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Abstract
We devise and evaluate numerically Hybrid High-Order (HHO) methods for hyperelastic materials undergoing finite defor-
mations. The HHO methods use as discrete unknowns piecewise polynomials of order k ≥ 1 on the mesh skeleton, together
with cell-based polynomials that can be eliminated locally by static condensation. The discrete problem is written as the
minimization of a broken nonlinear elastic energy where a local reconstruction of the displacement gradient is used. Two
HHO methods are considered: a stabilized method where the gradient is reconstructed as a tensor-valued polynomial of
order k and a stabilization is added to the discrete energy functional, and an unstabilized method which reconstructs a stable
higher-order gradient and circumvents the need for stabilization. Both methods satisfy the principle of virtual work locally
with equilibrated tractions. We present a numerical study of the two HHO methods on test cases with known solution and
on more challenging three-dimensional test cases including finite deformations with strong shear layers and cavitating voids.
We assess the computational efficiency of both methods, and we compare our results to those obtained with an industrial
software using conforming finite elements and to results from the literature. The two HHO methods exhibit robust behavior
in the quasi-incompressible regime.

Keywords Hyperelasticity · Finite deformations · Hybrid High-Order methods · Quasi-incompressible materials

1 Introduction

Hybrid-High Order (HHO) methods have been introduced
a couple of years ago for linear elasticity problems in [17]
and for diffusion problems in [18]. A review on diffusion
problems can be found in [19], and a Péclet-robust analy-
sis for advection-diffusion problems in [15]. Moreover, an
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open-source implementation of HHOmethods using generic
programming tools is available through the Disk++ library
described in [10]. Recent developments of HHO methods in
computational mechanics include the incompressible Stokes
equations (with possibly large irrotational forces) [20], the
incompressible Navier–Stokes equations [21], Biot’s con-
solidation problem [4], and nonlinear elasticity with small
deformations [6]. The goal of the present work is to devise
and evaluate numerically HHO methods for hyperelastic
materials undergoing finite deformations. Such problems are
particularly challenging since finite deformations induce an
additional geometric nonlinearity on top of the one present in
the stress-strain constitutive relation. Moreover, hyperelastic
materials are often considered near the incompressible limit,
so that robustness in this situation is important.

The discrete unknowns in HHO methods are face-based
unknowns that are piecewise polynomials of some order
k ≥ 1 on the mesh skeleton (k ≥ 0 for diffusion equations).
Cell-based unknowns are also introduced in the discrete for-
mulation. These additional unknowns are instrumental for
the stability and approximation properties of the method and
can be locally eliminated by using the well-known static
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condensation technique. In the present nonlinear context,
this elimination is performed at each step of the nonlinear
iterative solver (typically Newton’s method). The devising
of HHO methods hinges on two ideas: (1) a reconstruction
operator that reconstructs locally from the local cell and face
unknowns a displacement field or a tensor-valued field repre-
senting its gradient; (2) a stabilization operator that enforces
in a weak sense on each mesh face the consistency between
the local face unknowns and the trace of the cell unknowns.
A somewhat subtle design of the stabilization operator has
been proposed in [17,18] leading to O(hk+1) energy-error
estimates, where h is the mesh-size, for linear diffusion and
elasticity problems and smooth solutions. HHO methods
offer several advantages: (1) the construction is dimension-
independent; (2) general meshes (including fairly general
polytopal mesh cells and non-matching interfaces) are sup-
ported; (3) a local formulation using equilibrated fluxes is
available, and (4) HHO methods are computationally attrac-
tive owing to the static condensation of the cell unknowns
and the higher-order convergence rates.

HHOmethods have been bridged to Hybridizable Discon-
tinuous Galerkin (HDG) methods in [11]. HDG methods, as
originally devised in [12], are formulated in terms of a dis-
crete triplewhich approximates the flux, the primal unknown,
and its trace on the mesh skeleton. The HDG method is then
specified by the discrete spaces for the above triple, and
the stabilization operator that enters the discrete equations
through the so-called numerical flux trace. The difference
between HHO and HDG methods is twofold: (1) the HHO
reconstruction operator replaces the discrete HDG flux (a
similar rewriting of an HDG method for nonlinear elastic-
ity can be found in [29]), and, more importantly, (2) both
HHO and HDG penalize in a least-squares sense the differ-
ence between the discrete trace unknown and the trace of the
discrete primal unknown (with a possibly mesh-dependent
weight), but HHO uses a non-local operator over each mesh
cell boundary that delivers one-order higher approximation
than just penalizing pointwise the difference as in HDG.

Discretization methods for linear and nonlinear elastic-
ity have undergone a vigorous development over the last
decade. For discontinuous Galerkin (dG) methods, we men-
tion in particular [14,26,32] for linear elasticity, and [35,41]
for nonlinear elasticity. HDG methods for linear elasticity
have been coined in [38] (see also [13] for incompressible
Stokes flows), and extensions to nonlinear elasticity can be
found in [29,34,37].Other recent developments in the last few
years include, among others, Gradient Schemes for nonlinear
elasticity with small deformations [22], the Virtual Element
Method (VEM) for linear and nonlinear elasticity with small
[3] and finite deformations [8,43], the (low-order) hybrid dG
method with conforming traces for nonlinear elasticity [44],
the hybridizable weakly conforming Galerkin method with
nonconforming traces for linear elasticity [30], the Weak

Galerkin method for linear elasticity [42], and the discon-
tinuous Petrov–Galerkin method for linear elasticity [7].

In the present work, we devise and evaluate numerically
two HHO methods to approximate hyperelastic materials
undergoing finite deformations. Following the ideas of [29,
41] developed in the context of dG and HDG methods, both
HHO discrete solutions are formulated as stationary points
of a discrete energy functional that is defined from the exact
energy functional by replacing the displacement gradient in
the Piola–Kirchhoff tensor by its reconstructed counterpart.
In the first HHO method, called stabilized HHO (sHHO), a
quadratic term associated with the HHO-stabilization oper-
ator is added to the discrete energy functional. For linear
elasticity, one recovers the original HHO method from [17]
if the displacement gradient is reconstructed locally in the
tensor-valued polynomial space ∇

X
P
k+1
d (T ; R

d) where k is
the degree of the polynomials attached to the mesh skeleton
and T is a generic mesh cell (and if the displacement diver-
gence is reconstructed in P

k
d(T ; R)); the notation is defined

more precisely in the following sections. In the present non-
linear context, the gradient is reconstructed in P

k
d(T ; R

d×d)

(which is a strict superspace of ∇
X
P
k+1
d (T ; R

d)); the same
reconstruction space is considered for HDG in [29] for
nonlinear elasticity with finite deformations (where the sta-
bilization operator is, however, different), and a similar
choice with symmetric-valued reconstructions is considered
for HHO in [6] for nonlinear elasticity with small deforma-
tions. The main reason for reconstructing the gradient in a
larger space stems from the fact that the reconstructed gradi-
ent of a test function acts against a discrete Piola–Kirchhoff
tensor which is not in gradient form. For a discussion and a
numerical example in the context of the Leray–Lions prob-
lem, we refer the reader to [16, §4.1].

In nonlinear elasticity, the use of stabilization can lead to
numerical difficulties since it is not clear beforehand how
large the stabilization parameter ought to be and since a
large value of this parameter can deteriorate the conditioning
of the system and hamper the convergence of the iterative
solvers; see [39,40] for a related discussion on dG methods
and [3,8] for VEM. Moreover, [29, Section 4] presents an
example where spurious solutions can appear in an HDG dis-
cretization if the stabilization parameter is not large enough.
Motivated by these difficulties, we also consider a second
method called unstabilized HHO (uHHO). Inspired by the
recent ideas in [28] on stable dG methods without penalty
parameters, we consider an HHO method where the gradi-
ent is reconstructed in a higher-order polynomial space, and
no stabilization is added to the discrete energy. Focusing for
simplicity onmatching simplicial meshes, the reconstruction
space can be (1) the Raviart–Thomas–Nédélec (RTN) space
RTN

k
d(T ; R

d×d) := P
k
d(T ; R

d×d) ⊕ (P
k,H
d (T ; R

d) ⊗ X),

where P
k,H
d (T ; R

d) is the space composed of homogeneous
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polynomials of degree k, or (2) the (larger) polynomial space
P
k+1
d (T ; R

d×d). For both choices, we prove, using the ideas
in [28], that the reconstructed gradient is stable, thereby cir-
cumventing the need to introduce and tune any stabilization
parameter. Reconstructing the gradient in RTN

k
d(T ; R

d×d)

leads to optimal O(hk+1)-convergence rates for linear prob-
lems and smooth solutions, Instead, reconstructing the gradi-
ent in P

k+1
d (T ; R

d×d) leads to O(hk)-convergence rates for
linear problems and smooth solutions, i.e., the method still
converges but at a suboptimal order in ideal situations. The
advantage of reconstructing the gradient in P

k+1
d (T ; R

d×d)

is, however, that our numerical results indicate that the
method is more robust to handle strongly nonlinear prob-
lems.

This paper is organized as follows. In Sect. 2, we present
the nonlinear hyperelasticity problem andwe introduce some
basic notation. The two HHO methods are presented in
Sect. 3, where we also discuss some theoretical and imple-
mentation aspects. Section 4 then contains test cases with
analytical (or computable) solution. We first consider three-
dimensional traction test cases withmanufactured solution to
assess the convergence rates delivered by sHHO and uHHO
in the nonlinear case. Then, we consider the dilatation of a
quasi-incompressible annulus; in this test case, proposed in
[29, Section 5.2], the exact solution can be approximated
to a very high accuracy by solving an ordinary differen-
tial equation in the radial coordinate. We also compare
the computational efficiency of both methods, and we con-
sider a continuous Galerkin (cG) approximation based on
H1-conforming finite elements using the industrial software
code_aster [24]. Section 5 considers three application-
driven, three-dimensional examples: the indentation of a
compressible and quasi-incompressible rectangular block
(where we also provide a comparison with the industrial
softwarecode_aster), a hollow cylinder deforming under
compression and shear, and a sphere expanding under trac-
tion with two cavitating voids. These last two examples are
particularly challenging, and our results are compared to the
HDG solutions reported in [29].

2 The nonlinear hyperelasticity problem

We are interested in finding the static equilibrium configura-
tion of an elastic continuum body that occupies the domain
Ω0 in the reference configuration and that undergoes finite
deformations under the action of a body force f in Ω0, a
traction force t on the Neumann boundary Γn , and a pre-
scribed displacement ud on the Dirichlet boundary Γd . Here,
Ω0 ⊂ R

d , d ∈ {2, 3}, is a bounded connected polytopal
domain with unit outward normal N and with Lipschitz
boundary Γ := ∂Ω decomposed in the two relatively open
subsets Γn and Γd such that Γn ∪Γd = Γ , Γn ∩Γd = ∅, and

Γd has positive Hausdorff-measure (so as to prevent rigid-
body motions). In what follows, we write v for scalar-valued
fields, v or V for vector-valued fields, V for second-order
tensor-valued fields, and V for fourth-order tensor-valued
fields.

As is customary for elasticity problems with finite defor-
mations, we adopt the Lagrangian description (cf, e.g, the
textbooks [5,9]). Due to the deformation, a point X ∈ Ω0 is
mapped to a point x = X + u(X) in the equilibrium config-
uration, where u : Ω0 → R

d is the displacement mapping.
The model problem consists in finding a displacement map-
ping u : Ω0 → R

d satisfying the following equations:

−DivX (P) = f in Ω0, (1a)

u = ud on Γd , (1b)

P N = t on Γn, (1c)

where P := P(X, F(u)) is the first Piola–Kirchhoff stress
tensor and F(u) = I + ∇

X
u is the deformation gradient.

The deformation gradient takes values in R
d×d+ which is the

set of d × d matrices with positive determinant. The govern-
ing Eqs. (1) are stated in Lagrangian form; in particular, the
gradient and divergence operators are taken with respect to
the coordinate X of the reference configuration (we use the
subscript X to indicate it).

We restrict ourselves to bodies consisting of homogeneous
hyperelastic materials for which there exists a strain energy
density Ψ (F) defined by a function Ψ : R

d×d+ → R. We
assume that the first Piola–Kirchhoff stress tensor is defined
as P = ∂FΨ so that the associated elastic modulus is given

by A = ∂2F FΨ . We denote by V the set of all kinematically

admissible displacements which satisfy the Dirichlet condi-
tion (1c), and we define the energy functional E : V → R

such that

E(v) =
∫

Ω0

Ψ (F(v))dΩ0−
∫

Ω0

f ·vdΩ0−
∫

Γn

t·vdΓ . (2)

The static equilibrium problem (1) consists of seeking the
stationary points of the energy functional E which satisfy the
following weak form of the Euler–Lagrange equations:

0 = DE(u)[δv] =
∫

Ω0

P(F(u)) : ∇
X
(δv) dΩ0

−
∫

Ω0

f ·δv dΩ0 −
∫

Γn

t·δv dΓ , (3)

for all virtual displacements δv satisfying a zero boundary
condition on Γd . We assume that the strain energy density
functionΨ is polyconvex (cf e.g. [1]) so that localminimizers
of the energy functional exist. In the present work, we will
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mainly consider hyperelastic materials of Neohookean type
extended to the compressible range such that

Ψ (F) = μ

2

(
F : F − d

)
− μ ln J + λ

2
Θ(J )2, (4)

where J ∈ R>0 is the determinant of F,μ and λ are material
constants, and Θ : R>0 → R is a smooth function such that
Θ(J ) = 0 ⇔ J = 1 and Θ ′(1) 
= 0. The function Θ repre-
sents the volumetric deformation energy, and the potentialΨ
defined by (4) satisfies the principle of material frame indif-
ference [9]. For further insight into the physical meaning, we
refer the reader to [36, Chap.7]. For later use, it is convenient
to derive directly from (4) the first Piola–Kirchhoff stress
tensor

P(F) = μ(F − F−T ) + λJΘ(J )Θ ′(J )F−T , (5)

where we have used that ∂F J = J F−T , as well as the elastic
modulus

A(F) = μ(I ⊗ I + F−T⊗ F−1) − λJΘ(J )Θ ′(J )F−T⊗ F−1

+ λ
[
JΘ(J )(JΘ ′′(J ) + Θ ′(J )) + (JΘ ′(J ))2

]

F−T ⊗ F−T , (6)

where ⊗, ⊗ and ⊗ are defined such that {◦ ⊗ •}i jkl =
{◦}i j {•}kl , {◦⊗ •}i jkl = {◦}il{•} jk and {◦⊗ •}i jkl =
{◦}ik{•} jl , for all 1 ≤ i, j, k, l ≤ d.

3 The Hybrid High-Order method

In this section, we present the unstabilized and stabilized
HHO methods to be considered in our numerical tests.

3.1 Discrete setting

Let (Th)h>0 be a shape-regular sequence of affine simplicial
meshes with no hanging nodes of the domain Ω0. A generic
mesh cell in Th is denoted T ∈ Th , its diameter hT , and its
unit outward normal nT . It is customary to define the global
mesh-size as h = maxT∈Th hT . The mesh faces are collected
in the set Fh , and a generic mesh face is denoted F ∈ Fh .
The set Fh is further partitioned into the subset F i

h which is
the collection of mesh interfaces and the subset Fb

h which
is the collection of mesh faces located at the boundary Γ .
We assume that the mesh is compatible with the partition
of the boundary Γ into Γd and Γn , and we further split the
set Fb

h into the disjoint subsets Fb,d
h and Fb,n

h with obvious
notation. For all T ∈ Th , F∂T is the collection of the mesh
faces that are subsets of ∂T .

Let k ≥ 1 be a fixed polynomial degree. In each mesh
cell T ∈ Th , the local HHO unknowns are a pair (vT , v∂T ),

Fig. 1 Face (black) and cell (gray) degrees of freedom in Uk
T for k = 1

and k = 2 in the two-dimensional case (each dot represents a degree of
freedom which is not necessarily a point evaluation)

where the cell unknown vT ∈ P
k
d(T ; R

d) is a vector-valued
d-variable polynomial of degree at most k in the mesh cell
T , and v∂T ∈ P

k
d−1(F∂T ; R

d) = Ś

F∈F∂T
P
k
d−1(F; R

d) is a
piecewise, vector-valued polynomial of degree at most k on
each face F ∈ F∂T . We write more concisely that

(vT , v∂T ) ∈ Uk
T := P

k
d(T ; R

d) × P
k
d−1(F∂T ; R

d). (7)

The degrees of freedom are illustrated in Fig. 1, where a dot
indicates one degree of freedom (and is not necessarily com-
puted as a point evaluation). More generally, the polynomial
degree k of the face unknowns being fixed, HHO methods
can be devised using cell unknowns that are polynomials of
degree l ∈ {k − 1, k, k + 1}, see [11]; these variants are not
further considered herein. We equip the space Uk

T with the
following local discrete strain semi-norm:

|(vT , v∂T )|21,T := ‖∇
X
vT ‖2

L2(T )
+‖γ

1
2

∂T (vT −v∂T )‖2
L2(∂T )

,

(8)

with the piecewise constant function γ∂T such that γ∂T |F =
h−1
F for all F ∈ F∂T where hF is the diameter of F . We

notice that |(vT , v∂T )|1,T = 0 implies that both functions
vT and v∂T are constant and take the same constant value.

3.2 Local gradient reconstruction

A crucial ingredient in the devising of the HHO method is a
local gradient reconstruction in each mesh cell T ∈ Th . This
reconstruction is materialized by an operator G

T
: Uk

T →
R(T ; R

d×d), where R(T ; R
d×d) is some finite-dimensional

linear space typically composed of R
d×d -valued polynomi-

als in T . For all (vT , v∂T ) ∈ Uk
T , the reconstructed gradient

G
T
(vT , v∂T ) ∈ R(T ; R

d×d) is obtained by solving the fol-

lowing local problem: For all τ ∈ R(T ; R
d×d),
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(G
T
(vT , v∂T ), τ )L2(T ) = (∇

X
vT , τ )L2(T )

+ (v∂T − vT , τ nT )L2(∂T ). (9)

Solving this problem entails inverting the mass matrix asso-
ciated with some basis of the polynomial space R(T ; R

d×d).
In the present work, we consider three choices for the recon-
struction space R(T ; R

d×d). The choice R(T ; R
d×d) :=

P
k
d(T ; R

d×d) is considered in the context of the stabilized
HHO method which is further described in Sect. 3.4. The
other two choices are R(T ; R

d×d) = RTN
k
d(T ; R

d×d) (that
is, the RTN space of order k defined in the introduction)
and the larger space R(T ; R

d×d) = P
k+1
d (T ; R

d×d). These
choices are considered in the context of the unstabilizedHHO
method which is further described in Sect. 3.3.

Lemma 1 (Boundedness and stability) The gradient recon-
struction operator defined by (9) enjoys the following prop-
erties: (i) Boundedness: There is α�, uniform w.r.t. h, so that,
for all T ∈ Th,

‖G
T
(vT , v∂T )‖L2(T ) ≤ α�|(vT , v∂T )|1,T , ∀(vT , v∂T ) ∈ Uk

T .

(10)

(ii) Stability: Provided RTN
k
d(T ; R

d×d) ⊆ R(T ; R
d×d),

there is α� > 0, uniform w.r.t. h, so that, for all T ∈ Th,

‖G
T
(vT , v∂T )‖L2(T )

≥ α�|(vT , v∂T )|1,T , ∀(vT , v∂T ) ∈ Uk
T

(11)

Proof The boundedness property (10) follows by applying
the Cauchy–Schwarz inequality to the right-hand side of (9)
and a discrete trace inequality so as to bound ‖τ nT ‖L2(∂T )

by h
− 1

2
T ‖τ‖L2(T ). The proof of the stability property (11)

is inspired from [28]; we sketch it for completeness. Let
(vT , v∂T ) ∈ Uk

T . We need to find a field τ ∈ R(T ; R
d×d)

so that (i) |(vT , v∂T )|21,T ≤ c(G
T
(vT , v∂T ), τ )L2(T ) and

(ii) ‖τ‖L2(T ) ≤ c|(vT , v∂T )|1,T for some constant c uni-

form w.r.t. h. Owing to our assumption RTN
k
d(T ; R

d×d) ⊆
R(T ; R

d×d), we can build τ ∈ RTN
k
d(T ; R

d×d), and we do
so by prescribing its canonical degrees of freedom in T as
follows:

(τ ,φ)L2(T ) = (∇
X
vT , φ)L2(T ), ∀φ ∈ P

k−1
d (T ; R

d×d ),

(τ nT ,ϕ)L2(∂T ) = (γ∂T (v∂T − vT ), ϕ)L2(∂T ), ∀ϕ ∈ P
k
d−1(F∂T ; R

d ).

With this choice, the above property (i) holds true since
(G

T
(vT , v∂T ), τ )L2(T ) = |(vT , v∂T )|21,T , whereas (ii) can

be shown by using the classical stability of RTN functions in
terms of their canonical degrees of freedom. ��

Remark 2 (General meshes) The above stability proof exp-
loits the properties of the RTN functions on simplicial
meshes. If the meshes contain hanging nodes or cells with
more general shapes, one possibility considered in the recent
work [16] is to reconstruct the gradient using piecewise RTN
functions on a simplicial submesh of the mesh cell T ∈ Th .
Another construction has been recently devised in [25] for
dG methods using a high-order lifting of the jumps on a sim-
plicial submesh.

3.3 The unstabilized HHOmethod

Let us set P
k
d(Th; R

d) := Ś

T∈Th P
k
d(T ; R

d) and

P
k
d−1(Fh; R

d) := Ś

F∈Fh
P
k
d−1(F; R

d). The global space
of discrete HHO unknowns is defined as

Uk
h := P

k
d(Th; R

d) × P
k
d−1(Fh; R

d). (12)

For an element vh ∈ Uk
h , we use the notation vh =

(vTh , vFh
). For any mesh cell T ∈ Th , we denote by

(vT , v∂T ) ∈ Uk
T the local components of vh attached to the

mesh cell T and the faces composing its boundary, and for
any mesh face F ∈ Fh , we denote by vF the component
attached to the face F . The Dirichlet boundary condition on
the displacement field can be enforced explicitly on the dis-
crete unknowns attached to the boundary faces in Fb,d

h . We
set

Uk
h,d :=

{
(vTh , vFh

) ∈ Uk
h | vF = Πk

F (ud), ∀F ∈ Fb,d
h

}
,

(13a)

Uk
h,0 :=

{
(vTh , vFh

) ∈ Uk
h | vF = 0, ∀F ∈ Fb,d

h

}
, (13b)

where Πk
F denotes the L2-orthogonal projector onto

P
k
d−1(F; R

d).
The discrete counterpart of the energy functionalE defined

by (2) is the discrete energy functional Eu
h : Uk

h → R defined
by

Eu
h (vTh

, vFh
) =

∑
T∈Th

{∫
T

Ψ (F
T
(vT , v∂T )) dT −

∫
T
f ·vT dT

}

−
∑

F∈Fb,n
h

∫
F
t·vF dF, (14)

for all (vTh , vFh
) ∈ Uk

h,d , with the local deformation

gradient operator F
T

: Uk
T → R(T ; R

d×d) such that
F
T
(vT , v∂T ) := I + G

T
(vT , v∂T ) where the local gradi-

ent reconstruction space is R(T ; R
d×d) = RTN

k
d(T ; R

d×d)

or R(T ; R
d×d) = P

k+1
d (T ; R

d×d).
The discrete problem consists in seeking the stationary

points of the discrete energy functional Eu
h . This leads to the
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following discrete equations: find (uTh , uFh
) ∈ Uk

h,d such
that

∑
T∈Th

(P(F
T
(uT , u∂T )), G

T
(δvT , δv∂T ))L2(T ) (15)

=
∑
T∈Th

( f , δvT )L2(T ) +
∑

F∈Fb,n
h

(t, δvF )L2(F),

for any generic virtual displacement (δvTh , δvFh
) ∈ Uk

h,0.
The discrete problem (15) expresses the principle of virtual
work at the global level. As is often the case with discrete for-
mulations using face-based discrete unknowns, it is possible
to devise a local principle of virtual work in terms of face-
based discrete tractions that comply with the law of action
and reaction. This has been shown in [11] for HHO methods
applied to the diffusion equation, and the argument extends
immediately to the present context. Let T ∈ Th be a mesh
cell and let F ∈ F∂T be one of its faces. Let nT F denote the
restriction to F of the unit outward normal vector nT . Let us
define the discrete traction

T T ,F = Πk
F (ΠR

T
(P(F

T
(uT , u∂T )))·nT F ), (16)

where ΠR
T

denotes the L2-orthogonal projector onto

R(T ; R
d×d). (Note that the projector Πk

F is not needed if

R(T ; R
d×d) = RTN

k
d(T ; R

d×d) since the normal compo-

nent on ∂T of functions in RTN
k
d(T ; R

d×d) is in
P
k
d−1(∂T ; R

d).)

Lemma 3 (Equilibrated tractions) The following local prin-
ciple of virtual work holds true for all T ∈ Th: For all
δvT ∈ P

k
d(T ; R

d),

(P(F
T
(uT , u∂T )),∇

X
δvT )L2(T ) −

∑
F∈F∂T

(T T ,F , δvT )L2(F)

= ( f , δvT )L2(T ), (17)

where the discrete tractions T T ,F ∈ P
k
d−1(F; R

d) defined
by (16) satisfy the following law of action and reaction for
all F ∈ F i

h ∪ Fb,n
h :

T T−,F + T T+,F = 0, if F ∈ F i
h with ∂T− ∩ ∂T+ = F,

(18a)

T T ,F = Πk
F (t), if F ∈ Fb,n

h with ∂T ∩ Γn = F .

(18b)

Proof We follow the ideas in [11]. The local principle of
virtual work (17) follows by considering the virtual displace-
ment ((δvT δT ,T ′)T ′∈Th , (0)F∈Fh ) ∈ Uk

h,0 in (15), with the
Kronecker delta such that δT ,T ′ = 1 if T = T ′ and δT ,T ′ = 0
otherwise, and observing that, owing to (9), we have

( f , δvT )L2(T )

= (P(F
T
(uT , u∂T )), G

T
(δvT , 0))L2(T )

= (ΠR
T
P(F

T
(uT , u∂T )), G

T
(δvT , 0))L2(T )

= (ΠR
T
(P(F

T
(uT , u∂T ))),∇

X
δvT )L2(T )

−
∑

F∈F∂T

(ΠR
T
(P(F

T
(uT , u∂T ))) nT F , δvT )L2(F)

= (P(F
T
(uT , u∂T )),∇

X
δvT )L2(T )

−
∑

F∈F∂T

(T T ,F , δvT )L2(F).

Similarly, the balance property (18) follows by consider-
ing, for all F ∈ F i

h ∪ Fb,n
h , the virtual displacement

((0)T∈Th , (δvFδF,F ′)F ′∈Fh ) ∈ Uk
h,0 in (15) (with obvious

notation for the face-based Kronecker delta), and observing
that both δvF and T T±,F are in P

k
d−1(F; R

d). ��
Let us now discuss the choice of the gradient recon-

struction space where one can set either R(T ; R
d×d) =

RTN
k
d(T ; R

d×d) or R(T ; R
d×d) = P

k+1
d (T ; R

d×d). The

key property with R(T ; R
d×d) = RTN

k
d(T ; R

d×d) is that

the normal component on ∂T of functions inRTN
k
d(T ; R

d×d)

is in the space P
k
d−1(∂T ; R

d) used for the face HHO
unknowns (the normal components of such functions actu-
ally span P

k
d−1(∂T ; R

d)). Proceeding as in [17] then leads to
the following important commuting property:

G
T
(IT ,∂T (v)) = ΠR

T
(∇

X
v), ∀v ∈ H1(T ; R

d), (19)

where the reduction operator IT ,∂T : H1(T ; R
d) → Uk

T is
defined so that IT ,∂T (v) = (Πk

T (v),Πk
∂T (v)), where Πk

T is
the L2-orthogonal projector onto P

k
d(T ; R

d) and Πk
∂T is the

L2-orthogonal projector onto P
k
d−1(F∂T ; R

d). Proceeding
as in [17, Thm. 8] and using the approximation proper-
ties of the RTN finite elements, one can show that for the
linear elasticity problem and smooth solutions, the energy
error measured as ‖∇

X
u − G

h
(uTh , uFh

)‖L2(Th) converges

as hk+1|u|Hk+2(Ω0)
(the subscript L2(Th) means that the

Hilbertian sum of L2(T ; R
d×d)-norms over the mesh cells

is considered). Concerning implementation, we observe that
the reconstruction operator needs to select basis functions
for the RTN space; however, the canonical basis functions
are not needed, and one can use simple monomial bases.

Considering instead the choice R(T ; R
d×d) =

P
k+1
d (T ; R

d×d) leads to a larger space for the local gradient
reconstruction (for d = 3, the local space is of dimension 45
(k = 1) and 108 (k = 2) for RTN functions and of dimension
90 (k = 1) and 180 (k = 2) for R

d×d -valued polynomials of
order (k + 1)). One benefit of considering a larger space is,
according to our numerical experiments, an increased robust-
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ness of the method to handle strongly nonlinear cases. One
disadvantage is that the above property on the normal compo-
nent of functions in R(T ; R

d×d) no longer holds. Therefore,
one no longer has (19); however, one can infer from (9) the
weaker property

G
T
( ĨT ,∂T (v)) = ∇

X
(Πk

T (v)), ∀v ∈ H1(T ; R
d), (20)

where the reduction operator ĨT ,∂T : H1(T ; R
d) → Uk

T is

defined so that ĨT ,∂T (v) = (Πk
T (v),Πk

T (v)|∂T ). Proceeding
as in [17, Thm. 8], one can show that for the linear elastic-
ity problem and smooth solutions, the energy error ‖∇

X
u−

G
h
(uTh , uFh

)‖L2(Th) converges as h
k |u|Hk+1(Ω0)

. This con-

vergence rate will be confirmed by the experiments reported
in Sect. 4.1. Finally, regardless of the choice of R(T ; R

d×d),

testing (9) with a function τ = q I ∈ P
k
d(T ; R

d×d) with q

arbitrary in P
k
d(T ; R), one can show that

Πk
T (tr(G

T
(IT ,∂T (v))) = Πk

T (∇·v), ∀v ∈ H1(T ; R
d).

(21)

The presence of the projector Πk
T on the left-hand side indi-

cates that tr(G
T
(IT ,∂T (v)))may be affected by a high-order

perturbation hampering the argument of [17, Prop. 3] to prove
robustness in the quasi-incompressible limit for linear elas-
ticity. Nevertheless, we observe absence of locking in the
numerical experiments performed in Sects. 4.2 and 5.

3.4 The stabilized HHOmethod

The discrete unknowns in the stabilized HHO method
are exactly the same as those in the unstabilized HHO
method. The only difference is in the form of the dis-
crete elastic energy. In the stabilized HHO method, the
gradient is reconstructed locally in the polynomial space
R(T ; R

d×d) = P
k
d(T ; R

d×d) for all T ∈ Th . Since the
norm ‖G

T
(vT , v∂T )‖L2(T ) does not control the semi-norm

|(vT , v∂T )|T for all (vT , v∂T ) ∈ Uk
T (as can be seen from

a simple counting argument based on the dimension of the
involved spaces), we need to augment the discrete elastic
energy by a stabilization semi-norm.This semi-norm is based
on the usual stabilization operator for HHO methods Sk∂T :
Uk

T → P
k
d−1(F∂T ; R

d) such that, for all (vT , v∂T ) ∈ Uk
T ,

Sk∂T (vT , v∂T ) = Πk
∂T

(
v∂T − Dk+1

T (vT , v∂T )|∂T
− (vT − Πk

T (Dk+1
T (vT , v∂T )))|∂T

)
, (22)

with the local displacement reconstruction operator Dk+1
T :

Uk
T → P

k+1
d (T ; R

d) such that, for all (vT , v∂T ) ∈ Uk
T ,

Dk+1
T (vT , v∂T ) ∈ P

k+1
d (T ; R

d) is obtained by solving the

followingNeumann problem in T : For allw ∈ P
k+1
d (T ; R

d),

(∇
X
Dk+1

T (vT , v∂T ),∇
X
w)L2(T )

= (∇
X
vT ,∇

X
w)L2(T ) + (v∂T − vT ,∇

X
w nT )L2(∂T ),

(23)

and additionally enforcing that
∫
T Dk+1

T (vT , v∂T ) dT =∫
vT dT . Comparing with (9), one readily sees that

∇
X
Dk+1

T (vT , v∂T ) is the L2-orthogonal projection of

G
T
(vT , v∂T ) onto the subspace ∇

X
P
k+1
d (T ; R

d) �

P
k
d(T ; R

d×d) = R(T ; R
d×d). Following [17, Lemma 4],

it is straightforward to establish the following stability and
boundedness properties (the proof is omitted for brevity).

Lemma 4 (Boundedness and stability) Let the gradient
reconstruction operator be definedby (9)with R(T ; R

d×d)=
P
k
d(T ; R

d×d). Let the stabilization operator be defined
by (22). Then, there exist real numbers 0 < α� < α�, uniform
w.r.t. h, so that

α�|(vT , v∂T )|1,T

≤
(

‖G
T
(vT , v∂T )‖2

L2(T )
+‖γ

1
2

∂T S
k
∂T (vT , v∂T )‖2

L2(∂T )

) 1
2

≤ α�|(vT , v∂T ), |1,T (24)

for all T ∈ Th and all (vT , v∂T ) ∈ Uk
T , with γ∂T defined

below (8).

Remark 5 (HDG-type stabilization) In general, HDG meth-

ods use the stabilization operator S̃
k
∂T (vT , v∂T ) = v∂T − vT

in the equal-order case, or S̃
k
∂T (vT , v∂T ) = Πk

∂T (v∂T − vT )

if the cell unknowns are taken to be polynomials of order
(k + 1) (see [31]). The definition in Eq. (22), introduced
in [17], enjoys, even in the equal-order case, the high-

order approximation property ‖γ
1
2

∂T S
k
∂T (IT ,∂T (v))‖L2(∂T ) ≤

chk+1
T |v|Hk+2(T ) with the reduction operator IT ,∂T : H1(T ;

R
d) → Uk

T defined below (19) and c uniform w.r.t. h.

In the stabilized HHO method, the discrete energy func-
tional E s

h : Uk
h → R is defined as

E s
h(vTh

, vFh
) =

∑
T∈Th

{∫
T

Ψ (F
T
(vT , v∂T )) −

∫
T

f ·vT dT

}

−
∑

F∈Fb,n
h

∫
F
t·vF dF

+
∑
T∈Th

β(γ∂T Sk∂T (vT , v∂T ), Sk∂T (vT , v∂T ))L2(∂T ),

(25)
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with a user-dependent weight of the form β = β0μwith typi-
callyβ0 ≥ 1 (in the original HHOmethod for linear elasticity
[17], the choice β0 = 2 is considered). The discrete prob-
lem consists in seeking the stationary points of the discrete
energy functional: find (uTh , uFh

) ∈ Uk
h,d such that

∑
T∈Th

(P(F
T
(uT , u∂T )), G

T
(δvT , δv∂T ))L2(T )

+
∑
T∈Th

β(γ∂T Sk∂T (uT , u∂T ), Sk∂T (δvT , δv∂T ))L2(∂T )

=
∑
T∈Th

( f , δvT )L2(T ) +
∑

F∈Fb,n
h

(t, δvF )L2(F), (26)

for all (δvTh , δvFh
) ∈ Uk

h,0. As for the unstabilized HHO
method, the discrete problem (26) expresses the principle
of virtual work at the global level, and following [11], it
is possible to devise a local principle of virtual work in
terms of face-based discrete tractions that comply with the
law of action and reaction. Let T ∈ Th be a mesh cell
and let F ∈ F∂T be one of its faces. Let nT F denote the
restriction to F of the unit outward normal vector nT . Let

Ŝ
k
∂T : P

k
d−1(∂T ; R

d) → P
k
d−1(∂T ; R

d) be defined such that

Ŝ
k
∂T (θ) = Πk

∂T

(
θ − (I − Πk

T )Dk+1
T (0, θ)

)
. (27)

Comparing (22) with (27), we observe that Sk∂T (vT , v∂T ) =
Ŝ
k
∂T (v∂T − vT ) for all (vT , v∂T ) ∈ Uk

T . Let Ŝ
k∗
∂T :

P
k
d−1(∂T ; R

d) → P
k
d−1(∂T ; R

d) be the adjoint operator
of Sk∂T with respect to the L2(∂T ; R

d)-inner product. We
observe that the stabilization-related term in (26) can be
rewritten as

(γ∂T Sk∂T (uT , u∂T ), Sk∂T (δvT , δv∂T ))L2(∂T ) = (28)

(Ŝ
k∗
∂T (γ∂T Ŝ

k
∂T (u∂T − uT )), δv∂T − δvT )L2(∂T ).

Finally, let us define the discrete traction

T T ,F = Πk
T

(
P(F

T
(uT , u∂T ))

)
·nT F

+β Ŝ
k∗
∂T (γ∂T Ŝ

k
∂T (u∂T − uT )). (29)

Lemma 6 (Equilibrated tractions) The following local prin-
ciple of virtual work holds true for all T ∈ Th: For all
δvT ∈ P

k
d(T ; R

d),

(P(F
T
(uT , u∂T )),∇

X
δvT )L2(T )−

∑
F∈F∂T

(T T ,F , δvT )L2(F)

= ( f , δvT )L2(T ), (30)

where the discrete tractions T T ,F ∈ P
k
d−1(F; R

d) defined
by (29) satisfy the following law of action and reaction for
all F ∈ F i

h ∪ Fb,n
h :

T T−,F + T T+,F = 0, if F ∈ F i
h with ∂T− ∩ ∂T+ = F,

(31a)

T T ,F = Πk
F (t), if F ∈ Fb,n

h with ∂T ∩ Γn = F .

(31b)

Proof Proceed as in the proof of Lemma 3; see also [11]. ��
Let us briefly comment on the commuting properties of

the reconstructed gradient in P
k
d(T ; R

d×d). Proceeding as
above, one obtains

G
T
(IT ,∂T (v)) = Πk

T
(∇

X
v), ∀v ∈ H1(T ; R

d), (32)

where the reduction operator IT ,∂T : H1(T ; R
d) → Uk

T
is defined below (19). Proceeding as in [17, Thm. 8], one
can show that for the linear elasticity problem and smooth
solutions, the energy error ‖∇

X
u − G

h
(uTh , uFh

)‖L2(Th)
converges as hk+1|u|Hk+2(Ω0)

. This convergence rate will
be confirmed by the experiments reported in Sect. 4.1.
Moreover, taking the trace in (32), we infer that (compare
with (21))

tr(G
T
(IT ,∂T (v)) = Πk

T (∇·v), ∀v ∈ H1(T ; R
d), (33)

which is the key commuting property used in [17] to prove
robustness for quasi-incompressible linear elasticity. This
absence of locking is confirmed in the numerical experi-
ments performed in Sects. 4.2 and 5 in the nonlinear regime.
Finally, we refer the reader to [6] for further analytical results
on symmetric-valued gradients reconstructed in the smaller
space P

k
d(T ; R

d×d
sym ).

Remark 7 (Choice of β0) For the HHO method applied to
linear elasticity, a natural choice for the stabilization param-
eter is β0 = 2 [17]. To our knowledge, there is no general
theory on the choice of β0 in the case of finite deforma-
tions of hyperelastic materials. Following ideas developed in
[39,40] for dG and in [3] for VEM, one can consider to take
(possibly in an adaptive fashion) the largest eigenvalue (in
absolute value) of the elastic modulus A. This choice intro-
duces additional nonlinearities to be handled by Newton’s
method, and may require some relaxation. Another possibil-
ity discussed in [8] for VEMmethods is based on the trace of
the Hessian of the isochoric part of the strain-energy density
Ψ . Such an approach bears similarities with the classic selec-
tive integration for FEM, and for the Neohookean materials
considered herein, this choice implies to takeβ0 = 1. Finally,
let us mention that [29, Section 4] presents an example where
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spurious solutions can appear if theHDGstabilizationparam-
eter is not large enough; however, too large values of the
parameter can also deteriorate the conditioning number of
the stiffness matrix and can cause numerical instabilities in
Newton’s method.

3.5 Nonlinear solver and static condensation

Both nonlinear problems (15) and (26) are solved usingNew-
ton’s method. Let n ≥ 0 be the index of the Newton’s
step. Given an initial discrete displacement (uTh , uFh

)0 ∈
Uk

h,d , one computes at each Newton’s step the incremen-

tal displacement (δuTh , δuFh
)n ∈ Uk

h,0 and updates the

discrete displacement as (uTh , uFh
)n+1 = (uTh , uFh

)n +
(δuTh , δuFh

)n . The linear system of equations to be solved
is

∑
T∈Th

(A(F
T
(uT , u∂T )n) : G

T
(δuT , δu∂T )n, G

T
(δvT , δv∂T ))L2(T )

+
∑
T∈Th

β(γ∂T Sk∂T (δuT , δu∂T )n, Sk∂T (δvT , δv∂T ))L2(∂T )

= −Rh((uTh
, uFh

)n, (δvTh
, δvFh

)), (34)

for all (δvT , δv∂T ) ∈ Uk
h,0, with the residual term

Rh((uTh , uFh
)n, (δvTh , δvFh

))

=
∑
T∈Th

(P(F
T
(uT , u∂T )n), G

T
(δvT , δv∂T ))L2(T )

+
∑
T∈Th

β(γ∂T Sk∂T (uT , u∂T )n, Sk∂T (δvT , δv∂T ))L2(∂T )

−
∑
T∈Th

( f , δvT )L2(T ) −
∑

F∈Fb,n
h

(t, δvF )L2(F), (35)

where β = 0 in the unstabilized case and β = β0μ in the
stabilized case, the gradient being reconstructed in the cor-
responding polynomial space. It can be seen from (34) that
the assembling of the stiffness matrix on the left-hand side
is local (and thus fully parallelizable).

As is classical with HHO methods [17], and more gener-
ally with hybrid approximation methods, the cell unknowns
δunTh in (34) canbe eliminated locally using a static condensa-
tion (or Schur complement) technique. Indeed, testing (34)
against the function ((δvT δT ,T ′)T ′∈Th , (0)F∈Fh ) with Kro-
necker delta δT ,T ′ and δvT arbitrary in P

k
d(T ; R

d), one can
express, for all T ∈ Th , the cell unknown δunT in terms of the
local face unknowns collected in δun∂T . As a result, the static
condensation technique allows one to reduce (34) to a linear
system in terms of the face unknowns only. This reduced sys-
tem is of size NFh × dim(Pk

d−1(T ; R
d)) where NFh denotes

the number of mesh faces, and its stencil is such that each

mesh face is connected to its neighbouring faces that share a
mesh cell with the face in question.

The implementation of theHHOmethods is realized using
the open-source libraryDiSk++ [10]which provides generic
programming tools for the implementation of HHOmethods
and is available at the address https://github.com/datafl4sh/
diskpp. The data structure requires access to faces and cells
as in standard dG or HDG codes. The gradient and stabiliza-
tion operators are built locally at the cell level using scaled
translated monomials to define the basis functions (see [10,
Section 3.2.1] for more details). Finally, the Dirichlet bound-
ary conditions are enforced strongly, and the linear systems
are solved using the direct solver PardisoLU from the MKL
library (alternatively, iterative solvers are also applicable).
Dunavant quadratures [23] are used with order 2k for stabi-
lized HHOmethods, and with order (2k+2) for unstabilized
HHO methods.

4 Test cases with known solution

The goal of this section is to evaluate the stabilized
and unstabilized HHO methods on some test cases with
known solution. This allows us to compute errors on the
displacement and the gradient as ‖u − uTh‖L2(Ω0)

and
‖∇

X
u − G

h
(uTh , uFh

)‖L2(Th) where u is the exact solu-

tion. We assess the convergence rates to smooth solu-
tions and we study the behavior of the HHO methods in
the quasi-incompressible regime. We consider two- and
three-dimensional settings. We use the abridged notation
uHHO(k) for the unstabilized method with R(T ; R

d×d) =
P
k+1
d (T ; R

d×d) and sHHO(k) with R(T ; R
d×d) =

P
k
d(T ; R

d×d) for the stabilizedmethod;whenever the context
is unambiguous, we drop the polynomial degree k. All the
considered meshes are matching, simplicial affine meshes.

4.1 Three-dimensional manufactured solution

We first report convergence rates for a nonlinear problem
with a manufactured solution in three space dimensions. We
denote by X = (X ,Y , Z) the Cartesian coordinates in R

3.
We set Γ = Γd and the value of ud is determined from the
exact solution on Γd . Concerning the constitutive relation,
we take μ = 1, λ = 10 (which corresponds to a Poisson
ratio of ν � 0.455), and Θ(J ) = ln J . We consider the unit
cubeΩ0 = (0, 1)×(0, 1)×(0, 1) and the exact displacement
solution is

uX =
(
1

λ
+ α

)
X + ϑ(Y ), uY = −

(
1

λ
+ α + γ + αγ

1 + α + γ + αγ

)
Y ,

(36a)

uZ =
(
1

λ
+ γ

)
Z + g(X) + h(Y ), (36b)
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Table 1 3D manufactured
solution: errors versus h for
k = 1

Mesh size h sHHO(1) uHHO(1)

Displacement Gradient Displacement Gradient

Error Order Error Order Error Order Error Order

4.75e−1 1.14e−3 – 9.40e−3 – 1.85e−3 – 6.64e−2 –

3.21e−1 4.27e−4 2.49 4.66e−3 1.78 7.76e−4 2.22 4.00e−2 1.25

2.19e−1 1.22e−4 3.28 2.24e−3 1.91 3.49e−4 2.10 2.95e−2 0.84

1.76e−1 6.36e−5 2.97 1.51e−3 1.79 2.19e−4 2.12 2.36e−2 1.01

1.39e−1 3.10e−5 3.05 9.16e−4 2.14 1.36e−4 2.01 1.88e−2 0.96

1.11e−1 1.56e−5 3.00 5.92e−4 1.91 8.79e−5 1.94 1.50e−2 1.00

Table 2 3D manufactured
solution: errors versus h for
k = 2

Mesh size h sHHO(2) uHHO(2)

Displacement Gradient Displacement Gradient

Error Order Error Order Error Order Error Order

4.75e−1 1.04e−4 – 9.89e−4 – 1.96e−4 – 7.68e−3 –

3.21e−1 3.01e−5 3.16 3.18e−4 2.71 6.10e−5 2.96 3.51e−3 1.96

2.19e−1 4.54e−6 4.04 9.57e−5 3.01 1.68e−5 3.17 1.60e−3 2.02

1.76e−1 1.79e−6 4.23 4.78e−5 3.16 9.72e−6 2.49 1.10e−3 1.68

1.39e−1 7.23e−7 3.85 2.35e−5 3.01 4.30e−6 3.36 6.53e−4 2.24

1.11e−1 2.93e−7 3.96 1.21e−5 2.91 2.23e−6 2.88 4.20e−4 1.94

Table 3 3D manufactured
solution: errors versus h for
k = 3

Mesh size h sHHO(3) uHHO(3)

Displacement Gradient Displacement Gradient

Error Order Error Order Error Order Error Order

4.75e−1 7.39e−6 – 6.42e−5 – 1.59e−5 – 7.79e−4 –

3.21e−1 9.88e−7 5.13 1.67e−5 3.41 2.80e−6 4.42 2.16e−4 3.26

2.19e−1 1.58e−7 4.79 2.98e−6 4.53 5.23e−7 4.40 6.55e−5 3.14

1.76e−1 5.54e−8 4.77 1.37e−6 3.52 2.07e−7 4.21 3.23e−5 3.19

1.39e−1 1.60e−8 5.29 4.86e−7 4.43 8.08e−8 4.01 1.61e−5 2.95

1.11e−1 5.01e−9 5.17 1.96E−7 4.03 3.25e−8 4.05 8.25E−6 2.97

where α and γ are positive real numbers, and ϑ : R → R,
g : R → R, h : R → R are smooth functions. Choosing
ϑ(Y ) = α sin(πY ), g(X) = γ sin(πX), and h(Y ) = 0, the
corresponding body forces are given by

fX = μαπ2 sin(πX), fY = 0, fZ = μγπ2 sin(πY ).

(37)

We set α = γ = 0.1. The stabilization parameter is taken as
β0 = 1 for sHHO. The displacement and gradient errors are
reported as a function of the average mesh size h for k = 1
in Table 1, for k = 2 in Table 2 and for k = 3 in Table 3. For
all k ∈ {1, 2, 3}, the displacement and the gradient converge,
respectively, with order (k + 2) and (k + 1) for sHHO and
with order (k+1) and k for uHHO. These convergence rates
are consistent with the discussion at the end of Sects. 3.3

and 3.4 on the convergence rates to be expected for linear
elasticity and smooth solutions.

4.2 Quasi-incompressible annulus

Our goal is now to evaluate the sHHO and uHHO methods
in the quasi-incompressible case for finite deformations. We
consider a test case from [29, Section 5.2] that consists of an
annulus centered at the origin with inner radius R0 = 0.5 and
outer radius R1 = 1. The annulus is deformed by imposing a
displacement ud(X) = X(r0 − R0)/R0 on Γd = SR0 where
r0 is a real positive parameter, and t = 0 on Γn = SR1 (SR
is the sphere of radius R centered at the origin). An accurate
reference solution can be computed by solving an ordinary
differential equation along the radial coordinate, as detailed
in [29]. We set r0 = 1.5 andμ = 0.333 (different values of λ
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(a) (b)

Fig. 2 Quasi-incompressible annulus with λ = 1666.44: sHHO(1) solution on a mesh composed of 10161 triangles. a Reference and deformed
configuration, b discrete Jacobian on the reference configuration. (Color figure online)

Table 4 Quasi-incompressible
annulus: errors versus h for
k = 1 and λ = 1666.44

Mesh size h sHHO(1) uHHO(1)

Displacement Gradient Displacement Gradient

Error Order Error Order Error Order Error Order

1.15e−1 5.98e−2 – 3.22e−1 – 4.00e−2 – 1.23e−1 –

5.77e−2 1.81e−2 1.72 8.23e−1 1.97 1.32e−2 1.62 1.01e−1 0.28

3.45e−2 6.30e−3 2.05 3.15e−2 1.86 3.80e−3 2.42 6.60e−2 0.83

2.52e−2 3.42e−3 1.95 1.83e−2 1.73 2.03e−3 2.05 5.11e−2 0.94

1.64e−2 1.49e−3 1.93 7.98e−3 1.93 9.76e−4 1.72 3.09e−2 1.08

are considered). Since we use meshes with planar faces, we
only consider k = 1.

The reference and deformed configuration for sHHO(1)
are shown in Fig. 2a for λ = 1666.44 (which corresponds to
a Poisson ratio of ν � 0.4999). The stabilization parameter
has to be of the order of β0 = 100 to achieve convergence.
In Fig. 2b, we display the discrete Jacobian Jh on the ref-
erence configuration (computed using sHHO(1)), and we
observe that this quantity takes values very close to 1 every-
where in the annulus (as expected). Convergence rates for
the displacement and the gradient are reported in Table 4 for
λ = 1666.44 (similar convergence rates, not reported herein,
are observed for lower values of λ). We observe that for
sHHO, the displacement and the gradient convergewith order
2, whereas for uHHO, the displacement converges with order
2 and the gradient with order 1. More importantly, the errors
are uniform with respect to λ as shown Fig. 3. This result
confirms numerically that in this case, sHHO and uHHO
remain locking-free in quasi-incompressible finite deforma-
tions. Incidentally, we notice that sHHO produces slightly

lower errors than uHHO which is consistent with the higher-
order convergence for sHHO. Moreover, the displacement
on the boundary is imposed by uniform load increments. For
λ = 1666.44, sHHO requires 30 loading steps with a total
of 125 Newton’s iterations, whereas uHHO requires 33 load-
ing steps with a total of 137 Newton’s iterations, i.e., sHHO
is about 10% more computationally-effective than uHHO in
this example. Finally, the reference values of ur , Prr and
Pθθ at the barycenter of each cell are plotted in Fig. 4 for
λ = 1666.44, showing the pointwise convergence of the
various discrete solutions. We observe that for both HHO
methods, the error on Prr is slightly more important near the
inner boundary of the annulus (where the stress is maximal).

4.3 Efficiency

In this section,we compare the performance of sHHO, uHHO
and that of a continuous Galerkin (cG) method in terms
of efficiency when solving the three-dimensional manufac-
tured solution from Sect. 4.1. The number of unknowns is
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Fig. 3 Quasi-incompressible annulus: errors versus λ for h = 2.52e−2. a Displacement error, b gradient error

the number of degrees of freedom attached to faces after
static condensation for sHHO and uHHO and the number of
degrees of freedom attached to nodes for cG. The cGmethod
is based on a primal formulation realizedwithin the industrial
open-source FEM software code_aster [24] interfaced
with the open-source mfront code generator [27] to gener-
ate Neohookean laws.

We present the displacement error versus the number of
degrees of freedom in Fig. 5a and versus the number of non-
zero entries in the stiffness matrix in Fig. 5b. Owing to the
static condensation, we observe that, for the same approxi-
mation order and the same number of degrees of freedom
or non-zero entries in the stiffness matrix, the displace-
ment error is smaller for sHHO than for cG and comparable
between uHHO and cG.

Let us now compare the time spent to solve the non-linear
problemwhen using sHHO(k) and uHHO(k) with k ∈ {1, 2}.
For the present test case, the nonlinear problem is solved,
for both methods, in four Newton’s iterations. The codes
are instrumented to measure the assembly time τass to build
the local contributions to the global stiffness matrix and the
solver time τsol which corresponds to solving the global lin-
ear system (τass and τsol are computed after summation over
all the Newton’s steps). In DiSk++, the linear algebra opera-
tions are realized using the Eigen library and the global linear
system (involving face unknowns only) is solvedwith Pardis-
oLU. The tests are run sequentially on a 3.4GHz Intel Xeon
processor with 16 Gb of RAM. In Fig. 6a we plot the ratio
τass/τsol versus the number of mesh faces, card (Fh). We can
see that on the finer meshes, the cost of local computations
becomes negligible compared to that of the linear solver; we
notice that the situation is a bit less favorable than for the
results on linear elasticity reported in [17] since the space to
reconstruct the gradient is now larger. In Fig. 6b we provide

a more detailed assessment of the cost on a fixed mesh with
31,621 faces. More precisely, the time τass spent in assem-
bling the problem is now divided into two parts, one part,
denoted Gradrec, to reconstruct the gradient and build the
global system to solve (the part related to static condensation
is not included and takes a marginal fraction of the cost), and
another part, denoted Stabilization, to build the stabi-
lization operator for the sHHO method [including the time
to build the displacement reconstruction, see (23)]. In addi-
tion, the time τsol spent in solving the system is now denoted
Solver. We observe that the difference between sHHO(k)
and uHHO(k) is not really important; in fact, the time that
uHHO(k) spends in reconstructing the gradient in a larger
space is more or less equivalent to the time that sHHO(k)
spends in building the stabilization operator. Moreover, if
memory is not a limiting factor, the gradient and the stabi-
lization can be computed once and for all, and re-used at each
Newton’s step.

Another interesting observation is that the condition num-
ber of the global stiffness matrix for both methods is
improved by static condensation, as shown in Fig. 7a where
the ratio of the condition number without and with static con-
densation is displayed as a function of the number of face
degrees of freedom. This positive effect is even increased as
the mesh is refined, and it is also more pronounced when the
polynomial degree k is higher. Finally, we assess the influ-
ence of the stabilization parameterβ on the condition number
of the stiffness matrix for sHHO(k) k ∈ {1, 2}. Figure 7b
reports the condition number for β ∈ {103, 106} normalized
by the condition number for β = 1, as a function of the total
number of face degrees of freedom.We observe that the con-
dition number is amplified by a factor of 102 when β goes
from 1 to 103 and by a factor 103 when β goes from 103 to
106, independently of the polynomial degree k.
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Fig. 4 Quasi-incompressible annulus with λ = 1666.44: comparison
of the reference and computed values of ur , Prr and Pθθ at the barycen-
ter of the mesh cells (located in the upper quadrant) for two different
meshes obtained with the sHHO and uHHO methods. a sHHO(1): ur

versus r ,b uHHO(1): ur versus r , c sHHO(1): Prr versus r ,d uHHO(1):
Prr versus r , e sHHO(1): Pθθ versus r , f uHHO(1): Pθθ versus r . (Color
figure online)

5 Application-driven three-dimensional
examples

The goal of this section is to show that sHHO and uHHO
are capable of dealing with challenging three-dimensional
examples with finite deformations. For the first test case,
we compare our results to those obtained with a cG method
implemented in the industrial software code_aster. For

the second and third test cases, we compare our results with
the HDG solutions reported in [29]. In all cases, we choose
Θ(J ) = ln J .

5.1 Quasi-incompressible indented block

In this example, we model an indentation problem as a pro-
totype for a contact problem. We consider the unit cube
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Fig. 5 3D manufactured solution: comparison of the displacement error obtained with sHHO, uHHO, and cG. a Displacement error versus number
of degrees of freedom, b displacement error versus number of non-zero entries in the stiffness matrix. (Color figure online)
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Fig. 6 Comparison of CPU times for the sHHO and uHHO methods. a τass/τsol versus card (Fh), b time for the different operations normalized by
the total time for sHHO(1) for a mesh with 31,621 faces. (Color figure online)
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Fig. 7 Condition number of the global stiffness matrix. a Ratio of the condition number without and with static condensation versus card (Fh),
b condition number normalized by that for sHHO(1) or sHHO(2) with β = 1 versus card (Fh). (Color figure online)
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Fig. 8 Indented block: compressible (top) and quasi-incompressible
regime (bottom) with Euclidean displacement norm shown in color on a
mesh composed of 5526 tetrahedra. a Euclidean displacement norm for
cG(1) in the compressible regime, b Euclidean displacement norm for

sHHO(1) in the compressible regime, c Euclidean displacement norm
for cG(1) in the quasi-incompressible regime, d Euclidean displace-
ment norm for sHHO(1) in the quasi-incompressible regime. (Color
figure online)

(− 1, 1)×(− 1, 1)×(− 1, 1). Tomodel the rigid indentor, the
bottom surface is clamped, a vertical displacement of −0.8
is imposed on the subset (− 0.5, 0.5) × (− 0.5, 0.5) × {1}
of the top surface, and the other parts of the boundary are
traction-free. We set μ = 1 and λ = 4999 in the quasi-
incompressible regime (which corresponds to a Poisson ratio
of ν � 0.4999). The stabilization parameter needs to be
taken of the order of β0 = 100 for sHHO. Figure 8c–d
present the Euclidean displacement norm on the deformed
configuration obtainedwith cG(1) and sHHO(1) respectively
(the uHHO(1) solution is very close to the sHHO(1) solu-
tion). We observe the locking phenomenon affecting the cG
solution. To better appreciate the influence of the param-

eter λ on the discrete solutions, we plot in Fig. 8a–b the
Euclidean displacement norm on the deformed configura-
tion in the compressible regime (λ = 1, which corresponds
to a Poisson ratio of ν = 0.25). We observe that in the
compressible regime, the results produced by the various
numerical methods are all very close, whereas the cG solu-
tions depart from the the sHHO and uHHO solutions in the
quasi-incompressible regime. Finally, the computed verti-
cal component of the discrete traction integrated over the
indented top surface is plotted in Fig. 9 for sHHO and uHHO
as a function of the imposed vertical displacement. The two
HHO methods produce very similar results and capture well
the nonlinear response of the block.
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Fig. 9 Indented block: vertical component of the computed discrete traction integrated over the indented surface versus the imposed vertical
displacement using the sHHO and uHHO methods. a Compressible block, b quasi-incompressible block. (Color figure online)

Fig. 10 Sheared cylinder: snapshots of the Euclidean displacement norm on the deformed configuration at 0, 40, 80, and 100% of loading, and a
zoom where the deformations are the most important (uHHO(1) solution). The color scale goes from 0.0 (blue) to 1.8 (red). (Color figure online)

5.2 Cylinder under compression and shear

This test case, proposed in [29], simulates a hollow cylinder
under important compression and shear (it can be seen as a

controlled buckling). The cylinder in its reference configura-
tion has a inner and outer radius of 0.75 and 1, and a height
of 4. The bottom face is clamped, whereas the top face has
an horizontally and vertically imposed displacement of − 1
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Fig. 11 Sheared cylinder: von Mises stress on the deformed configuration at 40, 80 and 100% of loading (uHHO(1) solution). The color scales
goes from 0.0 (blue) to 0.275 (red). (Color figure online)

in both directions, and the lateral faces are traction-free. We
set μ = 0.1, λ = 1 (which corresponds to a Poisson ratio
of ν � 0.455). For sHHO, the stabilization parameter has
to be taken of the order of β0 = 100. We notice that both
sHHO and uHHO are robust and produce very close results,
which compare very well with the results reported in [29].
The loading is applied in 30 steps for uHHO and in 37 steps
for sHHO, leading respectively to a total of 152 and 187
Newton’s iterations. This indicates that uHHO is up to 20%
more effective for this test case. Some snapshots of the solu-
tion obtained with uHHO(1) on a mesh composed of 20,382
tetrahedra are shown in Fig. 10 where the color indicates the
Euclidean norm of the displacement. Figure 11 displays the
von Mises stress at different loading steps on the deformed
configuration. This figure allows one to observe the emerging
localization of the deformation field. Finally, the evolution
during the loading of the vertical component of the discrete
traction integrated over the top face of the cylinder is plotted
in Fig. 12. Theminimum is reached when the cylinder begins
to bend at 75% of the loading; beyond this value, the cylinder
becomes less rigid.

5.3 Sphere with cavitating voids

The last example simulates the problemof cavitation encoun-
tered for instance in elastomers, that is, the growth of cavities
under large tensile stresses [2]. Simulations of cavitation
phenomena present difficulties because the growth induces
significant deformations near the cavities. For a review,
we refer the reader to [45]. Some conforming [33], non-
conforming [45], and HDG [29] methods have already been
studied for this problem. For cavitation to take place, the
strain energy density has to be changed, and we consider
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−8 · 10−2

−6 · 10−2

−4 · 10−2

−2 · 10−2

0
sHHO(1) sHHO(2)
uHHO(1) uHHO(2)

Fig. 12 Sheared cylinder: evolution during the loading of the vertical
component of the discrete traction integrated over the top of the cylinder
for sHHO and uHHO. (Color figure online)

here, as in [29], the following modified Neohookean law:

Ψ (F) = 2μ

35/4

(
F : F

)3/4 − μ ln J + λ

2
(ln J )2, (38)

whereμ and λ are constant parameters. We setμ = 1, λ = 1
(which corresponds to a Poisson ratio of ν = 0.25).

The reference configuration consists of a unit sphere of
radius 1 with two spherical cavities. The origin of the Carte-
sian coordinate system is the center of the sphere. The
first cavity has a radius of 0.15 and its center is the point
of coordinates (− 0.7,− 0.7, 0), and the second cavity has
a radius of 0.2 and its center is the point of coordinates
(0.25, 0.25, 0.25). A displacement u(X) = rX with r ≥ 0
is imposed on the outer surface (|X| = 1) of the sphere.
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Fig. 13 Sphere with cavitating
voids: snaphots of the Euclidean
displacement norm at r = 0,
r = 0.8, r = 1.6 and r = 2.52
of loading (the sphere is cut
along the Equatorial plane) for
uHHO(2) on the deformed
configuration. The bottom right
plot shows a thin slice of the
sphere (still along the Equatorial
plane) for r = 2.52. (Color
figure online)

0 0.5 1 1.5 2
0

5

10

15

20

1.8 2.13

sHHO(1) sHHO(2)

0 0.5 1 1.5 2.5
0

5

10

15

20

1.92

uHHO(1) uHHO(2)

Fig. 14 Sphere with cavitating voids: radial component of the discrete traction integrated over the outer surface versus the imposed radial dis-
placement obtained with sHHO (left) and uHHO (right). Notice in both cases the larger value attained by r for k = 2. (Color figure online)

The stabilization parameter has to be taken of the order of
β0 = 100 for sHHO. The mesh is composed of 32288 tetra-
hedra, and the value of r is increased progressively until the
moment where the Newton’s method fails to converge. Some
snapshots of the Euclidean displacement norm are shown in
Fig. 13 on the deformed configuration for uHHO(2). We also
present a zoomnear the regionwhere the two cavities are only
separated by a thin layer. The reported solution compares
very well with the HDG solution from [29]. Interestingly,
the maximum value attained of r is larger for uHHO than for
sHHO and is larger for k = 2 than for k = 1 (see Fig. 14). For
k = 2, the maximum value of r is 2.52 for uHHO and 2.13
for sHHO, which indicates about 15% more robustness for
uHHO than for sHHO to handle extreme loading situations
in this case. Finally, Fig. 14 presents the radial component

of the discrete traction integrated over the outer surface of
the sphere versus the imposed radial displacement obtained
with sHHO and uHHO.

6 Conclusion

We have proposed and evaluated numerically two HHO
methods to approximate hyperelastic materials undergo-
ing finite deformations. Both methods deliver solutions
that compare well to the existing literature on challeng-
ing three-dimensional test cases, such as a hollow cylinder
under compression and shear or a sphere under traction
with two cavitating voids. In addition, both methods remain
well-behaved in the quasi-incompressible limit, as observed
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numerically on an annulus under traction and on the inden-
tation of a rectangular block. The test cases with analytical
solution also show that both methods are competitive with
respect to an industrial software using conforming finite
elements. The stabilized HHO method rests on a firmer the-
oretical basis than the unstabilized method, but requires the
introduction and tuning of a stabilization parameter that can
become fairly large in the quasi-incompressible limit. The
unstabilized HHO method avoids any stabilization by intro-
ducing a stable gradient reconstructed in the higher-order
polynomial space P

k+1
d (T ; R

d×d), but for smooth solutions,
the convergence rate is one order lower than with the stabi-
lizedmethod, i.e., the unstabilizedmethod still converges, but
in a suboptimal way. For compressible materials, the unsta-
bilized method appears to be somewhat more competitive
than the stabilized method since it requires less Newton’s
iterations and, at the same time, supports stronger loads, as
observed in particular in the case of cavitating voids in the
sphere.

We have also evaluated numerically the unstabilizedHHO
method using Raviart–Thomas–Nédélec reconstructions of
the gradient (detailed results were not reported herein for
brevity). We have retrieved the optimal-order convergence
rates for smooth solutions, but the method seems to be some-
what less robust for strongly nonlinear problems. For exam-
ple, in the case of the sphere with cavitating voids for k = 1,
if the discrete gradient is reconstructed in RTN

k
d(T ; R

d×d),
then the maximum value is r = 1.12 whereas, if the discrete
gradient is reconstructed in RTN

k+1
d (T ; R

d×d) (which con-
tains the spaceP

k+1
d (T ; R

d×d)), then themaximum value for
r is the same as for uHHO using P

k+1
d (T ; R

d×d) and k = 1
(r = 1.92).

Among possible perspectives of this work, wemention the
devising of a reconstruction based on the ideas introduced in
[25] for dG methods, and the use of different reconstructions
for the isochoric and volumic parts of the energy density.
The present methods can also be applied to approximate
other nonlinear problems. For instance, elasto-plasticity con-
stitutes the subject of ongoing work.
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