − un

Δt
= −cn · ∇un − ∇ pn + 1

Re
∇2un

+Δt

2
cn · ∇(cn · ∇un + ∇ pn), (22)

un+1 − u∗
Δt

= −∇(pn+1 − pn) + Δt

2
cn · ∇2(pn+1 − pn),

(23)

where u∗ signifies the intermediate velocity, and the body
force and the third-order terms are neglected.

Taking the divergence of Eq. (23) and expanding the semi-
discrete form of Eq. (19) at the next time level yield

(Δt + φ)∇2 pn+1 = ∇ · u∗ + Δt∇2 pn + φ∇ · qn, (24)

where the third-order terms are discarded as well.
With introduction of the gradient smoothing, the main

steps of the stabilized second-order S-CBS scheme are
arranged below

Step 1: Predict the velocity field

u∗ − un = Δt

(

−cn · ˜∇un − ˜∇ pn + 1

Re
˜∇2un

+Δt

2
cn · ˜∇(cn · ˜∇un + ˜∇ pn)

)

, (25)
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Step 2: Update the pressure field

˜∇2 pn+1 = 1

Δt + φ

(

˜∇ · u∗ + Δt˜∇2 pn + φ˜∇ · qn
)

,

(26)

Step 3: Correct the velocity field

un+1 − u∗ = −Δt

(

˜∇(pn+1 − pn) − Δt

2
cn · ˜∇2(pn+1 − pn)

)

,

(27)

Step 4: Renew the auxiliary variable

qn+1 = ˜∇ pn+1. (28)

Imposition of BCs is straightforward: the velocity BCs are
prescribed for Steps 1 and 3 on Γ f

u , while the pressure BC for
Step 2 on Γ f

p . Besides, q2 = 0 is applied on the pressure-free
outlet for Step 4.

3.3 Time-step limitations

It is of interest to remark that the semi-implicit CBS scheme
is conditionally stable [78]. The general time-step limitations
are recommended as [53,78]

Δt � Δtcrit = min(Δtconv, Δtdiff), (29)

where Δtcrit signifies the critical time step, and Δtconv and
Δtdiff are the convection and diffusion limits, respectively.
The latter two velocities are calculated from

Δtconv = h

|u| , Δtdiff = 1

2
h2Re, (30)

where h means the characteristic size of the element.
To account for the stability and convergence, Codina [12]

advocated that the pressure stabilization parameter must sat-
isfy the following relationship

φ � 1

4
h2Re, (31)

for viscous dominated flows on the Eulerian mesh. By
inspecting Eq. (30), we may reconsider the inequality as

φ � 1

2
Δtdiff . (32)

Recalling Eq. (29), the range of the stabilization parameter
is suggested as

φ � 0.5Δtcrit, (33)

or, it may be replaced for safety by

φ � 0.5Δt . (34)

3.4 Finite element discretization

The standard Galerkin spatial approximation is performed to
discretize the fluid equations in space. Since the CBS scheme
permits the equal-/low-order interpolation for both velocity
and pressure, the two primitive variables are approximated
as

u = Nū, p = Np̄, (35)

where N designates the shape function of Q4 element. Sub-
stitution of spatial approximation (35) into the semi-discrete
form of Eqs. (25)–(28) entails the final matrix form

Mf(ū∗ − ūn) = −Δt

(

˜Cn
u ū

n + ˜Gp̄n + ˜Kτ ūn

+Δt

2
(˜Kn

u ū
n + ˜Qn p̄n) − fnu

)

, (36)

˜Hp̄n+1 = − 1

Δt + φ

(

˜Gū∗ − Δt(˜Hp̄n − fnp )

+φ˜Gq̄n
)

+ fn+1
p , (37)

Mf(ūn+1 − ū∗) = −Δt

(

˜GT(p̄n+1 − p̄n)

+Δt

2
˜Qn(p̄n+1 − p̄n) + f̌np

)

, (38)

Mf q̄n+1 = ˜GTp̄n+1, (39)

where the assembled matrices and vectors are presented
below

Mf =
∫

Ω f
NTNdΩ, ˜H =

∫

Ω f
(˜∇N)T(˜∇N)dΩ,

˜Cn
u =

∫

Ω f
NT(˜∇TcnN)dΩ, ˜G =

∫

Ω f
(˜∇N)TNdΩ,

˜Kτ = 1

Re

∫

Ω f
(˜∇N)T(˜∇N)dΩ,

˜Kn
u =

∫

Ω f
(˜∇TcnN)T(˜∇TcnN)dΩ,

˜Qn =
∫

Ω f
(˜∇TcnN)T(˜∇N)dΩ,

fnu = 1

Re

∫

Γ f
NTnT(∇Tun)dΓ

+Δt

2

∫

Γ f
NT(nTcn)(∇Tcnun + ∇ p)dΓ ,

fnp =
∫

Γ f
NT(nT∇ pn)dΓ ,

f̌np = Δt

2

∫

Γ f
NT(nTcn)∇(pn+1 − pn)dΓ .
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At a closer observation of the above representation, the
two smoothed elementmatrices being derivated from the sec-
ond derivatives are directly finalized by assembly of all SCs
of the element e, i.e.,

e
˜H =

∫

Ω f
e

(˜∇N)T(˜∇N)dΩ =
nc

∑

i=1

(˜∇N)Ti (˜∇N)i A
i
c, (40a)

e
˜Kτ = 1

Re

∫

Ω f
e

(˜∇N)T(˜∇N)dΩ = 1

Re

nc
∑

i=1

(˜∇N)Ti (˜∇N)i A
i
c.

(40b)

The remaining smoothed elementmatricesmanifest them-
selves in the mixed product of a quantity and its first
derivative, see e

˜G for example. To handle those items, we
simply dictate that the number and numbering of GPs per
Q4 element exactly equal to those of SCs. Since 2 × 2 GPs
in Q4-FEM and nc = 4 in CS-FEM are often adopted in
practice, it is straightforward to estimate e

˜G below

e
˜G =

∫

Ω f
e

(˜∇N)TNdΩ =
2

∑

i=1

2
∑

j=1

(˜∇N)Ti jN(xgpi j )A
i j
c . (41)

As can be seen from Fig. 3, the contribution of four SCs and
GPs per Q4 element successfully circulates within one recur-
rence. Compared to [38], we organize the smoothed element
integral into a more comprehensible pattern.

4 Structural dynamics

Consider a structural domainΩs ⊂ R
2 with the boundaryΓ s

which comprises the same three types of boundaries as well.
A structure immersed in afluid continuously sustains thefluc-
tuating fluid force. The equation ofmotion is expressed in the
Lagrangian descriptionwith proper initial and boundary con-
ditions. The isotropic assumption is made for the structural
problem.

4.1 Rigid–bodymotion

In the case of a single rigid body undergoing both translation
and rotation (see Fig. 4), the structural displacement is rep-
resented by d = {d1, d2, θ}T where subscripts 1, 2 and θ

designates the horizontal, vertical and rotational components
defined at the center of gravity G, respectively. The equation
of structural motion is formulated by

⎡

⎣

m1

m2

mθ

⎤

⎦ d̈ +
⎡

⎣

c1
c2

cθ

⎤

⎦ ḋ +
⎡

⎣

k1
k2

kθ

⎤

⎦d = R,

(42)

Fig. 3 Contribution of SCs and GPs for Q4 element integral

Fig. 4 Schematic view of the generalized planar rigid–body motion

where the dot illuminates the derivative with respect to t ,mi ,
ci and ki (i = 1, 2 and θ ) stand for the generalized mass,
damping and stiffness of the structure, R = {Fd, Fl, Fm}T
is the applied fluid force, Fd, Fl and Fm signify the drag, lift
and pitching moment, respectively. As pictured in Fig. 4, the
compatibility conditionmust be satisfied between the surface
point P and the center of gravity G [55].

Next, the dimensionless scales

x̂ = x
L

, t̂ = tU

L
, d̂1 = d1

L
, d̂2 = d2

L
,

Cd = 2Fd
ρfU 2L

, Cl = 2Fl
ρfU 2L

, Cm = 2Fm
ρfU 2L2 ,

m̂1 = m1

ρf L2 , m̂2 = m2

ρf L2 , m̂θ = mθ

ρf L4

and the reduced parameters

ξ1 = c1
2
√
m1k1

, ξ2 = c2
2
√
m2k2

, ξθ = cθ

2
√
mθkθ

,
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fr1 = fn1L

U
, fr2 = fn2L

U
, frθ = fnθ L

U
,

fn1 = 1

2π

√

k1
m1

, fn2 = 1

2π

√

k2
m2

, fnθ = 1

2π

√

kθ

mθ

are computed to nondimensionalize Eq. (42), where the drag
coefficient Cd, the life coefficient Cl and the moment coeffi-
cientCm are the dimensionless applied forces, the mass ratio
m̂i is the dimensionless mass, ξi is the damping ratio, fri
is the reduced natural frequency, and fni is the natural fre-
quency. Therefore, the dimensionless equation of structural
motion is visualized as

d̈ + 4π

⎡

⎣

fr1ξ1
fr2ξ2

frθ ξθ

⎤

⎦ ḋ + 4π2

⎡

⎣

( fr1)
2

( fr2)
2

( frθ )2

⎤

⎦

d =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Cd

2m̂1
Cl

2m̂2
Cm

2m̂θ

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

. (43)

4.2 Flexible–bodymotion

For an elastic solid, the elastodynamics equation governing
the conservation law of linear momentum reads as

ρs (

d̈ − fs
) − ∇ · σ s = 0, (44)

where ρs is the structural density, fs is the structural body
force, σ s is the Cauchy stress tensor and the structural damp-
ing is omitted. Other material constants contain Young’s
modulus E andPoisson’s ratio ν. The plane stress assumption
is made for the two-dimensional case.

To accommodate the geometrical nonlinearity, the Saint
Venant–Kirchhoff constitutive model is assumed below

S = D : E and E = 1

2
(FT · F − I), (45)

where S is the second Piola–Kirchhoff stress tensor,D stands
for the constitutive tensor, E means the Green–Lagrangian
strain tensor, and F = I + ∇d is the deformation gradient
tensor. The second Piola–Kirchhoff stress tensor, S, is related
to the Cauchy stress tensor, σ s, via the geometric transfor-
mation given by

S = JF−1σ sF−T, (46)

where J = det(F).
The initial and boundary conditions are imposed to close

the system of solid equations in the following manner

d(x, 0) = d0, ḋ(x, 0) = ḋ0 on Ωs
0, (47a)

d = gs on Γ s
d , σ s · ns = hs on Γ s

n , (47b)

where ns is the unit outward normal of Γ s
n .

Likewise, the following dimensionless scales are defined

x̂ = x
L

, t̂ = tU

L
, d̂ = d

L
, Ê = E

ρfU 2 , f̂s = fsL
U 2 , m̂ = ρs

ρf

in order to enable the nondimensionalization of Eq. (44).
Discarding all superscript hats, the dimensionless version
of the geometrically nonlinear elastodynamics equation is
established as

d̈ − 1

m̂
∇ · σ s − fs = 0, (48)

alongside with the given initial and boundary conditions.

4.3 Finite element discretization

Herewe commence spatial discretization for the elastic solid.
As usual, the standard Galerkin procedure is used with the
finite element approximation to the displacement, velocity
and acceleration

d = Nd̄, ḋ = N ˙̄d, d̈ = N ¨̄d, (49)

which generates the incremental equilibrium equation for
dynamic analysis below

KnΔd̄ = Rn+1 − Pn − Ms ¨̄dn+1, (50)

where K represents the tangent stiffness matrix, Ms is the
mass matrix, Δd̄ = d̄n+1 − d̄n is the increment of nodal
displacement, R is the external force and P is the internal
force.

Depending upon the geometrical nonlinearity, it is nec-
essary to iterate Eq. (50) in each load step until a required
tolerance is satisfied. This linearization is carried out by the
modifiedNewton–Raphsonprocedure using totalLagrangian
formulation [2]. The mass of the body considered is assumed
to be conserved in dynamic analysis. Hence the smoothed
equilibrium iteration equation is written as

˜Knδd̄(k) = Rn+1 −˜Pn+1(k−1) − Ms ¨̄dn+1(k), (51)

where δd̄(k) is the incremental displacement in the kth subit-
eration at the current time step and the tangent stiffness
matrix is decomposed into linear and nonlinear parts, namely
˜K = ˜Kl + ˜Knl. The resultant matrices and vectors admit the
following representation
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Δd̄(k) = Δd̄(k−1) + δd̄(k), Ms = m̂
∫

Ωs
0

NTNdΩ,

R = m̂
∫

Ωs
NTfsdΩ +

∫

Γ s
n

NThsdΓ ,

˜Kl =
∫

Ωs
0

˜BT
l D˜BldΩ, ˜Knl =

∫

Ωs
0

˜BT
nl
˜S˜BnldΩ,

˜P =
∫

Ωs

˜BT
l σ̃ sdΩ.

The key to compute these quantities consists in the
smoothed deformation gradient tensor˜F = I + ˜∇d [13,14].
Details of the modified Newton–Raphson procedure consid-
ering specific time discretization methods can be found in
[2,7].

4.4 Timemarchingmethod

The widespread availability of step-by-step time integration
algorithms is seen in computational analyses of structural
dynamics. Here, the structural movement is integrated in
time with the Generalized-α method [11] which is gener-
ally superior to the Newmark-β method [52]. To do this, the
semi-discrete equation of motion is applied to a general mid-
point within one time interval, implying that the following
modified equation holds

Ms ¨̄dn+1−αm + C ˙̄dn+1−αf + Kd̄n+1−αf = Rn+1−αf , (52)

whereMs,C andK represent themass, damping and stiffness
matrices, respectively, and we prescribe

¨̄dn+1−αm = (1 − αm) ¨̄dn+1 + αm
¨̄dn, (53a)

˙̄dn+1−αf = (1 − αf)
˙̄dn+1 + αf

˙̄dn, (53b)

d̄n+1−αf = (1 − αf)d̄n+1 + αf d̄n, (53c)

Rn+1−αf = (1 − αf)Rn+1 + αfRn . (53d)

To set d̄n+1 as the single unknowns in Eq. (52), the New-
mark approximations [52] to the acceleration and velocity at
tn+1 are stated as

¨̄dn+1 = 1

βΔt2
(d̄n+1 − d̄n) − 1

βΔt
˙̄dn − 1 − 2β

2β
¨̄dn, (54)

˙̄dn+1 = γ

βΔt
(d̄n+1 − d̄n) − γ − β

β

˙̄dn − γ − 2β

2β
Δt ¨̄dn .

(55)

Accordingly, the generalized midpoint acceleration and
velocity are given by

(a)

(b)

Fig. 5 The lid-driven cavity flow. a Schematic view. b Finite element
mesh

¯̈dn+1−αm = 1 − αm

βΔt2
(d̄n+1 − d̄n) − 1 − αm

βΔt
¯̇dn

−1 − αm − 2β

2β
¯̈dn, (56)

˙̄dn+1−αf = (1 − αf)γ

βΔt
(d̄n+1 − d̄n) − (1 − αf)γ − β

β

˙̄dn

− (γ − 2β)(1 − αf)

2β
Δt ¨̄dn . (57)

The time integration parameters β, γ , αm and αf are defined
as functions of the spectral radius ρ∞ [11], whose optimal
expressions take the form of
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(a)

(b)

Fig. 6 The Re = 100 cavity flow without SPGP stabilization. a
Horizontal velocity along mid-vertical line. b Vertical velocity along
mid-horizontal line

β = 1

4
(1 − αm + αf)

2, γ = 1

2
− αm + αf ,

αm = 2ρ∞ − 1

ρ∞ + 1
, αf = ρ∞

ρ∞ + 1
, (58)

where 0 � ρ∞ � 1 for the desired level of numerical dis-
sipation. Here we specify ρ∞ = 0.1 for the rigid body [16]
whereas ρ∞ = 0.5 for the elastic solid [17].

In addition, the calculation of smoothed internal force
complies with the interpretation of [43]

˜Pn+1−αf = (1−αf )˜P
n+1+αf˜P

n = (1−αf )˜P(dn+1)+αf˜P(dn),

(59)

while working on the elastic solid.

(a)

(b)

Fig. 7 The Re = 100 cavity flow with SPGP stabilization. a Hor-
izontal velocity along mid-vertical line. b Vertical velocity along
mid-horizontal line

5 Two-level mesh updating

Imposition of interface conditions in time requires that the
position of moving interface is accurately captured in the
ALE domain whilst maintaining the satisfactory mesh qual-
ity. Hence the mesh deformation is of cardinal significance
in fluid–structure coupling. For instance, in the space-time
FEM the variational formulation written over its space-time
domain automatically takes into account the deformation of
the spatial domain with respect to time. Such a process is
particularly effective for forced motion of a cylinder where
the mesh movement is known a priori [64]. For free motion
of a body, a general pseudo-elasticity equation approach is
proposed in association with the stabilized space-time FEM
[39].

The present mesh deformation method adopts a blend of
moving submesh approach (MSA) [45] and the ortho-semi-
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Fig. 8 Flow past a rigid circular
cylinder. a Schematic view. b
Finite element mesh

(a)

(b)

Table 1 Collection of run times for the cavity flow

φ 0.1Δt 0.25Δt 0.5Δt 1.0Δt

Run time (s) 1528.3 1509.2 1560.1 1598.5

torsional spring analogy model [51] in the ALE context. Its
fundamental principle comprises two stages below

– Spring analogy method assimilates the triangle submesh
to the structural motion;

Table 2 Comparison of the previous and present results for the flow past a circular cylinder

References Cd,mean Cd,rmse Cl,max Cl,rmse St

Karniadakis [22] 1.42 0.00504 N/A 0.26 0.17

Tezduyar et al. [66] 1.38−1.43 N/A 0.357−0.375 N/A 0.166−0.17

Behr et al. [5] 1.3698−1.4552 N/A 0.3706−0.3946 N/A 0.1624−0.1711

Kjellgren [42] 1.34−1.37 N/A 0.292−0.329 N/A 0.16−0.17

Norberg [56] N/A N/A 0.32 N/A 0.164

He et al. [32] 1.373−1.421 0.00757−0.01368 0.355−0.489 0.251−0.344 0.166−0.169

Bevan et al. [6] N/A N/A 0.332−0.346 N/A 0.166−0.167

Present study

φ = 0 1.8456 0.01531 0.4190 0.2652 0.1697

φ = 0.1Δt 1.3782 0.00853 0.3880 0.2663 0.1697

φ = 0.25Δt 1.3710 0.00857 0.3869 0.2667 0.1697

φ = 0.5Δt 1.3704 0.00869 0.3880 0.2681 0.1697

φ = 1.0Δt 1.3739 0.00888 0.3912 0.2711 0.1697
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(a)

(b)

Fig. 9 Time history of drag and lift coefficients. a Full-size view. b
Zoom-in view

Table 3 Collection of run times for the flow past a circular cylinder

φ 0.1Δt 0.25Δt 0.5Δt 1.0Δt

Run time (s) 17923.3 15832.9 18793.9 18868.3

– MSA creates a mapping between the submesh’s defor-
mation and that of ALE mesh.

Interested readers are recommended to refer to [24,31–33] for
thorough implementation. Though MSA moves fluid nodes
with the aid of a background mesh, this technique can reduce
the expenditure on spring analogy method while preserving
the mesh topology [30,33].

On the other hand, the midpoint rule is applied to the
mesh velocity scheme as it automatically meets geomet-
ric conservation law for two-dimensional stabilized FEM

[46] and outstrips the second-order differencing scheme
[19].

6 Partitioned solution strategy

6.1 Interface coupling conditions

In the partitioned scheme, the interplay between the fluid
and structure is accomplished via separately enforcing
the velocity continuity and traction equilibrium on Σ as
follows

u = ḋ and tf = ts, (60)

where tf = σ f ·ns and ts = σ s ·ns are the fluid and structural
tractions, respectively, ns represents the unit outward normal
of Σ pointing from the structure to the fluid and nf = −ns.
Since the external force acting on the immersed rigid body
is a concentrated load vector, the stress equilibrium on Σ

becomes

∫

Σ

tfdΓ =
∫

Σ

tsdΓ and
∫

Σ

Δx×tfdΓ =
∫

Σ

Δx×tsdΓ ,

(61)

where Δx is the distance between surface point P and cen-
ter of gravity G, as shown in Fig. 4. Also, the geometrical
continuity is supplemented thanks to the mesh movement

x = d and w = ḋ. (62)

Moreover, interface conditions (60)–(62) may be recast in
a hybrid way to alleviate the adverse time-lag effect [29,30,
36].

6.2 Block-Gauss–Seidel coupling algorithm

The FSI system constitutes a coupled set of nonlinear alge-
braic equations to be solved for each time step. For numerical
stability, kinematic and kinetic compatibilities are compul-
sively imposed onΣ through block-Gauss–Seidel procedure
which implicitly couples all interacting fields. Extra accel-
eration technique like the Aitken’s Δ2 method [44] may be
adopted for faster convergence. Within one time interval, the
present coupling algorithm is elaborated hereinafter.

Step 1: Initialize all variables and set k = 0
Step 2: Extrapolate the interface

x̄n+1(k)
Σ = dnΣ +

(

3

2
ḋnΣ − 1

2
ḋn−1

Σ

)

Δt
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Fig. 10 Vorticity contour of the
rigid circular cylinder at
Re = 100

Fig. 11 Sketch of geometry and
boundary conditions for the
freely oscillating circular
cylinder

Step 3: Start fixed-point iterations and set k ← k + 1
Step 4: Rearrange the fluid mesh Ω f

n+1(k)
Step 5: Calculate the mesh velocity

wn+1(k) = x̄n+1(k) − xn

Δt

Step 6: Derive other geometrical quantities if necessary
Step 7: Compute the intermediate velocity

u∗ − un = Δt

(

−cn · ˜∇un − ˜∇ pn + 1

Re
˜∇2un

+Δt

2
cn · ˜∇(cn · ˜∇un + ˜∇ pn)

)

Step 8: Update the pressure

˜∇2 pn+1(k) = 1

Δt + φ

(

˜∇ · u∗ + Δt˜∇2 pn + φ˜∇ · qn
)

Step 9: Correct the velocity

un+1(k) − u∗ = −Δt

(

˜∇(pn+1(k) − pn) − Δt

2
cn

·˜∇2(pn+1(k) − pn)
)

Step 10: Renew the auxiliary variable

qn+1(k) = ˜∇ pn+1(k)

Step 11: Deduce the fluid load and pass it to the struc-
ture/solid

Step 12: Solve equation of the structural equation

(

1 − αm

βΔt2
Ms + (1 − αf)γ

βΔt
C + (1 − αf)K

)

dn+1(k)

= (1 − αf)Rn+1(k) + αfRn + Ms
(

1 − αm

βΔt2
dn + 1 − αm

βΔt
ḋn + 1 − αm − 2β

2β
d̈n

)

+C
(

(1 − αf)γ

βΔt
dn + (1 − αf)γ − β

β
ḋn

+ (1 − αf)(γ − 2β)

2β
Δt d̈n

)

− αfKdn

Step 13: Estimate the interfacial residuals

gn+1(k) = xn+1(k)
Σ − x̄n+1(k−1)

Σ

Step 14: Check the convergence and the maximum number
of subiterations: if not convergent, then go ahead;
otherwise, proceed to the next time step

Step 15: Relax the position of the interface

x̄n+1(k)
Σ = ωxn+1(k)

Σ + (1 − ω)x̄n+1(k−1)
Σ

Step 16: Return to Step 3

The stop criterion at the kth subiteration is simply judged
with

max(gn(k)
1 , gn(k)

2 , gn(k)
3 , · · · , gn(k)

nfs ) < ε and k < kmax,

(63)
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Fig. 12 Snapshots of mesh and
submesh of the cylinder
problem. a Finite element mesh
for the fluid field. bMSA
submesh for the ALE domain

(a)

(b)

Table 4 Parametric study for
the oscillating circular cylinder
at m̂ = 0.471

φ dmean1 drmse1 dmax2 Cd,mean Cd,rmse Cl,max St run time (s)

0 N/A N/A N/A N/A N/A N/A N/A N/A

0.1Δt 1.2270 0.0203 0.5376 1.8261 0.0495 0.2974 0.1624 33346.4

0.25Δt 1.2621 0.0240 0.5855 1.8793 0.0611 0.2948 0.1648 29873.3

0.5Δt 1.2938 0.0269 0.6161 1.9256 0.0711 0.2977 0.1672 30933.8

1.0Δt 1.3435 0.0306 0.6508 1.9997 0.0834 0.3040 0.1697 30028.4

where nfs is the number of nodes on the interface, the con-
vergence tolerance is ε = 1.0 × 10−6 and kmax = 200 is
the user-defined constant that controls the maximum subit-
erations at each time step.

Alternatively, a variant algorithm may be acquired in case
that Eq. (18) is discretized in time by

˜∇ · un+1(k) + φ˜∇ · qn+1(k−1) − φ˜∇2 pn+1(k) = 0. (64)
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(a)

(b)

Fig. 13 Time history of aerodynamic parameters at m̂ = 0.408. a
Cylinder displacement. b Fluid force coefficients

7 Results and discussion

7.1 Steady cavity flow

The geometry of lid-driven cavity flow is defined in Fig. 5a.
The cavity is meshed with 40 × 40 Q4 elements in Fig. 5b.
Re = 100 and Δt = 1.0 × 10−2 are chosen for this prob-
lem. The velocity components computed without the SPGP
technique are severely oscillatory in Fig. 6. This is because
the pressure difference pn+1 − pn will approach to zero in
the CBS scheme once steady state is reached. Furthermore,
in accordance with [1,12], the stability of the second-order
scheme seems more sensitive to a smaller time step.

Fig. 7 exhibits no oscillations at steady state since the dif-
ference between the Laplacian of p and the divergence of q
multiplied by φ stabilizes the pressure variation. Besides, the
curve obtained from a smaller φ is closer to [21]. Nithiarasu

(a)

(b)

Fig. 14 Time history of lift coefficient at m̂ = 0.408

Fig. 15 8-Profile trajectory of the oscillating circular cylinder at differ-
ent m̂.

and Zienkiewicz [54] explained that modifying φ possibly
reduces numerical oscillations but could incur accuracy dete-
rioration elsewhere. Among all φ in Table 1, φ = 0.25Δt

123



Computational Mechanics (2018) 62:1037–1057 1051

Fig. 16 Vorticity contours of
the oscillating circular cylinder
at various m̂. a m̂ = 0.393. b
m̂ = 0.298. c m̂ = 0.157

Fig. 17 Sketch of geometry and
boundary conditions for a beam
attached to a square cylinder

demands the least run timeona laptopwith Intel(R) core(TM)
i5-5200U CPU and 16GBRAM. Therefore, φ may affect the
numerical expense of large-scale computations.

7.2 Unsteady flow over a circular cylinder

The incompressible flow past a circular cylinder is attempted
at Re = 100. The problem definition is plotted in Fig. 8a

whereas the finite element discretization is composed of 5190
Q4 elements and 5341 nodes in Fig. 8b. The time step is set
as Δt = 1.0 × 10−2.

Table 2 lists themean value of drag coefficientCd,mean, the
root-mean-square error (RMSE) of drag coefficient Cd,rmse,
the amplitude of lift coefficient Cl,max, the RMSE of lift
coefficient Cl,rmse and the Strouhal number St . The unsta-
bilized scheme generates larger values of the first three
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Table 5 Information on the mesh and submesh generation

Subsystem Meshing item

Fluid Element type Q4

Number of elements 9080

Number of nodes 9344

Solid Element type Q4

Number of elements 80

Number of nodes 123

Submesh Element type T3

Number of elements 246

Number of nodes 170

indicators, whereas all stabilized schemes agree well with
the existing data [5,6,22,32,42,56,66]. The predicted time-
varyingCd andCl underline the negligible deviation between
φ = 0.1Δt and 1.0Δt in Fig. 9. The expenditure examined
in Table 3 explains that φ = 0.25Δt consumes the least time
again. Unlike the steady flow, adjusting φ does not deteri-
orate the accuracy. In Fig. 10, the vorticity contour using
φ = 0.25Δt reflects that a repeating pattern of swirling vor-
tices is caused by unsteady separation of the flow around the
blunt body.

Fig. 18 Snapshots of mesh and
submesh of the beam problem. a
Finite element mesh for the fluid
field. bMSA submesh for the
ALE domain

(a)

(b)
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Table 6 Parametric study for the beam behind an obstacle

φ dmax2 fo Run time (s)

0 1.31 0.0582 37,790.6

0.1Δt 1.33 0.0582 37,932.1

0.25Δt 1.34 0.0582 38,985.7

0.5Δt 1.35 0.0582 37,858.8

1.0Δt 1.34 0.0582 37,566.9

Table 7 Comparison of the present and previous results for the beam
behind an obstacle

References Dimension Coupling
scheme

dmax2 fo

Wall and Ramm
[67]

Two Explicit 1.20 0.0604

Teixeira and
Awruch [61]

Three Explicit 1.35 0.0584

Dettmer and
Perić [17]

Two Implicit 1.25 0.0634

Liew et al. [47] Two Monolithic 1.34 0.0609

Bazilevs et al. [3] Two Monolithic 1.21 0.0591

Braun and
Awruch [7]

Three Explicit 1.181–
1.215

0.0591

Kassiotis et al.
[41]

Two Implicit 1.07 N/A

Habchi et al. [23] Two Implicit 1.02 0.0634

De Rosis et al.
[15]

Two Explicit 1.08 N/A

Froehle and
Persson [20]

Two Implicit 1.12 0.0620

He [25] (20 × 1
Q9)

Two Explicit 1.32 0.0586

He [28] (20 × 1
Q9)

Two Semi-implicit 1.37 0.0586

He [28] (80 × 2
Q4)

Two Semi-implicit 0.92 0.0622

Kaneko et al.
[40]

Two Implicit 1.10 0.0624

Present study Two Implicit 1.34 0.0582

7.3 Vortex-induced vibration of a very light circular
cylinder

Fig. 11 graphically illustrates free oscillations of a circular
cylinder. System parameters are given as [37]: fr = 0.2,
ξ = 0, Re = 100 and m̂ = 0.471 to m̂ = 0.157. For numer-
ical efficiency, the computational domain is divided into the
Eulerian, ALE and Lagrangian subdomains. The finite ele-
ment mesh comprising 8880 Q4 elements and 9090 nodes,
and the corresponding submesh are demonstrated in Fig. 12.
The time step is Δt = 1.0 × 10−2 and the relaxation factor
is ω = 0.5.

(a)

(b)

Fig. 19 Time history of vertical displacement at the measuring point

Table 4 analyzes the φ-sensitivity through the m̂ = 0.471
case. We see that the unstabilized scheme begets a failure
whereas the stabilized schemes give nearly identical data.We
choose φ = 1.0Δt for all mass ratios, given its performance.
Eq. (33) still holds for FSI as the stability criterion because
φ = 1.0Δt < Δtcrit = 0.2828.

The time history of aerodynamic parameters is plotted
in Fig. 13 for m̂ = 0.408, at which our FSI method estab-
lishes the stable and smooth cylinder response. However, the
enlarged view in Fig. 14a indicates the failure of the tra-
ditional strong staggered coupling (SSC) scheme [37]. By
contrast, the present coupling scheme based upon standard
fixed-point iterations agrees well with that computed by the
nonlinear interface force correction (NFIC) approach [37].

Fig. 15 shows the x1-x2 trajectory at various m̂, illustrating
that the VIV at low Re is a self-limiting process [76]. The
cylinder takes on the nearly symmetrical trajectory shaping
the classical Lissajous figure of “8". Vorticity fields at m̂ =
0.393, 0.298 and 0.157 are displayed in Fig. 16 where the
2S vortex-shedding mode [69] is seen in the wake.

123



1054 Computational Mechanics (2018) 62:1037–1057

Fig. 20 Instantaneous contours of the beam problem

7.4 Vortex-induced vibration of a flexible beam
behind an obstacle

The benchmark problem proposed by Wall and Ramm [67]
is schematically demonstrated in Fig. 17. Physical parame-
ters are specified as: ρf = 1.18 × 10−3, μ = 1.82 × 10−4,
ρs = 1.0 × 10−1, E = 2.5 × 106, ν = 0.35, L = 1,
U = 51.3 and Re = 332.6. The meshing information is
listed in Table 5. The fluid mesh and MSA submesh are
exhibited in Fig. 18. Δt = 1.0 × 10−2 and ω = 0.9 are
utilized here.

The almost equal results are reported in Table 6 among
different φ, but φ = 0 incurs slow convergence at ini-
tial stage. As before, we adopt φ = 1.0Δt here. Table 7
summarizes dmax2 and fo documented in the open liter-
ature [3,7,15,17,20,23,25,28,40,41,47,61,67]. The obtained
results are in good agreement with the available data. Note
that fo = 0.0582 is very close to the first eigenfrequency of
the beam, f s1 = 0.0591, which predominates the structural
oscillations.

The unsteady periodic long-term oscillatory vibration of
the tip is fairly depicted in Fig. 19a. Figure 19b demon-
strates that the slightly longer time is required to reach the
smaller characteristic amplitude in [28]. However, the under-

estimated amplitude may be obtained even though denser
spatial discretization or higher-order interpolation is used for
the beam [15,20,40,41]. Three typical snapshots of vorticity
and pressure fields are displayed in Fig. 20. It is seen that
transient flow patterns and structural oscillations vary signif-
icantly in different phases.

8 Conclusions

This paper has reported the straightforward implementation
of CS-FEM into two major areas of CFD. The stabilized
second-order S-CBS scheme is proposed to solve incom-
pressibleNS equations. In the fluid equationsGPs cooperates
with equal SCs for each smoothed element integral, whereas
CS-FEM works for the solid routinely. The structural equa-
tions are advanced in time by the Generalized-α method. The
dynamicmesh is efficiently updated viaMSA in combination
with spring analogy method. Block-Gauss–Seidel procedure
is adopted for the fluid–structure interplay within the ALE
framework. The proposed methodologies do not only make
trivial revision to available FE codes, but also exhibit out-
standing performance in numerical tests. The main findings
are summarized below
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– TheSPGP technique is crucial to the second-order S-CBS
scheme in incompressible flows and FSI.

– The stabilization parameter has an impact on numeri-
cal accuracy and efficiency. In particular, Eq. (34) is
recommended for the Eulerian flows while Eq. (33) for
FSI.

– The FSI solver never asks for accelerated fixed-point
iterations even in the case of extremely low mass
ratio.

Acknowledgements Support from National Natural Science Founda-
tion ofChina under grant number 51508332 is gratefully acknowledged.
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